WO1997032662A1 - Verfahren zur unterkritischen trocknung von aerogelen - Google Patents

Verfahren zur unterkritischen trocknung von aerogelen Download PDF

Info

Publication number
WO1997032662A1
WO1997032662A1 PCT/EP1997/000879 EP9700879W WO9732662A1 WO 1997032662 A1 WO1997032662 A1 WO 1997032662A1 EP 9700879 W EP9700879 W EP 9700879W WO 9732662 A1 WO9732662 A1 WO 9732662A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer fluid
lyogel
gel
airgel
Prior art date
Application number
PCT/EP1997/000879
Other languages
English (en)
French (fr)
Inventor
Rainald Forbert
Andreas Zimmermann
Douglas M. Smith
William Ackerman
Original Assignee
Hoechst Research & Technology Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Research & Technology Deutschland Gmbh & Co. Kg filed Critical Hoechst Research & Technology Deutschland Gmbh & Co. Kg
Priority to DE59700660T priority Critical patent/DE59700660D1/de
Priority to US09/142,270 priority patent/US6131305A/en
Priority to EP97903366A priority patent/EP0885059B1/de
Priority to JP53140697A priority patent/JP2001526580A/ja
Publication of WO1997032662A1 publication Critical patent/WO1997032662A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels

Definitions

  • Aerogels are highly porous, low-density materials that are made by forming a gel and then removing the liquid while largely maintaining the gel structure.
  • aerogels are materials in which the liquid has been removed from the gel under supercritical conditions, while in gel drying under subcritical conditions of Xerogels and in the event of removal of the liquid from the frozen state by
  • Aerogels in the sense of the invention comprise all these materials and can also contain any other gases in addition to air.
  • the gases can also be removed from the airgel under vacuum.
  • Common aerogels generally contain silicon or metal oxide and are characterized by particularly low densities of 20 to 300 kg / m 3 with very high inner surfaces of over 500 m 2 / g. Because of these properties, they are excellent as heat and
  • aerogels can take place in various ways via a sol-gel process with subsequent supercritical or subcritical drying, the gel before
  • Drying can be present as a hydrogel (pore liquid is water) or as a lyogel (pore liquid is an organic solvent). All subcritical processes for drying lyogels to aerogels according to the state of the art provide the heat required for the evaporation of the solvent by contact with a heated surface (contact drying), by electromagnetic waves (eg microwave drying) or by overflow with a gas
  • the invention was therefore based on the object of a method for drying
  • the invention thus relates to a method for the subcritical drying of a lyogel to an airgel, which is characterized in that the lyogel is treated with a heat transfer fluid which has a temperature above the boiling point of the pore fluid of the lyogel under system pressure, and the dried airgel is subsequently dried by separates the heat transfer fluid.
  • lyogels can be dried to aerogels in a cost-effective manner and with high heat utilization.
  • the starting materials are, for example, silicon compounds, melamine-formaldehyde compounds, resorcinol resins, phenolic resins, aminoplasts, urea-formaldehyde resins, and composite materials, consisting of one of the gels described above in connection with an engineering plastic, e.g. Polystyrene.
  • SiO 2 lyogels which have been rendered hydrophobic by surface modification are preferred (see, for example, WO-A 94/25 149).
  • a heat transfer fluid is selected for drying that hardly or not wets the dry particles.
  • the heat transfer fluid is not or only partially miscible with the pore fluid, ie the solvent of the lyogel.
  • the temperature differences between the heat transfer fluid and the boiling temperature of the pore fluid of the lyogel under system pressure is preferably at least 1 ° C., particularly preferably at least 10 ° C., in particular at least 30 ° C.
  • Water or aqueous solutions for example a saline solution, are preferably suitable as the heat transfer fluid.
  • the gels to be dried are usually in, preferably technical, organic solvents, for example alcohols, preferably having 1 to 8 carbon atoms, ethers, ketones, such as acetone, esters, halogenated hydrocarbons, such as methylene chloride or chloroform, or hydrocarbons, preferably aliphatic hydrocarbons, such as Hexane or heptane.
  • organic solvents for example alcohols, preferably having 1 to 8 carbon atoms, ethers, ketones, such as acetone, esters, halogenated hydrocarbons, such as methylene chloride or chloroform, or hydrocarbons, preferably aliphatic hydrocarbons, such as Hexane or heptane.
  • the lyogel can be introduced, for example, by pneumatic conveying into the heat transfer fluid, with both a gas such as air and a liquid such as the heat transfer fluid or the pore liquid, preferably the heat transfer fluid, serving as the conveying medium.
  • a gas such as air
  • a liquid such as the heat transfer fluid or the pore liquid, preferably the heat transfer fluid, serving as the conveying medium.
  • Lyogels a higher density than the heat transfer fluid the lyogel can simply be applied to the surface of the heat transfer fluid.
  • the heat transfer fluid can be present in a bath, for example in a flotation basin, or can be operated by pumping.
  • a preferred embodiment is characterized in that the dried airgel is separated from the heat transfer fluid using the difference in density between moist and dried material, for example in the gravitational field with a flotation device or in the centrifugal force field with a decanter.
  • a particularly preferred embodiment consists in that the airgel is guided to the surface of the heat transfer fluid by utilizing the buoyancy and is skimmed off there.
  • the method is preferably carried out in a flotation basin.
  • the invention therefore also relates to a device for carrying out the method described above, comprising a directly or indirectly heatable flotation tank in which the heat transfer fluid is located, and a pneumatic feed for introducing the lyogel into the heat transfer fluid.
  • the lyogel is placed, for example on a belt filter, and the heat transfer fluid is applied, for example by spraying or spraying on using a washing device.
  • the invention therefore also relates to a device for carrying out the method described above, comprising a belt filter for holding the lyogel and a washing device with the aid of which the heat transfer fluid is applied to the lyogel.
  • the airgel obtained by drying is preferably separated from the heat transfer fluid within 2 minutes, particularly preferably within 10 seconds.
  • the aerogels dried according to the invention are used, for example, as heat and sound insulation materials, as catalyst supports and as adsorbents.
