WO1997040957A1 - Sistema y procedimiento de marcaje o de perforacion - Google Patents

Sistema y procedimiento de marcaje o de perforacion Download PDF

Info

Publication number
WO1997040957A1
WO1997040957A1 PCT/ES1997/000107 ES9700107W WO9740957A1 WO 1997040957 A1 WO1997040957 A1 WO 1997040957A1 ES 9700107 W ES9700107 W ES 9700107W WO 9740957 A1 WO9740957 A1 WO 9740957A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
deflector
unit
point
power
Prior art date
Application number
PCT/ES1997/000107
Other languages
English (en)
French (fr)
Inventor
Jordi Llado Abella
Ramón SANS RAVELLAT
José Miguel IBANEZ BARON
Original Assignee
Servicio Industrial De Marcaje Y Codificacion, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES09600962A external-priority patent/ES2115533B1/es
Priority claimed from ES09601050A external-priority patent/ES2115534B1/es
Priority claimed from ES09602373A external-priority patent/ES2116240B1/es
Application filed by Servicio Industrial De Marcaje Y Codificacion, S.A. filed Critical Servicio Industrial De Marcaje Y Codificacion, S.A.
Priority to DE69714553T priority Critical patent/DE69714553T2/de
Priority to US08/981,260 priority patent/US6130402A/en
Priority to JP9538608A priority patent/JPH11509781A/ja
Priority to EP97918159A priority patent/EP0845323B1/en
Priority to AT97918159T priority patent/ATE221812T1/de
Publication of WO1997040957A1 publication Critical patent/WO1997040957A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K1/00Methods or arrangements for marking the record carrier in digital fashion
    • G06K1/12Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
    • G06K1/126Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by photographic or thermographic registration

