WO2022074321A1 - Platine-clapet a microbilles libres - Google Patents

Platine-clapet a microbilles libres Download PDF

Info

Publication number
WO2022074321A1
WO2022074321A1 PCT/FR2021/051713 FR2021051713W WO2022074321A1 WO 2022074321 A1 WO2022074321 A1 WO 2022074321A1 FR 2021051713 W FR2021051713 W FR 2021051713W WO 2022074321 A1 WO2022074321 A1 WO 2022074321A1
Authority
WO
WIPO (PCT)
Prior art keywords
microbead
plate
orifice
volume
seat
Prior art date
Application number
PCT/FR2021/051713
Other languages
English (en)
Other versions
WO2022074321A4 (fr
Inventor
Vianney Rabhi
Original Assignee
Vianney Rabhi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vianney Rabhi filed Critical Vianney Rabhi
Priority to EP21801586.5A priority Critical patent/EP4226066A1/fr
Priority to KR1020237015471A priority patent/KR20230079227A/ko
Priority to CN202180076088.3A priority patent/CN116547457A/zh
Priority to JP2023520301A priority patent/JP2023543629A/ja
Priority to AU2021358453A priority patent/AU2021358453A1/en
Priority to CA3194507A priority patent/CA3194507A1/fr
Publication of WO2022074321A1 publication Critical patent/WO2022074321A1/fr
Publication of WO2022074321A4 publication Critical patent/WO2022074321A4/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/04Check valves with guided rigid valve members shaped as balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1006Adaptations or arrangements of distribution members the members being ball valves