  • An 8 wt .-% Si0 2 solution is prepared by diluting 75 ml of commercially available sodium water glass solution (Hoechst) with 224 ml of deionized water. Sodium ions are removed by passing the solution through an ion exchange resin (Rohm and Haas Amberlite). The resin is in a vertical double jacket column with a height of 50 cm and an inner diameter of 1 cm. The double jacket of the column is thermostatted to 10 ° C. Before the sol synthesis, the column is washed with several volumes of deionized water. The sodium water glass solution is fed into the column with a controlled volume flow and drawn off. The water glass solution is discarded until the pH reaches a range of 2.5 to 2.9. The Si0 2 sol is collected until the exchange capacity of the
  • Harz is achieved.
  • the resin is regenerated for later applications by rinsing with deionized water, in succession with 5% by weight NaOH solution, with 5% by weight HCl solution and again with deionized water until the pH is approx .5 is.
  • the pH of the Si0 2 solution is raised to 5 by controlled addition of 1 M NaOH in order to start the gelation.
  • the solution is filled into cylindrical vessels before gelation. After 30 minutes, the gel cylinders are removed from the vessels and placed in closed vessels filled with water. These jars are placed in an oven to age the gel at 80 ° C for 4 hours. After aging, the gel is cooled to room temperature. The gel cylinders are rinsed several times with acetone. The acetone is then washed from the gel in the same way with n-heptane. Three washing stages are usual. After the last washing step, the gel is treated with a solution of n-heptane and 1 to 10% by weight trimethylchlorosilane (TMCS). The solution is added to the gel in such an amount that there is a ratio of 8 to 50% by weight of TMCS based on the wet gel. The gel is left in the solution overnight.
  • TMCS trimethylchlorosilane
  • the heptane-moist lyogel cylinders thus hydrophobized are enclosed in a hollow body consisting of screen fabric.
  • the hollow body is immersed in a vessel with boiling water. Through contact with the water, the heptane heats up in the gel and evaporates quickly.
  • the gel particles break apart due to the internal pressure gradients in the particle, which build up due to the rapid evaporation of the pore liquid.
  • the fine gel rises as a dry material within a few seconds
  • the dried airgel has less than a tenth the density of water and is hydrophobic, it floats on the water surface and can be skimmed off with a fine sieve.
  • the dried gel is a loose powder and has a white, chalk-like appearance.
  • the material has a vibrating density of 80 kg / m 3 and a BET surface area (N 2 ) of 600 m 2 / g.
  • the gel is synthesized and treated in the same way as in Example 1, with the following exceptions: n-hexane is used as the second solvent instead of n-heptane; after the last washing step, the gel is washed with a
  • the hexane from the gel pores which is insoluble in water, rises in small steam bubbles in the water and is precipitated in a condenser.
  • the dried gel is a loose powder and has a white, chalk-like appearance.
  • the material has a vibration density of 85 kg / m 3 and a BET surface area (N 2 ) of 600 m 2 / g.
  • the gel is synthesized and treated in the same way as in Example 1, with the following exceptions: n-pentane is used as the second solvent instead of n-heptane; after the last wash step, the gel is treated with a solution of n-pentane and 1 to 10% by weight of TMCS and the TMCS-
  • Pentane solution is added to the gel in such an amount that there is a ratio of 5 to 15% by weight of TMCS based on the wet gel.
  • the pentane from the gel pores which is insoluble in water, rises in small steam bubbles in the water and is deposited in a condenser.
  • the dried gel is a loose powder and has a white, chalk-like appearance.
  • the material has a vibration density of 83 kg / m 3 and a BET surface area (N 2 ) of 590 m 2 / g.
  • the gel is synthesized and treated in the same way as in Example 1, with the following exceptions: the TMCS-heptane solution is added to the gel in an amount such that a ratio of 10% by weight of TMCS based on the wet gel results; instead of water, ethylene glycol is considered
  • Heat transfer fluid used The hydrophobicized heptane moist Lyogee cylinders are enclosed in a hollow body made of screen mesh.
  • the hollow body is immersed in a vessel with boiling glycol.
  • the heptane heats up in the gel and evaporates quickly.
  • the gel particles break apart due to the internal pressure gradients in the particle, which build up due to the rapid evaporation of the pore liquid.
  • the fine gel rises to the glycol surface as a dry material within a few seconds. Since the dried airgel is less than a tenth the density of glycol and is hydrophobic, it floats on the surface of the glycol and can be skimmed off with a fine sieve.
  • the dried gel is a loose powder and has a white, chalk-like appearance.
  • the material has a vibration density of 90 kg / m 3 and a BET surface area (N 2 ) of 590 m 2 / g.
  • the gel is synthesized and treated in the same way as in Example 1, with the following exception: the TMCS-heptane solution is added to the gel in such an amount that there is a ratio of 10% by weight of TMCS based on the wet gel ; instead of water, glycerin is used as the heat transfer fluid.
  • the hydrophobicized heptane-moist lyogee cylinders are enclosed in a hollow body consisting of screen fabric. The hollow body is immersed in a vessel with boiling glycerin. Through contact with the glycerin, the heptane heats up in the gel and evaporates quickly.
  • the gel particles break apart due to the internal pressure gradients in the particle, which build up due to the rapid evaporation of the pore liquid.
  • the fine gel rises to the glycerine surface as a dry material within a few seconds. Since the dried airgel is less than a tenth the density of glycerin and is hydrophobic, it floats on top of it
  • the dried gel is a loose powder and has a white, chalk-like appearance.
  • the material has a vibrating density of 75 kg / m 3 and a BET surface area (N 2 ) of 570 m 2 / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Drying Of Solid Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Colloid Chemistry (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur unterkritischen Trocknung eines Lyogels zu einem Aerogel, das dadurch gekennzeichnet ist, daß man das Lyogel mit einer Wärmeträgerflüssigkeit behandelt, die eine Temperatur oberhalb der Siedetemperatur der Porenflüssigkeit des Lyogels unter Systemdruck aufweist, und das getrocknete Aerogel anschließend von der Wärmeträgerflüssigkeit abtrennt.