Definitions

  • the invention relates to a system for marking or perforation according to the preamble of claim 1 and a method according to the preamble of claim 29th.
  • the invention also relates to a product marked or perforated according to the mentioned procedure.
  • the coding of products requires reliable and permanent identification.
  • the use of a laser beam produces a micro volatilization of the surface of the material to be marked, thus achieving permanent and indelible marking while the product is in production line.
  • European Patent No. 0402298 refers to a laser marking system of moving objects.
  • the deflection angle depends on the frequency value of a radiofrequency signal that is applied on the deflector, so that at each applied frequency a deflection angle corresponds different, for which a series of fixed oscillators of different frequencies are used that are applied to the acoustic-optical deflector through a switching circuit that is governed by a control circuit that selects the frequency to be applied.
  • the number of fixed oscillators is a predetermined value implies working with a limited number of frequencies, and therefore with a limited number of points. If it is desired to increase the resolution of the marking, the number of oscillators and the control logic must be increased, which implies an increase in their cost. Furthermore, it is known that the efficiency characteristic of the acoustic-optical deflector is not linear in the operating frequency band.
  • the object of the invention is to create a system and method for marking or drilling laser products that improve and facilitate marking or drilling.
  • the invention has a plurality of advantages.
  • the system according to the invention illustrated in Figure 1a allows dynamic control of the resolution of the tide or perforation in a vertical direction of points. This system also allows you to control the exposure time of the laser beam for each tidal or drilling point. In this way the dependence of the tide is reduced against variations in the speed of the production lines.
  • the system according to the invention allows an automatic equalization of the amplitude and allows to control the positioning of the points of tide or drilling in the region where the efficiency of the deflector is maximum.
  • the system enables equalization based on the point energy time (it is the time in which the laser beam is affecting the area corresponding to the point) and allows a mixed equalization varying the amplitude and energy time of the point .
  • the system also allows control of tidal or drilling energy and works with relatively short switching times (for example less than a microsecond).
  • this system enables a mareaje with messages of alphanumeric characters, serial numbers, time and date of manufacture, sequential coding, logos etc. with several heights and widths at a speed of up to 2,000 meters per minute and more than 10,000 characters per second.
  • the system meets all the specifications of Class IV lasers in accordance with EN 60825 EN and the CDRH (Center for Devices and Radiological Health).
  • the system according to the invention illustrated in Figures 2 and 3 enables the adaptation of a laser of medium reduced power with high capacity for energy accumulation and generation of high peak powers in short duration times. In this way, a reduction in the cost of the marking or drilling system is achieved.
  • the system according to the invention illustrated in Figure 4 enables drilling on the surface of a certain material with a high precision of the diameter of the holes in the hole, a high precision of the distance between the centers of the holes in the surface of the product to be drilled.
  • This system according to the invention also enables the automatic control of the porosity that results as a result of the holes made in a given surface.
  • the invention is applicable in those industrial processes in which it is necessary to make holes on the surface of a certain material
  • One of vain examples is the smoking paper sector to provide the cigarette filter with a constant porosity and achieve a richer mixture of air in the smoke generated by the combustion of tobacco.
  • Other examples are financial documents and documents that require precise coding to prevent counterfeiting.
  • the dynamic drilling system allows on-line control of the porosity, which includes a porosity reader, which generates a signal that allows the dynamic drilling system to modify the set of parameters indicated automatically, thus improving the production, for example, of cigarette filter paper
  • Figure 1 shows a functional block diagram of a first embodiment of the system according to the invention
  • Figure 2 shows a functional block diagram of a second embodiment of the system according to the invention
  • Figure 3 a shows an example of a function T (t) produced by a pulse shaping unit to produce the letter M in the system according to Figure 2 a , and
  • Figure 4 shows a functional block diagram of a third embodiment of the system according to the invention. DESCRIPTION OF THE INVENTION
  • the first embodiment of the system according to the invention illustrated in Figure 1 a is a random frequency generation system for laser marking or drilling.
  • This system incorporates the following components: an information capture unit 11; a control and coding center 12 with a control program that dynamically controls the resolution of marking or drilling; a frequency generating unit 13; a controllable amplifier and / or controllable attenuator 14; a radio frequency amplifier 15; an acoustic-optical deflector 16; a reading unit (photocell) 17, a device 18 that reads the speed of a chain, on which the product to be marked or drilled is located, and a frequency generating unit 19.
  • the frequency generating unit 19 which is preferably constituted by a direct digital frequency synthesizer (Direct Digital Syntheziser) 13 that produces signals of a certain frequency that are applied to the acoustic-optical deflector 16.
  • the control center or means 12 generates a digital code for each point of the matrix.
  • the control means or center 12 generates a sequence of digital signals that produce a frequency sweep, at least equivalent to the bandwidth of the acoustic-optical deflector 16. In addition, the control means or center 12 obtains the characteristic response curve of the deflector acoustic-optical 16 in its working band.
  • the control means controls the amplifier and / or the attenuator 14 based on the characteristic response curve of the acoustic-optical deflector 16 for equalize the response in at least part of the baffle's working band, correcting an alignment of the deflected laser power against the amplitude of different frequencies of radio frequencies applied to it.
  • control means 12 varies the equalization by means of the point energy time and / or by varying the RF power applied to the deflector.
  • control means 12 determines which is the optimum zone of marking or perforation, based on the characteristic stored curve of the acoustic-optical deflector 16 and the message to be marked or drilled.
  • control means 12 determines what is the width of the frequency band of the message, makes a frequency sweep along the frequency band of the deflector, calculates the area corresponding to the bandwidth centered on the scan frequency and choose the frequency that corresponds to the maximum value of the calculated area.
  • This example of the system according to the invention consists of a system of random generation of frequencies for laser marking or drilling that has an acoustic-optical deflector on which, through the constant gain radiofrequency amplifier 15, different values of frequency that produce different angles of deflection of the laser beam that affects the deflector 16, marking or punching the character, logo, texts, etc.
  • This information to be marked or drilled is entered in the information capture unit 11 that it generates, a digitized matrix n x m of points corresponding to the marking or drilling to be performed, and stores it in a memory.
  • n is the number of points in the vertical line (say direction perpendicular to the linear movement of the product to be marked) and m is the number of points in the direction of travel of the product to be marked.
  • the control or coding unit or means 12 processes the matrix points obtained in the information collection unit 11 and generates a digital code for each matrix point.
  • the control and coding unit 12 is connected to the frequency generating unit 13 which directly from the digital code provided by the control and coding unit produces a certain frequency.
  • the control unit incorporates means to perform dynamic control of the tidal resolution (constituted by the control program) consists in generating a greater or lesser number of points n and therefore a greater or lesser amount of frequencies.
  • the amplifier and / or amplitude attenuator 14 is governed by the control and coding center 12 to equalize the response in the entire working band of the acoustic-optical deflector, correcting the linearity of the deflected laser power against the amplitude of the different Radio frequency (RF) frequencies applied to it.
  • RF Radio frequency
  • the amplitude attenuator and / or amplifier 14 is preferably included in the frequency generating unit 13, in which case the set is also constituted by a DDS.
  • the control and coding unit is provided with means (constituted by the control program) to generate a sequence of digital values that produce a frequency sweep in the working band of the acoustic-optical deflector, so that with a measuring device
  • the characteristic response curve of the acoustic-optical deflector in its entire working band is obtained with laser power.
  • Storage means of the characteristic curve of the acoustic-optical deflector that are preferably included in the control and coding center.
  • the control and coding center is provided with means for controlling the response of the amplifier and / or attenuator, which are governed according to the characteristic curve of the stored acoustic-optical deflector, correcting the response linearity of the acoustic-optical deflector. This determines the compensation curve of the amplitude response of the acoustic-optical deflector, and this is stored in the amplifier and / or attenuator.
  • the characteristic curve of the amplifier calculates the compensation curve of the amplitude response of the acoustic-optical deflector by storing it for example in the amplifier and / or attenuator, such and as commented above, then follow the next steps:
  • control unit 12 has means (control program) to determine which is the optimum zone for marking or drilling, depending on the characteristic curve stored in the acoustic-optical deflector and the message to be marked. It should also be noted that the resolution control can be carried out from the optimum zone of the characteristic curve and of the message.
  • the average efficiency (the average of the values corresponding to the discrete frequencies of the area), the variance (difference between the maximum value and the minimum value), of these values is calculated , and the minimum value of the efficiency of the tidal or drilling areas.
  • the system according to the invention sweeps along the entire bandwidth of the deflector by calculating these three parameters for each of the scanning zones. Once calculated, a value is obtained for each zone that is the result R of the following equation:
  • M is the average efficiency of each zone V is the variance of each zone P is the minimum efficiency value of each zone K1, K2.K3 are previously fixed constants.
  • the chosen area has a maximum average efficiency, a minimum variance and a maximum minimum efficiency value.
  • the maximum result of the obtained equation determines the optimum area of marking or drilling.
  • the control and coding unit in this system is equipped with means to vary the equalization from the point energy time, that is to say that depending on the time used to make the marking of each point the equalization will be carried out with the objective of achieve constant dialing energy in the bandwidth used.
  • the system according to the invention is also capable of performing a mixed equalization by varying the point time and amplitude based on what has been described above.
  • the radio frequency power is adjusted to achieve maximum laser power;
  • the control and coding circuit reads the efficiencies obtained in the bandwidth of the deflector and stores these values;
  • the equalization is adjusted by means of a reduction in power at points that may be deformed if the point energy times were too long; and 8 - The marking or drilling of the message is carried out.
  • control and coding means includes means (control program) to vary the point energy time, depending on the laser energy and speed of the production line and thus determine the appropriate energy for the marking. This makes it possible to make the quality of the marking or drilling immune to variations in the speed of the production line.
  • the criterion for choosing the tidal energy is based, for example, on the observation of the tide by an operator, for which the control and coding unit has means to vary the time of point energy manually by the operator, which acts on the means described above.
  • the means for varying the time of point energy is to keep the digital signal generated by the control and coding center longer or shorter.
  • This laser marking system uses a constant gain radiofrequency amplifier 15 that applies a variable frequency radiofrequency signal to the acoustic-optical deflector 16 on which the laser beam strikes, so that the beam is deflected at an angle proportional to the frequency applied through the amplifier 15, which produces a marking or perforation of the product that runs through a production line.
  • the information to be marked or drilled in the product is introduced in the information capture unit 11 which is connected to the control and coding center 12 which in turn is connected to the frequency generating unit 19, which is connected by means of the amplifier and / or attenuator 14 to the constant gain radiofrequency amplifier 15.
  • the information capture unit 11 By means of the information capture unit 11, the text, character, logo, bar code, etc., to be marked or punched, are introduced, for which it includes an interactive reader unit with the user.
  • This information can be introduced in several different ways, such as: - using a graphics tablet with software designed to store points in real time;
  • the digital information collection unit 11 apart from having the interactive reader unit with the user has means to obtain a digitized matrix (n x m) corresponding to the marking or drilling to be performed. It is also equipped with a message storage unit through which the connection to the control and coding center is made and in which the dot matrix n x m is stored.
  • Unit 11 verifies when new information needs to be processed, in whose case proceeds to make a new conversion.
  • the matrices n x m stored will be turned later, towards the control and coding center 12.
  • the control and coding center processes the different points stored in the memory and obtains a value belonging to a digital code for each of the matrix points that corresponds to the frequency to be applied to the acoustic-optical deflector 16, is say the digital value in K bit defines a specific frequency in the frequency generating unit 19.
  • the size of the character to be printed and / or the number of points desired for each vertical line is stored, so that this data can be varied at any time, obtaining a dynamic variation of the resolution.
  • the frequency generating unit 19 is preferably constituted by a direct digital frequency synthesizer (DDS) which, from the value of the digital code provided by the control and coding center 12 directly generates a stable frequency with a very short switching time, for example, less than a microsecond, which is applied to the acoustic-optical deflector 16 through the corresponding amplifiers and / or attenuators 14 as described above.
  • DDS direct digital frequency synthesizer
  • the system offers the possibility of achieving the different character heights indicated above and allows full control over the number of points generated in the direction of the Y axis that constitute the points n of the vertical line.
  • control and coding center 12 Initially the control and coding center 12 generates a sequence of digital values that produce a frequency sweep by the DDS, in the entire bandwidth of the acoustic-optical deflector 16 so that if the energy of the deflected laser beam is measured, according to the different angles at which the laser beam has been deflected in the acoustic-optical deflector 16, the characteristic curve is obtained Acoustic-optical deflector response throughout its bandwidth.
  • the response curve of the acoustic-optical deflector is obtained in its entire bandwidth, it is preferably stored in the control and coding center 12, in this way it can determine which is the optimum zone of marking according to the characteristic curve Stored acoustic-optical baffle and message.
  • the programming of the compensation curve is carried out by the control center 12 before carrying out the marking, maintaining said programming until the dot matrix is not changed.
  • the compensation vurva can be stored in the control and coding center 12 and the latter can send the action orders to the amplifier and / or attenuator in real time.
  • a photocell 17 detects the presence of a product that must be marked or perforated, it sends a signal to the control and coding center 12 which requests the recovery of a message stored in the storage unit .
  • the control and coding center is responsible for reading each vertical line (points n of the matrix) in order to establish the digital word corresponding to the frequency of each point to be marked.
  • the equalization of the linearity of the response of the acoustic-optical deflector can also be performed, without using an amplifier and / or attenuator 14 or in combination with it, performing a mixed equalization.
  • the amplifier and / or attenuator 14 performs the dual function of equalizing the deflector response curve and adjusting the maximum laser power at each frequency.
  • the equalization can be in two ways: - Equalization by means of the amplitude of each of the selected frequencies, as described;
  • the system is in a position to operate, a circumstance in which the time of point energy as a function of the speed of the chain, which is read by the device 18, and of the laser energy needed to mark or punch.
  • the control and coding circuit 12 varies the energy time of point depending on the speed of the chain, so that the quality of tidal or perforation is desensitized is less dependent on the variations of the speed of the production line. For example, a decrease in speed would mean an increase in point energy time. Therefore an increase in the available energy per point and consequently an excessive tide.
  • the control of the point energy determines the maximum available energy per point by limiting the exposure time.
  • this system maintains a constant tidal or drilling energy independent of the speed variations in the entire bandwidth of the acoustic-optical deflector 16.
  • the criterion for choosing the tidal or drilling energy is based on the observation of the tide by an operator or by automatic means for which the control and coding center 12 is informed requesting a greater or lesser tidal energy or perforation that the control center governs by attenuating and / or amplifying the RF signal and / or governing the point energy time.
  • control and coding unit 12 can generate a signal to activate and deactivate the laser with each of the digital values obtained for each of the matrix points that determines the character, anagram, etc., to be marked or drilled.
  • this system enables a mareaje with messages of alphanumeric characters, serial numbers, time and date of manufacture, sequential coding, logos etc. with various heights and widths at a speed of up to 2,000 meters per minute and more than 10,000 characters per second. .
  • This example of a system according to the invention incorporates a laser 21 that operates in pulsed mode, a pulse identification and detection unit 23, 24 incorporating a peak detector 24 connected to the unit of supply 22 of the laser 21, so that when the laser is activated, it detects, during the pulse generation, the moment at which the peak of maximum power is produced, confirming the pulse.
  • control unit for marking or drilling 25 that generates different signals that are applied to a deflector 26 to mark or drill a point, at the moment when the power peak occurs, or to mark or drill a plurality of points consecutive of the matrix, during the instant, in which the power peak is produced, which depends on the character to be marked or drilled.
  • a pulse shaping unit 29 that generates a sequence of variable pulses, which is a function of the character to be marked or drilled, to keep the laser 21 activated when a point or set of points in a row must be marked or drilled within the matrix that configure the character, and deactivate the laser 21 when it is not necessary to mark or perforate a point or a set of points that configure the matrix of the character, provided that the maximum activation time of the laser is not exceeded and the minimum time is exceeded laser deactivation 21 to maintain the output power within the peak power peaks.
  • the pulse identification and detection unit 23, 24 has a power reading cell with a response time of less than the activation time of the laser point, determining the value of the power in real time.
  • the pulse identification and detection unit 23 has means of control (control program) of the laser power, increasing or decreasing it to obtain the appropriate energy level of each of the points to be marked or drilled.
  • the pulse identification and detection unit 23 has means of detecting the minimum power below which it is not It produces marking or drilling on the surface 27 of the product, to modify the operation of the system when this situation occurs.
  • a laser control unit 28 acts according to the sequence of pulses generated in the pulse shaping unit, to generate activation and deactivation signals of the laser with each character to be marked or drilled.
  • the pulse shaping unit 29 has means (control program) to detect, from the signals provided by the pulse identification and detection unit 23, when the laser operates outside the maximum activation time and the minimum time of laser deactivation, to maintain the output power within the maximum power, in which case it looks for a new format, type of character, or size of character, which allows the action within the time limits.
  • the pulse shaping unit 29 is composed of an intelligent pulse generator with an internal program of general control and mathematical processing.
  • the power supply 22 of the laser 21 is connected to a pulse identification and detection unit 23 which in turn is connected to a control unit of the marking or drilling system 25.
  • the pulse identification and detection unit 23 has a peak detector 24 connected.
  • the pulse identification and detection unit 23 is connected to the pulse shaping unit 29 which is connected to the power supply 22 through a control unit of the laser generator 28, and which is also connected to the control unit of the tidal or drilling system 25.