Definitions

  • the subject of the present invention is a plate-valve with free microbeads, which is mainly intended to allow the filling and/or the emptying of any cylinder of any reciprocating compressor or any reciprocating pump whatsoever, whether said compressor or said pump either with a piston, with a membrane or with any volume variation device known to those skilled in the art.
  • Passive pump valves There are many types of compressor valves or so-called “passive” pump valves, i.e. the opening and closing of which are controlled by the pressure difference between an upstream volume and a downstream volume. between which they stand. Passive dampers therefore differ from so-called “piloted” dampers, whose opening and closing are operated by an actuator.
  • Passive compressor valves can in particular be reed, plate, or concentric segments, they can also take the form of “poppet valves” such as those produced by the company “Burckhardt” and made up of microvalves each cooperating with a spring.
  • Passive compressor valves can be metallic or non-metallic.
  • PEEK also known as “Polyetheretherketone” which is a material which offers in particular advantageous anti-abrasive properties.
  • valves constitute a mass-spring assembly with a natural frequency. As such, they are designed to operate under relatively precise speed or even load conditions for the compressor they equip. [8] Indeed, if said compressor operates at a speed that is too far from the optimum speed of the passive valves that said compressor includes, the energy efficiency of said valves deteriorates, as does their durability.
  • the passive compressor valves must open as soon as the smallest pressure difference prevails between the upstream volume and the downstream volume between which they are interposed, then, once open, oppose the less possible when passing gases.
  • Passive compressor valves generally include a spring which returns them to contact with their seat
  • the force exerted by said spring on the valve with which it cooperates must be low enough so that, firstly, the gases can open said valve under a low differential pressure, and secondly, fear not excessively laminating said gases passing through said valve, rolling forming an irrecoverable energy loss.
  • said spring must be firm enough to bring said valve back to its seat quickly when the pressure difference reverses, in order to limit back-flow and obtain the best possible volumetric efficiency from the compressor.
  • Valve wear is generally greater when operating under aggressive chemical and/or particulate conditions.
  • fouling of said valves can lead to their sealing and/or permeability being degraded.
  • Valves according to the state of the art can also be damaged by cracking, deformation or even rupture. They generally age due to abrasion, creeping, pitting or surface peeling.
  • the compressor that said prechamber requires for its pilot charge supply must be able to operate over a wide range of rotational speeds which characterizes the operation of automobile reciprocating internal combustion engines, and over a range of pressure and temperature extent.
  • the plate-valve with free microbeads according to the invention can effectively be applied to the pre-chamber ignition valve selolne patent FR 3 061 743,
  • the plate-valve with free mterobilles according to the invention can also be used any other application, whatever the type or field, which requires allowing a gas or a liquid to pass from an upstream volume to a downstream volume but not the reverse, and this, whatever the nature of said gas, said liquid or said volumes.
  • the free microbead valve plate according to the present invention separates an upstream volume from a downstream volume, and allows a fluid to flow from said upstream volume to said downstream volume but not vice versa, said valve plate comprising:
  • At least one fixed circulation plate which separates the upstream volume in a sealed manner from the downstream volume, said plate being crossed right through in the direction of its thickness by at least one circulation orifice in which the fluid can circulate, while the end of said orifice which opens into the downstream volume has a microbead seat;
  • At least one permeable guide plate housed fixedly in the downstream volume parallel to the circulation plate and close to the latter, said plate being crossed right through in the direction of its thickness by at least one cylindrical guide orifice whose longitudinal axis is centered on that of the microbilte seat;
  • At least one permeable microbead stopper which is directly or indirectly integral with the cylindrical guide orifice and which fixes the maximum distance which separates the microbead from the microbead seat when said microbead is in contact with said stop, the latter closing little or not at all the cylindrical guide orifice;
  • At least one discharge passage which crosses right through the permeable guide plate and/or which bypasses said plate, said passage allowing circulation, when the microbead is not resting on the microbead seat, the fluid depuilse upstream volume towards the downstream volume via the circulation orifice,
  • the free microbead valve plate comprises a permeable microbead stopper which consists of a microbead bearing zone which is positioned in the extension of the cylindrical guide orifice and which is arranged on a stop plate fixedly housed in the downstream volume parallel to the permeable guide plate and close to the latter, while a discharge passage crosses right through in the direction of its thickness the stop plate and/or bypasses the stop plate to let the fluid flow from the upstream volume to the downstream volume via the circulation orifice when the microbead is not resting on the microbead seat.
  • a permeable microbead stopper which consists of a microbead bearing zone which is positioned in the extension of the cylindrical guide orifice and which is arranged on a stop plate fixedly housed in the downstream volume parallel to the permeable guide plate and close to the latter, while a discharge passage crosses right through in the direction of its thickness the stop plate and/or bypasses the stop plate to let the fluid flow from the upstream volume to the downstream volume via
  • the free microbead valve plate comprises an abutment plate spacer which is interposed between the abutment plate and the permeable guide plate so as to maintain said abutment plate at a distance said plate such that when the microbead is in contact with the microbead support zone, at least part of the volume of said microbead remains housed inside the cylindrical guide orifice.
  • the free microbead valve plate according to the present invention comprises a circulation plate, a permeable guide plate, a permeable microbead stopper and a spacer which constitute a rigid assembly in which the microbead.
  • the free microbead valve plate according to the present invention comprises a rigid assembly which is housed in a sealed manner in an assembly recess which separates the upstream volume from the downstream volume.
  • the free microbead valve plate according to the present invention comprises an assembly recess which has an axial stop on the upstream volume side on which the rigid assembly directly rests, and an axial stop on the downstream volume side on which rests the rigid assembly via a spring holding assembly, this checkerboard resting on the axial stop on the downstream volume side to press the assembly recess against the axial stop on the upstream volume side.
  • the free microbead valve plate according to the present invention comprises a discharge passage which is formed of at least one axial discharge groove arranged in the internal wall of the cylindrical guide orifice.
  • FIG. 1 is a schematic sectional view of the plate valve with free microbeads according to the invention and according to a simple variant comprising only a single microbead, this in order to facilitate understanding of the operation of said plate valve, the pressure prevailing in the downstream volume being greater than the pressure prevailing in the upstream volume.
  • FIG. 2 is a schematic sectional view of the plate-valve with free microbeads according to the invention and according to the configuration illustrated in FIG. 1, the pressure prevailing in the upstream volume being greater than the pressure prevailing in the downstream volume.
  • FIG. 3 is a three-dimensional phantom view of a three-stage compression reciprocating piston compressor with air-water intercoolers, the movable coupling of said compressor forming a crank-frame system while each compression stage of said compressor receives at least one plate-valve with free microbeads according to the invention as an inlet valve, and at least one plate-valve with free microbeads according to the invention as a discharge valve.
  • FIG. 4 is a three-dimensional sectional view of the reciprocating piston compressor shown in FIG. 3, said view highlighting in particular the intake ducts and the discharge ducts arranged in the cylinder heads of said compressor, said ducts each facing a plate- valve with free microbeads according to the invention.
  • FIG. 5 is an exploded three-dimensional view of the reciprocating piston compressor shown in FIG. 3, said view highlighting the way in which the free microbead valve plates according to the invention are housed in the cylinder heads of said compressor.
  • FIG. 6 is an exploded three-dimensional view of the reciprocating piston compressor similar to that shown in Figure 5, but from another angle which allows in particular to observe the opposite face of the free microbead valve plates according to the invention,
  • FIG. 7 is a three-dimensional sectional view of the free microbead valve plate according to the invention as provided at the inlet of the first compression stage of the reciprocating piston compressor shown in Figures 3 to 6.
  • FIG. 8 is an exploded three-dimensional view of the free microbead valve plate according to the invention as provided at the inlet of the first compression stage of the reciprocating piston compressor shown in Figures 3 to S.
  • FIG. 9 is a three-dimensional view of the free microbead valve plate according to the invention as provided for the discharge of the first compression stage of the reciprocating piston compressor shown in Figures 3 to 6,
  • FIG. 10 is a schematic sectional view of the free microbead valve plate according to the invention, according to a simple variant comprising only a single microbead and whose discharge passage is formed of three axial grooves discharge arranged in the inner wall of the cylindrical guide orifice.
  • FIG. 11 is a schematic cross-sectional view of the variant of the free microbead valve plate according to the invention shown in FIG. 10, according to section A-A.
  • FIGS 1 to 11 show the free microbead valve plate 1 according to the invention, various details of its components, its variants, and its accessories.
  • the free microbead valve plate 1 separates an upstream volume 3 from a downstream volume 4, and allows a fluid 2 to flow from said lover volume 3 to said downstream volume 4 but not vice versa.
  • the plate-valve with free microbeads 1 comprises at least one fixed circulation plate 5 which separates the upstream volume 3 from the downstream volume 4 in a sealed manner, said plate 5 being traversed right through in the direction of its thickness by at least one circulation orifice 6 in which the fluid 2 can circulate.
  • circulation plate 5 can be made of steel which is advantageously hard and mechanically resistant, or of any other material whatever its nature.
  • [521 plate-valve with free microbeads 1 also comprises at least one permeable guide plate 9 fixedly housed in the downstream volume 4 parallel to the circulation plate 5 and close to the latter, said plate 9 being crossed on either side partly in the direction of its thickness by at least one cylindrical guide orifice 10 whose longitudinal axis is centered on that of the microbead seat 7 more or less precisely, and without necessarily being completely parallel to the latter.
  • the permeable guide plate 9 can be made of plastic material which is appreciable for its lightness and its low cost price, or be made of any other material and in particular of sintered steel.
  • permeable guide plate 9 can be precisely positioned relative to the circulation plate 5, for example by means of centering pins known per se, or by means of any other mechanical centering element and/or positioning
  • the plate-valve with free microbeads 1 also comprises at least one microbead 8 housed at low clearance inside the cylindrical guide orifice 10 said small clearance limiting the passage of fluid 2 screw the gap left between said microbead 8 and said cylindrical orifice 10, said microbead 8 being able to move in longitudinal translation in said cylindrical orifice 10 so as to either rest in a sealed manner on the microbead seat 7 to close the circulation orifice 6 and prevent the circulation of the fluid 2 in the said orifice 6, or be distant from the said seat 7 to allow the said fluid 2 to circulate in said orifice 6.
  • the plate-valve with free microbeads 1 comprises at least one permeable microbead stopper 11 which is directly or indirectly integral with the cylindrical guide orifice 10 and which sets the maximum distance which separates the microbead 8 from the microbead seat 7 when said microbead 8 is in contact with said abutment 11.
  • the permeable microbead stopper 11 closes little or not at all the cylindrical guide orifice 10 so that the pressure difference between that prevailing in the downstream volume 4 and that prevailing in the volume upstream 3 can exert the desired blowgun effect on the microbead 8, either to keep the latter pressed against the microbead seat 7 with which it cooperates, or on the contrary, to move said microbead 8 away from said seat 7 so as to leave the fluid 2 circulates in the circulation orifice 6,
  • the plate-valve with free microbeads 1 comprises at least one spacer 12 interposed between the permeable guide plate 9 and the circulation plate 5 .
  • the spacer 12 keeps the permeable guide plate 9 at a distance from the circulation plate 5 such that when the microbead 8 is at the contact of the microbead seat 7, at least part of the volume of said microbead 8 remains housed inside the cylindrical guide orifice 10, disregarding any chamfer or expansion that said cylindrical guide orifice 10 may comprise.
  • the spacer 12 can be made integral either with the circulation plate 5. or with the permeable guide plate 9 as shown in FIG. 10, or both, in particular if said wedge 12, said plate 5 , and said plate 9 only form ! one and the same piece of metal or any other material.
  • the spacer 12 can also consist of a separate mechanical part, or be part of the environment in which the free microbead valve plate 1 according to the invention is integrated.
  • the plate-valve with free microbeads 1 comprises at least one discharge passage 13 which passes right through the permeable guide plate 9 and/or which bypasses said plate 9. said passage 13 allowing the fluid 2 to circulate, when the microbead 8 does not rest on the microbead seat 7, from the upstream volume 3 to the downstream volume 4 via the circulation orifice 6.