Description

Beschreibung
Verfahren zur unterkritischen Trocknung von Aerogelen
Aerogele sind hochporöse Materialien mit niedriger Dichte, die durch Bildung eines Gels und anschließende Entfernung der Flüssigkeit unter weitgehender Erhaltung der Gelstruktur hergestellt werden.
Nach einer enger gefaßten Definition (siehe z.B. Gesser und Goswanni, Chem. Rev. 1 989, 89, 767) versteht man unter Aerogelen Materialien, bei denen die Flüssigkeit aus dem Gel unter überkritischen Bedingungen entfernt wurde, während man bei Geltrocknung unter unterkritischen Bedingungen von Xerogelen und im Falle der Entfernung der Flüssigkeit aus dem gefrorenen Zustand durch
Sublimation von Kryogelen spricht.
Aerogele im Sinne der Erfindung umfassen all diese Materialien und können außer Luft auch beliebige andere Gase enthalten. Die Gase können auch unter Vakuum aus dem Aerogel entfernt werden.
Übliche Aerogele enthalten im allgemeinen Silizium- oder Metalloxid, und zeichnen sich durch besonders niedrige Dichten von 20 bis 300 kg/m3 bei sehr hohen inneren Oberflächen von über 500 m2/g aus. Aufgrund dieser Eigenschaften eignen sie sich in hervorragender Weise als Wärme- und
Schalldämmstoffe, als Katalysatorträger und als Adsorbentien.
Die Herstellung von Aerogelen kann nach dem Stand der Technik auf verschiedenen Wegen über einen Sol-Gel-Prozeß mit anschließender überkritischer oder unterkritischer Trocknung erfolgen, wobei das Gel vor der
Trocknung als Hydrogel (Porenflüssigkeit ist Wasser) oder als Lyogel (Porenflüssigkeit ist ein organisches Lösungsmittel) vorliegen kann. Alle unterkritischen Verfahren zur Trocknung von Lyogelen zu Aerogelen nach dem Stand der Technik stellen die zur Verdampfung des Lösungsmittels erforderliche Wärme durch Kontakt mit einer beheizten Fläche (Kontakttrocknung), durch elektromagnetische Wellen (z.B. Mikrowellentrocknung) oder durch das Überströmen mit einem Gas
(Konvektionstrocknung) (siehe z.B. DE-A- 43 1 6 540) bereit. Da niedrige Dichten für die Anwendung von Aerogelen zur Wärmeisolierung notwendig sind, besitzen die Lyogele vor der Trocknung nur sehr geringe Feststoffgehalte (z.B. 6 bis 8% Si02). Die übrigen 92 bis 94% des Gels sind Lösungsmittel, das verdampft werden muß. Die Wärmeübertragung zur Trocknung bereitet im vorliegenden Fall
Schwierigkeiten, da Aerogele ausgezeichnete Wärmeisolatoren sind. Außer bei den sehr energie- und kostenaufwendigen dielektrischen Trocknungsverfahren schirmen die bereits trockenen Aerogel-Partikel die zur Trocknung erforderliche Wärmezufuhr so gut von den feuchten Partikeln ab, daß mit den herkömmlichen Verfahren trotz hoher Temperaturgradienten nur sehr zeitaufwendige
Trocknungsabläufe möglich sind. Dies führt im technischen Maßstab zwangsläufig zu kostenintensiven großen Trocknern und schlechter Wärmeausnutzung.
Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Trocknung von
Lyogelen zu Aerogelen bereitzustellen, das die Nachteile der bekannten Trocknungsverfahren nicht aufweist und technisch gut durchführbar ist.
Es wurde nun überraschend gefunden, daß Wärme von einer Flüssigkeit an die darin verteilten lösungsmittelfeuchten Gelpartikel so gut übertragen wird, daß die
Partikel von dem ausströmenden Dampf vor dem Eindringen der umgebenden Wärmeträgerflüssigkeit in die poröse Feststoffstruktur geschützt werden und daß die Trocknung trotz geringer Temperaturgradienten in einem Bruchteil der sonst für Aerogele erforderlichen Trocknungszeit erfolgt. Gegenstand der Erfindung ist somit ein Verfahren zur unterkritischen Trocknung eines Lyogels zu einem Aerogel, das dadurch gekennzeichnet ist, daß man das Lyogel mit einer Wärmeträgerflüssigkeit behandelt, die eine Temperatur oberhalb der Siedetemperatur der Porenflüssigkeit des Lyogels unter Systemdruck aufweist, und das getrocknete Aerogel anschließend von der Wärmeträgerflüssigkeit abtrennt.
Mit dem erfindungsgemäßen Verfahren können Lyogele auf kostengünstige Weise und unter hoher Wärmeausnutzung zu Aerogelen getrocknet werden.
Als Ausgangsprodukt für das erfindungsgemäße Verfahren sind aus den bekannten Synthesewegen grundsätzlich alle organischen und anorganischen Lyogele geeignet, die als Vorstufe für ein Aerogel verwendet werden können (siehe z.B. Jeffrev Brinker, George W. Scherer, Sol/Gel Science: The Physics and Chemistry of Sol/Gel Processing, Academic Press Ltd., London 1 990; US-A
5,081 , 1 63; US-A 4,873,21 8; US-A 4,997,804). Als Ausgangsstoffe werden beispielsweise Siliziumverbindungen, Melaminformaldehydverbindungen, Resorzinharze, Phenolharze, Aminoplaste, Harnstoff-Formaldehydharze, sowie Kompositmaterialien, bestehend aus einem der oben beschriebenen Gele in Verbindung mit einem technischen Kunststoff, z.B. Polystyrol, verwendet.
Bevorzugt sind dabei SiO2-Lyogele, die durch Oberflächenmodifikation hydrophobisiert wurden (siehe z.B. WO-A 94/25 149).
Es ist vorteilhaft, wenn zur Trocknung eine Wärmeträgerflüssigkeit gewählt wird, die die trockenen Partikel kaum oder nicht benetzt.
Ebenfalls ist es vorteilhaft, wenn die Wärmeträgerflüssigkeit nicht oder nur teilweise mit der Porenflüssigkeit, d.h. dem Lösungsmittel des Lyogels, mischbar ist. Die Temperaturdifferenzen zwischen der Wärmetragerflussigkeit und der Siedetemperatur der Porenflussigkeit des Lyogels unter Systemdruck betragt vorzugsweise mindestens 1 °C, besonders bevorzugt mindestens 10°C, insbesondere mindestens 30°C.