  • the tidal or perforation control unit 25 is connected to the acoustic-optical deflector 26 to which it applies the different frequencies that produce the deflection of the laser beam affecting the area to be marked 27 of the corresponding product, according to a nxm matrix, from the which is the character to be marked or punched, as previously described.
  • an acoustic-optical deflector has been used, but any other means that allows deflection of the laser beam can be used, such as an electro-optical deflector, moving mirrors, holographic diffraction networks, controlled waveguides , etc.
  • the system has a set of character generators of different resolutions, which are selected with the appropriate resolution in case the operation cannot be maintained within the established time limits, to maintain the mathematical relationships between the energy needed to proceed with the marking or perforation of a point and the maximum peak power of the pulsed laser.
  • a minimum energy is used that is capable of removing or volatilizing a surface layer of the product to be marked or drilled.
  • the energy factor is a fundamental characteristic to obtain a good definition of marking or drilling.
  • a high power is used in a short time or a low power in a very high time.
  • the application of a high pulse of laser power in an instant of time allows a greater absorption of energy by the materials to be marked, than a continuous power equivalent to the average power of the laser during a greater interval of time, although in both cases the energy is the same.
  • the tp energy time being tp which is the time during which the laser is affecting an area corresponding to the point. .
  • the tpt point time is a random function that is generated from the knowledge of the characters, logos or any set of points and the energy necessary for the marking or drilling.
  • a time T of the pulse cycle being:
  • T1 being the activated laser time and t2 the resting laser time.
  • the pulse power is greater than the average laser power by a K factor and the energy during the period T will be:
  • the pulse identification and detection unit recognizes and identifies the power peaks generated by the laser resonator and thereby obtains a reference signal to adapt the system and activate the process at the moment when the instantaneous laser power is the optimum, for which the pulse detection circuit is formed by a power reading cell with a response time of less than t1, and which does not take into account the laser time 21 at the rest time t2, whereby It is possible to obtain an exact knowledge of the value of the power in real time knowing the duration and the moment in which the power peak is produced, making maximum use of the energy provided to the laser 21 to mark or perforate the surface 27.
  • Obtaining the pulse identification signal also allows to know the state of the laser 21 and proceed accordingly depending on the power level.
  • the source current increases laser power, while if the power level is high decreases the current of the laser power supply.
  • the power level falls below a set minimum, it allows the modification of the operation of the system preventing it from acting in unsuitable conditions.
  • the pulse identification and detection unit 23 recognizes the signals from the power supply 22, compiling and manufacturing a permanent control signal from the laser generator. Therefore, the first pulse identification and detection unit knows and governs the state of the power supply 22 as well as the power generated in the laser 21, parameters that enable the regulation of the operation of the system to achieve optimal marking or drilling.
  • the pulse shaping unit 29 generates a signal T (t), which depends on the character, joint logo of points to be marked.
  • n will be points in the direction perpendicular to the tidal or drilling chain and m points in the direction of the chain.
  • the unit pulse shaping obtains a sequence of pulses that are tpt function, or multiples thereof, which will be the ones that control the power supply 22 of the laser.
  • Variations of the function T (t) (on), T (t) (off) or both can be made by modifying the initial conditions of definition of the set of points that make up the marking or drilling. Modifications can be made in the following ways:
  • the pulse shaping unit 29 when reconfiguring a character works in real time, making a prior recognition of the set of points to mark and make the necessary modifications if necessary.
  • the pulse shaping unit has an intelligent pulse generator with an internal program of general control and mathematical processing.
  • control unit of the marking or drilling system 25 receives the signals obtained from the pulse identification and detection unit 23 by processing them to obtain the appropriate character, taking into account the speed of the product, the type of character, the size and all the parameters that configure a certain coding.
  • the control unit of the marking or drilling system 25 is identical to that used in dynamic marking or drilling systems, with the only consideration having a structure adapted for the pulse identification and detection unit 23, and its output connected to the pulse shaping unit 29, since it can, according to previous instructions, change the character size, character format or use lower resolution of tidal or perforation so that it complies with 1 to equation A, as commented previously.
  • control unit of the marking or drilling system 25 processes the signals and from them it indicates to the pulse shaping unit 29 whether the programming carried out in it allows optimal or non-marking or drilling, forcing it to change the parameters discussed above in case the marking or drilling is not optimal.
  • the control unit of the laser generator 28 is the control circuit of the power supply 22, which makes a routine of operating parameters, defined according to the conditions of tidal or drilling.
  • the laser generator control unit works with the pulse T (t) received from the pulse shaping unit so that the laser operates within the range indicated in equation A.
  • This described structure allows each time the presence of a product to be marked or drilled is detected, for example, by means of a photoelectric cell, it activates the system operating in the manner mentioned.
  • This system according to the invention can operate by marking a single point at the precise moment at which the power peak occurs, or by marking a plurality of points, such as a complete character, during the laser emission pulse, although in this case the maximum energy is not used to mark or perforate the points, but the optimization of the use of the energy for its application in the marking or perforation of the character is obtained. The latter case would be more appropriate for high speed chains.
  • control unit of the marking or drilling system 25 can generate different frequencies or a single frequency during a pulse generated by the laser, that is, it will generate a frequency for each of the pulses contained in the function T (t); that is to say that the pulse of the laser is maintained during the function T (t), or on the contrary it follows the same frequency, but all this provided that the equation A already commented is fulfilled.
  • control unit of the marking or drilling system In the case of using another type of deflector, the control unit of the marking or drilling system generates different signals or a single signal during a pulse generated by laser, equivalent to that described for the acoustic-optical deflector.
  • This example of the laser marking or drilling system according to the The invention illustrated in Figure 4 incorporates a laser 41 or a plurality of lasers, preferably with several resonators.
  • the laser produces at least one beam.
  • the system also incorporates a feeding unit 411 of the laser 41 or of the lasers, a control unit or means 43 with a control program that controls a continuous or pulsed operation of the laser 41 and a modulator 42, in particular an acoustic deflector. optical, which produces different angles of beam deflection.
  • This system also incorporates an optical system 44 by which it crosses the beam that produces holes according to a matrix of points (for example n x m) on a surface 45 of a moving product.
  • the system can also be composed of a single laser with a plurality of resonators, so that each resonator can be independently controlled by the control means 43 to create the set of nxm points that configure a code, character, logo and / or text to mark or punch.
  • the power supply unit 411 which supplies power to the laser, the modulator 42 and the optical system 44 which are controllable by the control means 43.
  • the control means 43 is connected to a device 46.47 that determines the porosity of the surface 45 of the product and that generates information that identifies the porosity and / or the thickness of the product to be marked or drilled.
  • control program controls the power supply unit 411, the modulator 42 and the optical system 44 based on preset information and / or dependent on the information that identifies the thickness and / or porosity of the product to be marked. or to drill.
  • the control program relates laser power values to diameter values of points or holes produced on the surface of the product.
  • the program it also relates time values of application of the deflected laser beam with values of diameter of the points or holes produced on the surface 45 of the moving product.
  • the system according to the invention uses the laser 41 whose beam is applied on the acoustic-optical deflector 42, to produce different angles of deflection of the laser beam which, after passing through the optical system, which can be a set of lenses 44, marks or perforates the surface 45 of the moving product at different points depending on the angle of deflection provided by the acoustic-optical deflector 42.
  • the different deflection angles are controlled by the control means 43 with the control program, for which this control means generates a radio-frequency signal whose frequency value determines the deflection angle of the laser beam.
  • the acoustic-optical baffle 42 may be determined by any other type of modulator that is governed by the control unit 43 with the parameters it requires.
  • At least the position of one of the lenses of the lens assembly 44 is governed by the control unit 43 to vary the focal length, as will be described later.
  • the energy absorption of the material at the laser wavelength which are the concepts to be taken into account by the marking or drilling system according to the invention.
  • the absorption of laser energy by the material as described above is a function of the power level of the laser applied.
  • a minimum power value that is called the power threshold is required, exceeding this level, the increase in power produces an uncontrolled increase in the diameter of the hole.
  • This increase is formulated in a practical way and memorized within the control unit 43. According to the invention these different power levels are directly related to different hole diameters.
  • first collimators 49 located between the deflector 42 and the optical system 44.
  • the collimators 49 amplify the laser beam at the exit of the deflector or modulator 42.
  • a second collimator 48 located between the laser 41 and the modulator 42 decreases the diameter of the laser beam so that it can be deflected by the acoustic-optical deflector 42.
  • This system carries out a real-time control of the porosity, for which it has a means 46, 47 that determines the porosity and / or the thickness of the surface 45 of the product and that generates an information that identifies the porosity and / or the thickness.
  • This medium 46, 47 is composed of a porosity and / or thickness reader 47 and a light source 46.
  • the porosity and / or thickness reader 47 generates the aforementioned information that allows the control means 43 to modify the assembly of parameters automatically to modify the porosity.
  • the porosity and / or thickness reading unit 47 is an optical device that analyzes the amount of light that passes through the paper, for which the porosity and / or thickness detector 47 is located on one side of the surface 45 a pierce and on the other side there is a light source 46, which in the exemplary embodiment is a white light source.
  • control unit 43 In this way the light emitted by the source 46, crosses the surface 45 whereby the amount of light received by the porosity and / or thickness detector 47 is proportional to the porosity and / or the thickness of the surface 45.
  • This information conveniently processed by control unit 43, generates signals that modify the necessary parameters to obtain the programmed porosity.
  • Porosity is defined by the following factors: - Hole diameter.
  • the control unit 43 with the control program to achieve a servo-controlled porosity process according to the invention acts on each of these factors as follows:
  • the first possibility of control is to perform the increase and / or decrease in power depending on the size of the desired hole, this control has a very high response time and defines a maximum diameter and a minimum diameter.
  • the minimum diameter is defined by the minimum power value needed to volatilize the material, which is directly related to the energy absorption of the material and the power threshold. That is, it is the minimum power value to produce a hole on a certain material.
  • the second possibility of performing the control consists in changing the focal length in the optical system 44 (in particular lens assembly 44) with a mobile optics system.
  • the means for choosing the size of the character to be printed (marked) have a set of lenses and with means to move one of said lenses in the direction of the axis of the resonator beams, said means being determined by a motor that when being actuated, it moves the lens on a rail so that the lens can suffer a negative or positive displacement with respect to a plane which produces an amplifying or reducing effect of the character to be marked or perforated.
  • Said motor can be governed by a control circuit or the control means with the control program that empowers the automatic choice of character size.
  • the automatic control circuit of the choice of the character size may be materialized in the media that process the information belonging to the system control electronics.
  • n X MAX / dX
  • m Y MAX / dY
  • MP nxm
  • n is the number of holes in the X direction
  • dX the separation between vertical lines in the X direction
  • m the number of holes in the Y direction
  • dY the separation between points in the direction Y and Y MAX height of the maximum porosity zone defined in the perpendicular direction of the product to be marked.
  • the MP parameter defines the porosity obtained and the control unit varies the m and n values according to the value that has been defined for the production.
  • This dynamic drilling system of a digitally generated point generation unit allows the random control of mxn points precisely from the control unit.
  • This system performs a dynamic equalization of point energy based on a new concept that consists in using the exposure time of a point to the laser beam as an equalization system.
  • This equalization concept according to the invention is based on the rapid response speed of the acoustic-optical deflector device 42, which is given by the basic factors that are the diameter of the laser beam that is desired deflector and the speed at which it is shifts the acoustic wave in the half deflector, in the case of this speed, when working with small beam diameters and large acoustic speed, gives a very short deflection time (for example less than 500 ns).
  • the system of the invention performs the equalization on the basis of performing a memorization of the efficiency in the response band of the acoustic-optical deflector 42 and without modifying the radiofrequency power being injected in the deflector 42 to vary, in function of the previously memorized data, the time necessary for the energy that is being projected on each of the points of the matrix mentioned above to have the same value, that is, in this matrix not all points will have the same duration, but yes the set of points that form a vertical line without ever exceeding the maximum time of said vertical line, and this time will be a function of the travel speed of the product to be marked and the programmed width.
  • the optical deflector 42 is capable of generating n angles defined by a set of n different frequencies.
  • a certain efficiency value will be assigned, defined as a set of G1, G2 Gn values, where 0 ⁇ Gi ⁇ 1.
  • the laser power values at the output of the optical deflection system 42 are:
  • the parameter tp can be controlled; It will therefore be necessary to formulate the system so that for each point you have a different time tpi but maintaining the total time of the vertical lines, you.
  • E Ei for any i (1 ... n)
  • the tpt point time is determined by the speed of the product and the type of character to be marked, and is related to the tpi point energy time by a variable factor ki corresponding to the time correction of each frequency:
  • the invention also relates to a method of marking or laser drilling by means of the system described, that is to say by means of a system consisting of at least one laser which produces a beam, a power unit of at least one laser, a control means with a control program that controls at least a laser, a deflector, in particular an acoustic-optical deflector, which produces different angles of deflection of the beam, an optical system by which it passes at least one beam that produces a marking or perforation or a perforation in the form of a dot matrix (nxm) on a surface of a product in relative motion between the product to be marked or drilled and the laser beam.
  • the control program controls the feed unit and / or the baffle.
  • a frequency generating unit produces signals of a certain frequency that is applied to the deflector.
  • the control means or center generates a digital code for each point of the matrix and controls an amplifier and / or an attenuator. Also the control means or center generates a sequence of digital signals that produce a frequency sweep that corresponds to the bandwidth of the baffle.
  • control means or center obtains the characteristic response curve of the deflector in its working band and controls the amplifier and / or the attenuator based on the characteristic response curve of the deflector, and equalizes the response of the band, in particular in the entire working band of the modulator, correcting a linearity of the deflected laser power against the amplitude of the signals of different frequencies applied to it.
  • control means varies the equalization by means of the point time; Performs a mixed equalization by varying the time of incidence of the laser during the point time and varying the deflected laser power of different frequencies applied on the deflector.
  • the control means determines which is the optimum working zone of the deflector, based on the stored characteristic curve of the deflector and a message to mark or punch.
  • the invention also relates to a method that is characterized in that when the laser is activated, a pulse identification and detection unit (23, 24; Figure 2) detects during the pulse generation the moment in which the maximum peak occurs, confirming the pulse.
  • a tidal or drilling control unit / (25) generates different signals that are applied to the deflector (26) to mark or pierce a point of the matrix, at the moment at which the maximum power peak occurs, or to mark a plurality of consecutive points of the matrix, during the instant, in which the maximum power peak is produced, which depends on the character to be marked or drilled.
  • a pulse shaping unit (29) generates a sequence of variable pulses, which is a function of the character to be marked or drilled, in order to keep the laser (21) activated when a point or set of points is to be tracked within the matrix. that configure the character, and deactivate the laser (21) when it is not necessary to mark a point or a set of points that configure the matrix of the character, provided that the maximum activation time of the laser is not exceeded and that it is not less than the minimum laser deactivation time (21) to maintain the output power within the peak power peaks.
  • the pulse shaping unit (29) detects, from the signals provided by the pulse identification and detection unit (23, 24), when the laser operates outside the maximum activation time and the minimum laser deactivation time , to maintain the output power within the peaks, in which case it looks for a new format, type of character, or size of character, that allows the action within the time limits.
  • a means determines the porosity of the product and / or the thickness of the product to be marked or drilled and that generates information that identifies the porosity and / or the thickness, while the control program controls the laser and deflector power unit based on preset information and / or the information that identifies the porosity and / or the thickness of the product.
  • the control program controls an optical system that allows obtaining different focal distances and / or different beam diameters at the focal point based on signals generated by the control means.
  • control program relates laser power values to diameter values of points or holes produced on the surface of the product. Also the control program relates time values of incidence of the deflected laser beam with values of diameter of the points or holes on the surface of the product.
  • the control program controls the time of incidence of the deflected beam on the surface in order that the energy that is projecting on each of the points of the matrix (m x n) has the same value.
  • the invention also relates to products marked or laser perforated according to the described process.
  • Point diameter 122.4 micrometers Wrong size. Character (18 points): 3.7 mm
  • Lens 5 "Focal length: 127mm Focus depth: +/- 1.42mm
  • a sealed C02 laser, waveguide, excited by R.F., the radiofrequency excitation unit capable of delivering a power of up to 2000 W. is used.
  • Unit 23 is preferably constituted by a programmable Logic Device of the firm LATTICE, USA that contains the equations that will later be used by a 16-bit microprocessor, from Motorola, model MC-68000.
  • Detector 24 is a Hg-Cd-Te magneto-electro-optical detector from Boston Electronics in Boston, USA.
  • the control unit (12, 25, 43) corresponding to unit 12 (figure 1) can also be constituted by a 16-bit microprocessor, from Motorola, model MC-68000, a ROM memory that contains the micro code of the control program, a RAM memory to store the variable data and the necessary input and output peripherals to be able to control the elements dependent on this control such as units 28, 29, 26, 16, 17, 18 and 19.
  • Unit 19 is composed of its own design made SERVICIO INDUSTRIAL DE MARCAJE Y CODIFICACI ⁇ N, S.A., Barcelona / Spain.
  • the other elements for example 14, 15, 29, 44 and 47 are designed and manufactured by the firm SERVICIO INDUSTRIAL DE MARCAJE Y CODIFICACI ⁇ N, SA, Barcelona Spain.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Lasers (AREA)