  • the permeable microbead stopper 11 may consist of a microbead bearing zone 16 which is positioned in the extension of the cylindrical guide orifice 10 and which is arranged on a stop plate 14 fixedly housed in the downstream volume 4 parallel to the permeable guide plate 9 and close to the latter.
  • a relief passage 15 crosses right through in the direction of its thickness the abutment plate 14 and/or bypasses the abutment plate 14 to allow the fluid 2 to circulate from the upstream volume 3 towards the downstream volume 4 via circulation orifice 6 when microbead 8 is not resting on microbead seat 7.
  • a stop plate spacer 17 can be interposed between the stop plate 14 and the permeable guide plate 9 so as to keep said abutment plate 14 at a distance from said plate 9 such that when the microbead 8 is in contact with the microbead bearing zone 16, at least part of the volume of said microbead 8 remains housed inside the cylindrical guide orifice 10.
  • stop plate spacer 17 can be made integral either with the stop plate 14, or with the permeable guide plate 9, or with both if said wedge 17, said stop plate 14, and said plate 9 form only one and the same piece of metal or any other material.
  • the stop plate spacer 17 can also consist of a separate mechanical part as shown in Figures 1 and 2, or be part of the environment in which the free microbead valve plate 1 is integrated. according to the invention.
  • FIGs 1 to 7 and Figure 9 show that the circulation plate 5, the permeable guide plate 9, the permeable microbead stopper 11 and the spacing dimension 12 can constitute a rigid assembly 19 made by screwing, welding, crimping or by any assembly means known to those skilled in the art, the microbead 8 being housed in said assembly 19.
  • the rigid assembly 19 can advantageously be housed in a sealed manner in an assembly recess 20 which separates the upstream volume 3 from the downstream volume 4.
  • the rigid assembly 19 or the assembly recess 20 comprising at least one seal groove 21 in which is housed a seal 22.
  • the assembly recess 20 may have an axial stop on the upstream volume side 23 on which the rigid assembly 19 rests directly, and an axial stop on the downstream volume side 24 on which the rigid assembly 19 rests via a assembly holding 25, the latter resting on the axial stop on the downstream volume side 24 to press the assembly recess 20 against the axial stop on the upstream volume side 23.
  • the force exerted by the assembly retaining spring 25 on the rigid assembly 19 is greater than the force exerted by the fluid 2 on said rigid assembly 19 when the pressure prevailing in the upstream volume 3 is greater than that prevailing in the downstream volume 4 and that consequently the microbead 8 is kept away from the microbead seat 7 with which it cooperates while the fluid 2 circulates from the upstream volume 3 towards the downstream volume 4.
  • the discharge passage 13 may be formed of at least one axial discharge groove 27 arranged in the wall inside the cylindrical guide orifice 10, the latter retaining its ability to guide the microbead 8 with small radial play during the movement of said microbead 8 in said orifice 10.
  • FIGS. 1 and 2 show a valve plate with free microbeads 1 according to the invention equipped with a single microbead 8, although the purpose of said valve plate 1 is to include a large number of microbeads 8 as shown in Figures 3 to 9.
  • Figure 1 illustrates what happens when P2 is greater than P1.
  • the microbead 8 is pressed by P2 on the microbead seat 7 arranged at the end of the circulation orifice 6, the latter passing right through the circulation plate 5 in the direction of its thickness.
  • the microbead 8 forms with the microbead seat 7 a sealed contact line which opposes the flow of fluid 2 from the downstream volume 4 to the upstream volume 3.
  • Figure 2 illustrates what happens when P1 is greater than P2, as can be seen in said figure, under the pressure of P1.
  • the microbead 8 has moved in the cylindrical guide orifice 10 in which it is housed until it comes into contact with the permeable microbead stopper 11. It is noted that the cylindrical guide orifice 10 is arranged in the permeable guide plate 9,
  • the microbead 8 behaved like a bullet in the barrel of a gun, the function of the latter being vested in the cylindrical guide orifice 10 in which said microbead 8 is housed by way of another analogy, the microbead 8 also behaved like a projectile propelled into the tube of a blowpipe by air pressure, the function of said tube also being fulfilled by the cylindrical orifice of guidance 10.
  • the vocation of the plate-valve with free microbeads 1 according to the invention is not to be equipped with a single microbead 8 but with a large number of microbeads 8 operating on a short stroke, this in order to be able to meet the needs and expectations of reciprocating piston compressors 52 produced in small, medium and large series.
  • said microbeads 8 can move very quickly from their microbead seat 7 to their permeable microbead stopper 11 and vice versa, without allowing a "back flow" to be established when they close. such that it can significantly reduce the total efficiency of the reciprocating piston compressor 52 which is equipped with the free microbead valve plate 1 according to the invention.
  • the plate-valve with free microbeads 1 according to the invention does not have a threshold pressure imposed by any return spring whether it is from which your microbeads 8 rise from their microbead seat 7 to let fluid 2 circulate between the upstream volume 3 and the downstream volume 4.
  • Said reactivity can also be adjusted by the pressure drop formed by the fluid circuit 2 which connects the face of the microbeads 8 opposite the microbead seat 7, and the downstream volume 4.
  • Figures 1 to 11 show, by way of example, microbeads >8 which rest on a conical microbead seat 7 which forms an angle of forty-five degrees on either side of its axis.
  • the microbeads 8 are made of fine steel and their diameter is two millimeters.
  • the inside diameter of the circulation orifice 6 with which said microbeads 8 cooperate is one point thirty-four millimeter, and the width of the bearing surface of the microbead seat 7 is one tenth of a millimeter.
  • Contact is established between each microbead 8 and their respective microbead 7 seat in the middle of said range, and normally at the latter.
  • a radial play of three hundredths of a millimeter is left between each microbead 8 and the cylindrical guide orifice 10 which accommodates it.
  • each microbead 8 was left with a maximum stroke of four tenths of a millimeter. Said race corresponds to the distance that said microbilte 8 must travel to go from its contact with its microbead seat 7 until it comes into contact with its permeable microbead stopper 11, and vice versa.
  • the speed acquired by the microbead 8 when it comes into contact with the microbead seat 7 or the permeable microbead stopper 11 is of the order of eighty centimeters per second.
  • the friction between the microbead 8 and the interior of the cylindrical guide orifice 10 dissipates a very low energy by friction, even if the cylindrical guide orifice 10 is positioned horizontally and therefore , perpendicular to the direction of gravity.
  • the weight of the microbead 8 is, according to the non-limiting examples shown in Figures 1 to 11, only thirty-four milligrams, while a film of air tends to interfere between each microbead 8 and the cylindrical guide orifice 10 which accommodates it when said microbead 8 moves.
  • the width of the microbead seat 7 and the low kinetic energy to be dissipated on said seat guarantee the durability of the microbeads 8 made of steel and of the microbead seat 7 also made of steel with which they cooperate
  • microbeads 8 may be similar to the balls ordinarily used in ball bearings known per se, that is to say toughened, and optionally coated with hard chrome plating. The manufacturing cost of such balls being very low, it contributes to the low cost of the plate-valve with free microbeads 1 according to the invention.
  • microbeads 8 are not linked to a spring, they can freely rotate on their own so as never to expose the microbead 7 seat to exactly the same surface. This allows each microbead 8 to evacuate any impurities or particles which would come between itself and the seat of the microbead 7 with which it cooperates, and to permanently clean its entire external surface.
  • the spherical shape of the microbeads 8 is conducive to the flow of the fluid 2. Indeed, before emerging into the downstream volume 4 and after having traveled through the circulation orifice 6, said fluid 2 coming of the upstream volume 3 must pass through the annular space left between each microbead 8 and its microbead seat 7. However, when the fluid 2 encounters the dome formed by said microbead 8, said fluid 2 is naturally channeled towards said seat 7 by said dome, which gives the plate-valve with free microbeads 1 according to the invention a high discharge coefficient.
  • each microbead 8 on its microbead seat 7 is large relative to the volume of said microbead 8. It follows from this that said microbead 8 can effectively cool down on its microbead seat 7 to adopt a temperature close to that of said seat 7.
  • each microbead 8 being perfectly spherical and rotating on itself when it operates, said microbead 8 cannot undergo any inhomogeneous deformation linked to the temperature.
  • the free microbead valve plate 1 according to the invention has a large surface area relative to the volume of the compression chamber 51 that it dessert.
  • microbeads 8 the sum of the lengths of the lines of contact formed by said microbeads 8 with their seat 7 is all the greater as the number of microbeads 8 is large. Furthermore, the smaller the microbeads 8, the smaller their lift is in absolute terms at the same ratio between lift and diameter of circulation orifice 6,
  • [125] Can be accommodated in said square ball ten millimeters in diameter, or reasonably, sixteen microbeads 8 of two millimeters in diameter.
  • the total length of the lines of contact formed by the microbeads 8 of two millimeters in diameter is three point two times greater than the length of the line of contact formed by the ball of ten millimeters in diameter.
  • the stroke of the two millimeter microbeads 8 is three point two times smaller than that of the ball ten millimeters in diameter.
  • the lifting of the ball of ten millimeters in diameter must be one point twenty-eight millimeters and not more than four tenths of a millimeter for the microbeads 8 of two millimeters in diameter .
  • the kinetic energy to be dissipated at the interface between said ball and its seat, or between said ball and its opening stopper would be seventeen thousand four hundred micro-doubts instead of the thirty-four micro-doubts that each micro-ball 8 of two millimeters in diameter dissipates. More than five hundred times more to dissipate on a seat with only five times more contact surface, that is to say more than one hundred times more kinetic energy per unit surface.
  • the plate-valve with free microbeads 1 according to the invention is designed to operate with microbeads 8 of small size distributed in large numbers over the largest possible part of the available surface offered by said plate. -valve 1, the flow rate of each said microbead 8 being added to that of its neighbors.
  • FIGS. 3 to 9 show free microbead valve plates 1 only seven millimeters thick which, as shown in FIGS. 3 to 6, can easily be integrated into a compact reciprocating piston compressor 52 with three stages of compression and being able to be contained in a cube of less than fifteen centimeters on side.
  • the plate-valve with free microbeads 1 accommodates the variable speed of an automobile internal combustion engine which can evolve from five hundred revolutions per minute to more than six thousand five hundred revolutions per minute, without damage either to the performance of the reciprocating piston compressor 52, or to its acoustic emissions, or to its durability.
  • microbeads 8 do not include a spring and therefore have no specific mode linked to said spring, and that said microbeads 8 have low inertia.
  • said compressor 52 comprises inlet valves 57 and discharge valves 58, said valves 57, 58 being made up of a plate-valve with free microbeads 1 according to the invention.
  • said compressor 52 comprises compressor pistons 60 each of which can move in translation in a compressor cylinder 56, said pistons 60 forming, with a crankshaft 61, a crank-frame system 59 better known as the Anglo-Saxon term "scotch yoke".
  • the stroke of the compressor pistons 60 is here seventeen millimeters.
  • the reciprocating piston compressor 52 shown in Figures 3 to 6 is particularly suitable for the implementation of the valve ignition prechamber subject of patent No. FR 3,061,743.
  • Said compressor 52 comprises a first compression stage 62 consisting of two compressor cylinders 56 of fifty-three millimeter bore drawing in air from a common intake duct 53, and discharging said air at a higher pressure in a common discharge duct 54.
  • Said compressor 52 also comprises a second compression stage 63 consisting of a compressor cylinder 56 of forty millimeters in diameter, and a third compression stage 54 consisting of a compressor cylinder 56 of twenty-two millimeters in diameter .
  • FIGS. 4 to 6 also note the cooling water chambers 66 in which water circulates at a temperature of the order of forty degrees Celsius, said water coming from a pump not shown.
  • the cooling water chambers 66 cool, on the one hand, the air which circulates in the air-water intercoolers 65 and, on the other hand, the oil contained in a compressor casing 67 in which are arranged the compressor cylinders 56, said casing 67 in particular housing the crank-frame system 59.
  • the function of said oil is to lubricate the mechanical components internal moving parts of the reciprocating piston compressor 52 in addition to cooling and homogenizing the temperature thereof.
  • the compressor cylinder heads 55 are made in two parts, the first sealingly housing the free microbead valve plate 1 according to the invention, and the second forming the inlet duct 53 and the discharge duct 54 of the corresponding compression stage 62, 63, 64
  • the free microbead valve plates 1 form a ready-to-assemble assembly, already provided or not with a seal 22, said assembly being able, for example, to be delivered by an equipment manufacturer to the manufacturer of the compressor at reciprocating piston 52 as shown in Figures 3 to 6.
  • the plate-valve with free microbeads 1 makes it possible to produce reciprocating piston compressors 52 that are efficient, durable, and compact, operating over a wide range of speeds and pressures. In doing so, the valve plate with free microbeads 1 according to the invention allows the implementation under optimal conditions of the valve ignition prechamber object of the patent FR 3 061 743,