Als Wärmeträgerflüssigkeit eignen sich vorzugsweise Wasser oder wäßrige Losungen, beispielsweise eine Kochsalzlösung.
Die zu trocknenden Gele liegen üblicherweise in, vorzugsweise technischen, organischen Losungsmitteln vor, beispielsweise Alkoholen, mit vorzugsweise 1 bis 8 Kohlenstoffatomen, Ethern, Ketonen, wie Aceton, Estern, halogenierten Kohlenwasserstoffen, wie Methylenchloπd oder Chloroform, oder Kohlenwasserstoffen, vorzugsweise aliphatischen Kohlenwasserstoffen, wie Hexan oder Heptan.
Zur Durchführung des erfindungsgemäßen Verfahrens kann das Lyogel beispielsweise mit einer pneumatischen Förderung in die Wärmetragerflussigkeit eingebracht werden, wobei als Fördermedium sowohl ein Gas, wie Luft, als auch eine Flüssigkeit, wie die Wärmetragerflussigkeit oder die Porenflüssigkeit, vorzugsweise die Wärmetragerflussigkeit, dient. Hat die Porenflussigkeit des
Lyogels eine höhere Dichte als die Wärmetragerflussigkeit, kann das Lyogel einfach auf die Oberfläche der Wärmetragerflussigkeit aufgebracht werden. Die Wärmetragerflussigkeit kann dabei in einem Bad, beispielsweise in einem Flotationsbecken, vorliegen oder auch tm Umpump betrieben werden.
Eine bevorzugt Ausführungsform ist dadurch gekennzeichnet, daß das getrocknete Aerogel unter Ausnutzung des Dichteunterschieds zwischen feuchtem und getrocknetem Material aus der Wärmetragerflussigkeit abgetrennt wird, beispielsweise im Schwerefeld mit einer Flotationsvorrichtung oder im Fliehkraftfeld mit einem Dekanter. Eine besonders bevorzugt Ausführungsform besteht darin, daß das Aerogel durch Ausnutzung des Auftriebes in der Wärmeträgerflüssigkeit an deren Oberfläche geführt und dort abgeschöpft wird. Dazu wird das Verfahren vorzugsweise in einem Flotationsbecken durchgeführt.
Gegenstand der Erfindung ist daher auch eine Vorrichtung zur Durchführung des oben beschriebenen Verfahrens enthaltend ein- direkt oder indirekt - beheizbares Flotationsbecken, in dem sich die Wärmeträgerflüssigkeit befindet, und eine pneumatische Einspeisung zum Einbringen des Lyogels in die Wärmeträgerflüssigkeit.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird das Lyogel, beispielsweise auf einem Bandfilter, vorgelegt und die Wärmeträgerflüssigkeit, beispielsweise durch Aufsprühen oder Aufspritzen mittels einer Waschvorrichtung, aufgebracht.
Gegenstand der Erfindung ist daher auch eine Vorrichtung zur Durchführung des oben beschriebenen Verfahrens, enthaltend einen Bandfilter zur Aufnahme des Lyogels und eine Waschvorrichtung, mit deren Hilfe die Wärmeträgerflüssigkeit auf das Lyogel aufgebracht wird.
Vorzugsweise wird das durch die Trocknung erhaltene Aerogel innerhalb von 2 Minuten, besonders bevorzugt innerhalb von 10 Sekunden, von der Wärmeträgerflüssigkeit abgetrennt.
Die erfindungsgemäß getrockneten Aerogele finden beispielsweise Verwendung als Wärme- und Schalldämmstoffe, als Katalysatorträger und als Adsorbentien.
Zur Durchführung des erfindungsgemäßen Verfahrens können einzelne oder mehrere Merkmale aus den Ausführungsformen beliebig kombiniert werden. Die in der Beschreibung aufgeführten Druckschriften sollen durch Zitat als Bestandteil der Beschreibung gelten, dies gilt insbesondere für die Vorschriften zur Herstellung des Ausgangslyogels.
Nachstehend wird das erfindungsgemäße Verfahren anhand von Ausführungs¬ beispielen näher beschrieben.
Beispiel 1
Eine 8 Gew.-%ige Si02 Lösung wird durch Verdünnung von 75 ml handelsüblicher Natrium-Wasserglas-Lösung (Hoechst) mit 224 ml deionisiertem Wasser hergestellt. Natrium-Ionen werden dadurch entfernt, daß die Lösung durch ein lonenaustauscherharz (Rohm and Haas Amberlite) geleitet wird. Das Harz befindet sich in einer senkrechten Doppelmantelsäule mit 50 cm Höhe und 1 cm innerem Durchmesser. Der Doppelmantel der Säule wird auf 10°C thermostatisiert. Vor der Sol-Synthese wird die Säule mit mehreren Volumina deionisierten Wassers gewaschen. Die Natrium-Wasserglas-Lösung wird der Säule mit einem kontrollierten Volumenstrom zugeführt und abgezogen. Die Wasserglas-Lösung wird verworfen, bis der pH-Wert einen Bereich von 2,5 bis 2,9 erreicht. Das Si02-Sol wird gesammelt, bis die Austauschkapazität des
Harzes erreicht wird. Das Harz wird für spätere Anwendungen regeneriert, indem mit deionisiertem Wasser, in Folge mit 5 Gew.-%iger NaOH-Lösung, mit 5 Gew. %-iger HCI-Lösung und wieder mit deionisiertem Wasser gespült wird, bis der pH-Wert ca. 5 beträgt.
Der pH-Wert der Si02-Lösung wird durch kontrollierte Zugabe von 1 M-NaOH auf 5 angehoben, um die Gelierung zu starten. Vor der Gelierung wird die Lösung in zylindrische Gefäße gefüllt. Nach 30 Minuten werden die Gelzylinder aus den Gefäßen entfernt und in abgeschlossene mit Wasser gefüllte Gefäße gegeben. Diese Gefäße werden in einen Ofen gegeben, um das Gel 4 Stunden bei 80 °C zu altern. Nach der Alterung wird das Gel auf Raumtemperatur abgekühlt. Die Gelzylinder werden mehrfach mit Aceton gespült. Das Aceton wird dann in gleicher Weise mit n-Heptan aus dem Gel gewaschen. Üblich sind dabei jeweils drei Waschstufen. Nach dem letzten Waschschritt, wird das Gel mit einer Lösung aus n-Heptan und 1 bis 1 0 Gew.-% Trimethylchlorsilan (TMCS) behandelt. Die Lösung wird in einer solchen Menge zum Gel hinzugegeben, daß sich ein Verhältnis von 8 bis 50 Gew.-% TMCS bezogen auf das Naßgel ergibt. Das Gel wird über Nacht in der Lösung belassen.