Abstract

La invención se refiere a un sistema de marcaje o de perforación por láser y a un procedimiento de marcaje o de perforación en este sistema, que se compone de al menos un láser (19) el cual produce un haz, una unidad de alimentación de al menos un láser (19), un medio de control (12) con un programa de control que controla el láser (19), un deflector (16), en particular un deflector acústico-óptico, que produce diferentes ángulos de deflexión del haz, en su caso un sistema óptico por el cual traspasa el haz, que produce un marcaje o una perforación en forma de una matriz de puntos (n x m) sobre una superficie de un producto en movimiento relativo entre el producto a marcar o perforar y el haz láser. La unidad de alimentación y/o el deflector (16) son controlables por el programa de control. El sistema según la invención faculta un control dinámico de la resolución de marcaje o perforación en una dirección vertical.

Description

SISTEMA Y PROCEDIMIENTO DE MARCAJE O DE PERFORACIÓN
DESCRIPCIÓN
La invención se refiere a un sistema de mareaje o de perforación según el preámbulo de la reivindicación 1a y a un procedimiento según el preámbulo de la reivindicación 29a. La invención también se refiere a un producto marcado o perforado según el procedimiento mencionado.
ESTADO DE LA TÉCNICA
La codificación de productos, por ejemplo en los sectores farmacéutico, alimentación y cosmética, requiere una identificación fiable y permanente. El uso de un haz láser produce una micro volatilización de la superficie del material a marcar, consiguiendo así un mareaje permanente e imborrable mientras el producto esta en linea de producción.
Es conocido el uso de láser en cadenas de mareaje de productos en movimiento, para lo que estos sistemas cuentan con un deflector acústico- óptico sobre el que se hace incidir el rayo láser, y al que además se aplica una frecuencia determinada que produce la deflexión del haz, cuyo ángulo de deflexión depende directamente del valor de la frecuencia aplicada sobre el deflector, de manera que a cada frecuencia aplicada corresponde un ángulo de deflexión diferente.
La patente europea n° 0402298 se refiere a un sistema de mareaje por láser de objetos en movimiento.
En este sistema conocido el ángulo de deflexión depende del valor de la frecuencia de una señal de radiofrecuencia que se aplica sobre el deflector, de modo que a cada frecuencia aplicada corresponde un ángulo de deflexión diferente, para lo que se utilizan una serie de osciladores fijos de frecuencias diferentes que se aplican al deftector acústico-óptico a través de un circuito de conmutación que es gobernado por un circuito de control que selecciona la frecuencia a aplicar.
El hecho de que el número de osciladores fijos sea un valor predeterminado, supone trabajar con un número limitado de frecuencias, y por tanto con un número limitado de puntos. Si se desea aumentar la resolución del mareaje, ha de aumentarse el número de osciladores y la lógica de control, lo que implica un aumento de su costo. Además es conocido que la característica de eficiencia del deflector acústico-óptico no es lineal en la banda de frecuencia de funcionamiento.
OBJETO DE LA INVENCIÓN
La invención tiene por objeto crear un sistema y un procedimiento de mareaje o perforación de productos por láser que mejoran y facilitan el mareaje o perforación.
Este objeto se realiza mediante un sistema definido por las reivindicaciones 1 a 28 y mediante un procedimiento definido por las reivindicaciones 29 a 31.
La invención tiene una pluralidad de ventajas.
El sistema según la invención ilustrado en la figura 1a faculta un control dinámico de la resolución de mareaje o de perforación en una dirección vertical de puntos. Este sistema también permite controlar el tiempo de exposición del haz láser para cada punto de mareaje o de perforación. De esta manera se reduce la dependencia del mareaje frente a variaciones de velocidad de las lineas de producción.
El sistema según la invención permite realizar una ecualización automática de la amplitud y permite controlar el posicionamiento de los puntos de mareaje o perforación en la región donde la eficiencia del deflector es máxima. En este sentido el sistema faculta realizar la ecualización en función del tiempo de energía de punto (es el tiempo en que el rayo láser esta incidiendo dentro del área correspondiente al punto) y permite una ecualización mixta variando la amplitud y el tiempo de energía del punto. El sistema también permite controlar la energía del mareaje o perforación y trabaja con tiempos de conmutación relativamente cortos (por ejemplo menos de un microsegundo).
En la practica este sistema faculta un mareaje con mensajes de caracteres alfanuméricos, números de serie, hora y fecha de fabricación, codificación secuencial, logotipos etc. con varias alturas y anchuras a una velocidad de hasta 2.000 metros por minuto y más de 10.000 caracteres por segundo. Ademas el sistema cumple todas las especificaciones de los láser de Clase IV de acuerdo con la EN 60825 EN y con el CDRH (Center for Devices and Radiological Health).
El sistema según la invención ¡lustrado en las figuras 2 y 3 faculta la adaptación de un láser de potencia media reducida con alta capacidad de acumulación de energía y generación de altas potencias de pico en tiempos de corta duración. De esta manera se consigue una reducción del coste del sistema de mareaje o perforación.
El sistema según la invención ilustrado en la figura 4 faculta realizar una perforación sobre la superficie de un determinado material con una alta precisión de diámetro de los orificios de la perforación, una alta precisión de la distancia existente entre los centros de los orificios de la superficie del producto a perforar.
Este sistema según la invención también faculta el control automático de la porosidad que resulta como consecuencia de los orificios practicados en una determinada superficie. La invención es aplicable en aquellos procesos industriales en los que se precisa realizar orificios sobre la superficie de un determinado material Uno de vanos ejemplos es el sector del papel de fumar para dotar al filtro de cigarrillos de una porosidad constante y conseguir una mezcla más rica de aire en el humo generado por la combustión de tabaco. Otros ejemplos son documentos financieros y documentos que requieren codificaciones precisas para evitar falsificaciones.
El sistema de perforación dinámico permite un control "on line" de la porosidad para lo que incluye un lector de porosidad, el cual genera una señal que permite al sistema dinámico de perforación modificar el conjunto de parámetros indicados de forma automática, por tanto se mejora la producción, por ejemplo, del papel del filtro de los cigarrillos
A continuación se describe la invención en base de figuras
BREVE ENUNCIADO DE LAS FIGURAS
Figura 1a muestra un diagrama de bloques funcional de un primer ejemplo de realización del sistema según la invención,
Figura 2a muestra un diagrama de bloques funcional de un segundo ejemplo de realización del sistema según la invención;
Figura 3a muestra un ejemplo de una función T (t) producida por una unidad de conformación de pulsos para producir la letra M en el sistema según la figura 2a , y
Figura 4a muestra un diagrama de bloques funcional de un tercer ejemplo de realización del sistema según la invención. DESCRIPCIÓN DE LA INVENCIÓN
1. Descripción en base de las figuras
1.1 Figura 1
El primer ejemplo de realización del sistema según la invención ilustrada en la figura 1a es un sistema de generación aleatoria de frecuencias para mareaje o perforación mediante láser.
Este sistema incorpora los siguientes componentes: una unidad de captación de información 11 ; un centro de control y codificación 12 con un programa de control que controla dinámicamente la resolución de mareaje o de perforación; una unidad de generación de frecuencias 13; un amplificador controlable y/o atenuador controlable 14; un amplificador de radiofrecuencia 15; un deflector acústico-óptico 16; una unidad lectora (fotocélula) 17, un dispositivo 18 que lee la velocidad de una cadena, sobre la cual se encuentra el producto a marcar o perforar, y una unidad generadora de frecuencias 19.
La unidad de generación de frecuencias 19 que preferiblemente esta constituida por un sintetizador digital directo de frecuencias (Direct Digital Syntheziser) 13 que produce señales de una determinada frecuencia que se aplican al deflector acústico-óptico 16. El centro o medio de control 12 genera un código digital para cada punto de la matriz.
El medio o centro de control 12 genera una secuencia de señales digitales que producen un barrido de frecuencia, al menos equivalente al ancho de banda del deflector acústico-óptico 16. Ademas el medio o centro de control 12 obtiene la curva característica de respuesta del deflector acústico-óptico 16 en su banda de trabajo.
El medio de control controla el amplificador y/o el atenuador 14 en base a la curva característica de respuesta del deflector acústico-óptico 16 para ecualizar la respuesta por lo menos en una parte de la banda de trabajo del deflector, corrigiendo una alinealidad de la potencia láser deflectada frente a la amplitud de distintas frecuencias de radiofrecuencias aplicadas a este.
En particular el medio de control 12 varia la ecualización por medio del tiempo de energía de punto y/o variando la potencia RF aplicada al deflector.
Como será descrito el medio de control 12 determina cual es la zona óptima de mareaje o perforación, en función de la curva característica almacenada del deflector acústico-óptico 16 y del mensaje a marcar o perforar.
Para determinar la zona óptima de mareaje, el medio de control 12 determina cual es el ancho de la banda de frecuencias del mensaje, hace un barrido de frecuencia a lo largo de la banda de frecuencias del deflector, calcula el área correspondiente al ancho de banda centrada en la frecuencia de exploración y elige la frecuencia que corresponde al máximo valor del área calculado.
Este ejemplo del sistema según la invención consiste en un sistema de generación aleatoria de frecuencias para mareaje o perforación mediante láser que cuenta con un deflector acústico-óptico sobre el que se aplican, a través del amplificador de radiofrecuencia de ganancia constante 15, diferentes valores de frecuencia que producen distintos ángulos de deflexión del rayo láser que incide en el deflector 16, marcándose o perforándose el carácter, logotipo, textos, etc.
Esta información a marcar o a perforar se introduce en la unidad de captación de información 11 que genera, una matriz digitalizada n x m de puntos correspondiente al mareaje o perforación a efectuar, y la almacena en una memoria.
n es el número de puntos en la linea vertical (decir dirección perpendicular al movimiento lineal del producto a marcar) y m es el número de puntos en la dirección del desplazamiento del producto a marcar.
La unidad o de medio de control y codificación 12 procesa los puntos de la matriz obtenidos en la unidad de captación de información 11 y genera un código digital para cada punto de la matriz.
La unidad de control y codificación 12 está conectado a la unidad de generación de frecuencias 13 que directamente a partir del código digital proporcionado por la unidad de control y codificación produce una determinada frecuencia.
La unidad de control incorpora medios para realizar el control dinámico de la resolución de mareaje (constituidos por el programa de control) consisten en generar una mayor o menor cantidad de puntos n y por tanto una mayor o menor cantidad de frecuencias.
El amplificador y/o atenuador de amplitud 14 es gobernado por el centro de control y codificación 12 para ecualizar la respuesta en toda la banda de trabajo del deflector acústico-óptico, corrigiendo la alinealidad de la potencia láser deflectada frente a la amplitud de las distintas frecuencias de radiofrecuencia (RF) aplicadas a éste.
El atenuador y/o amplificador de amplitud 14 se encuentra preferentemente incluido en la unidad de generación de frecuencias 13, en cuyo caso el conjunto igualmente esta constituido por un DDS.
La unidad de control y codificación está dotada de medios (constituidos por el programa de control) para generar una secuencia de valores digitales que producen un barrido de frecuencias en la banda de trabajo del deflector acústico-óptico, de modo que con un equipo de medida de potencia láser se obtiene la curva característica de respuesta del deflector acústico-óptico en toda su banda de trabajo. Medios de almacenamiento de la curva característica del deflector acústico- óptico que se encuentran preferentemente incluidos en el centro de control y codificación.
El centro de control y codificación está dotado de medios de control de la respuesta del amplificador y/o atenuador, que son gobernados en función de la curva característica del deflector acústico-óptico almacenada, corrigiendo la alinealidad de respuesta del deflector acústico-óptico. Para ello determina la curva de compensación de la respuesta de amplitud del deflector acústico- óptico, y ésta es almacenada en el amplificador y/o atenuador.
Así, una vez que la curva característica del amplificador ha sido calculada y almacenada en el centro de control y codificación, calcula la curva de compensación de la respuesta de amplitud del deflector acústico-óptico almacenándola por ejemplo en el amplificador y/o atenuador, tal y como se comentó anteriormente, para a continuación seguir los siguientes pasos:
1 - Se seleccionan el número de puntos a marcar;
2. -Se busca dentro de la banda de trabajo del deflector 16 la región donde la respuesta del mismo es máxima para los puntos seleccionados anteriormente;
3. - Dentro de la región seleccionada en el punto anterior se busca la eficiencia mínima.
4 - Se igualan todos los valores de eficiencia mínima mediante la reducción de la potencia de radiofrecuencia de cada una a la eficiencia de las frecuencias, empleando el amplificador y/o atenuador, y
5.-Se realiza el almacenaje de la información.
Además la unidad de control 12 cuenta con medios (programa de control) para determinar cual es la zona óptima de mareaje o de perforación, en función de la curva característica almacenada del deflector acústico-óptico y del mensaje a marcar. También cabe destacar que el control de la resolución puede efectuarse a partir de la zona óptima de mareaje de la curva característica y del mensaje.
Para calcular la zona óptima de mareaje o de perforación, se calcula la eficiencia media (la media de los valores de correspondientes a las frecuencias discretas de la zona), la variancia (diferencia entre el valor máximo y el valor mínimo), de estos valores, y el valor mínimo de la eficiencia de las zonas de mareaje o perforación.
En base a estos cálculos el sistema según la invención realiza un barrido a lo largo de todo el ancho de banda del deflector calculando estos tres parámetros para cada una de las zonas de exploración. Una vez calculado se obtiene un valor para cada zona que es el resultado R de la siguiente ecuación:
Resultado R = K1 M + K2 V + K3P
donde:
M es la eficiencia media de cada zona V es la variancia de cada zona P es el valor mínimo de la eficiencia de cada zona K1 , K2.K3 son constantes previamente fijadas.
Interesa que la zona elegida tenga una eficiencia media máxima, una varianza mínima y un valor máximo de eficiencia mínima.
El resultado máximo de la ecuación obtenida determina la zona óptima de mareaje o de perforación.
La unidad de control y codificación en este sistema está dotado de medios para variar la ecualización a partir del tiempo de energía de punto, es decir que dependiendo del tiempo que se emplee para realizar el mareaje de cada punto se realizará la ecualización con el objetivo de conseguir una energía constante de marcación en el ancho de banda utilizado. El sistema según la invención también es capaz de realizar una ecualización mixta variando el tiempo de punto y la amplitud en base a lo descrito anteriormente.
Para conseguir la ecualización del mensaje a marcar o a perforar se realizan los siguientes cálculos:
1.- Se ajusta la potencia de radiofrecuencia para conseguir la máxima potencia láser; 2.-EI circuito de control y codificación lee las eficiencias obtenidas en el ancho de banda del deflector y almacena dichos valores;
3.- Efectúa el posicionamiento dentro del ancho de banda del deflector para conseguir la zona óptima de mareaje;
4.-Dentro de la zona seleccionada en el punto anterior, determina la eficiencia máxima;
5. -Ajusta la potencia de radio frecuencia de cada uno de los puntos para conseguir la máxima eficiencia, para lo que en este punto utilizando el amplificador amplía la potencia de radiofrecuencia de cada una de las frecuencias; 6.- Incrementa el tiempo de energía de punto en aquellos puntos donde la eficiencia es inferior tal y como se describe en la figura 4; y
7.- Si es necesario, se ajusta la ecualización por medio de una reducción de potencia en los puntos que puedan resultar deformados si los tiempos de energía de punto fueron demasiado largos; y 8 - Se realiza el mareaje o la perforación del mensaje.
Además, el medio de control y codificación incluye medios (programa de control) para variar el tiempo de energía de punto, en función de la energía del láser y velocidad de la línea de producción y así determinar la energía adecuada para el mareaje. Esto permite hacer inmune la calidad del mareaje o de la perforación frente a las variaciones de velocidad de la línea de producción. El criterio de elección de la energía de mareaje se basa por ejemplo en la observación del mareaje por parte de un operador, para lo que la unidad de control y codificación cuenta con medios para variar el tiempo de energía de punto manualmente por parte del operario, que actúa sobre los medios descritos anteriormente.
Los medios para variar el tiempo de energía de punto consisten en mantener un mayor o menor tiempo la señal digital generada por el centro de control y codificación.
En este ejemplo del sistema según la invención también se permite gobernar el funcionamiento pulsado del láser para lo que el centro de control y codificación genera señales de activación del láser coincidiendo con la generación de cada una de las frecuencias o conjunto variable de frecuencias que conforman el mensaje.
En base a lo expuesto se pueden enumerar las siguientes principales ventajas de este ejemplo de la invención:
- Permite aumentar la resolución de mareaje o perforación y el control de la misma consiguiéndose distintas alturas de carácter;
- Permite realizar la ecualización automática de la amplitud del láser deflectado;
- Permite realizar la ecualización automática de la amplitud del láser deflectado - Permite realizar la ecualización mediante la potencia de radio frecuencia;
- Permite realizar la ecualización en función del tiempo de energía de punto;
- Permite una ecualización mixta variando la amplitud y el tiempo de energía de marcación del punto;.
- Permite controlar la energía del mareaje o perforación; - Permite generar un elevado número de frecuencias;
- Trabaja con tiempos de conmutación muy cortos; y
- Es relativamente económico. Este sistema de mareaje con láser utiliza un amplificador de radiofrecuencia 15 de ganancia constante que aplica una señal de radiofrecuencia de frecuencia variable al deflector acústico-óptico 16 sobre el que incide el rayo láser, de manera que el haz es deflectado un ángulo proporcional a la frecuencia aplicada a través del amplificador 15, con lo que se produce una marcación o perforación del producto que discurre por una cadena de producción.
La información a marcar o perforar en el producto, se introduce en la unidad de captación de información 11 que está conectada al centro de control y codificación 12 que a su vez está conectado a la unidad de generación de frecuencias 19, que se conecta mediante el amplificador y/o atenuador 14 al amplificador de radiofrecuencia 15 de ganancia constante.
Mediante la unidad de captación de información 11 se introduce el texto, carácter, logotipo, código de barras, etc., a marcar o perforar, para lo que incluye una unidad lectora interactiva con el usuario.
Esta información puede ser introducida de varias formas diferentes como pueden ser: - mediante una tableta gráfica con un software concebido para memorización de puntos en tiempo real;
- mediante un lector óptico asociado al sistema;
- mediante un programa de diseño gráfico por ordenador.
La unidad de captación de información digital 11 aparte de contar con la unidad lectora interactiva con el usuario cuenta con medios para obtener una matriz digitalizada (n x m) correspondiente al mareaje o perforación a realizar. Además está dotada de una unidad de almacenamiento de mensajes a través de la cual se realiza la conexión con el centro de control y codificación y en la que se almacena la matriz de puntos n x m.
La unidad 11 verifica cuando hay que procesar una nueva información, en cuyo caso procede a realizar una nueva conversión.
Las matrices n x m almacenadas serán volcadas posteriormente, hacia el centro de control y codificación 12.
El centro de control y codificación procesa los distintos puntos almacenados en la memoria y obtiene un valor perteneciente a un código digital por cada uno de los puntos de la matriz que corresponde a la frecuencia que se ha de aplicar al deflector acústico-óptico 16, es decir el valor digital en K bit define una frecuencia concreta en la unidad de generación de frecuencia 19.
En el centro de control y codificación se almacena el tamaño del carácter a imprimir y/o el número de puntos que se desean por cada linea vertical, de manera que estos datos se pueden variar en cualquier momento, obteniéndose una variación dinámica de la resolución.
La unidad de generación de frecuencia 19 está preferiblemente constituida por un sintetizador digital directo de frecuencias (DDS) que a partir del valor del código digital proporcionado por el centro de control y codificación 12 genera directamente una frecuencia estable con un tiempo de conmutación muy corto, por ejemplo inferior a un microsegundo, que se aplica al deflector acústico-óptico 16 a través de los correspondientes amplificadores y/o atenuadores 14 tal y como fue descrito anteriormente.
Gracias a la flexibilidad que proporciona el DDS para generar distintas frecuencias el sistema ofrece la posibilidad de conseguir las distintas alturas de carácter indicadas anteriormente y permite un total control sobre el número de puntos generados en la dirección del eje Y que constituyen los puntos n de la linea vertical.