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Check Valves (AREA)
  • Lift Valve (AREA)
  • Medicinal Preparation (AREA)
  • Float Valves (AREA)
  • Compressor (AREA)

Abstract

La platine-clapet à microbilles libres (1) laisse un fluide (2) circuler depuis un volume amont (3) vers un volume aval (4) et non l'inverse, et comprend une plaque de circulation (5) traversée par un orifice de circulation (6) terminé par un siège de microbille {7), un plateau de guidage perméable (9) parallèle à ladite plaque (5) étant traversé par un orifice cylindrique de guidage (10) qui loge une microbille (8) laquelle repose sur ledit siège (7) pour obturer ledit orifice (8) ou repose sur une butée perméable d'arrêt de microbille (11). une cale d'espacement (12) étant interposée antre ledit plateau (8) et ladite plaque (5) cependant qu'un passage de refoulement (13) traverse ledit plateau (9) pour laisser le fluide (2) circuler lorsque la microbille (8) ne repose pas sur ledit siège (7).

Description

Description
Titre de l'invention PLATINE-CLAPET A MICROBILLES LIBRES
[1] La présente invention a pour objet une platine-clapet à microbilles libres, laquelle est principalement destinée à permettre le remplissage et/ou la vidange de tout cylindre de quelque compresseur alternatif ou de toute pompe alternative que ce soit, que ledit compresseur ou ladite pompe soit à piston, à membrane ou à tout dispositif de variation de volume connu de l’homme de l’art.
[2] Il existe de nombreux types de clapets de compresseur ou clapets de pompe dits « passifs », c’est à dire dont l’ouverture et la fermeture sont pilotées par la différence de pression qui règne entre un volume amont et un volume aval entre lesquels ils s’interposent. Les clapets passifs se distinguent donc des clapets dits « pilotés », dont l’ouverture et la fermeture sont opérées par un actionneur.
[3] Les clapets de compresseur passifs peuvent notamment être à lamelle, à plaque, ou à segments concentriques, ils peuvent aussi prendre la forme de « poppet valves » comme ceux produits par la société « Burckhardt » et constitués de microsoupapes chacune coopérant avec un ressort de rappel.
[4] On notera aussi les « Magnum™ HammerHead™ valve », qui sont des « poppet valves » commercialisées par la société « Dresser-Rand » spécialement adaptées aux compresseurs de molécules lourdes telles que le dioxyde de carbone, l'éthylène, le propane oule gaz naturel.
[5] Les clapets de compresseur passifs peuvent être métalliques ou non-métalliques. Par exemple, la société « Hoerbiger » réalise des clapets en « PEEK » dit aussi « Polyetheretherketone » qui est un matériau qui offre notamment des propriétés anti-abrasives avantageuses.
[6] Les performances optimales des clapets d’admission et de refoulement des compresseurs à piston selon l’état de l’art sont ordinairement trouvées à une vitesse de rotation de compresseur déterminée.
[7] En effet, lesdits clapets constituent un ensemble masse-ressort doté d’une fréquence propre. Ils sont à ce titre prévus pour opérer dans dos conditions de vitesse voire de charge relativement précises du compresseur qu’ils équipent. [8] En effet, si ledit compresseur fonctionne à une vitesse trop éloignée de celte optimale des clapets passifs que comprend ledit compresseur, l’efficacité énergétique desdits clapets se dégrade, de même que leur durabilité.
[9] Au plan énergétique, on attend des clapets passifs la meilleure perméabilité possible pour conférer au compresseur qu’ils équipent le meilleur rendement volumétrique possible, c’est à dire la meilleure propension à remplir et à vider son cylindre,
[10] Une grande perméabilité des clapets limite les pertes énergétiques par pompage du compresseur qu’ils équipent. Ceci vaut pour les clapets positionnés tant à l’admission dudit compresseur, qu’au refoulement de ce dernier.
[11] Pour servir cet objectif, les clapets de compresseur passifs doivent s’ouvrir dès la plus petite différence de pression régnant entre le volume amont et le volume aval entre lesquels ils s’interposent, puis, une fois ouverts, s'opposer le moins possible au passage des gaz.
[12] En outre, une fois les gaz admis ou refoulés, lesdlts clapets doivent se refermer le plus rapidement possible de sorte à limiter l’écoulement des gaz en sens inverse, cet effet indésirable étant connu sous le terme anglo-saxon de « back-flow ».
[13] Les clapets de compresseur passifs comprennent généralement un ressort qui les rappelle au contact de leur siège,
[14] Ledit ressort résulte d’un compromis,
[15] Idéalement, l’effort qu’exerce ledit ressort sur le clapet avec lequel il coopère doit être suffisamment faible pour que premièrement, les gaz puissent ouvrir ledit clapet sous une faible pression différentielle, et deuxièmement, peur ne pas laminer exagérément lesdits gaz passant via ledit clapet, le laminage formant une perte énergétique irrécupérable.
[16] Simultanément, ledit ressort doit être suffisamment ferme pour ramener ledit clapet sur son siège rapidement lorsque la différence de pression s’inverse, ceci pour limiter le « back-flow » et obtenir du compresseur le meilleur rendement volumétrique possible.
[17] Outre être les plus efficaces possibles au plan énergétique, les clapets de compresseur passifs doivent rester durables, convenablement étanches, peu exigeants en maintenance, peu coûteux à produire, à entretenir et à réparer, et dans la mesure du possible, silencieux.
[18] Les principales sources d’usure des clapets selon l'état de l'art se situent au niveau des contacts trouvés entre le clapet et son siège, entre le clapet et sa butée d’ouverture, entre le ressort de rappel et le clapet, et entre le ressort de rappel et son logement.
[19] L’usure des clapets est généralement plus importante quand ils opèrent dans des conditions chimiques et/ou particulaires agressives. En outre, l’encrassement desdits clapets peut conduire à en dégrader l’étanchéité et/ou la perméabilité.
[20] Les clapets selon l’état de l’art peuvent également être endommagés par fissuration, par déformation, voire par rupture. Ils vieillissent généralement sous l’effet de l'abrasion, du fluage, du piquage ou de l'écaillage de surface.
[21] Les clapets de compresseur passifs selon l'état de l’art sont de ce fait peu adaptés à la réalisation d’un compresseur tel que celui nécessaire à la mise en oeuvre de la préchambre d’allumage à clapet objet du brevet N° FR 3 061 743 publié le 16 août 2019 et appartenant au demandeur.
[22] En effet, le compresseur que requiert ladite préchambre pour son alimentation en charge pilote doit pouvoir opérer sur une large plage de vitesse de rotation qui caractérise le fonctionnement des moteurs à combustion interne alternatifs automobiles, et sur une plage de pression et de température étendue.
[23] En outre, le compresseur nécessaire à l’alimentation de la préchambre d’allumage à clapet selon le brevet N° FR 3 061 743 doit pouvoir fonctionner durant toute la vie d’une automobile sans intervention en réparation ni entretien, ceci malgré les importantes variations des conditions de fonctionnement auxquelles il est soumis.
[24] Dans ce contexte, les clapets de compresseur passifs selon l’état de l’art permettent difficilement de réaliser un compresseur d’alimentation adapté à ladite préchambre d’allumage à clapet.
[25] C’est pourquoi, particulièrement dans le cadre de la mise en œuvre de ladite préchambre, la platine-clapet à microbilles libres suivant l’invention se substitue
Figure imgf000006_0001
avantageusement aux clapets de compresseur passifs selon l’état de l'art en ce que, selon un mode particulier de réalisation :
♦ Elle est particulièrement perméable de sorte à opposer une faible résistance au passage des gaz, ce qui favorise le rendement énergétique du compresseur qui la reçoit ;
♦ Elle est réactive et sa commutation entre position ouverte et fermée s'opère sous une très faible pression différentielle ce qui favorise également le rendement énergétique du compresseur qui la reçoit :
♦ Elle peut opérer sur une large plage de fréquence, et elle permet notamment à tout compresseur qui en est équipé d’opérer à vitesse variable, par exemple pour mettre en œuvre la préchambre d’allumage à clapet selon le brevet N* FR 3 061 743 sur un moteur thermique automobile ;
♦ Elle est durable et permet un fonctionnement cumulé sur plusieurs milliers d’heures sans entretien ce qui la rend compatible avec des applications automobiles, et réduit les charges de maintenance des compresseurs alternatifs en général ;
♦ Elle est robuste, autonettoyante et peut s’accommoder d’environnements agressifs ou de traces de lubrifiant sans conséquences pour son efficacité ;
♦ Elle peut fonctionner sur une large plage de température sans risque de déformation ou de perte de performance ;
♦ Elle est peu coûteuse à produire,
[26] La platine-clapet à microbilles libres suivant l’invention peut effectivement s’appliquer à la préchambre d’allumage à clapet selolne brevet FR 3 061 743, Cependant, la platine-clapet à mterobilles libres suivant l’invention peut aussi servir n’importe quelle autre application, quel qu’en soitle type oule domaine, qui nécessite de laisser un gaz ou un liquide passer d’un volume amont vers un volume aval mais non l’inverse, et ceci, quelle que soit la nature dudit gaz, dudit liquide ou desdits volumes.
[27] La platine-clapet à microbilles libres suivant la présente invention sépare un volume amont d’un volume aval, et permet à un fluide de circuler depuis ledit volume amont vers ledit volume aval mais non l’inverse, ladite platine-clapet comprenant :
♦ Au moins une plaque de circulation fixe qui sépare de façon étanchlee volume amont du volume aval, ladite plaque étant traversée de part en part dans le sens de son épaisseur par au moins un orifice de circulation dans lequel le fluide peut circuler, tandis que l’extrémité dudit orifice qui débouche dans le volume aval présente un siège de microbille ;
♦ Au moins un plateau de guidage perméable logé fixement dans le volume aval parallèlement à la plaque de circulation et proche de cette dernière, ledit plateau étant traversé de part en part dansle sens de son épaisseur par au moins un orifice cylindrique de guidage dont l'axe longitudinal est centré sur celui du siège de microbilte ;
♦ Au moins une microbille logée à faible jeu à l’intérieur de l’orifice cylindrique de guidage ledit faible jeu limitanlte passage de fluide via l’interstice laissé entre ladite microbille et ledit orifice cylindrique, ladite microbille pouvant se mouvoir en translation longitudinale dans ledit orifice cylindrique de sorte à soit, reposer de manière étanche sur le siège de microbille pour obturer l’orifice de circulation et interdire la circulation du fluide dans ledit orifice, soit, être distante dudit siège pour laisser ledit fluide circuler dans ledit orifice ;
♦ Au moins une butée perméable d’arrêt de microbille qui est directement ou indirectement solidaire de l’orifice cylindrique de guidage et qui fixe la distance maximale qui sépare la microbille du siège de microbille lorsque ladite microbille est au contact de ladite butée, cette dernière n'obturant que peu ou pas l’orifice cylindrique de guidage ;
♦ Au moins une cale d’espacement interposée entre le plateau de guidage perméable et la plaque de circulation de sorte à maintenir ledit plateau à une distance de ladite plaque telle, que lorsqulee microbille est au contact du siège de microbille, une partie au moins du volume de ladite microbille reste logée à l'intérieur de l'orifice cylindrique de guidage, cependant que lorsque ladite microbille est au contact de la butée d’arrêt de microbille, un passage est laissé au fluide pour circuler d’une part, entre ladite microbille et le siège de microbille avec lequel elle coopère et d'autre part, entre le plateau de guidage perméable et la plaque de circulation ;
♦ Au moins un passage de refoulement qui traverse de part en part le plateau de guidage perméable et/ou qui contourne ledit plateau, ledit passage laissant circuler, lorsque la microbille ne repose pas sur le siège de microbille, le fluide depuilse volume amont vers le volume aval via l’orifice de circulation,
[28] La platine-clapet à microbilles libres suivant la présente invention comprend une butée perméable d’arrêt de microbille qui est constituée d’une zone d’appui de microbille qui est positionnée dans le prolongement de l'orifice cylindrique de guidage et qui est aménagée sur une plaque-butée logée fixement dans le volume aval parallèlement au plateau de guidage perméable et proche de ce dernier, cependant qu’un passage de décharge traverse de part en part dans le sens de son épaisseur la plaque-butée et/ou contourne la plaque-butée pour laisser circuler le fluide depuilse volume amont vers le volume aval via l’orifice de circulation lorsquele microbille ne repose pas sur le siège de microbille.
[29] La platine-clapet à microbilles libres suivant la présente invention comprend une cale d’espacement de plaque-butée qui est interposée entre la plaque-butée et le plateau de guidage perméable de sorte à maintenir ladite la plaque-butée à une distance dudit plateau telle, que lorsque la microbille est au contact de la zone d'appui de microbille, une partie au moins du volume de ladite microbille reste logée à l’intérieur de l’orifice cylindrique de guidage.
[30] La platine-clapet à microbilles libres suivant la présente invention comprend une plaque de circulation, un plateau de guidage perméable, une butée perméable d’arrêt de microbille et une cale d'espacement qui constituent un assemblage rigide dans lequel est hébergée la microbille.
[31] La platine-clapet à microbilles libres suivant la présente invention comprend un assemblage rigide qui est logé de façon étanche dans un évidement d'assemblage qui sépare le volume amont du volume aval
[32] La platine-clapet à microbilles libres suivanlet présente invention comprend un évidement d'assemblage qui présente une butée d’arrêt axial côté volume amont sur laquelle repose directement l’assemblage rigide, et une butée d’arrêt axial côté volume aval sur laquelle repose l’assemblage rigide par l’intermédiaire d’un ressort de maintien d’assemblage, ce damier prenant appui sur la butée d’arrêt axial côté volume aval pour plaquer l’évidement d'assemblage sur la butée d’arrêt axial côté volume amont.