Die so hydrophobisierten heptanfeuchten Lyogelzylinder werden in einem Hohlkörper bestehend aus Siebgewebe eingeschlossen. Der Hohlkörper wird in ein Gefäß mit kochendem Wasser eingetaucht. Durch den Kontakt mit dem Wasser erhitzt sich das Heptan im Gel und verdampft rasch. Die Gelpartikel brechen durch die inneren Druckgradienten im Partikel, die sich durch die schnelle Verdampfung der Porenflüssigkeit aufbauen, auseinander. Innerhalb von wenigen Sekunden steigt das feine Gel als trockenes Material zur
Wasseroberfläche auf. Da das getrocknete Aerogel weniger als ein Zehntel der Dichte von Wasser besitzt und hydrophob ist, schwimmt es auf der Wasseroberfläche auf und kann mit einem feinen Sieb abgeschöpft werden.
Das Heptan aus den Gelporen, das in Wasser unlöslich ist, steigt in kleinen
Dampfblasen im Wasser nach oben und wird in einem Kondensator niedergeschlagen. Das getrocknete Gel ist ein lockeres Pulver und besitzt ein weißes, kreideartiges Aussehen. Das Material weist eine Rütteldichte von 80 kg/m3 und eine BET-Oberfläche (N2) von 600 m2/g auf.
Beispiel 2
Das Gel wird in gleicher Weise synthetisiert und behandelt wie in Beispiel 1 , mit folgenden Ausnahmen: n-Hexan wird anstelle von n-Heptan als zweites Lösungsmittel verwendet; nach dem letzten Waschschritt wird das Gel mit einer
Lösung aus n-Hexan und 1 bis 10 Gew.-% TMCS behandelt und die TMCS- Hexan-Lösung wird in einer solchen Menge zum Gel hinzugegeben, daß sich ein Verhältnis von 5 bis 1 5 Gew.-% TMCS bezogen auf das Naßgel ergibt.
Das Hexan aus den Gelporen, das in Wasser unlöslich ist, steigt in kleinen Dampfblasen im Wasser nach oben und wird in einem Kondensator niedergeschlagen. Das getrocknete Gel ist ein lockeres Pulver und besitzt ein weißes, kreideartiges Aussehen. Das Material weist eine Rütteldichte von 85 kg/m3 und eine BET-Oberfläche (N2) von 600 m2/g auf.
Beispiel 3
Das Gel wird in gleicher Weise synthetisiert und behandelt wie in Beispiel 1 , mit folgenden Ausnahmen: n-Pentan wird anstelle von n-Heptan als zweites Lösungsmittel verwendet; nach dem letzten Waschschπtt wird das Gel mit einer Lösung aus n-Pentan und 1 bis 10 Gew.-% TMCS behandelt und die TMCS-
Pentan-Losung wird in einer solchen Menge zum Gel hinzugegeben, daß sich ein Verhältnis von 5 bis 1 5 Gew.-% TMCS bezogen auf das Naßgel ergibt.
Das Pentan aus den Gelporen, das in Wasser unlöslich ist, steigt in kleinen Dampfblasen im Wasser nach oben und wird in einem Kondensator niedergeschlagen. Das getrocknete Gel ist ein lockeres Pulver und besitzt ein weißes, kreideartiges Aussehen. Das Material weist eine Rütteldichte von 83 kg/m3 und eine BET-Oberfläche (N2) von 590 m2/g auf.
Beispiel 4
Das Gel wird in gleicher Weise synthetisiert und behandelt wie in Beispiel 1 , mit folgenden Ausnahmen: die TMCS-Heptan-Lösung wird in einer solchen Menge zum Gel hinzugegeben, daß sich ein Verhältnis von 10 Gew.-% TMCS bezogen auf das Naßgel ergibt; anstelle von Wasser wird Ethylenglykol als
Wärmetragerflussigkeit verwendet. Die hydrophobisierten heptanfeuchten Lyogeizylinder werden in einem Hohlkörper bestehend aus Siebgewebe eingeschlossen. Der Hohlkörper wird in ein Gefäß mit kochendem Glykol eingetaucht. Durch den Kontakt mit dem Glykol erhitzt sich das Heptan im Gel und verdampft rasch. Die Gelpartikel brechen durch die inneren Druckgradienten im Partikel, die sich durch die schnelle Verdampfung der Porenflüssigkeit aufbauen, auseinander. Innerhalb von wenigen Sekunden steigt das feine Gel als trockenes Material zur Glykoloberfläche auf. Da das getrocknete Aerogel weniger ais ein Zehntel der Dichte von Glykol besitzt und hydrophob ist, schwimmt es auf der Glykoloberfläche auf und kann mit einem feinen Sieb abgeschöpft werden.
Das getrocknete Gel ist ein lockeres Pulver und besitzt ein weißes, kreideartiges Aussehen. Das Material weist eine Rütteldichte von 90 kg/m3 und eine BET- Oberfläche (N2) von 590 m2/g auf.
Beispiel 5
Das Gel wird in gleicher Weise synthetisiert und behandelt wie in Beispiel 1 , mit folgender Ausnahme: die TMCS-Heptan-Lösung wird in einer solchen Menge zum Gel hinzugegeben, daß sich ein Verhältnis von 1 0 Gew.-% TMCS bezogen auf das Naßgel ergibt; anstelle von Wasser wird Glycerin als Wärmeträgerflüssigkeit verwendet. Die hydrophobisierten heptanfeuchten Lyogeizylinder werden in einem Hohlkörper bestehend aus Siebgewebe eingeschlossen. Der Hohlkörper wird in ein Gefäß mit kochendem Glycerin eingetaucht. Durch den Kontakt mit dem Glycerin erhitzt sich das Heptan im Gel und verdampft rasch. Die Gelpartikel brechen durch die inneren Druckgradienten im Partikel, die sich durch die schnelle Verdampfung der Porenflüssigkeit aufbauen, auseinander. Innerhalb von wenigen Sekunden steigt das feine Gel als trockenes Material zur Glycerinoberfläche auf. Da das getrocknete Aerogel weniger als ein Zehntel der Dichte von Glycerin besitzt und hydrophob ist, schwimmt es auf der
Glycerinoberfläche auf und kann mit einem feinen Sieb abgeschöpft werden. Das getrocknete Gel ist ein lockeres Pulver und besitzt ein weißes, kreideartiges Aussehen. Das Material weist eine Rütteldichte von 75 kg/m3 und eine BET- Oberfläche (N2) von 570 m2/g auf.