Inicialmente el centro de control y codificación 12 genera una secuencia de valores digitales que producen un barrido de frecuencia por parte del DDS, en todo el ancho de banda del deflector acústico-óptico 16 de modo que si se mide la energía del haz láser deflectado, según los diferentes ángulos en los que se ha deflectado el haz láser en el deflector acústico-óptico 16, se obtiene la curva característica de respuesta del deflector acústico-óptico en todo su ancho de banda.
Una vez obtenida la curva de respuesta del deflector acústico-óptico en todo su ancho de banda, ésta se almacena preferentemente en el centro de control y codificación 12, de esta manera puede determinar cual es la zona óptima de mareaje en función de la curva característica almacenada del deflector acústico-óptico y del mensaje.
En base a estos datos obtenidos por el centro de control y codificación 12, este calcula la curva de compensación de la respuesta de amplitud del deflector acústíco-όptico que se almacena en el amplificador y/o atenuador 14, que por ejemplo es programable, para que se pueda conseguir una ecualización de la respuesta del deflector acústico-óptico 26 en toda su banda de trabajo corrigiendo la alinealidad que éste presenta en su ancho de banda.
La programación de la curva de compensación la realiza el centro de control 12 antes de efectuar el mareaje, manteniendo dicha programación hasta que no sea cambiada la matriz de puntos.
En el caso de que el amplificador y/o atenuador 14 no sea programable, la vurva de compensación se puede almacenar en el centro de control y codificación 12 y éste puede ir enviando las órdenes de actuación al amplificador y/o atenuador en tiempo real.
En base a lo descrito se comprende que cuando una fotocélula 17 detecta la presencia de un producto que debe ser marcado o perforado, ésta envía una señal al centro de control y codificación 12 el cual solicita la recuperación de un mensaje almacenado en la unidad de almacenamiento. En este punto el centro de control y codificación se encarga de leer cada línea vertical (puntos n de la matriz) para poder establecer la palabra digital correspondiente a la frecuencia de cada punto a marcar.
Variando el tiempo energía del punto también se puede realizar la ecualización de la alinealidad de la respuesta del deflector acústico-óptico, sin necesidad de utilizar un amplificador y/o atenuador 14 o en combinación con éste, realizando una ecualización mixta.
El amplificador y/o atenuador 14 realiza la doble función de ecualizar la curva de respuesta del deflector y ajusfar la máxima potencia láser a cada frecuencia.
Como se ha comentado la ecualización puede ser de dos maneras: - Ecualización por medio de la amplitud de cada una de las frecuencias seleccionadas, tal y como ha sido descrito;
- Ecualización por medio del tiempo de energía de punto, previo ajuste a máxima eficiencia del deflector acústico-óptico a cada una de las frecuencias.
El uso de tiempo de energía de punto para optimizar la ecualización del sistema es opcional.
Una vez que se ha realizado la ecualización de amplitud o mixta, el sistema está en condiciones de operar, circunstancia en la que el tiempo de energía de punto en función de la velocidad de la cadena, que es leída por el dispositivo 18, y de la energía del láser necesaria para marcar o perforar.
Hay que tener en cuenta que la velocidad de la línea de producción puede sufrir fluctuaciones, por lo que dependiendo de la velocidad la energía necesaria para marcar o perforar será diferente, por lo que el circuito de control y codificación 12 varía el tiempo de energía de punto en función de la velocidad de la cadena, de manera que se insensibiliza la calidad de mareaje o perforación sea menos dependiente de las variaciones de la velocidad de la línea de producción. Por ejemplo una disminución de la velocidad supondría un aumento del tiempo de energía de punto. Por tanto un aumento de la energía disponible por punto y en consecuencia un mareaje excesivo. El control de la energía de punto determina la energía máxima disponible por punto mediante la limitación del tiempo de exposición.
Por tanto, este sistema según la invención mantiene una energía constante de mareaje o perforación independiente de las variaciones de velocidad en todo el ancho de banda del deflector acústico-óptico 16.
El criterio de elección de la energía de mareaje o perforación se basa en la observación del mareaje por parte de un operario o por parte de medios automáticos para lo que se informa al centro de control y codificación 12 solicitándole una mayor o menor energía de mareaje o perforación que el centro de control gobierna atenuando y/o amplificando la señal de RF y/o gobernando el tiempo de energía de punto.
Cabe indicar que la unidad de control y codificación 12 puede generar una señal para activar y desactivar el láser con cada uno de los valores digitales obtenidos para cada uno de los puntos de matriz que determina el carácter, anagrama, etc, a marcar o perforar.
En la practica este sistema faculta un mareaje con mensajes de caracteres alfanuméricos, números de serie, hora y fecha de fabricación, codificación secuencial, logotipos etc con varias alturas y anchuras a una velocidad de hasta 2.000 metros por minuto y más de 10.000 caracteres por segundo.
1.2 Figuras 2 y 3
Este ejemplo de un sistema según la invención incorpora un láser 21 que trabaja en régimen pulsado, una unidad de identificación y detección de pulsos 23, 24 que incorpora un detector de pico 24 conectada a la unidad de alimentación 22 del láser 21 , de manera que cuando se activa el láser, detecta, durante la generaciórv del pulso, el instante en el que se produce el pico de máxima potencia, confirmando el pulso.
Ademas incorpora una unidad de control de mareaje o perforación 25 que genera distintas señales que se aplican a un deflector 26 para marcar o perforar un punto, en el instante en que se produce el pico de potencia, o para marcar o perforar una pluralidad de puntos consecutivos de la matriz, durante el instante, en el cual que se produce el pico de potencia, lo cual depende del carácter a marcar o perforar.
También incorpora una unidad de conformación de pulsos 29 que genera una secuencia de pulsos variables, que es función del carácter a marcar o perforar, para mantener el láser 21 activado cuando hay que marcar o perforar un punto o un conjunto de puntos seguidos dentro de la matriz que configuran el carácter, y desactivar el láser 21 cuando no hay que marcar o perforar un punto o un conjunto de puntos que configuran la matriz del carácter, siempre que no se supere el tiempo máximo de activación del láser y se sobrepase el tiempo mínimo de desactivación del láser 21 para mantener la potencia de salida dentro de los picos de potencia máxima.
La unidad de identificación y detección de pulsos 23, 24 cuenta con una célula de lectura de potencia, de tiempo de respuesta inferior al tiempo de activación del punto láser, determinando el valor de la potencia en tiempo real.
La unidad de identificación y detección de pulso 23 cuenta con medios de gobierno (programa de control) de la potencia del láser, aumentándola o disminuyéndola para obtener el nivel adecuado de energía de cada uno de los puntos a marcar o perforar.
Ademas la unidad de identificación y detección de pulsos 23 cuenta con medios de detección de la potencia mínima por debajo de la cual no se produce mareaje o perforación en la superficie 27 del producto, para modificar el funcionamiento del sistema cuando se produzca esta situación.
Una unidad de control 28 del láser actúa según la secuencia de pulsos generados en la unidad de conformación de pulso, para generar señales de activación y desactivación del láser con cada carácter a marcar o perforar.
La unidad de conformación de pulsos 29 cuenta con medios (programa de control) para detectar, a partir de las señales proporcionadas por la unidad de identificación y detección de pulsos 23, cuando el láser funciona fuera del tiempo máximo de activación y del tiempo mínimo de desactivación del láser, para mantener la potencia de salida dentro de la potencia máxima, en cuyo caso busca un nuevo formato, tipo de carácter, o tamaño de carácter, que permita la actuación dentro de los límites de tiempo.
La unidad de conformación de pulso 29 está compuesta por un generador de pulsos inteligente con un programa interno de control general y de procesado matemático.
La fuente de alimentación 22 del láser 21 esta conectada a una unidad de identificación y detección de pulso 23 que a su vez está conectada a una unidad de control del sistema de mareaje o perforación 25.
La unidad de identificación y detección de pulsos 23 tiene conectado un detector de pico 24.
Por otro lado la unidad de identificación y detección de pulso 23 está conectada a la unidad de conformación de pulso 29 que se conecta a la fuente de alimentación 22 a través de una unidad de control del generador láser 28, y que además está conectada a la unidad de control del sistema de mareaje o perforación 25. La unidad de control de mareaje o perforación 25 está conectada al deflector acústico-óptico 26 al que aplica las distintas frecuencias que producen la deflexión del rayo láser incidiendo sobre la zona a marcar 27 del producto correspondiente, según una matriz n x m, a partir de la cual se configura el carácter a marcar o perforar, tal y como ya fue descrito con anterioridad.
En el ejemplo de realización se ha utilizado un deflector acústico-óptico, pero se puede utilizar cualquier otro medio que permita la deflexión del rayo láser, como puede ser un deflector electro-óptico, espejos móviles, redes de difracción holográficas, guías de onda controladas, etc.
EL sistema cuenta con un conjunto de generadores de caracteres de diferentes resoluciones, que son seleccionados con la resolución adecuada en caso de no poderse mantener el funcionamiento dentro de los limites de tiempo establecidos, para mantener las relaciones matemáticas entre la energía necesaria para proceder al mareaje o perforación de un punto y la potencia máxima de pico del láser pulsado.
Para realizar el mareaje o perforación de un producto en movimiento con láser, se utiliza una energía mínima que sea capaz de eliminar o volatilizar una capa superficial del producto a marcar o perforar. El factor energético es una característica fundamental para obtener una buena definición de mareaje o perforación.
El valor de la energía E está directamente relacionado con el tiempo T y la potencia P según la fórmula siguiente:
E = P x T
Por tanto, para tener un nivel energético elevado, se usa una potencia elevada en un tiempo corto o una potencia baja en un tiempo muy alto. La aplicación de un pulso elevado de potencia láser en un instante de tiempo, permite una mayor absorción de energía por parte de los materiales a marcar, que una potencia continua equivalente a la potencia media del láser durante un intervalo mayor de tiempo, a pesar que en ambos casos la energía sea la misma. Ello es debido a que a partir de una potencia umbral el material aumenta drásticamente su capacidad de absorción de energía. Este efecto se debe a la aparición del "plasma" que es una fase de la materia donde el material pierde sus características como tal y con ello modifica sus características físicas (reflexión, absorción y transmisión de energía).
En un láser de potencia media Po, trabajando sin optimización de energía, según la fórmula anterior, se obtendría la siguiente:
E = Po x tp
Siendo tp el tiempo de energía de punto que es el tiempo durante el cual el láser esta incidiendo dentro de un área correspondiente al punto. .
En la realización con optimización de energía, el tiempo de punto tpt es una función aleatoria que se genera a partir del conocimiento de los caracteres, logotipos o cualquier conjunto de puntos y de la energía necesaria para el mareaje o perforación.
En un láser de generación de pulsos, el funcionamiento esta definido por un tiempo T del ciclo de pulso, siendo:
T = t1 + 12
Siendo t1 el tiempo de láser activado y t2 el tiempo del láser en reposo.
Se puede obtener un máximo rendimiento energético pero es necesario respetar la ecuación anterior, y para ello la invención cuenta con un circuito de conformación de pulso 29, tal y como será descrito con posterioridad. La potencia de pulso es mayor que la potencia media del láser por un factor K y la energía durante el período T será:
E= K x Po (t) x (t1 + t2) siendo
Po (t)= Po 0 < t < t1
Po (t) =0 t1 < t< t2
Al ser t2 el tiempo del láser en reposo, Po es 0 en dicho período, de manera que si se iguala t1 a tpt, la ecuación anterior queda:
E = K x Po x tpt
Puesto que el factor K mayor que 1 , se produce un aumento de energía de punto.
La unidad de identificación y detección de pulso realiza el reconocimiento e identificación de los picos de potencia generados por el resonador láser y con ello obtiene una señal de referencia para adaptar el sistema y activar el proceso en el momento en que la potencia instantánea del láser es la óptima, para lo que el circuito de detección de pulso está formado por una célula de lectura de potencia con tiempo de respuesta inferior a t1 , y que no tiene en consideración el tiempo de láser 21 en el tiempo de reposo t2, con lo que sé consigue un conocimiento exacto del valor de la potencia en tiempo real conociéndose la duración y el instante en el que se produce el pico de potencia realizándose un máximo aprovechamiento de la energía aportada al láser 21 para marcar o perforar la superficie 27.
La obtención de la señal de identificación de pulso permite además conocer el estado del láser 21 y proceder en consecuencia dependiendo del nivel de potencia.
Así si el nivel de potencia es bajo aumenta la corriente de la fuente de alimentación del láser, en tanto que si el nivel de potencia es alto disminuye la corriente de la fuente de alimentación del láser.
Además, si el nivel de potencia cae por debajo de un mínimo fijado, faculta la modificación del funcionamiento del sistema impidiendo que actúe en condiciones no adecuadas.
Por otro lado, la unidad de identificación y detección de pulso 23 reconoce las señales de la fuente de alimentación 22, compilando y confeccionando una señal de control permanente del generador láser. Por tanto, la primera unidad de identificación y detección de pulso conoce y gobierna el estado de la fuente de alimentación 22 así como la potencia generada en el láser 21 , parámetros que facultan la regulación del funcionamiento del sistema para conseguir un mareaje o perforación óptimos.
La unidad de conformación de pulso 29 genera una señal T (t), que depende del carácter, logotipo conjunto de puntos que se quieren marcar.
Tal y como ya se describió mediante una matriz por ejemplo del tipo P (n, m), donde n serán puntos en la dirección perpendicular a la cadena de mareaje o perforación y m puntos en la dirección de la cadena.
Los valores de la matriz de punto estarán definidos según el siguiente criterio:
P(n, m) = 0 punto desactivado P(n, m) = 1 punto activado
Si el tiempo de punto es tpt, que es el tiempo durante el cual el área de un punto sobre la superficie esta en posición o sea expuesta, el tiempo mínimo del láser desactivado es t2 y el tiempo máximo del láser activado es t1 , la unidad de conformación de pulsos obtiene una secuencia de pulsos que son función de tpt, o múltiplos de éste, que serán los que controlan la fuente de alimentación 22 del láser.
La ecuación matemática correspondiente a T (t) es:
T (t) (encendido) + T (t) (apagado) T(t)(encendido)=Kr x tpt; Kr= 1 r
con r = t1/tpt
T(t)(apagado)=Ks x tpt; Ks=1 s
Con s = t2/tpt
La obtención de ios valores de Ks y Kr se realiza, según los valores de la matriz P(n, m). Para una mejor comprensión dé lo expresado se ilustra el siguiente ejemplo práctico.
Si se desea generar la función T (t) para un conjunto dé puntos definidos de la siguiente forma:
1
1. 2. 3. 4. 5.
Los valores de la matriz P (n,m) serán:
P(1 ,1)=' I P(1 ,2)=0 P(1 ,3)=0 P(1,4)=0 P(1 ,5)=1
P(2,1)=' l P(2,2)=1 P(2,3)=0 P(2,4)=1 P(2,5)=1
P(3,1)=' I P(3,2)=0 P(3,3)=1 P(3,4)=0 P(3,5)=1
P(4,1)=' I P(4,2)=0 P(4,3)=0 P(4,4)=0 P(4,5)=1
P(5,1)=- l P(5,2)=0 P(5,3)=0 P(5,4)=0 P(S,5)=1 La función T (t) viene dado por el tren de pulsos mostrado en la figura 3.
Es importante hacer una consideración, cuando el tiempo T (t) (encendido) es superior a t1 o T(t)(apagado) es inferior a t2, o que se produzcan ambas circunstancias a la vez, se produce una solución técnica inviable en cuyo caso la unidad de conformación de pulso reconfigura el código a marcar modificando la función T (t) para que se cumpla que:
T (t) (encendido) <= t1 y T (t) (apagado) >= t2 (ecuación A).
Las variaciones de la función T (t) (encendido), T (t) (apagado) o ambas, se pueden realizar modificando las condiciones iniciales de definición del conjunto de puntos que configuran el mareaje o perforación. Las modificaciones se pueden realizar en los siguientes sentidos:
1.-Buscando un nuevo formato o tipo de carácter que permita que la ecuación A se cumpla, sin modificar el mensaje que se pretende dar;
2 - Variando el tamaño del carácter, ya que el tamaño del carácter está directamente relacionado con el tiempo tpt, y siendo t1 y t2 fijos una reducción en el tiempo tpt puede permitir que la ecuación A se cumpla; y
3. - Variando la definición general del código para lo que la invención cuenta con un conjunto de generadores de distinta resolución, que habrán sido validados anteriormente y se tendrá acceso a ellos para, poderse usar en caso de no haber podido cumplir la ecuación A en los puntos 1 y 2; seleccionándose de acuerdo con la resolución adecuada para que cumpla la ecuación A.
La unidad de conformación de pulso 29 al reconfigurar un carácter trabaja en tiempo real, haciendo un reconocimiento previo del conjunto de puntos a marcar y realizando las modificaciones oportunas en caso necesario.
Para realizar la reconfiguración, la unidad de conformación de pulso cuenta con un generador de pulsos inteligente con un programa interno de control general y de procesado matemático.
Por su lado la unidad, de control del sistema de mareaje o perforación 25 recibe las señales obtenidas de la unidad de identificación y detección de pulso 23 procesándolas para obtener el carácter adecuado, teniendo en cuenta la velocidad del producto, el tipo de carácter, el tamaño y todos los parámetros que configuran una determinada codificación.
La unidad de control del sistema de mareaje o perforación 25 es idéntica a la que se utiliza en los sistemas de mareaje o perforación dinámicos, con la única consideración que tiene una estructura adaptada para la unidad de identificación y detección de pulso 23, y su salida conectada a la unidad de conformación de pulso 29, ya que ésta puede según unas instrucciones previas hacer cambiar el tamaño de carácter, el formato del carácter o utilizar menor resolución de mareaje o perforación para que la cumpla 1 a ecuación A, tal como fue comentado anteriormente.
Por tanto, la unidad de control del sistema de mareaje o perforación 25 procesa las señales y a partir de ellas le indica a la unidad de conformación de pulso 29 si la programación en ella realizada permite el mareaje o perforación óptimos o no, obligándola a cambiar los parámetros comentados anteriormente en caso de que el mareaje o la perforación no sea óptimos.
La unidad de control del generador láser 28 es el circuito de control de la fuente de alimentación 22, que confecciona una rutina de parámetros de funcionamiento, definida en función de las condiciones de mareaje o perforación. La unidad de control del generador láser trabaja con el pulso T (t) recibido de la unidad de conformación de pulso para que el láser funcione dentro del intervalo indicado en la ecuación A.
Esta estructura descrita permite que cada vez que se detecta la presencia de un producto a marcar o perforar como por ejemplo puede ser mediante una célula fotoeléctrica, ésta activa el sistema funcionando de la forma comentada.
Este sistema según la invención puede funcionar marcando un único punto en el preciso instante en el que se produce el pico de potencia, o realizando la marcación de una pluralidad de puntos, como puede ser un carácter completo, durante el pulso de emisión del láser, aunque en este caso no se aprovecha la máxima energía para marcar o perforar los puntos, pero se obtiene la optimización del aprovechamiento de la energía para su aplicación en el mareaje o perforación del carácter. Este último caso sería más apropiado para cadenas de alta velocidad.
Por tanto, la unidad de control del sistema de mareaje o perforación 25 puede generar distintas frecuencias o una única frecuencia durante un pulso generado por el láser, es decir generará una frecuencia para cada uno de los pulsos contenidos en la función T (t); es decir que el pulso del láser se mantiene durante la función T (t), o por el contrario sigue la misma frecuencia, pero todo ello siempre que se cumpla la ecuación A ya comentada.
En el caso de utilizar otro tipo de deflector, la unidad de control del sistema de mareaje o perforación genera distintas señales o una única señal durante un pulso generado por láser, de forma equivalente a, la descrita para el deflector acústico-óptico.
1.3 Figura 4
Este ejemplo del sistema de mareaje o perforación por láser según la invención ilustrado en la figura 4 incorpora un láser 41 o una pluralidad de láseres, preferiblemente con varios resonadores. El láser produce al menos un haz. El sistema también incorpora una unidad de alimentación 411 del láser 41 o de los láseres, una unidad o medio de control 43 con un programa de control que controla un funcionamiento continuo o pulsado del láser 41 y un modulador 42, en particular un deflector acústico-óptico, que produce diferentes ángulos de deflexión del haz.
Este sistema según la invención también incorpora un sistema óptico 44 por el cual atraviesa el haz que produce orificios según una matriz de puntos (por ejemplo n x m) sobre una superficie 45 de un producto en movimiento.
El sistema también se puede componer de único láser con una pluralidad de resonadores, de manera que cada resonador puede ser controlado independientemente por el medio de control 43 para crear el conjunto de n x m puntos que configuran un código, carácter, logotipo y/o texto a marcar o a perforar.
La unidad de alimentación 411 , la cual suministra energía al láser, el modulador 42 y el sistema óptico 44 que son controlables por el medio de control 43. El medio de control 43 esta conectado con un dispositivo 46,47 que determina la porosidad de la superficie 45 del producto y que genera una información que identifica la porosidad y/o el espesor del producto a marcar o a perforar.