[33] La platine-clapet à microbilles libres suivant la présente invention comprend un passage de refoulement qui est formé d’au moins une gorge axiale de refoulement aménagée dans la paroi interne de l’orifice cylindrique de guidage.
[34] La description qui va suivre en regard des dessins annexés et donnés à titre d'exemples non limitatifs permettra de mieux comprendre l’invention, les caractéristiques qu'elle présente, et les avantages qu'elle est susceptible de procurer :
[35] [Fig. 1] est une vue en coupe schématique de la platine-clapet à microbilles libres suivant l'invention et selon une variante simple ne comprenant qu’une seule microbille, ceci afin de faciliter la compréhension du fonctionnement de ladite platine-clapet, la pression régnant dans le volume aval étant supérieure à la pression régnant dans le volume amont.
[36] [Fig. 2] est une vue en coupe schématique de la platine-clapet à microbilles libres suivant l'invention et selon la configuration illustrée en figure 1, la pression régnant dans le volume amont étant supérieure à la pression régnant dans le volume aval.
[37] [Fig. 3] est une vue fantôme tridimensionnelle d’un compresseur à piston alternatif à trois étages de compression avec refroidisseurs intermédiaires air-eau, l'attelage mobile dudit compresseur formant un système manivelle-cadre tandis que chaque étage de compression dudit compresseur reçoit au moins une platine- clapet à microbilles libres suivant l’invention à titre de clapet d’admission, et au moins une platine-clapet à microbilles libres suivant l’invention à titre de clapet de refoulement.
[38] [Fig. 4] est une vue tridimensionnelle en coupe du compresseur à piston alternatif montré en figure 3, ladite vue mettant notamment en évidence tes conduits d’admission et les conduits de refoulement aménagés dans les culasses dudit compresseur, lesdits conduits faisant chacun face à une platine-clapet à microbilles libres suivant l'invention. [39] [Fig. 5] est une vue tridimensionnelle éclatée du compresseur à piston alternatif montré en figure 3, ladite vue mettant en évidence la manière dont sont logées les platines-clapets à microbilles libres suivant l'invention dans les culasses dudit compresseur.
[40] [Fig. 6] est une vue tridimensionnelle éclatée du compresseur à piston alternatif similaire à celle montrée en figure 5, mais selon un autre angle qui permet notamment d’observer la face opposée des platines-clapets à microbilles libres suivant l'invention,
[41] [Fig, 7] est une vue tridimensionnelle en coupe de la platine-clapet à microbilles libres suivant l’invention telle que prévue à l’admission du premier étage de compression du compresseur à piston alternatif montré en figures 3 à 6.
[42] [Fig. 8] est une vue tridimensionnelle éclatée de la platine-clapet à microbilles libres suivant l’invention telle que prévue à l’admission du premier étage de compression du compresseur à piston alternatif montré en figures 3 à S.
[43] [Fig, 9] est une vue tridimensionnelle de la platine-clapet à microbilles libres suivant l’invention telle que prévue au refoulement du premier étage de compression du compresseur à piston alternatif montré en figures 3 à 6,
[44] [Fig, 10] est une vue en coupe schématique de la platine-clapet à microbilles libres suivant l’invention, selon une variante simple ne comprenant qu’une seule microbille et dont le passage de refoulement est formé de trois gorges axiales de refoulement aménagées dans la paroi interne de l’orifice cylindrique de guidage.
[45] [Fig. 11] est une vue en coupe schématique de la variante de la platine-clapet à microbilles libres suivant l'invention montrée en figure 10, selon la coupe A-A.
[46] DESCRIPTION DE L’INVENTION :
[47] On a montré en figures 1 à 11 la platine-clapet à microbilles libres 1 suivant l’invention, divers détails de ses composants, ses variantes, et ses accessoires.
[48] Comme le montrent clairement et de façon simple les figures 1 et 2, la platine- clapet à microbilles libres 1 selon l'invention sépare un volume amont 3 d’un volume aval 4, et permet à un fluide 2 de circuler depuis ledit volume amant 3 vers ledit volume aval 4 mais non l'inverse.
[49] On constate en figures 1 à 8 et en figure 10 que la platine-clapet à microbilles libres 1 selon l’invention comprend au moins une plaque de circulation 5 fixe qui sépare de façon étanche le volume amont 3 du volume aval 4, ladite plaque 5 étant traversée de part en part dans le sens de son épaisseur par au moins un orifice de circulation 6 dans lequel le fluide 2 peut circuler.
[50] On voit aussi sur lesdites figures que l’extrémité dudit orifice 6 qui débouche dans le volume aval 4 présente un siège de microbille 7 cependant que l'autre extrémité dudit orifice 6 débouche dans le volume amont 3 par exemple via un convergent d’entrée 26 qui facilite l’entrée du fluide 2 dans l’orifice de circulation 6 et augmente le coefficient de décharge de ce dernier,
[51] On note que la plaque de circulation 5 peut être réalisée en acier qui est avantageusement dur et mécaniquement résistant, ou en tout autre matériau quelle qu’en soit la nature.
[521 platine-clapet à microbilles libres 1 selon l’invention comprend aussi au moins un plateau de guidage perméable 9 logé fixement dans le volume aval 4 parallèlement à la plaque de circulation 5 et proche de cette dernière, ledit plateau 9 étant traversé de part en part dans le sens de son épaisseur par au moins un orifice cylindrique de guidage 10 dont l’axe longitudinal est centré sur celui du siège de microbille 7 de façon plus ou moins précise, et sans être forcément tout à fait parallèle à ce dernier.
[53] On note que le plateau de guidage perméable 9 peut être réalisée en matériau plastique appréciable pour sa légèreté et son faible prix de revient, ou être fait de tout autre matériau et notamment d’acier fritté.
[54] On note également que le plateau de guidage perméable 9 peut être précisément positionné par rapport à la plaque de circulation 5 par exemple au moyen de pions de centrage connus en soi, ou au moyen de fout autre élément mécanique de centrage et/ou de positionnement
[55] On remarque en figures 1, 2, 8, 10 et 11 que la platine-clapet à microbilles libres 1 selon l’invention comprend également au moins une microbille 8 logée à faible jeu à l’intérieur de l'orifioe cylindrique de guidage 10 ledit faible jeu limitant le passage de fluide 2 vis l'interstice laissé entre ladite microbille 8 et ledit orifice cylindrique 10, ladite microbille 8 pouvant se mouvoir en translation longitudinale dans ledit orifice cylindrique 10 de sorte à soit, reposer de manière étanche sur le siège de microbille 7 pour obturer l’orifice de circulation 6 et interdire la circulation du fluide 2 dans ledit orifice 6, soit, être distante dudit siège 7 pour laisser ledit fluide 2 circuler dans ledit orifice 6.
[56] On note que le jeu radial laissé entre la microbiile 8 et l’orifice cylindrique de guidage 10 doit être suffisamment faible pour que ladite microbille 8 opère comme un piston dans l’orifice cylindrique de guidage 10, mais suffisamment grand pour que ladite microbille 8 puisse se déplacer librement dans ledit orifice 10, y-compris sous l'effet d’une faible différence de pression.
[57] A ce titre, on constate que le principe de déplacement de la microbille 8 dans l’orifice cylindrique de guidage 10 est analogue à celui qui régit le déplacement d’un projectile dans une sarbacane, ou d’une balle dans le canon d’un fusil.
[58] On note en figures 1 à 10 que la platine-clapet à microbilles libres 1 selon l'invention comprend au moins une butée perméable d’arrêt de microbille 11 qui est directement ou indirectement solidaire de l’orifice cylindrique de guidage 10 et qui fixe la distance maximale qui sépare la microbille 8 du siège de microbiile 7 lorsque ladite microbiile 8 est au contact de ladite butée 11.
[59] On remarque que le butée perméable d’arrêt de microbille 11 n'obture que peu ou pas l’orifice cylindrique de guidage 10 de sorte que la différence de pression entre celte régnant dans le volume aval 4 et celle régnant dans le volume amont 3 puisse exercer l’effet de sarbacane recherché sur la microbiile 8, que ce soit pour maintenir cette dernière plaquée sur le siège de microbiile 7 avec lequel elle coopère, ou au contraire, pour éloigner ladite microbille 8 dudit siège 7 de sorte à laisser le fluide 2 circuler dans l'orifice de circulation 6,
[60] On voit en figures 1, 2, 8 et 10 que la platine-clapet à microbilles libres 1 selon l’ invention comprend au moins une cale d’espacement 12 interposée entre le plateau de guidage perméable 9 et la plaque de circulation 5.
[61] La cale d'espacement 12 maintient le plateau de guidage perméable 9 à une distance de la plaque de circulation 5 telle, que lorsque la microbille 8 est au contact du siège de microbille 7, une partie au moins du volume de ladite microbille 8 reste logée à l'intérieur de l'orifice cylindrique de guidage 10 abstraction faite de tout chanfrein ou épanouissement que pourrait comporter ledit orifice cylindrique de guidage 10.
[62] On remarque - particulièrement en figure 2 - que lorsque la microbille 8 est au contact de la butée d’arrêt de microbille 11, un passage est laissé au fluide 2 pour circuler d’une part, entre ladite microbille 8 et le siège de microbille 7 avec lequel elle coopère et d’autre part, entre le plateau de guidage perméable 9 et la plaque de circulation 5.
[63] On note que la cale d’espacement 12 peut être réalisée solidairement soit de la plaque de circulation 5. soit du plateau de guidage perméable 9 comme le montre la figure 10, soit des deux notamment si ladite cale 12, ladite plaque 5, et ledit plateau 9 ne forment qu! une seule et même pièce de métal ou de toute autre matière.
[64] La cale d’espacement 12 peut aussi être constituée d'une pièce mécanique distincte, ou faire partie de l’environnement dans lequel est intégrée la platine- clapet à microbilles libres 1 selon l’invention.
[65] Enfin, comme l’illustrent tes figures 1 à 10,le platine-clapet à microbilles libres 1 selon l'invention comprend au moins un passage de refoulement 13 qui traverse de part en part le plateau de guidage perméable 9 et/ou qui contourne ledit plateau 9. ledit passage 13 laissant circuler, lorsque la microbille 8 ne repose pas sur le siège de microbille 7, le fluide 2 depuis le volume amont 3 vers le volume aval 4 via l’orifice de circulation 6.
[66] On note que le jeu laissé entre la microbille 8 et l’orifice cylindrique de guidage 10 participe pour partie à laisser le fluide 2 circuler depuis le volume amont 3 vers le volume aval 4.
[67] On remarque en figures 1 à 10 que la butée perméable d’arrêt de microbille 11 peut être constituée d'une zone d’appui de microbille 16 qui est positionnée dans le prolongement de l’orifice cylindrique de guidage 10 et qui est aménagée sur une plaque-butée 14 logée fixement dans le volume aval 4 parallèlement au plateau de guidage perméable 9 et proche de ce dernier. [68] En ce cas, un passage de décharge 15 traverse de part en part dans le sens de son épaisseur la plaque-butée 14 et/ou contourne la plaque-butée 14 pour laisser circuler le fluide 2 depuis le volume amont 3 vers le volume aval 4 via l’orifice de circulation 6 lorsque la microbille 8 ne repose pas sur le siège de microbille 7.
[69] Si telle est la configuration de la platine-clapet à microbilles libres 1 selon l'invention, comme le montrent tes figures 1 et 2, une cale d'espacement de plaque- butée 17 peut être interposée entre la plaque-butée 14 et le plateau de guidage perméable 9 de sorte à maintenir ladite la plaque-butée 14 à une distance dudit plateau 9 telle, que lorsque la microbille 8 est au contact de la zone d’appui de microbille 16, une partie au moins du volume de ladite microbille 8 reste logée à l'intérieur de l’orifice cylindrique de guidage 10.
[70] On note que la cale d’espacement de plaque-butée 17 peut être réalisée solidairement soit de la plaque-butée 14, soit du plateau de guidage perméable 9, soit des deux si ladite cale 17, ladite plaque-butée 14, et ledit plateau 9 ne forment qu’une seule et même pièce de métal ou de toute autre matière.
[71] La cale d'espacement de plaque-butée 17 peut aussi être constituée d’une pièce mécanique distincte commlee montrent tes figures 1 et 2, ou faire partie de l'environnement dans lequel est intégrée la platine-clapet à microbiltes libres 1 selon l’invention.
[72] Les figures 1 à 7 et la figure 9 montrent que la plaque de circulation 5,le plateau de guidage perméable 9, la butée perméable d'arrêt de microbille 11 et la cote d’espacement 12 peuvent constituer un assemblage rigide 19 réalisé par vissage, soudage, sertissage ou par tout moyen d’assemblage connu de l’homme de l’art,le microbille 8 étant hébergée dans ledit assemblage 19.
[73] En ce cas et comme le montrent tes figures 4 à 6, l’assemblage rigide 19 peut avantageusement être logé de façon étenche dans un évidement d’assemblage 20 qui séparlee volume amont 3 du volume aval 4. l'assemblage rigide 19 ou l'évidement d’assemblage 20 comportant au moins une gorge de joint 21 dans laquelle est logé un joint d’étanchéité 22.
[74] Selon cet agencement particulier de la ptetlne-clapet à microbilles libres 1 selon l’invention, commlee montrent tes figures 1, 2 et 10, l'évidement d’assemblage 20 peut présenter une butée d’arrêt axial côté volume amont 23 sur laquelle repose directement l’assemblage rigide 19, et une butée d’arrêt axial côté volume aval 24 sur laquelle repose l’assemblage rigide 19 par l’intermédiaire d’un ressort de maintien d’assemblage 25, ce dernier prenant appui sur la butée d’arrêt axial côté volume aval 24 pour plaquer l’évidement d'assemblage 20 sur la butée d’arrêt axial côté volume amont 23.