Claims

Patentansprüche
1 . Verfahren zur unterkritischen Trocknung eines Lyogels zu einem Aerogel, dadurch gekennzeichnet, daß man das Lyogel mit einer Wärmeträgerflüssigkeit behandelt, die eine Temperatur oberhalb der
Siedetemperatur der Porenflüssigkeit des Lyogels unter Systemdruck aufweist, und das getrocknete Aerogel anschließend von der Wärmetragerflussigkeit abtrennt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die
Wärmeträgerflüssigkeit nicht oder nur teilweise mit der Porenflüssigkeit des Lyogels mischbar ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Trocknung eine Wärmeträgerflüssigkeit gewählt wird, die das trockene
Aerogel kaum oder nicht benetzt.
4. Verfahren nach mindestens einem der vorgehenden Ansprüche, dadurch gekennzeichnet, daß man Si02 -Lyogele trocknet, die durch Oberflächenmodifikation hydrophobisiert wurden.
5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Wärmeträgerflüssigkeit Wasser verwendet wird.
6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das getrocknete Aerogel unter Ausnutzung des Dichteunterschieds zwischen feuchtem und getrocknetem Material aus der Wärmeträgerflüssigkeit abgetrennt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Aerogel durch Ausnutzung des Auftriebes in der Wärmeträgerflüssigkeit an deren Oberfläche geführt und dort abgeschöpft wird.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man das Lyogel auf einem Bandfilter vorlegt und die
Wärmeträgerflüssigkeit mittels einer Waschvorrichtung auf das Lyogel aufbringt.
9. Vorrichtung zur Durchführung des Verfahrens gemäß Anspruch 6, enthaltend ein beheizbares Flotationsbecken zur Aufnahme der
Wärmeträgerflüssigkeit und eine pneumatische Einspeisung zum Einbringen des Lyogels in die Wärmeträgerflüssigkeit.
10. Vorrichtung zur Durchführung des Verfahrens gemäß Anspruch 8, enthaltend einen Bandfilter zur Aufnahme des Lyogels und eine
Waschvorrichtung zum Aufbringen der Wärmeträgerflüssigkeit auf das Lyogel.
1 1 . Verwendung eines Aerogels, getrocknet durch ein Verfahren gemäß Anspruch 1 als Wärme- oder Schalldämmaterial, als Katalysatorträger oder als Adsorbens.
PCT/EP1997/000879 1996-03-05 1997-02-24 Verfahren zur unterkritischen trocknung von aerogelen WO1997032662A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59700660T DE59700660D1 (de) 1996-03-05 1997-02-24 Verfahren zur unterkritischen trocknung von aerogelen
US09/142,270 US6131305A (en) 1996-03-05 1997-02-24 Process for sub-critically drying aerogels
EP97903366A EP0885059B1 (de) 1996-03-05 1997-02-24 Verfahren zur unterkritischen trocknung von aerogelen
JP53140697A JP2001526580A (ja) 1996-03-05 1997-02-24 エーロゲルを臨界未満で乾燥させる方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/611,058 1996-03-05
US08/611,058 US5680713A (en) 1996-03-05 1996-03-05 Process for the subcritical drying of aerogels