Como sera descrito con posterioridad, el programa de control controla la unidad de alimentación 411 , el modulador 42 y el sistema óptico 44 en base de informaciones prefijadas y/o dependiente de la información que identifica el espesor y/o la porosidad del producto a marcar o a perforar. El programa de control relaciona valores de potencia del láser con valores de diámetro de puntos u orificios producidos en la superficie del producto. El programa también relaciona valores de tiempo de aplicación del haz láser deflectado con valores de diámetro de los puntos u orificios producidos en la superficie 45 del producto en movimiento.
El sistema según la invención utiliza el láser 41 cuyo haz se aplica sobre el deflector acústico-óptico 42, para producir diferentes ángulos de deflexión del haz láser que tras pasar por el sistema óptico que puede ser un conjunto de lentes 44, marca o perfora la superficie 45 del producto en movimiento en diferentes puntos dependiendo del ángulo de deflexión proporcionado por el deflector acústico-óptico 42.
Los diferentes ángulos de deflexión son controlados por el medio de control 43 con el programa de control, para lo que éste medio de control genera una señal de radio-frecuencia cuyo valor de frecuencia determina el ángulo de deflexión del haz láser.
El deflector acύstico-óptico 42 puede estar determinado por cualquier otro tipo de modulador que sea gobernado por la unidad de control 43 con los parámetros que requiera.
Al menos la posición de una de las lentes del conjunto de lentes 44 es gobernada por la unidad de control 43 para variar la distancia focal, tal y como será descrito con posterioridad.
Realizando la focalización de un haz láser sobre la superficie de un material 45 con una alta energía, permite que se volatilice una pequeña zona de su superficie y que se obtenga un agujero definido por:
- Diámetro del punto óptico de focalización láser;
- La absorción de energía del material a la longitud de onda láser, que son los conceptos a tener en cuenta por el sistema de mareaje o perforación según la invención. La absorción de la energía láser por el material tal y como ya se describió, es función del nivel de potencia del láser aplicado. Para realizar la perforación hace falta un valor mínimo de potencia que se denomina umbral de potencia, superando este nivel, el aumento de potencia produce un aumento incontrolado del diámetro del orificio. Este aumento es formulado de forma práctica y memorizado dentro de la unidad de control 43. Según la invención estos diferentes niveles de potencia se relacionan directamente con diferentes diámetros de orificios.
En cuanto al diámetro del punto focal éste se obtiene de la ecuación:
rf= ((2 x L)/ Pl ) x F/d,
siendo ri el radio de punto focal, la longitud de onda del láser L, F la distancia focal del conjunto óptico resultante y d el diámetro de haz del láser.
Sobre los parámetros que aparecen en la ecuación anterior, se opera sobre la distancia focal y en algunos casos sobre el diámetro del láser a utilizar.
Para conseguir diámetros de agujeros pequeños es necesario, según se desprende de la ecuación expresada, los siguientes parámetros: -Diámetro de haz grande; -Distancia focal pequeña.
Estas dos condiciones definen el diseño del sistema de perforación dinámica de productos según la invención. En este sistema según la invención se trabaja con un láser de haz mayor que en los sistemas de mareaje y con distancias focales más cortas (por ejemplo el diámetro de haz es 8 mm y la distancia focal 63.5 mm).
Esta imposición técnica se consigue incorporando primeros colimadores 49 ubicados entre el deflector 42 y el sistema óptico 44. Los colimadores 49 amplifican el haz láser a la salida del deflector o modulador 42. Un segundo colimador 48 ubicado entre el láser 41 y el modulador 42 disminuye el diámetro del haz del láser para que pueda ser deflectado por el deflector acústico-óptico 42.
Como ya fue expuesto, es necesario tener distancias focales pequeñas (por ejemplo 50 mm), lo que implica que los puntos marcados o los orificios se encuentren dispuestos más juntos, y dado que en algunas aplicaciones se requiere la disposición de puntos más separados, se incluye entre los primeros colimadores 49 y el sistema óptico 44 un amplificador angular (no ilustrado en la figura 4a) que realiza la separación entre dichos puntos.
Este sistema según la invención efectúa un control en tiempo real de la porosidad, para lo que cuenta con un medio 46, 47 que determina la porosidad y/o el espesor de la superficie 45 del producto y que genera una información que identifica la porosidad y/o el espesor. Este medio 46, 47 se compone de un lector de porosidad y/o de espesor 47 y una fuente de luz 46. El lector de porosidad y/o de espesor 47 genera la información antes mencionada que permite al medio de control 43 modificar el conjunto de parámetros de forma automática para modificar la porosidad.
La unidad de lectura 47 de porosidad y/o de espesor es un dispositivo óptico que analiza la cantidad de luz que atraviesa el papel, para lo que el detector de porosidad y/o de espesor 47 se sitúa a un lado de la superficie 45 a perforar y al otro lado se dispone una fuente de luz 46, que en el ejemplo de realización es una fuente de luz blanca.
De esta forma la luz emitida por la fuente 46, atraviesa la superficie 45 con lo que la cantidad de luz recibida por el detector de porosidad y/o de espesor 47 es proporcional a la porosidad y/o al espesor de la superficie 45. Esta información convenientemente procesada por la unidad de control 43, genera señales que modifican los parámetros necesarios para obtener la porosidad programada.
La porosidad queda definida por los siguientes factores: - Diámetro del orificio.
- Número de orificios por cm2
La unidad de control 43 con el programa de control para conseguir un proceso servo-controlado de porosidad según la invención actúa sobre cada uno de éstos factores de la siguiente forma:
En el caso del diámetro de orificio, la forma de controlar automáticamente su diámetro, es factible mediante dos posibilidades concretas, que se utilizan en función de la velocidad de cambio en tiempo real.
La primera posibilidad de control consiste en realizar el aumento y/o disminución de potencia en función del tamaño del orificio deseado, este control tiene un tiempo de respuesta muy alto y define un diámetro máximo y un diámetro mínimo.
El diámetro mínimo está definido por el valor mínimo de potencia necesaria para volatilizar el material, que está directamente relacionado con la absorción de energía del material y el umbral de potencia. Es decir, es el valor mínimo de potencia para producir un orificio sobre un determinado material.
La segunda posibilidad de realizar el control consiste en efectuar el cambio de la distancia focal en el sistema óptico 44 (en particular conjunto de lentes 44) con un sistema de óptica móvil.
En un sistema de óptica móvil el control se realiza mediante la unidad de control para lo que ésta incluye medios que facultan la elección del tamaño del carácter a imprimir, ampliándolo o reduciéndolo, según la ecuación H= L/L2, donde H representa el parámetro de reducción, L la distancia entre los haces extremos a la salida de los medios de elección del tamaño y L2 la distancia entre los haces extremos a la salida de la lente o lentes de salida que forman parte de un sistema de lentes.
Además los medios de elección del tamaño del carácter a imprimir (marcar) cuentan con un conjunto de lentes y con medios para desplazar una de dichas lentes en la dirección del eje de los haces de resonadores, estando dichos medios determinados por un motor que al ser accionado desplaza la lente sobre un carril de manera que la lente puede sufrir un desplazamiento negativo o positivo respecto a un plano lo que produce un efecto amplificador o reductor del carácter a marcar o perforar.
Dicho motor puede ser gobernado por un circuito de control o el medio de control con el programa de control que faculta la elección automática del tamaño del carácter.
El circuito de control automático de la elección del tamaño del carácter, puede estar materializado en los propios medios que procesan la información que pertenecen a la electrónica de control del sistema.
Con respecto al número de agujeros por cm2 o densidad de puntos, en un sistema de perforación dinámico, es factible conseguirlo con la modificación automática del número total de puntos definidos sobre una superficie en la dirección perpendicular a la línea de producción (Y) y en la misma dirección de la línea de producción (X).
El número máximo de puntos se define con la siguiente relación:
n = X MAX/dX, m = Y MAX/dY, MP = n x m, siendo n el número de orificios en la dirección X, dX la separación entre líneas verticales en la dirección X , X MAX anchura de la zona máxima de porosidad definida en la dirección del producto a marcar, m el número de orificios en la dirección Y, dY la separación entre puntos en la dirección Y e Y MAX altura de la zona máxima de porosidad definida en la dirección perpendicular del producto a marcar.
El parámetro MP define la porosidad obtenida y la unidad de control varia los valores m y n según el valor que se haya definido para la producción.
Este sistema de perforación dinámico de una unidad de generación de punto de forma digital, tal como descrito permite realizar de forma óptima el control aleatorio de m x n puntos de forma precisa desde la unidad de control.
El hecho de tener la opción de poder definir el número de orificios en las dirección X e Y, permite que sea factible realizar una codificación, es decir, poder trabajar con matriz de tipo n x m, facilitando la posibilidad de perforación codificada, muy utilizada en los documentos financieros, billetes de curso legal, talonarios de cheques, pasaportes, etc.
En el caso de utilizar una pluralidad de haces generados a partir de diferentes resonadores incluidos en un láser, se logran obtener mayores velocidades de perforación y mayor rendimiento energético.
Este sistema según la invención realiza una ecualización dinámica de energía de punto basada en un nuevo concepto que consiste en utilizar el tiempo de exposición de un punto al haz láser como sistema de ecualización.
Este concepto de ecualización según la invención se apoya en la rápida velocidad de respuesta que tiene el dispositivo deflector acústico-óptico 42, que viene dada por los factores básicos que son el diámetro del haz láser que se desea deflector y la velocidad a la que se desplaza la onda acústica en el medio deflector, en el caso que nos ocupa dicha velocidad, al trabajar con diámetros de haz pequeños y velocidad acústica grande, da un tiempo de deflexión muy corto (por ejemplo menos que 500 ns).
Por tanto, el sistema de la invención realiza la ecualización sobre la base de efectuar una memorización de la eficiencia en la banda de respuesta del deflector acústico-óptico 42 y sin modificar la potencia de radiofrecuencia que se está inyectando en el deflector 42 variar, en función de los datos memorizados previamente, el tiempo necesario para que la energía que se está proyectando sobre cada uno de los puntos de la matriz mencionada anteriormente tenga el mismo valor, es decir, en esta matriz no todos los puntos tendrán la misma duración, pero sí el conjunto de puntos que forman una línea vertical sin superar nunca el tiempo máximo de dicha línea vertical, y este tiempo será función de la velocidad de desplazamiento del producto a marcar y de la anchura programada.
Para una mejor comprensión de este concepto de ecualización según la invención, se expone un ejemplo práctico de aplicación.
El deflector óptico 42 es capaz de generar n ángulos definidos por un conjunto de n frecuencias diferentes.
Para cada una de las n frecuencias le corresponderá un determinado valor de eficiencia, definido como un conjunto de valores G1 , G2 Gn, siendo 0< Gi < 1.
Los valores de potencia láser a la salida del sistema de deflexión óptico 42 son:
P1= G1 .P P2= G2 .P
Pn= Gn .P Siendo P la potencia láser 41 a la entrada deflector óptico 42 y Gi la eficiencia del deflector 42 a la entrada i. Para un tiempo de energía de punto tp los valores de energía láser son:
E1= G1 x P Mp E2= G2 x P x tp En= Gn x P x tp (ecuación 1)
Para conseguir igualar los valores de energía E1 , E2, En, se puede controlar el parámetro tp ; será pues necesario formular el sistema de manera que por cada punto se tenga un tiempo diferente tpi pero manteniendo el tiempo total de las linea vertical, ti.
Ei= Gi χ P χ tpi i = 1....n
<* 2 ti = n x tp ti = sumatorio de 1 a n de tpi = n x tpt
De manera que: E = Ei para cualquier i (1... n) El tiempo de punto tpt viene determinado por la velocidad del producto y el tipo de carácter a marcar, y se relaciona con el tiempo de energía de punto tpi por un factor variable ki correspondiente a la corrección de tiempo de cada frecuencia:
tpi= ki x tpt (ecuación 2).
Sustituyendo en ia ecuación 1 los valores de tiempo de la ecuación 2, tendremos:
E0 = G1 x P x kO x tpt E2 = G2 x P x k1 x tpt
En = Gn x P x kn x tpt Para que todos los valores de energía láser sean iguales a un valor máximo E MAX, energía conseguida a la frecuencia que con mayor rendimiento G MAX del deflector, los valores de k1 se podrán obtener de la siguiente forma:
E0 = E2 = .... = En = EMAX En E MAX tp = tpt,
igualando expresiones se tendrá que: G MAX x P x tp = Gi x P x ki x tpt
de donde se obtiene que: ki = G MAX / Gi
y en consecuencia el tiempo de energía de punto quedará: tpi = (G MAX/ Gi) tpt
Con todos estos valores de tiempo se conseguirá que todos los n puntos tengan la misma energía para un tiempo de punto definido tpt
El producto que se está sometiendo a esta energía controlada, al ser la densidad puntual de energía mayor, también será mayor la posibilidad de mareaje o perforación. Esto permite un aumento de la velocidad de mareaje o perforación y una ampliación del rango de productos sobre los que marcan o perforan los sistemas que incorporen este nuevo sistema de ecualización dinámica para el deflector acústico-óptico 42.
2. Otros aspectos de la invención
2.1 Procedimiento y producto según la invención
La invención también se refiere a un procedimiento de mareaje o de perforación por láser mediante el sistema descrito, es decir mediante un sistema que se compone de al menos un láser el cual produce un haz, una unidad de alimentación de al menos un láser, un medio de control con un programa de control que controla al menos un láser, un deflector, en particular un deflector acústico-óptico, que produce diferentes ángulos de deflexión del haz, un sistema óptico por el cual traspasa al menos un haz que produce un mareaje o perforación o una perforación en forma de una matriz de puntos (n x m) sobre una superficie de un producto en movimiento relativo entre el producto a marcar o perforar y el haz láser. En el procedimiento según la invención el programa de control controla la unidad de alimentación y/o el deflector. Una unidad de generación de frecuencias produce señales de una determinada frecuencia que se aplica al deflector.
El medio o centro de control genera un código digital para cada punto de la matriz y controla un amplificador y/o un atenuador. También el medio o centro de control genera una secuencia de señales digitales que producen un barrido de frecuencia que corresponde con el ancho de banda del deflector.
Ademas el medio o centro de control obtiene la curva característica de respuesta del deflector en su banda de trabajo y controla el ampliador y/o el atenuador en base a la curva característica de respuesta del deflector, y ecualiza la respuesta de la banda, en particular en toda la banda de trabajo del modulador, corrigiendo una alinealidad de la potencia láser deflectada frente a la amplitud de las señales de distintas frecuencias aplicadas a este.
En particular el medio de control varía la ecualización por medio del tiempo de punto; realiza una ecualización mixta variando el tiempo de incidencia del láser durante el tiempo de punto y varando la potencia láser deflectada de distintas frecuencias aplicadas sobre el deflector.
El medio de control determina cual es la zona óptima de trabajo del deflector, en función de la curva característica almacenada del deflector y un mensaje a marcar o perforar.
La invención también refiere a un procedimiento que es caracterizado porque cuando se activa el láser una unidad de identificación y detección de pulsos (23, 24; figura 2) detecta durante la generación del pulso el instante en el que se produce el pico máximo, confirmando el pulso. Una unidad de control de mareaje o perforación/(25) genera distintas señales que se aplican al deflector (26) para marcar o perforar un punto de la matriz, en el instante en el que se produce el pico máximo de potencia, o para marcar una pluralidad de puntos consecutivos de la matriz, durante el instante, en el cual se produce el pico máximo de potencia, lo cual depende del carácter a marcar o perforar. Una unidad de conformación de pulsos (29) genera una secuencia de pulsos variables, que es función del carácter a marcar o perforar, para mantener el láser (21) activado cuando hay que marcar un punto o un conjunto de puntos seguidos dentro de la matriz que configuran el carácter, y desactivar el láser (21) cuando no hay que marcar un punto o un conjunto de puntos que configuran la matriz del carácter, siempre que no se supere el tiempo máximo de activación del láser y que no sea menor que el tiempo mínimo de desactivación del láser (21) para mantener la potencia de salida dentro de los picos de potencia máxima.
La unidad de conformación de pulsos (29) detecta, a partir de las señales proporcionadas por la unidad de identificación y detección de pulsos (23, 24) , cuando el láser funciona fuera del tiempo máximo de activación y del tiempo mínimo de desactivación del láser, para mantener la potencia de salida dentro de los picos, en cuyo caso busca un nuevo formato, tipo de carácter, o tamaño de carácter, que permita la actuación dentro de los límites de tiempo.
En un ejemplo de realización del procedimiento según la invención un medio determina la porosidad del producto y/o el espesor del producto a marcar o a perforar y que genera una información que identifica la porosidad y/o el espesor, mientras el programa de control controla la unidad de alimentación del láser y el deflector en base a informaciones prefijadas y/o a la información que identifica la porosidad y/o el espesor del producto.
El programa de control controla un sistema óptico que permite obtener distintas distancias focales y/o distintos diámetros del haz en el punto de focalización en base a señales generadas por el medio de control.
Ademas el programa de control relaciona valores de potencia del láser con valores de diámetro de puntos u orificios producidos en la superficie del producto. También el programa de control relaciona valores de tiempo de incidencia del haz láser deflectado con valores de diámetro de los puntos u orificios en la superficie del producto.
El programa de control controla el tiempo de incidencia del haz deflectado sobre la superficie en orden a que la energía que esta proyectando sobre cada uno de los puntos de la matriz (m x n) tenga el mismo valor.
La invención también se refiere a los productos marcados o perforados mediante láser según el procedimiento descrito.
2.2 Otros datos técnicos
Para el sistema dinámico de mareaje o perforación o perforación según la invención se usa por ejemplo la siguiente configuración:
2.2.1 Láser de potencia nominal: 60/100/140 W
2.2.2 Alimentación red: 220 V 50/60 Hz
2.2.3 Sistema refrigeración:
Circuito cerrado de agua Potencia frigorifica: 1800 W Capacidad deposito: 12 I Caudal: 8 l/min Presión: 4,4 kg/cm2 Temperatura agua: 18 oC/22 oC
2.2.4 Sistema aspiración: ventilador media presión incorporado en el sistema
2.2.5 Tubo Láser
Láser C02 sellado Tecnología R.F. Longitud de onda: 10.6 m Dimensiones (LAA): 645 x 150 x 95 mm
2.2.6 Matriz impresión
5x5 / 1 , 2 o 3 lineas 7x5 / 1 o 2 lineas 12x11 / 1 linea 18x17 / 1 linea
2.27 Focalización
Lente 2'5" Distancia focal: 63,5 mm Profundidad de foco: +/- 0,71 mm
Diámetro de punto: 122.4 micrómetros Tamaño mal. Carácter (18 puntos): 3,7 mm
Lente 5" Distancia focal: 127 mm Profundidad de foco: +/- 1 ,42 mm
Diámetro de punto: 244.8 micrómetros Tamaño max. Carácter (18 puntos): 6 mm
Lente 10" Distancia focal: 254 mm
Profundidad de foco: +/- 2,84 mm Diámetro de punto: 487,7 micrómetros
Tamaño max. Carácter (18 puntos): 12 mm
En un ejemplo concreto se utiliza un láser de C02 sellado, de guía de ondas, excitado por R.F., la unidad de excitación de radiofrecuencia capaz de suministrar una potencia de hasta 2000 W.
La unidad 23 esta constituida preferentemente por un programable Logic Device de la firma LATTICE, USA que contiene las ecuaciones que posteriormente serán utilizadas por un microprocesador de 16 bits, de la firma Motorola, modelo MC-68000.
El detector 24 es un detector magneto-electro-óptico de Hg-Cd-Te de la firma Boston Electronics de Boston, USA.
La unidad de control (12, 25 , 43) que corresponde a la unidad 12 (figura 1) también puede ser constituido por un microprocesador de 16 bits, de la firma Motorola, modelo MC-68000, una memoria ROM que contiene el micro código del programa del control, una memoria RAM para almacenar ios datos variables y los periféricos necesarios de entrada y salida para poder efectuar el gobierno de los elementos dependientes de este control como por ejemplo las unidades 28, 29, 26, 16, 17, 18 y 19.
La unidad 19 esta compuesta por un diseño propio realizado SERVICIO INDUSTRIAL DE MARCAJE Y CODIFICACIÓN, S.A., Barcelona/España.
Los otros elementos, por ejemplo 14, 15, 29, 44 y 47 son diseñados y fabricados por la firma SERVICIO INDUSTRIAL DE MARCAJE Y CODIFICACIÓN, S.A., Barcelona España.
3. Lista de números de referencia
11 unidad de captación de información
12 centro de control y codificación 13 DDS
14 amplificador y/o atenuador
15 amplificador de radiofrecuencia
16 deflector acústico-óptico
17 fotocélula 18 dispositivo
19 unidad generadora de frecuencias
21 láser
22 unidad de alimentación 23 unidad de identificación y detección de pulsos
24 detector de pico
25 unidad de control de mareaje o perforación
26 deflector
27 superficie a marcar 28 unidad de control de láser
29 unidad de conformación de pulsos
41 láser
411 fuente de alimentación 42 modulador, deflector
43 medio de control
44 sistema óptico
45 superficie del producto a marcar
46 fuente de luz 47 lector de porosidad
48 colimador
49 colimador