[75] On note qu’avantageusement, l’effort qu’exerce le ressort de maintien d’assemblage 25 sur l’assemblage rigide 19 est supérieur à l'effort qu'exerce le fluide 2 sur ledit assemblage rigide 19 lorsque la pression régnant dans le volume amont 3 est supérieure à celle qui règne dans le volume aval 4 et qu’en conséquence, la microbille 8 est maintenue éloignée du siège de microbille 7 avec lequel elle coopère tandis que le fluide 2 circule depuis le volume amont 3 vers le volume aval 4.
[76] On remarque en figures 10 et 11 que selon une variante de la platine-clapet à microbilles libres 1 suivant l’invention, le passage de refoulement 13 peut être formé d’au moins une gorge axiaie de refoulement 27 aménagée dans la paroi interne de l’orifice cylindrique de guidage 10, ce dernier gardant sa faculté de guider la microbille 8 à faible jeu radial lors du déplacement de ladite microbille 8 dans ledit orifice 10.
[77] FONCTIONNEMENT DE L’INVENTION :
[78] Le fonctionnement de la platine-clapet à miorobilles libres 1 suivant la présente invention se comprend aisément au vu des figures 1 à 11.
[79] Pour en faciliter la compréhension, on a montré en figures 1 et 2 une platine- clapet à microbilles libres 1 selon l’invention dotée d’une seule microbille 8, bien que la vocation de ladite platine-clapet 1 est de comporter un grand nombre de microbilles 8 comme le montrent les figures 3 à 9.
[80] En figures 1 et 2, on a noté « P1 » la pression régnant dans le volume amont
3, tandis que la pression régnant dans le volume aval 4 est notée « P2 »,
[81] La figure 1 illustre ce qu’il advient lorsque P2 est supérieure à P1. En ce cas, la microbille 8 est plaquée par P2 sur le siège de microbille 7 aménagé à l’extrémité de l’orifice de circulation 6, ce dernier traversant la plaque de circulation 5 de part en part dans le sens de son épaisseur.
[82] En figure 1, la microbille 8 forme avec le siège de microbille 7 une ligne de contact étanche qui s'oppose à l’écoulement du fluide 2 depuis le volume aval 4 vers le volume amont 3.
[83] La figure 2 illustre quant à elle ce qu’il advient quand P1 est supérieure à P2, Comme on le constate sur ladite figure, sous la poussée de P1. la microbille 8 s’est déplacée dans l’orifice cylindrique de guidage 10 dans lequel elle est logée jusqu’à entrer au contact de la butée perméable d’arrêt de microbille 11. On note que l’orifice cylindrique de guidage 10 est aménagé dans le plateau de guidage perméable 9,
[84] Comme on le voit en figure 2. la microbille 8 s'est comportée comme une balle dansle canon d’un fusil, la fonction de ce dernier étant dévolue à l’orifice cylindrique de guidage 10 dans lequel ladite microbilfe 8 est logée à faible jeu. A titre d’autre analogie, la microbille 8 s’est aussi comportée somme un projectile propulsé dans le tube d’une sarbacane par une pression d'air, la fonction dudit tube étant également remplie par l’orifice cylindrique de guidage 10.
[88] En figure 2, P1 étant supérieure à P2, le fluide 2 circule depuis le volume amont 3 vers le volume aval 4 en passant successivement dans l’orifice de circulation 6, dansle passage laissé entre la microbille 8 et le siège de microbille 7, dans l’espace laissé entre le plateau de guidage perméable 9 et la plaque de circulation 5 par la cale d’espacement 12, et dans le passage de refoulement 13 qui traverse de part en part le plateau de guidage perméable 9. On remarque que la microbille 8 est maintenue à distance de son siège de miorobille 7 par le débit de fluide 2.
[86] Selon la configuration particulière de la platine-clapet à microbilles libres 1 selon l’invention montrée en figures 1 et 2, après avoir franchi le passage de refoulement 13, le fluide 2 rejoint le volume aval 4 après avoir traversé un espace laissé entre une plaque-butée 14 qui présente la butée perméable d’arrêt de microbille 11 et le plateau de guidage perméable 9, et après avoir franchi un passage de décharge 15 qui traversa la plaque-butée 14 de part en part dans le sens de son épaisseur. [87] On remarque en figures 1 et 2 que l’espace entre la plaque-butée 14 et le plateau de guidage perméable 9 résulte d’une cale d’espacement de plaque-butée 17 interposée entre ladite plaque-butée 14 et ledit plateau 9,
[88] Toutefois, la vocation de la platine-clapet à microbilles libres 1 selon l’invention n’est pas d’être dotée d’une seule microbille 8 mais d’un grand nombre de microbilles 8 opérant sur une petite course, ceci afin de pouvoir répondre aux besoins et attendus des compresseurs à piston alternatifs 52 produits en petite, moyenne et grande série.
[89] On comprend l’intérêt de munir la platine-clapet à microbilles libres 1 d'un grand nombre de microbilles 8 quand on rappelle que la circonférence d’une bille croit proportionnellement à son diamètre, que la section projetée de ladite bille croît en raison du carré de son diamètre, tandis que le volume de ladite bille croît en fonction du cube de son diamètre.
[90] Ainsi, plus ladite bille est petite, plus le quotient de sa section projetée divisée par son volume est grand.
[91] Considérons une bille en acier plein, Plus ladite bille est petite, plus la masse de cette dernière est faible relativement à sa section projetée. Autrement dit, ladite bille présente d’autant moins de masse d'acier par unité de section projetée que ladite bille est petite.
[92] Supposons maintenant que ladite bille d’acier soit logée dans un cylindre dans lequel elle peut se déplacer de façon approximativement étanche à l’instar d’une balle de plomb dans le canon d’un fusil.
[93] Si ladite bille est accélérée par une différence de pression régnant de part et d’autre de la ligne de contact approximativement étanche que ladite bille forme avec ledit cylindre, pour une même dite différence de pression, plus ladite bille est petite, plus l’accélération à laquelle elle est soumise est grande.
[94] Ce premier constat explique pourquoi, lorsque la platine-clapet à microbilles libres 1 s’applique à un compresseur à piston alternatif 52 comme montré en figures 3 à 6, ladite platine-clapet 1 comprend une multitude de microbilles 8, chacune logée dans un orifice cylindrique de guidage 10, [95] Le faible poids desdites microbilles 8 évite de recourir à un ressort de rappel pour ramener lesdites microbiltes 8 au contact du siège de microbille 7 sur lequel elles reposent, et pour interdire au fluide 2 de circuler depuis le volume aval 4 vers le volume amont 3.
[96] En effet, lorsque la pression qui règne dans le volume amont 3 est différente de celte qui règne dans le volume aval 4, vu que lesdites microbilles 8 sont logées à faible jeu à l’intérieur de l'orifice cylindrique de guidage 10, l'accélération que subissent lesdites microbilles 8 est élevée gràce à leur faible masse rapporté à leur section projetée.
[97] Ainsi, lesdites microbilles 8 peuvent se déplacer très rapidement depuis leur siège de microbille 7 jusqu’à leur butée perméable d'arrêt de microbille 11 et inversement, ceci sans laisser s’établir au moment de leur fermeture un " back flow " tel qu’il puisse réduire significativement le rendement total du compresseur à piston alternatif 52 qui est équipé de la platine-clapet à microbilles libres 1 suivant l’invention.
[98] Ainsi, gràce au fonctionnement des microbiltes 8 translatant dans leur orifice cylindrique de guidage 10 qui s’apparente à celui d'un projectile dans une sarbacane, il n'est pas nécessaire de prévoir un ressort de rappel tel qu'en comportent ordinairement les clapets de compresseur passifs selon l'état de l’art.
[99] L’absence de ressort de rappel confère à la platine-clapet à microbiltes libres 1 suivant l’invention une grande réactivité car les microbilles 8 s'ouvrent sous une très faible différence de pression peur laisser passer le fluide 2 depuis le volume amont 3 verlse volume aval 4. Cete particularité est favorable au rendement volumétrique et énergétique du compresseur à piston alternatif 52 qui reçoit ladite platine-clapet 1.
[100] En effet, contrairement aux clapets de compresseurs passifs à ressort de rappel selon l'etat de l'art, la platine-clapet à microbilles libres 1 suivant l’invention ne se voit pas imposer de pression seuil par quelque ressort de rappel que ce soit à partir de laquelle tes microbilles 8 se lèvent de leur siège de microbille 7 pour laisseler fluide 2 circuler entrele volume amont 3 et le volume aval 4.
[101] De plus, le maintien en ouverture desdites microbilles 8 au contact de leur butée perméable d'arrêt de microbille 11 ne nécessite de vaincre aucun effort de ressort de rappel et ne produit à ce titre aucune perte de charge imputable à l’action d'un ressort.
[102] En effet, une fais lesdites microbilles 8 plaquées sur ladite butée 11, la circulation du fluide 2 via le passage laissé entre lesdits microbilles 8 et leur siège de microbille 7 n'a pas à contrer quelque effort antagoniste que ce soit qui serait exercé sur lesdites microbilles 8 par un ressort de rappel
[103] L’usure abrasive survenant ordinairement dans la zone de contact entre les ressorts de rappel et le clapet avec lequel ils coopèrent d’une part, et entre lesdits ressorts et leur logement d’autre part, est également inexistante dans le contexte de la platine-clapet à microbilles libres 1 suivant l’invention, vu que cette dernière ne prévoit aucun ressort de rappel.
[104] On remarquera que la réactivité des microbilles 8 à s’ouvrir et à se fermer peut être réglée par la section de passage laissée au fluide 2 pour contourner lesdites microbilles 8, c’est à dire par la perte de charge que constitue le circuit du fluide 2 entre la siège de microbille 7 et le volume aval 4.
[105] Ladite réactivité peut également être réglée par la perte de charge que forme le circuit de fluide 2 qui relie la face des microbilles 8 opposée au siège de microbille 7, et le volume aval 4.
[106] Les figures 1 à 11 montrent à titre d’exemple des microbilles >8 qui reposent sur un siège de microbille 7 conique qui forme un angle de quarante cinq degrés de part et d’autre de son axe. Selon ledit exempte non-limitatif , les microbilles 8 sont faites d’acier pfein et leur diamètre est de deux millimètres.
[107] Le diamètre intérieur de l’orifice de circulation 6 avec lequel coopèrent lesdites microbilles 8 vaut un virgule trente-quatre millimètre, et la largeur de la portée du siège de microbille 7 vaut un dixiéme de millimètre. Le contact s’établit entre chaque microbille 8 et leur siège de microbilte 7 respectif au milieu de ladite portée, et normalement à cette dernière. Un jeu radial de trois centièmes de millimètre est laissé entre chaque microbille 8 et l’orifice cylindrique de guidage 10 qui l’héberge.
[108] Selon les exemples montrés en figures 1 à 11, on a laissé à chaque microbille 8 une course maximale de quatre dixième de millimètre. Ladite course correspond à la distance que doit parcourir ladite microbilte 8 pour aller depuis son contact avec son siège de microbille 7 jusqu’à son contact avec sa butée perméable d’arrêt de microbille 11 , et inversement.
[109] Lorsque ladite microbille 8 est au contact de sa butée perméable d’arrêt de microbille 11, une section utile d’environ un virgule six millimétré carré est laissée au fluide 2 pour passer entre ladite microbille 8 et le siège de microbille 7 avec lequel elle coopère.
[110] On note que selon la configuration particulière de la platine-clapet à microbilles libres 1 selon l’invention montrée en figures 1 à 11. lorsque la microbille 8 est soumise à une différence de pression de cent millibars entre sa face supérieure et inférieure, ladite microbille 8 met un peu moins d’une milliseconde pour se déplacer depuis son contact avec le siège de microbille 7 jusqu’à son contact avec la butée perméable d’arrêt de microbille 11, ou inversement.
[111] On note que dans ces conditions, la vitesse acquise par la microbille 8 lorsqu’elle arrive au contact du siège de microbille 7 ou de la butée perméable d’arrêt de microbille 11 est de l’ordre de quatre-vingts centimètres par seconde.
[112] Celte vitesse est plus petite que celle maximale acceptable pour une soupape de moteur à combustion interne alternatif lorsque ladite soupape entre au contact du siège avec lequel elle coopère. Ainsi, ladite vitesse de quatre-vingts centimètres par seconde garantit la pérennité du siège de microbille 7 d'une part, et de la microbille 8 d’autre part.
[113] On note aussi que le frottement entre la microbille 8 et l’intérieur de l’orifice cylindrique de guidage 10 dissipe une très faible énergie par frottement, même si l’orifice cylindrique de guidage 10 est positionné à l'horizontale et donc, perpendiculairement au sens de gravité. En effet, le poids de la microbille 8 n’est, selon les exemples non-limitatifs montrés en figures 1 à 11, que de trente-quatre milligrammes, cependant qu’un film d’air tend à s'immiscer entre chaque microbille 8 et l’orifice cylindrique de guidage 10 qui l’héberge lorsque ladite microbille 8 se déplace.
[114] On note que la faible vitesse maximale acquise par les microbilles 8 et le faible poids de ces dernières donne une énergie cinétique unitaire faible d’environ trente- quatre micro-Joules à dissiper a l’interface entre chaque microbille 8 et son siège de microbille 7, ou entre chaque microbille 8 et sa butée perméable d’arrêt de microbille 11.
[115] La largeur du siège de microbille 7 et la faible énergie cinétique à dissiper sur ledit siège garantissent la pérennité des microbilles 8 en acier et du siège de microbille 7 également en acier avec lequel elles coopèrent
[116] On note que les microbilles 8 peuvent être similaires aux billes ordinairement utilisées dans les roulements à billes connus en soi, c'est à dire trempées tenace, et éventuellement revêtues d’un chromage dur. Le prix de revient en fabrication de telles billes étant très faible, il participe au faible prix de revient de la platine-clapet à microbilles libres 1 suivant l’invention.
[117] Notons aussi que les microbilles 8 n’étant pas liées à un ressort, elles peuvent librement tourner sur elles-mêmes pour ne jamais exposer au siège de microbille 7 exactement la même surface. Ceci permet à chaque microbille 8 d’évacuer d’éventuelles impuretés ou particules qui s'interposeraient entre elle-même et te siège de microbille 7 avec lequel elle coopère, et de netoyer en permanence l'intégralité de sa surface externe.