Publications (1)

Publication Number Publication Date
WO1997032662A1 true WO1997032662A1 (de) 1997-09-12

Family

ID=24447455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/000879 WO1997032662A1 (de) 1996-03-05 1997-02-24 Verfahren zur unterkritischen trocknung von aerogelen

Country Status (7)

Country Link
US (2) US5680713A (de)
EP (1) EP0885059B1 (de)
JP (1) JP2001526580A (de)
AT (1) ATE186229T1 (de)
DE (1) DE59700660D1 (de)
ES (1) ES2141594T3 (de)
WO (1) WO1997032662A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032218A1 (en) * 1997-12-19 1999-07-01 Cabot Corporation A method for the sub-critical drying of lyogels to produce aerogels
WO1999036170A1 (en) * 1998-01-13 1999-07-22 Cabot Corporation Method of producing aerogels and apparatus for carrying out the method

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502453C1 (de) * 1995-01-27 1996-09-05 Hoechst Ag Verfahren zur Herstellung von modifizierten Si0¶2¶- Aerogelen und deren Verwendung
US6380105B1 (en) * 1996-11-14 2002-04-30 Texas Instruments Incorporated Low volatility solvent-based method for forming thin film nanoporous aerogels on semiconductor substrates
US5680713A (en) * 1996-03-05 1997-10-28 Hoechst Aktiengesellschaft Process for the subcritical drying of aerogels
DE19648798C2 (de) * 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
US5885493A (en) * 1997-11-04 1999-03-23 Lockheed Martin Energy Research Corporation Method of drying articles
DE69921450T2 (de) * 1998-01-15 2005-10-13 Cabot Corp., Boston Verfahren zur herstellung von behandelter kieselsäure
US6159540A (en) * 1998-01-15 2000-12-12 Cabot Corporation Polyfunctional organosilane treatment of silica
DE19810564A1 (de) * 1998-03-11 1999-09-16 Basf Ag Verfahren zur Trocknung und Herstellung von mikroporösen Teilchen sowie eine Vorrichtung zur Trocknung
DE59811774D1 (de) * 1998-06-05 2004-09-09 Cabot Corp Nanoporöse interpenetrierende organisch-anorganische netzwerke
US6174926B1 (en) 1999-01-13 2001-01-16 Cabot Corporation Method of preparing organically modified silica
US6586501B1 (en) 1999-01-20 2003-07-01 Cabot Corporation Aggregates having attached polymer groups and polymer foams
US6258864B1 (en) 1999-01-20 2001-07-10 Cabot Corporation Polymer foam containing chemically modified carbonaceous filler
JP3233618B2 (ja) * 1999-07-28 2001-11-26 川崎重工業株式会社 複合材の吸湿方法
IT1318617B1 (it) * 2000-07-10 2003-08-27 Novara Technology Srl Processo sol-gel per la produzione di geli secchi di grandidimensioni e vetri derivati.
US7222821B2 (en) * 2001-11-21 2007-05-29 Matos Jeffrey A Method and apparatus for treating fuel to temporarily reduce its combustibility
US8042771B2 (en) 2007-05-25 2011-10-25 Karl F. Milde, Jr. Method and apparatus for treating fuel to temporarily reduce its combustibility
US7088239B2 (en) * 2004-03-02 2006-08-08 Vann Basinger Method and apparatus for all-purpose, automatic remote utility meter reading, utility shut off, and hazard warning and correction
US20050196565A1 (en) * 2004-03-03 2005-09-08 Selover Craig W. Faced aerogel article and a molding process therefor
US20060213815A1 (en) * 2005-01-28 2006-09-28 Wille John J Hydrocarbon fume suppression by higher vapor pressure temperature oils
US7790787B2 (en) * 2006-05-03 2010-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aerogel/polymer composite materials
US7781492B2 (en) * 2006-06-08 2010-08-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage
US20090036646A1 (en) * 2007-08-03 2009-02-05 Hongbing Lu Drying process for polymer crosslinked bi-continuous macro-mesoporous aerogels
WO2009140030A2 (en) * 2008-05-15 2009-11-19 Arizona Board Of Regents For And On Behalf Of Arizona State University Porous metal oxide particles
WO2011046910A2 (en) 2009-10-14 2011-04-21 Arizona Board Of Regents For And On Behalf Of Arizona State University Fabricating porous materials using thixotropic gels
JP5727496B2 (ja) * 2009-10-28 2015-06-03 ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー 触媒ロースターコンベアベルトを乾燥させる装置及びそれを使用する方法
WO2011068830A2 (en) 2009-12-01 2011-06-09 Arizona Board Of Regents For And On Behalf Of Arizona State University Porous geopolymer materials
US8371039B2 (en) 2009-12-30 2013-02-12 Baxter International Inc. Thermal shielding to optimize lyophilization process for pre-filled syringes or vials
WO2012018890A2 (en) 2010-08-06 2012-02-09 Arizona Board Of Regents For And On Behalf Of Arizona State University Fabricating porous materials using intrepenetrating inorganic-organic composite gels
CN103946181A (zh) 2011-09-21 2014-07-23 亚利桑那州立大学董事会(代理及代表亚利桑那州立大学的法人团体) 地聚合物树脂材料、地聚合物材料及由其制备的材料
WO2015006010A2 (en) 2013-06-21 2015-01-15 Dong-Kyun Seo Metal oxides from acidic solutions
WO2015191962A1 (en) 2014-06-12 2015-12-17 Arizona Board Of Regents On Behalf Of Arizona State University Carbon dioxide adsorbents
WO2018136695A1 (en) 2017-01-20 2018-07-26 Seo Dong Kyun Aluminosilicate nanorods
US10822807B2 (en) 2019-02-18 2020-11-03 Royal Building Products (Usa) Inc. Assembly for improved insulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025149A1 (en) * 1993-04-28 1994-11-10 University Of New Mexico Preparation of high porosity xerogels by chemical surface modification
DE4316540A1 (de) * 1993-05-18 1994-11-24 Hoechst Ag Verfahren zur unterkritischen Trocknung von Aerogelen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2503913A (en) * 1944-06-21 1950-04-11 Standard Oil Dev Co Process of drying inorganic hydrogel particles
US4080743A (en) * 1976-06-22 1978-03-28 E. I. Du Pont De Nemours And Company Membrane drying process
DE3429671A1 (de) * 1984-08-11 1986-02-20 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung von aerogelen
US5243769A (en) * 1992-06-26 1993-09-14 Yazaki Corporation Process for rapidly drying a wet, porous gel monolith
US5473826A (en) * 1994-08-19 1995-12-12 Yazaki Corporation Process for drying sol-gel derived porous bodies at elevated subcritical temperatures and pressures
US5680713A (en) * 1996-03-05 1997-10-28 Hoechst Aktiengesellschaft Process for the subcritical drying of aerogels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025149A1 (en) * 1993-04-28 1994-11-10 University Of New Mexico Preparation of high porosity xerogels by chemical surface modification
DE4316540A1 (de) * 1993-05-18 1994-11-24 Hoechst Ag Verfahren zur unterkritischen Trocknung von Aerogelen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032218A1 (en) * 1997-12-19 1999-07-01 Cabot Corporation A method for the sub-critical drying of lyogels to produce aerogels
US6378229B1 (en) 1997-12-19 2002-04-30 Cabot Corporation Method for the sub-critical drying of lyogels to produce aerogels
WO1999036170A1 (en) * 1998-01-13 1999-07-22 Cabot Corporation Method of producing aerogels and apparatus for carrying out the method