Claims

REIVINDICACIONES
1. Sistema de mareaje o de perforación por láser, que se compone de
- al menos un láser (19; 21 ; 41) el cual produce al menos un haz, que puede funcionar en régimen continuo y/o pulsado
- una unidad de alimentación (14; 22; 411 ) de al menos un láser (19; 21 ; 41 ),
- un medio de control (12; 43) con un programa de control que controla el láser (19;21 ;41),
- un deflector (16; 26; 42), en particular un deflector acústico-óptico, que produce diferentes ángulos de deflexión del haz,
- en su caso un sistema óptico (44) por el cual traspasa el haz, que produce un mareaje o una perforación en forma de una matriz de puntos (n x m) sobre una superficie (27; 46; 58) de un producto en movimiento relativo entre el producto a marcar o perforar y el haz láser, c a r a c t e r i z a d o porque la unidad de alimentación (14; 22; 411) y/o el deflector (16; 26; 42) y/o el sistema óptico (48, 49, 44, 53) son controlables y que el programa de control controla la unidad de alimentación (14; 22; 411) y/o el deflector (16;26; 42), y/o el sistema óptico (48, 49, 44, 53) consiguiendo un control manual y/o automático de la configuración del mareaje o perforación (posicionamiento y diámetro del punto), un control manual y/o automático de la energía necesaria para el mareaje o la perforación y una optimización del rendimiento energético del láser en régimen pulsado.
2. Sistema según la reivindicación anterior, caracterizado porque incorpora una unidad de generación de frecuencias (13, figura 1) que produce señales de una determinada frecuencia que se aplica al deflector.
3. Sistema según cualquiera de las reivindicaciones 1 o 2, caracterizado porque el medio de control (12) genera un código digital para cada punto de la matriz. 45
4. Sistema según cualquiera de las reivindicaciones 1 a 3, caracterizado porque incorpora un amplificador y/o un atenuador (14) controlable.
5. Sistema según cualquiera de las reivindicaciones 2 a 4, caracterizado 5 porque la unidad de generación de frecuencias (13) esta constituida por un sintetizador digital directo de frecuencias (Direct Digital Syntheziser DDS).
6. Sistema según cualquiera de las reivindicaciones 2 a 5, caracterizado porque el medio de control (12) genera una secuencia de señales digitales 0 que producen un barrido de frecuencia que corresponde con el ancho de banda de trabajo del deflector (16).
7. Sistema según cualquiera de las reivindicaciones 2 a 6, caracterizado porque el medio de control (12) obtiene la curva característica de respuesta 5 del deflector (16) en su banda de trabajo.
8. Sistema según la reivindicación anterior, caracterizado porque incorpora un medio de almacenaje (19, 14) en el cual se almacena la curva característica de respuesta del deflector (16). 0
9. Sistema según la reivindicación anterior, caracterizado porque el medio de control (12) controla el ampliador y/o el atenuador (14) en base a la curva característica de respuesta del deflector (16), para ecualizar la respuesta por lo menos en una parte de la banda de trabajo del deflector, corrigiendo una 5 alinealidad de la potencia láser deflectada frente a la amplitud de las señales de distintas frecuencias aplicadas a este.
10. Sistema según la reivindicación anterior, caracterizado porque el medio de control (12) realiza la ecualización punto a punto de la respuesta del deflector 0 por medio de la variación de la amplitud de la señal de radiofrecuencia R.F., aplicada al deflector en cada punto y/o por medio de la variación del tiempo de energía de punto, pudiendo ser inferior, igual o superior al tiempo de punto, para cada punto de manera que el tiempo de linea sean constante.
11. Sistema según cualquiera de las reivindicaciones 7 a 10, caracterizado por que el medio de control (12) determina cual es la zona óptima de trabajo del deflector, en función de la curva característica almacenada del deflector (16) y un mensaje a marcar o perforar.
12. Sistema según la reivindicación 11 , caracterizado porque para determinar la zona óptima de mareaje, el medio de control (12) determina el ancho de banda necesario en función del mensaje a marcar o perforar, realiza un barrido de frecuencias a lo largo de la curva característica calculando el área correspondiente al ancho de banda centrada en la frecuencia de exploración, y elige la frecuencia que corresponde al máximo valor del área calculado.
13. Sistema según la reivindicación 11 , caracterizado porque para determinar la zona óptima de mareaje o perforación se utiliza un método paramétrico que se basa en tres criterios diferentes relativos a la eficiencia de la zona explorada que son: la media de los valores de correspondientes a las frecuencias discretas de la zona, la varianza (diferencia entre el valor máximo y el valor mínimo) de estos valores y el mínimo de estos valores. Los valores encontrados para cada zona explorada se multiplican por unos parámetros propios que ponderan cada criterio en la elección de la zona óptima y que se determinan por un método relativo.
14. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado por que el medio de control (12) esta conectado con una unidad de captación de información (11) que cuenta con una unidad lectora interactiva con el usuario que permite la introducción de un mensaje que se desea marcar sobre el producto o que se desea perforar; y de la que se obtiene una matriz digitalizada (n x m) a partir de coordenadas cartesianas. 47
15. Sistema según reivindicación anterior, caracterizado por que la unidad lectora interactiva con el usuario es una tableta gráfica con software concebido para memorización de puntos en tiempo real, un lector óptico asociado al sistema o un ordenador de diseño gráfico.
5
16. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque incorpora
- un láser (21, figura 2) que emite pulsos de energía,
- una unidad de identificación y detección de pulsos (23, 24) que incorpora un 0 detector de pico (24) conectada a la unidad de alimentación (22) del láser
(21), de manera que cuando se activa el láser detecta durante la generación del pulso el instante en el que se produce el pico máximo, confirmando el pulso;
- una unidad de control de mareaje y/o perforación (25) que genera distintas 5 señales que se aplican al deflector (26) para marcar y/o perforar un punto de la matriz, en el instante en el que se produce el pico máximo de potencia, o para marcar y/o perforar una pluralidad de puntos consecutivos de la matriz, a partir del instante en el cual se produce el pico máximo de potencia, lo cual depende del carácter a marcar y/o perforar; 0 -una unidad de conformación de pulsos (29) que genera una secuencia de pulsos variables, que es función del carácter a marcar o perforar para mantener el láser (21) activado cuando hay que marcar un punto o un conjunto de puntos seguidos dentro de la matriz que configuran el carácter, y desactivar el láser (21) cuando no hay que marcar y/o perforar un punto o un conjunto de 5 puntos que configuran la matriz del carácter, siempre que no se supere el tiempo máximo de activación del láser y que no sea menor que el tiempo mínimo de desactivación del láser (21) para mantener la potencia de salida dentro de los picos de potencia máxima.
0 17. Sistema según la reivindicación anterior, caracterizado porque la unidad de identificación y detección de pulsos (23, 24) cuenta con una unidad de lectura de potencia (24) cuyo tiempo de respuesta es inferior al tiempo de activación del punto láser, determinando el valor de la potencia del láser en tiempo real.
18. Sistema según cualquiera de las reivindicaciones 16 o 17, caracterizado porque la unidad de identificación y detección de pulso (23, 24) incorpora medios de gobierno de la potencia del láser, aumentándola o disminuyéndola para obtener el nivel adecuado de energía de cada uno de los puntos a marcar.
19. Sistema según cualquiera de reivindicaciones 16 a 18, caracterizado porque la unidad de identificación y detección de pulsos (23, 24) incorpora medios de detección de la potencia mínima por debajo de la cual no se produce marcación y/o perforación en la superficie (27) del producto, para parar el funcionamiento del sistema cuando se produzca esta situación.
20. Sistema según cualquiera de las reivindicaciones 16 a 19, caracterizado porque incorpora una unidad de control (28) del láser que actúa según la secuencia de pulsos generados en la unidad de conformación de pulso (29), para generar señales de activación y desactivación del láser (21) con cada punto o grupo de puntos a marcar o perforar.
21. Sistema según cualquiera de las reivindicaciones 16 a 20, caracterizado porque la unidad de conformación de pulsos (29) cuenta con medios para detectar, a partir de las señales proporcionadas por la unidad de identificación y detección de pulsos (23, 24) , cuando el láser funciona fuera del tiempo máximo de activación y del tiempo mínimo de desactivación del láser, para mantener la potencia de salida dentro de los picos, en cuyo caso busca un nuevo formato, tipo de carácter, o tamaño de carácter, que permita la actuación dentro de los límites de tiempo.
22. Sistema según la reivindicación 16, caracterizado porque incorpora un conjunto de generadores de caracteres de diferentes resoluciones, que son seleccionados con la resolución adecuada en caso de no poderse mantener el funcionamiento dentro de los limites de tiempo establecidos, para mantener las relaciones matemáticas entre la energía necesaria para proceder al mareaje y/o perforación de un punto o un grupo de puntos y la potencia máxima de pico del láser pulsado.
23. Sistema según las reivindicaciones anteriores, caracterizado porque para marcar o perforar consecutivamente una linea vertical de puntos, un carácter completo o un mensaje completo la unidad de control (28) controla la frecuencia del pulsado para definir la configuración del mensaje.
24. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque el medio de control (43, figura 4) es conectable con un medio (46,47) que determina la porosidad del producto y/o el espesor del producto a marcar o a perforar y que genera una información que identifica la porosidad y/o el espesor, y porque el programa de control controla la unidad de alimentación (411), y el deflector (42) en base a informaciones prefijadas y/o a la información que identifica la porosidad y/o el espesor.
25. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado por que el sistema contiene un sistema óptico (44) que es controlable y porque el programa de control controla el sistema óptico (44) que permite obtener distintas distancias focales y/o distintos diámetros del haz en el punto de focaiización en base a señales generadas por el medio de control (43).
26. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque incorpora un amplificador angular que se encuentra en el sistema óptico (44).
27. Sistema según cualquiera de las reivindicaciones 24 a 26, caracterizado porque el medio (46,47) para determinar la porosidad y/o el espesor está constituido por una fuente de luz (46) que incide sobre la superficie perforada o a la superficie a perforar (45) y por un dispositivo óptico (47) que analiza la cantidad de luz que esta en el otro lado de la superficie.
28. Sistema según cualquiera de las reivindicaciones 25 a 27, caracterizado porque contiene un láser con varios resonadores con o sin deflector.
29. Procedimiento de mareaje o de perforación por láser mediante un sistema, que se compone de
- al menos un láser (19; 21; 41) el cual produce al menos un haz, - una unidad de alimentación (14; 22; 411) de al menos un láser (19; 21 ; 41),
- un medio de control (12; 43) con un programa de control que controla el láser (19;21;41),
- un deflector (16; 26; 42) , en particular un deflector acústico-óptico, que produce diferentes ángulos de deflexión del haz, - en su caso un sistema óptico (44) por el cual traspasa el haz, que produce un mareaje o una perforación en forma de una matriz de puntos (n x m) sobre una superficie (27; 46; 58) de un producto en movimiento relativo entre el producto a marcar o perforar y el haz láser, c a r a c t e r i z a d o porque el programa de control controla la unidad de alimentación (14; 22; 411) y/o el deflector (16;26; 42).
30. Procedimiento según la reivindicación anterior, caracterizado porque cuando se activa el láser una unidad de identificación y detección de pulsos (23, 24; figura 2) detecta durante la generación del pulso el instante en el que se produce el pico máximo, confirmando el pulso; que una unidad de control de mareaje o perforación/(25) genera distintas señales que se aplican al deflector (26) para marcar o perforar un punto de la matriz, en el instante en el que se produce el pico máximo de potencia, o para marcar una pluralidad de puntos consecutivos de la matriz, durante el instante, en el cual se produce el pico máximo de potencia, lo cual depende del carácter a marcar o perforar; que una unidad de conformación de pulsos (29) genera una secuencia de pulsos variables, que es función del carácter a marcar o perforar, para mantener el láser (21) activado cuando hay que marcar un punto o un conjunto de puntos seguidos dentro de la matriz que configuran el carácter, y desactivar el láser (21) cuando no hay que marcar un punto o un conjunto de puntos que configuran la matriz del carácter, siempre que no se supere el tiempo máximo de activación del láser y que no sea menor que el tiempo mínimo de desactivación del láser (21) para mantener la potencia de salida dentro de los picos de potencia máxima.
31. Procedimiento según cualquiera de las reivindicaciones 29 o 30, caracterizado porque un medio (46, 47; figura 4) determina la porosidad del producto y/o el espesor del producto a marcar o a perforar y que genera una información que identifica la porosidad y/o el espesor, y porque el programa de control controla la unidad de alimentación (411) y el deflector (42) en base a informaciones prefijadas y/o a la información que identifica la porosidad y/o el espesor.
32. Producto marcado o perforado mediante láser según el procedimiento según cualquiera de las reivindicaciones 29 a 31.
PCT/ES1997/000107 1996-04-26 1997-04-25 Sistema y procedimiento de marcaje o de perforacion WO1997040957A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69714553T DE69714553T2 (de) 1996-04-26 1997-04-25 System und verfahren zur markierung oder perforierung
US08/981,260 US6130402A (en) 1996-04-26 1997-04-25 System and process for marking or perforating
JP9538608A JPH11509781A (ja) 1996-04-26 1997-04-25 マーキングまたはパーフォレーションのための装置と方法
EP97918159A EP0845323B1 (en) 1996-04-26 1997-04-25 System and process for marking or perforating
AT97918159T ATE221812T1 (de) 1996-04-26 1997-04-25 System und verfahren zur markierung oder perforierung