[118] On remarquera également que la forme sphérique des microbilles 8 est propice à l’écoulement du fluide 2. En effet, avant de déboucher dans le volume aval 4 et après avoir cheminé dans l'orifice de circulation 6, ledit fluide 2 provenant du volume amont 3 doit passer par l’espace annulaire laissé entre chaque microbille 8 et son siège de microbille 7. Or, quand le fluide 2 rencontre le dôme que forme ladite microbille 8, ledit: fluide 2 est naturellement canalisé vers ledit siège 7 par ledit dôme, ce qui confère à la platine-clapet à microbilles libres 1 suivant l’invention un coefficient de décharge élevé.
[119] Il est également à noter que la surface de portance de chaque microbille 8 sur son siège de microbille 7 est grande relativement au volume de ladite microbille 8. Il résulte de ceci que ladite microbille 8 peut efficacement se refroidir sur son siège de microbille 7 pour adopter une température proche de celle dudit siège 7.
[120] On notera également que chaque microbille 8 étant parfaitement sphérique et tournant sur elle-même lorsqu’elle fonctionne, ladite microbille 8 ne peut subir aucune déformation inhomogène liée à la température. [121] Comme onle remarque aisément en figures 3 à 6, lorsqu’elle comprend de nombreuses microbilles 8, la platine-clapet a microbilles libres 1 suivant l'invention présente une grande surface relativement au volume de la chambre de compression 51 qu’elle dessert.
[122] Comme on le comprend de ce qui précède, dans la limite du raisonnable, ladite surface doit comporter des microbilles 8 petites et nombreuses.
[123] En effet, si on recouvre une même surface de microbilles 8, la somme des longueurs des lignes de contact que forment lesdites microbilles 8 avec leur siège 7 est d’autant plus importante que le nombre de microbilles 8 est grand. Par ailleurs, plus les microbilles 8 sont petites, plus leur levée est petite en absolu à même rapport entre levée et diamètre d’orifice de circulation 6,
[124] Prenons par exemple un carré de dix millimètres de côté.
[125] On peut loger dans ledit carré une bille de dix millimètres de diamètre, ou bien raisonnablement, seize microbilles 8 de deux millimètres de diamètre. Or, la longueur totale des lignes de contact que forment les microbilles 8 de deux millimétrés de diamètre est trois virgule deux fois plus importante que la longueur de la ligne de contact formée par la bille de dix millimètres de diamètre. Ainsi, à même section de passage laissée au fluide 2 pour circuler depuis le volume amont 3 vers le volume aval 4, la course des microbilles 8 de deux millimètres est trois virgule deux fois plus petite que celle de la bille de dix millimètres de diamètre.
[126] On peut aussi considérer ce qu’il advient quand, pour obtenir un résultat comparable en section de passage et à même durée de manœuvre d’ouverture / fermeture, on utilise une bille de dix millimètres de diamètre au lieu de seize microbilles 8 de deux millimètres de diamètre.
[127] Pour laisser la même section de passage au fluide 2,le levée de la bille de dix millimètres de diamètre doit être de un virgule vingt-huit millimètre et non plus de quatre dixièmes de millimètres pour les microbilles 8 de deux millimètres de diamètre.
[128] Vu la masse de la bille de dix millimètres de diamètre d'une part, et vu le rapport entre section projetée et volume défavorables de ladite bille d’autre part, pour imprimer à cette dernière l’accélération nécessaire pour parcourir un virgule vingt- huit millimètre de course dans le même temps que celui laissé aux microbilles 8 de deux millimètres de diamètre pour parcourir quatre dixièmes de millimètre, il faut soumettre ladite bille de dix millimètres de diamètre à une différence de pression de un virgule sept bar au lieu de cent millibars seulement pour les microbilles 8. Dix-sept fois plus.
[129] Par ailleurs et dans ces conditions, la vitesse de repose de la bille de dix millimètres de diamètre sur son siège serait de deux virgule neuf mètres par seconde. Outre produire des émissions acoustiques élevées, ladite vitesse conférerait à ladite bille et audit siège une durée de vie courte, incompatible avec celle de la majorité des compresseurs à piston alternatif 52.
[130] On peut aussi noter qu’uns fois la bille de dix millimètres de diamètre au contact de sa butée d'arrêt en ouverture, il faudrait la soumettre à une différence de pression inverse d'également un virgule sept bar pour ramener ladite bille sur son siège dans le temps Imparti, ce qui anéantirait le rendement volumétrique du compresseur à piston alternatif 52 à cause du « back flow » excessif résultant d'une telle dite différence de pression.
[131] Du fait de la vitesse maximale élevée acquise par la bille de dix millimètres de diamètre et du poids de quatre virgule deux grammes de cette dernière, l'énergie cinétique à dissiper à l’interface entre ladite bille et son siège, ou entre ladite bille et sa butée d'arrêt en ouverture serait de dix-sept mille quatre cents micro-doutes au lieu des trente-quatre micro-doutes que dissipe chaque microbilte 8 de deux millimètres de diamètre. Plus de cinq cent fois plus à dissiper sur un siège présentant seulement cinq fois plus de surface de contact, c'est-à-dire plus de cent fois plus d'énergie cinétique par unité de surface.
[132] C’est pourquoi la platine-clapet à microbilles libres 1 suivant l’invention est prévue pour opérer avec des microbiltes 8 de petite dimension réparties en grand nombre sur la plus grande part possible de la surface disponible qu'offre ladite la platine-clapet 1, le débit de chaque dite microbille 8 s'additionnant à celui de ses voisines.
[133] Prévoir un grand nombre de microbille8 en lieu et place de billes plus grosses présente aussi l’avantage d’un moindre volume mort à l’intérieur même de la platine-clapet à microbilles libres 1 suivant l’invention. [134] Ceci permet de réaliser des compresseurs à piston alternatif 52 dontle rapport volumétrique reste suffisamment élevé pour leur conférer un rendement volumétrique acceptable.
[135] Pourvue de microbilles 8 de petit diamètre, la platine-clapet à microbilles libres 1 suivant l’invention peut en effet être prévue peu épaisse et laissant peu de volume mort. A ce titre, les figures 3 à 9 présentent des platines-clapets à microbilles libres 1 de sept millimètres d'épaisseur seulement qui, comme montré en figures 3 à 6, peuvent aisément s'intégrer dans un compresseur à piston alternatif 52 compact à trois étages de compression et pouvant être contenu dans un cube de moins de quinze centimètres de côté.
[136] Dès lors qu’il comprend des platines-clapets microbilles libres 1 suivant l'invention, un tel dit compresseur 52 devient particuliérement adapté à la mise en œuvre de la préchambre d'allumage à clapet objet du brevet
Figure imgf000024_0001
FR 3 061 743 publié le 16 août 2019 et appartenant au demandeur.
[137] En effet, outre sa compacité et sa perméabilité, la platine-clapet à microbilles libres 1 suivant l'invention s'accommode de la vitesse variable d'un moteur à combustion interne automobile qui peut évoluer de cinq cents tours par minute à plus de six-mille cinq cents tours par minute, sans dommages ni pour le rendement du compresseur à piston alternatif 52, ni pour ses émissions acoustiques, ni pour sa durabilité.
[138] Ceci provient notamment de ce que les microbilles 8 ne comportent pas de ressort et donc, n’ont pas de mode propre lié audit ressort, et de ce que lesdites microbilles 8 présentent une faible inertie.
[139] Prévu pour mettre en œuvre la préchambre d’allumage à clapet objet du brevet N° FR 3 061 743l,e compresseur à piston alternatif 52 compact à trois étages montré en figures 3 à 6 tourne à la moitié de la vitesse du moteur thermique, c’est- à-dire de deux-cents cinquante tours par minute au minimum, à un peu plus de trois-mille tours par minute au maximum.
[140] On voit en figures 3 à 6 que ledit compresseur 52 comporte des clapets d’admission 57 et des clapets de refoulement 58, lesdits clapets 57, 58 étant constitués d’une platine-clapet à microbilles libres 1 suivant l’invention. [141) On remarque que ledit compresseur 52 comporte des pistons de compresseur 60 qui chacun peut se mouvoir en translation dans un cylindre de compresseur 56, lesdits pistons 60 formant, avec un arbre à manivelles 61, un système manivelle- cadre 59 plus connu sous le terme anglo-saxon de « scotch yoke ». A titre d’exemple non-limitatif, la course des pistons de compresseur 60 est ici de dix-sept millimètre.
[142] Ainsi constitué, le compresseur à piston alternatif 52 montré en figures 3 à 6 est particulièrement adapté à la mise en oeuvre de la préchambre d'allumage à clapet objet du brevet N° FR 3 061 743.
[143] Ledit compresseur 52 comprend un premier étage de compression 62 constitué de deux cylindres de compresseur 56 de cinquante trois millimètres d’alésage aspirant de l’air en provenance d’un conduit d’admission 53 commun, et refoulant ledit air à une pression supérieure dans un conduit de refoulement 54 commun.
[144] Ledit compresseur 52 comprend également un deuxième étage de compression 63 constitué d’un cylindre de compresseur 56 de quarante millimètres de diamètre, et un troisième étage de compression 54 constitué d'un cylindre de compresseur 56 de vingt-deux millimètres de diamètre.
[145] On remarque, particulièrement en figures 3 et 5, le refroidisseur intermédiaire air-eau 65 qui refroidit l’air provenant du premier étage de compression 62 avant que ledit air ne soit admis par le deuxième étage de compression 63.
[146] On remarque, particulièrement en figures 3 et 6, le refroidisseur intermédiaire air-eau 65 qui refroidit l’air provenant du deuxième étage de compression 63 avant que ledit air ne soit admis par le troisième étage de compression 64.
[147] On note aussi en figures 4 à 6 les chambres d’eau de refroidissement 66 dans lesquelles circule de l’eau à une température de l'ordre de quarante degrés Celsius, ladite eau provenant d’une pompe non représentée.
[148] Les chambres d’eau de refroidissement 66 refroidissent d'une part, l’air qui circule dans les refroidisseurs intermédiaires air-eau 65 et d’autre part, l’huile que contient un carter de compresseur 67 dans lequel sont aménagés les cylindres de compresseur 56, ledit carter 67 hébergeant notamment le système manivelle- cadre 59. Ladite huile a pour fonction de lubrifier les constituants mécaniques mobiles internes du compresseur à piston alternatif 52 outre tes refroidir et en homogénéiser la température.
[149] On remarque en figures 3 à 6 les culasses de compresseur 55 qui ferment tes extrémités des cylindres de compresseur 56 pour former des chambres de compression 51,
[150] Les culasses de compresseur 55 sont réalisées en deux parties, la première hébergeant de façon étanche les platine-clapet à microbilles libres 1 suivant l’invention, et la deuxième formant le conduit d’admission 53 et le conduit de refoulement 54 de l'étage de compression 62, 63, 64 correspondant
[151] Comme on le voit clairement en figure 4. tes platines-clapets à microbilles libres 1 sont fixées à la deuxième partie des culasses de compresseur 55 par des vis de fixation de platine 70, et maintenues à distance de trois millimètres de ladite deuxième partie par une rondelle d'espacement 71.
[152] On voit aussi, particulièrement en figures 7 et 8, que la plaque de circulation 5,le plateau de guidage perméable 9, et la plaque-butée 14, tels qu’intégrés dans le compresseur à piston alternatif 52 montré en figures 3 à 6 sont positionnés les uns par rapport aux autres par des pions de localisation 72 qui coopèrent avec des vis d’assemblage 68 pour enserrer ladite plaque de circulation 5, ledit plateau 9 et ladite plaque-butée 14 ensemble avant leur montage dans ledit compresseur 52, ceci après avoir placé les microbilles 8 et les cates d’espacement 12 qui prennent ici la forme de rondelles insérées entre la plaque de circulation 5 et le plateau de guidage perméable 9.
[153] Ainsi pré-montées, les platines-clapets à microbilles libres 1 forment un assemblage prêt à monter déjà muni ou non d'un joint d'étanchéité 22, ledit assemblage pouvant par exemple être livré par un équipementier au fabricant du compresseur à piston alternatif 52 tel que montré en figures 3 à 6.
[154] On remarque en figures 4 à 6 tes douilles de raccordement 69 qui relient tes conduits d'admission 53 et les conduits de refoulement 54 que forment les culasses de compresseur 55 avec les refroidisseurs intermédiaires air-eau 65, lesdites douilles 69 comprenant des joints toriques d'étanchéité et étant localisées axialement par rapport au carter de compresseur 67 par des butées. [155] Ainsi, la platine-clapet à microbilles libres 1 salon l'invention permet de réaliser des compresseurs à piston alternatifs 52 performants, endurants, et compacts, opérant sur large plage de vitesse et de pression. Ce faisant, la platine-clapet à microbilles libres 1 selon l'invention permet la mise en œuvre dans des conditions optimales de la préchambre d’allumage à clapet objet du brevet
Figure imgf000027_0001
FR 3 061 743,
[156] On notera d’ailleurs que l’exemple de réalisation et de mise en contexte de la platine-clapet à microbilles libres 1 selon l’invention qui vient d’être décrit est non limitatif, ladite platine-clapet 1 pouvant s'appliquer à d'autres domaines que celui des compresseurs, tels que celui des moteurs, des pompes, ou de toute machine de quelque type que ce soit qui nécessite de laisser un fluide gazeux ou liquide circuler depuis un volume amont vers un volume aval et non l’inverse, et ceci quelle que soit la nature du gaz ou du liquide mis en œuvre.
[157] Les possibilités de la platine-clapet à microbilles libres 1 selon l’invention ne s’en limitent pas aux applications qui viennent d’être décrites et il doit d’ailleurs être entendu que la description qui précède n’a été donnée qu’à titre d’exemple et qu'elle ne limite nullement le domaine de ladite invention dont on ne sortirait pas en remplaçant les détails d'exécution décrits par tout autre équivalent.