Also Published As

Publication number Publication date
US6131305A (en) 2000-10-17
ES2141594T3 (es) 2000-03-16
EP0885059A1 (de) 1998-12-23
ATE186229T1 (de) 1999-11-15
US5680713A (en) 1997-10-28
DE59700660D1 (de) 1999-12-09
EP0885059B1 (de) 1999-11-03
JP2001526580A (ja) 2001-12-18

Similar Documents

Publication Publication Date Title
EP0885059B1 (de) Verfahren zur unterkritischen trocknung von aerogelen
DE69732758T2 (de) Verfahren zur Herstellung eines Aerogels
EP0699104B1 (de) Verfahren zur unterkritischen trocknung von aerogelen
EP0859739B1 (de) Verfahren zur herstellung von organisch modifizierten aerogelen unter verwendung von alkoholen
EP0868402B1 (de) Verfahren zur unterkritischen herstellung von anorganischen aerogelen
DE69113266T2 (de) Adsorbentmittel.
DE69811948T2 (de) Verfahren zur unterkritischen trocknung vonlyo-gelen zur herstellung von aerogelen
DE1940068B2 (de) Kieselxerogel und seine Herstellung
DE19541992A1 (de) Verfahren zur Herstellung von organisch modifizierten Aerogelen unter Verwendung von Alkoholen, bei dem gebildeten Salze ausgefällt werden
EP1062181B1 (de) Verfahren zur trocknung und herstellung von mikroporösen teilchen
EP2954010B1 (de) Verfahren zur herstellung von porösen oder feinteiligen, festen anorganischen materialien
DE19801004A1 (de) Verfahren zur Herstellung von im wesentlichen kugelförmigen Lyogelen in wasserunlöslichen Silylierungsmitteln
DE1068232B (de) Verfahren zur Herstellung von Alumosifficat-Gelien
EP0671504A1 (de) Verfahren zur Herstellung von geschäumtem Material aus Altpapier und dgl.
DE1048889B (de) Verfahren zur Herstellung von Kieselsaeurefuellstoffen
DE921564C (de) Verfahren zur Herstellung von Katalysatoren in Kugelform
DE2124223A1 (de) Verfahren zur Herstellung von Rieselsäure
WO1998053906A1 (de) Verfahren zur herstellung von im wesentlichen kugelförmigen lyogelen sowie aerogelen
DE2225452C3 (de) Verfahren zur Herstellung von weitporigem Adsorptionsmittel für Chromatographiezwecke
WO1998053905A1 (de) Verfahren zur herstellung von im wesentlichen kugelförmigen lyogelen sowie aerogelen
DD283040A7 (de) Verfahren zur herstellung makroporiger silikagele
DE2201581B2 (de) Verfahren zur Herstellung von kugelförmigen Natriumperboratkörnern
DE3033982A1 (de) Verfahren zur herstellung eines adsorptionsmittels mit hoher selektivitaet
DE2130368A1 (de) Ionenaustauschmaterial
DD155687A3 (de) Verfahren zur herstellung eines adsorptionsmittels mit hoher selektivitaet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997903366

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997903366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09142270

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1997903366

Country of ref document: EP