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ESP9600962 1996-04-26
ES09600962A ES2115533B1 (es) 1996-04-26 1996-04-26 Sistema de perforacion dinamico por laser.
ESP9601050 1996-05-09
ES09601050A ES2115534B1 (es) 1996-05-09 1996-05-09 Optimizador de energia en sistemas de marcacion con laser de productos en movimiento.
ES09602373A ES2116240B1 (es) 1996-11-11 1996-11-11 Sistema de generacion aleatoria de frecuencias para marcaje mediante laser.
ESP9602373 1996-11-11

Publications (1)

Publication Number Publication Date
WO1997040957A1 true WO1997040957A1 (es) 1997-11-06

Family

ID=27240539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1997/000107 WO1997040957A1 (es) 1996-04-26 1997-04-25 Sistema y procedimiento de marcaje o de perforacion

Country Status (8)

Country Link
US (1) US6130402A (es)
EP (1) EP0845323B1 (es)
JP (1) JPH11509781A (es)
CN (1) CN1195310A (es)
AT (1) ATE221812T1 (es)
CA (1) CA2225919A1 (es)
DE (1) DE69714553T2 (es)
WO (1) WO1997040957A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2138554A1 (es) * 1998-01-29 2000-01-01 Macsa Id Sa Optimizador de marcacion con laser de productos en movimiento.
ES2140341A1 (es) * 1998-03-17 2000-02-16 Macsa Id Sa Sistema de marcaje laser.
CN115389246A (zh) * 2022-10-31 2022-11-25 之江实验室 一种动作捕捉系统的速度精度测量方法、系统及装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518540B1 (en) 1998-06-16 2003-02-11 Data Storage Institute Method and apparatus for providing ablation-free laser marking on hard disk media
JP3429463B2 (ja) * 1999-10-22 2003-07-22 サンクス株式会社 レーザマーカ
US6972268B2 (en) * 2001-03-29 2005-12-06 Gsi Lumonics Corporation Methods and systems for processing a device, methods and systems for modeling same and the device
US6598531B2 (en) 2001-05-09 2003-07-29 Lasersoft Management, L.L.C. Method and apparatus for on-demand production of digitally imaged webs
DE10128043A1 (de) * 2001-06-08 2002-12-12 Topack Verpacktech Gmbh Verfahren und Einrichtung zum Bearbeiten eines Füllmaterials eines Produkts der tabakverarbeitenden Industrie und Verfahren und System zur Sicherstellung der Echtheit von Produkten der tabakverarbeitenden Industrie
US6584982B1 (en) * 2002-02-22 2003-07-01 Lorillard Licensing Company, Llc Cigarette butt marking for smoking machines
AU2003210401A1 (en) * 2002-03-01 2003-09-16 Videojet Technologies Inc. Device and method for generating a print image in a laser-marking system
JP4136460B2 (ja) * 2002-05-29 2008-08-20 富士フイルム株式会社 ウエブの加工方法及び加工装置
ATE310645T1 (de) * 2002-08-05 2005-12-15 Kugler Womako Gmbh Einrichtung und verfahren zum perforieren eines buches
DE102004033358A1 (de) * 2004-07-01 2006-02-02 Tampoprint Ag Verfahren zur Optimierung eines Belichtungsvorgangs und dazu geeignete Vorrichtung
US7705268B2 (en) * 2004-11-11 2010-04-27 Gsi Group Corporation Method and system for laser soft marking
JP4821375B2 (ja) * 2005-03-29 2011-11-24 パナソニック株式会社 送信装置および通信システム
US20060291934A1 (en) * 2005-06-28 2006-12-28 Lexmark International, Inc. Method for generating a perforation clip region
JP5036181B2 (ja) * 2005-12-15 2012-09-26 株式会社ディスコ レーザー加工装置
US20080099312A1 (en) * 2006-10-25 2008-05-01 Habasit Ag Modular belt with surface engraving
GB0622232D0 (en) * 2006-11-08 2006-12-20 Rumsby Philip T Method and apparatus for laser beam alignment for solar panel scribing
JP2008212999A (ja) * 2007-03-06 2008-09-18 Disco Abrasive Syst Ltd レーザー加工装置
CN102430855A (zh) * 2011-09-21 2012-05-02 长春理工大学 多激光脉冲序列能量时域累积方法
FR2988476B1 (fr) * 2012-03-20 2015-06-26 Eads Europ Aeronautic Defence Procede et dispositif de controle d'un materiau composite par ultrasons laser
JP6278451B2 (ja) * 2014-02-27 2018-02-14 東レエンジニアリング株式会社 マーキング装置およびパターン生成装置
AT515408B1 (de) 2014-04-03 2015-09-15 Tannpapier Gmbh Diffusionsoptimiertes Mundstückbelagpapier
CN104942452B (zh) * 2015-05-22 2018-05-22 广东正业科技股份有限公司 一种激光打孔机及利用激光打孔机的打孔方法
CN106077751A (zh) * 2016-07-27 2016-11-09 江苏博敏电子有限公司 钻孔产品编号的优化方法
JP2019532908A (ja) * 2016-08-30 2019-11-14 コーニング インコーポレイテッド 強度マッピング光学システムによる材料のレーザー切断
WO2018118560A1 (en) * 2016-12-19 2018-06-28 The Gillette Company Llc Razor blades
US20210031305A1 (en) * 2018-05-07 2021-02-04 Mitsubishi Electric Corporation Laser processing machine, control apparatus, and determination method
EP3712814B1 (en) * 2019-03-20 2022-02-16 Alltec Angewandte Laserlicht Technologie GmbH Method and marking apparatus for applying a marking on an object
CN110161528B (zh) * 2019-06-10 2022-07-19 中国科学院光电技术研究所 一种基于光学相干层析技术的火灾现场复杂环境激光三维成像方法
CN114983006B (zh) * 2022-07-18 2023-09-15 云南中烟工业有限责任公司 一种基于烟支数据探测的接装纸在线打孔结构及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2133352A (en) * 1983-01-13 1984-07-25 Laser Applic Limited A laser marking system
US4740269A (en) * 1985-10-11 1988-04-26 Oesterreichische Nationalbank Process and apparatus for applying authenticating coding to value-carrying paper
EP0295682A2 (en) * 1987-06-19 1988-12-21 Mitsubishi Denki Kabushiki Kaisha Wavelength selective optical recording and reproducing device
ES2013193A6 (es) * 1989-06-07 1990-04-16 Codilaser Sa Sistema para marcaje de objetos en movimiento mediante rayos laser.
US4922077A (en) * 1989-01-31 1990-05-01 Raytheon Company Method of laser marking metal packages
US4992890A (en) * 1989-03-17 1991-02-12 Intergraph Corporation System for plotting and scanning graphic images
US5092350A (en) * 1983-11-11 1992-03-03 Molins, Plc Cigarette manufacture
DE4106127A1 (de) * 1991-02-27 1992-09-03 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum perforieren von zigarettenhuellmaterial
US5255257A (en) * 1992-03-04 1993-10-19 Lasertape Systems, Inc. Frequency, phase and amplitude control apparatus and method for acousto-optic deflector optimization
US5321564A (en) * 1991-04-30 1994-06-14 Fujitsu Limited Data head offset detecting circuit in magnetic disk unit and magnetic disk unit using said data head offset detecting circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB213352A (en) * 1923-01-05 1924-04-03 Alpha Game & Toy Co Inc An educational drawing appliance
US4321564A (en) * 1980-06-18 1982-03-23 Litton Systems, Inc. Sequential beam switching of acousto-optic modulator
DE3447405A1 (de) * 1984-12-24 1986-07-03 Winkler & Dünnebier, Maschinenfabrik und Eisengießerei GmbH & Co KG, 5450 Neuwied Vorrichtung zum formbrennschneiden einer bewegten materialbahn mittels eines laserstrahls
DE8906578U1 (de) * 1989-05-29 1990-09-27 Siemens AG, 1000 Berlin und 8000 München Laserbearbeitungsvorrichtung
ES2102455T3 (es) * 1991-01-17 1997-08-01 United Distillers Plc Marcacion dinamica con laser.
DE4104618A1 (de) * 1991-02-15 1992-08-20 Hoechst Ag Wasserhaltiges konzentrat von mindestens einer alkyl- oder alkenylsubstituierten ammoniumverbindung
US5309178A (en) * 1992-05-12 1994-05-03 Optrotech Ltd. Laser marking apparatus including an acoustic modulator
US5837962A (en) * 1996-07-15 1998-11-17 Overbeck; James W. Faster laser marker employing acousto-optic deflection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2133352A (en) * 1983-01-13 1984-07-25 Laser Applic Limited A laser marking system
US5092350A (en) * 1983-11-11 1992-03-03 Molins, Plc Cigarette manufacture
US4740269A (en) * 1985-10-11 1988-04-26 Oesterreichische Nationalbank Process and apparatus for applying authenticating coding to value-carrying paper
EP0295682A2 (en) * 1987-06-19 1988-12-21 Mitsubishi Denki Kabushiki Kaisha Wavelength selective optical recording and reproducing device
US4922077A (en) * 1989-01-31 1990-05-01 Raytheon Company Method of laser marking metal packages
US4992890A (en) * 1989-03-17 1991-02-12 Intergraph Corporation System for plotting and scanning graphic images
ES2013193A6 (es) * 1989-06-07 1990-04-16 Codilaser Sa Sistema para marcaje de objetos en movimiento mediante rayos laser.
DE4106127A1 (de) * 1991-02-27 1992-09-03 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum perforieren von zigarettenhuellmaterial
US5321564A (en) * 1991-04-30 1994-06-14 Fujitsu Limited Data head offset detecting circuit in magnetic disk unit and magnetic disk unit using said data head offset detecting circuit
US5255257A (en) * 1992-03-04 1993-10-19 Lasertape Systems, Inc. Frequency, phase and amplitude control apparatus and method for acousto-optic deflector optimization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2138554A1 (es) * 1998-01-29 2000-01-01 Macsa Id Sa Optimizador de marcacion con laser de productos en movimiento.
ES2140341A1 (es) * 1998-03-17 2000-02-16 Macsa Id Sa Sistema de marcaje laser.
US6201210B1 (en) 1998-03-17 2001-03-13 Macsa Id S.A. Laser marking apparatus with diode laser matrix
CN115389246A (zh) * 2022-10-31 2022-11-25 之江实验室 一种动作捕捉系统的速度精度测量方法、系统及装置
CN115389246B (zh) * 2022-10-31 2023-03-03 之江实验室 一种动作捕捉系统的速度精度测量方法、系统及装置

Also Published As

Publication number Publication date
DE69714553T2 (de) 2003-04-10
US6130402A (en) 2000-10-10
ATE221812T1 (de) 2002-08-15
JPH11509781A (ja) 1999-08-31
EP0845323B1 (en) 2002-08-07
EP0845323A1 (en) 1998-06-03
DE69714553D1 (de) 2002-09-12
CN1195310A (zh) 1998-10-07
CA2225919A1 (en) 1997-11-06

Similar Documents

Publication Publication Date Title
WO1997040957A1 (es) Sistema y procedimiento de marcaje o de perforacion
JPH11509781A6 (ja) マーキングまたはパーフォレーションのための装置と方法
ES2651901T3 (es) Procedimiento y dispositivo para la mecanización de una pieza de trabajo
US10586683B2 (en) Method and device for characterizing an electron beam
US6160835A (en) Hand-held marker with dual output laser
KR100584310B1 (ko) 분사액체로 주입되는 레이저빔으로 소재를 가공하는방법과 장치
US4131782A (en) Method of and apparatus for machining large numbers of holes of precisely controlled size by coherent radiation
US20170326684A1 (en) Laser marking head and laser marking machine
ES2233523T3 (es) Procedimiento y dispositivo para la fabricacion de un molde de imprenta.
US20060197826A1 (en) Pulsed laser printing
CN107584204B (zh) 金属材料的激光处理的方法及相关机器和计算机程序
CN106660088B (zh) 用于通过激光剥除使辊结构化的装置和方法
CN102642084A (zh) 用于激光光斑调整的方法及用于执行该方法的激光装置
US6596966B1 (en) Method for making a marking in a glass body
CN204075509U (zh) 光束形成装置
CN103111756A (zh) 激光烧结成型设备的激光光路引导系统
JP2008540134A (ja) 実質的に物質を除去しないスケールの製造方法および装置
JP6027232B2 (ja) 屈折矯正のための角膜片へのマーキング
CN109648210B (zh) 激光灼刻装置及系统
JP2004298905A (ja) レーザマーキング方法
ATE399615T1 (de) Vorrichtung zur beschriftung von gegenständen mittels laserstrahlen
US20230130789A1 (en) Method for providing control data of a laser device for the non-destructive laser-induced property change of a polymer structure
JP2003088966A5 (ja) レーザマーキング装置,及び2次元コード印字方法
CN104199189A (zh) 一种产生带状无衍射光束的光学系统
KR20220163965A (ko) 레이저 가공 장치 및 레이저 가공 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190720.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ES JP KP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 1997 538608

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2225919

Country of ref document: CA

Ref document number: 2225919

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1997918159

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/A/1998/000115

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997918159

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08981260

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1997918159

Country of ref document: EP