Claims

Revendications
[Revendication 1] Platine-clapet à microbilles libres (1) séparant un volume amont (3) d’un volume aval (4), et permettant à un fluide (2) de circuler depuis ledit volume amont (3) vers ledit volume aval (4) mais non l’inverse caractérisée en ce qu’elle comprend :
♦ Au moins une plaque de circulation (5) fixe qui sépare de façon étanche le volume amont (3) du volume aval (4), ladite plaque (5) étant traversée de part en part dans le sens de son épaisseur par au moins un orifice de circulation (6) dans lequel le fluide (2) peut circuler. tandis que l’extrémité dudit orifice (6) qui débouche dans le volume aval (4) présente un siège de microbille (7) ;
♦ Au moins un plateau de guidage perméable (9) logé fixement dans le volume aval (4) parallèlement à la plaque de circulation (5) et proche de cette dernière, ledit plateau (9) étant traversé de part en part dans le sens de son épaisseur par au moins un orifice cylindrique de guidage (10) dont l’axe longitudinal est centré sur celui du siège de microbille (7) ;
♦ Au moins une microbille (8) logée à faible jeu à l’intérieur de l’orifice cylindrique de guidage (10) ledit faible jeu limitant le passage de fluide (2) via l’interstice laissé entre ladite microbille (8) et ledit orifice cylindrique (10), ladite microbille (8) pouvant se mouvoir en translation longitudinale dans ledit orifice cylindrique (10) de sorte à soit, reposer de manière étanche surle siège de microbille (7) pour obturer l'orifice de circulation (6) et interdire la circulation du fluide (2) dans ledit orifice (6), soit, être distante dudit siège (7) pour laisser ledit fluide (2) circuler dans ledit orifice (6) ;
♦ Au moins une butée perméable d’arrêt de microbille (11) qui est directement ou indirectement solidaire de l’orifice cylindrique de guidage (10) et qui fixe la distance maximale qui sépare la microbille (8) du siège de microbille (7) lorsque ladite microbille (8) est au contact de ladite butée (11), cete dernière n’obturant que peu ou pas l'orifice cylindrique de guidage (10) ;
♦ Au moins une cale d'espacement (12) interposée entrele plateau de guidage perméable (9) et la plaque de circulation (5) de sorte à maintenir ledit plateau (9) à une distance de ladite plaque (5) telle, que lorsque la microbille (8) est au contact du siège de microbille (7), une partie au moins du volume de ladite micmbilte (8) reste logée à l’intérieur de l’orifice cylindrique de guidage (10), cependant que lorsque ladite microbille (8) est au contact de la butée d’arrêt de microbille (11), un passage est laissé au fluide (2) pour circuler d’une part, entre ladite microbille (8) et le siège de microbille (7) avec lequel elle coopère et d'autre part, entre le plateau de guidage perméable (9) et la plaque de circulation (5) ;
♦ Au moins un passage de refoulement (13) qui traverse de part en part le plateau de guidage perméable (9) et/ou qui contourne ledit plateau (9). ledit passage (13) laissant circuler, lorsqulee microbille (8) ne repose pas sur te siège de microbille (7), le fluide (2) depuis le volume amont (3) vers le volume aval (4) via l’orifice de circulation (6).
[Revendication 2] Platine-clapet à microbilles libres suivant la revendication 1, caractérisée en ce que la butée perméable d’arrêt de microbille (11) est constituée d’une zone d’appui de microbille (16) qui est positionnée dans te prolongement de l’orifice cylindrique de guidage (10) et qui est aménagée sur une plaque-butée (14) logée fixement dans le volume aval (4) parallèlement au plateau de guidage perméable (9) et proche de ce dernier, cependant qu’un passage de décharge (15) traverse de part en part danlse sens de son épaisseur la plaque-butée (14) et/ou contourne la plaque-butée (14) pour laisser circuler le fluide (2) depuis le volume amont (3) vers le volume aval (4) via l’orifice de circulation (6) lorsqulee microbille (8) ne repose pas sur le siège de microbille (7).
[Revendication 3] Platine-clapet à microbilles libres suivant la revendication
2, caractérisée en ce que une cale d'espacement de plaque-butée (17) est interposée entre la plaque-butée (14) etle plateau de guidage perméable (9) de sorte à maintenir ladite la plaque-butée (14) à une distance dudit plateau (9) telle, que lorsque la microbille (8) est au contact de la zone d’appui de microbille (16), une partie au moins du volume de ladite microbille (8) reste logée à l'intérieur de l’orifice cylindrique de guidage (10).
[Revendication 4) Platine-clapet à microbilles libres suivanlet revendication 1, caractérisée en ce que la plaque de circulation (5), le plateau de guidage perméable (9), la butée perméable d’arrêt de microbille (11) etle cafe d'espacement (12) constituent un assemblage rigide (19) dans lequel est hébergée la microbille (8).
[Revendication 5] Platine-clapet à microbilles libres suivant la revendication 4, caractérisée en ce que l’assemblage rigide (19) est logé de façon étanche dans un évidement d’assemblage (20) qui sépare le volume amont (3) du volume aval (4).
[Revendication 6] Ratine-clapet à microbilles libres suivant la revendication 5, caractérisée en ce que l’évidement d'assemblage (20) présente une butée d'arrêt axial côté volume amont (23) sur laquelle repose directement l’assemblage rigide (19), et une butée d’arrêt axial côté volume aval (24) sur laquelle repose l’assemblage rigide (19) par l’intermédiaire d’un ressort de maintien d'assemblage (25), ce dernier prenant appui sur la butée d’arrêt axial côté volume aval (24) pour plaquer l’évidement d’assemblage (20) sur la butée d'arrêt axial côté volume amont (23).
[Revendication 7] Ratine-clapet à microbilles libres suivant la revendication 1, caractérisée en ce que le passage de refoulement (13) est formé d'au moins une gorge axiale de refoulement (27) aménagée dans la paroi interne de l’orifice cylindrique de guidage (10).
PCT/FR2021/051713 2020-10-06 2021-10-04 Platine-clapet a microbilles libres WO2022074321A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21801586.5A EP4226066A1 (fr) 2020-10-06 2021-10-04 Platine-clapet a microbilles libres
KR1020237015471A KR20230079227A (ko) 2020-10-06 2021-10-04 자유 마이크로-비드를 갖는 밸브 플레이트
CN202180076088.3A CN116547457A (zh) 2020-10-06 2021-10-04 具有自由微珠的阀板
JP2023520301A JP2023543629A (ja) 2020-10-06 2021-10-04 自由マイクロビーズを有するバルブプレート
AU2021358453A AU2021358453A1 (en) 2020-10-06 2021-10-04 Valve plate having free micro-beads
CA3194507A CA3194507A1 (fr) 2020-10-06 2021-10-04 Platine-clapet a microbilles libres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2010213 2020-10-06
FR2010213A FR3114856A1 (fr) 2020-10-06 2020-10-06 Platine-clapet a microbilles libres

Publications (2)

Publication Number Publication Date
WO2022074321A1 true WO2022074321A1 (fr) 2022-04-14
WO2022074321A4 WO2022074321A4 (fr) 2022-05-27

Family

ID=74045714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051713 WO2022074321A1 (fr) 2020-10-06 2021-10-04 Platine-clapet a microbilles libres

Country Status (8)

Country Link
EP (1) EP4226066A1 (fr)
JP (1) JP2023543629A (fr)
KR (1) KR20230079227A (fr)
CN (1) CN116547457A (fr)
AU (1) AU2021358453A1 (fr)
CA (1) CA3194507A1 (fr)
FR (1) FR3114856A1 (fr)
WO (1) WO2022074321A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243067A (en) * 1979-11-15 1981-01-06 Sterling Drug Inc. Ball type check valve
FR2480394A1 (fr) * 1980-04-14 1981-10-16 Guinard Pompes Clapet a bille et procede pour le proteger de l'usure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3061743B1 (fr) 2017-01-12 2019-08-16 Vianney Rabhi Prechambre d'allumage a clapet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243067A (en) * 1979-11-15 1981-01-06 Sterling Drug Inc. Ball type check valve
FR2480394A1 (fr) * 1980-04-14 1981-10-16 Guinard Pompes Clapet a bille et procede pour le proteger de l'usure

Also Published As

Publication number Publication date
AU2021358453A1 (en) 2023-06-15
CN116547457A (zh) 2023-08-04
KR20230079227A (ko) 2023-06-05
EP4226066A1 (fr) 2023-08-16
CA3194507A1 (fr) 2022-04-14
JP2023543629A (ja) 2023-10-17
WO2022074321A4 (fr) 2022-05-27
FR3114856A1 (fr) 2022-04-08

Similar Documents

Publication Publication Date Title
CA2974478C (fr) Moteur thermique a transfert-detente et regeneration
EP0901575B1 (fr) Pompe a haute pression pour tous liquides
EP0173601A1 (fr) Pompe à vide intégralement sèche et étanche à mouvement rectiligne de compression alternative
FR3112817A3 (fr) Pompe à carburant pour un système d’injection directe
FR2637654A1 (fr) Appareil de mise sous vide
CA2974402C (fr) Dispositif d'etancheite a coussin de fluide
FR2920207A1 (fr) Pompe a vide de type seche comportant un dispositif d'etancheite aux fluides lubrifiants et elements centrifugeur equipant un tel dispositif
FR3011290A3 (fr) Pompe a engrenages a deplacement positif
EP3132123A1 (fr) Pompe a engrenages a carburant, prevue notamment comme pompe a haute pression
WO2017109329A1 (fr) Système de refroidissement et lubrification pour dispositif d'étanchéité pour piston
WO2022074321A1 (fr) Platine-clapet a microbilles libres
EP3679243A1 (fr) Piston hydraulique a soupape de refroidissement et lubrification
WO2009081019A1 (fr) Culasse pour compresseur frigorifique à piston, unité de compression comprenant cette culasse, et compresseur frigorifique à piston comprenant cette unité de compression.
CA2949729C (fr) Raccord d'etancheite tournant haute-pression a bague continue extensible
FR2888893A1 (fr) Dispositif pour comprimer les fluides comportant une transformation de mouvement a equilibrage integral utilisable dans tout appareil fonctionnant en mouvement alternatif
FR3056670A1 (fr) Vanne tubulaire a commande hydraulique
FR2946100A1 (fr) Procede et dispositif d'echeance thermique diphasique a pompe a engrenages sur roulements
EP3698044B1 (fr) Pompe a barillet rotatif avec moyens de guidage et de centrage du barillet distincts
FR3067386B1 (fr) Machine de detente
FR3068089A3 (fr) Pompe a eau
FR3069290B1 (fr) Machine rotodynamique comprenant des impulseurs helico radio axiaux avec controle du glissement interfacial
BE870198A (fr) Elements en volute complementaires, notamment pour pompes a liquides
FR3003313A1 (fr) Pompe volumetrique a soufflets
EP3698045A1 (fr) Pompe a barillet rotatif avec double plateaux
BE528493A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21801586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3194507

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2023520301

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237015471

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317032058

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180076088.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021801586

Country of ref document: EP

Effective date: 20230508

ENP Entry into the national phase

Ref document number: 2021358453

Country of ref document: AU

Date of ref document: 20211004

Kind code of ref document: A