WO1997028585A1 - Oscillateur laser transistorise - Google Patents

Oscillateur laser transistorise Download PDF

Info

Publication number
WO1997028585A1
WO1997028585A1 PCT/JP1997/000260 JP9700260W WO9728585A1 WO 1997028585 A1 WO1997028585 A1 WO 1997028585A1 JP 9700260 W JP9700260 W JP 9700260W WO 9728585 A1 WO9728585 A1 WO 9728585A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
crystals
solid
crystal
state laser
Prior art date
Application number
PCT/JP1997/000260
Other languages
English (en)
French (fr)
Inventor
Norio Karube
Nobuaki Iehisa
Kenji Mitsui
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to EP97901823A priority Critical patent/EP0820129A4/en
Priority to US08/930,345 priority patent/US6055263A/en
Publication of WO1997028585A1 publication Critical patent/WO1997028585A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium

Definitions

  • the present invention relates to a solid-state laser oscillation device used by being mounted on a laser processing device or the like.
  • FIG. 4 is a diagram schematically illustrating the structure of a conventional solid-state laser oscillation device, taking a slab-type YAG laser oscillation device as an example.
  • a laser crystal (YAG laser crystal) 1 is arranged on a reflector 30 # together with excitation lamps L1 and L2 composed of, for example, xenon lamps.
  • excitation lamps L1 and L2 composed of, for example, xenon lamps.
  • a total reflection mirror Ml and a partial reflection mirror M2 are arranged at both ends of the laser crystal 1, and a Fabry-Perot optical resonator is formed.
  • the upper wall 31 of the reflector 30 has a high light reflectance.
  • an apparatus including a laser crystal, an excitation lamp, a reflector, and the like is provided by circulating cooling water (pure water) so as to circulate inside the reflector 30.
  • circulating cooling water pure water
  • Arrows C 1 and C 2 indicate the inlet and outlet of the circulating cooling water, respectively.
  • the excitation lamps L 1 and L 2 are driven by the excitation power supply 40, Emit excitation light 50.
  • the excitation light 50 radiated from the excitation lamps L 1 and L 2 is reflected directly or on the inner wall 31 of the reflector 30 with high light reflectance, and then the laser crystal 1
  • the laser crystal 1 When the laser beam 1 is incident on the laser beam, the laser crystal 1 is bombarded and laser light S is generated.
  • the laser light is widened in the process of reciprocating in the optical resonator space between the total reflection mirror Ml and the partial reflection mirror M2, and a part of the laser light S 'is extracted to the outside to perform laser processing or the like. It is used for the purpose.
  • the surface of laser crystal 1 is in direct contact with air or cooling water (pure water). Therefore, the light incident on the laser crystal 1 and the light emission from the laser crystal 1 are performed through the interface between the laser crystal 1 and air or cooling water (pure water). There is a considerable difference in refractive index between the laser crystal 1 and air or cooling water (pure water).
  • the end faces 2 and 3 of the laser crystal 1 are cut obliquely at an angle that almost satisfies the pre-ustor condition. It is said that.
  • the blister angle is about 60 to 62 degrees. Therefore, as in this example, the total reflection mirror Ml, the laser crystal 1, and the partial reflection mirror M are used.
  • the inclination angle 6 of both end faces 2 and 3 of the laser crystal 1 is set to be around 28 degrees to 30 degrees.
  • the optical path in the laser crystal 1 can be formed in a zigzag shape, as shown by the broken line in the figure.
  • the zigzag optical path in the laser crystal 1 is caused by the bead due to the refractive index gradient generated in the laser crystal 1. This is advantageous in avoiding a decrease in system quality. That is, in the laser crystal, a temperature distribution that decreases from the vicinity of the central axis toward the periphery is likely to occur, and accordingly, a profile with a concentric refractive index is formed. Therefore, if the optical path in the laser crystal 1 is made straight, an optical optical path difference occurs due to the radial position where the reciprocating beam passes, which adversely affects optical resonance. .
  • the optical path length between the forward and backward beams is averaged, and the optical path difference is hardly generated.
  • a zigzag optical path can be formed in the laser crystal even if the inclination angle does not satisfy the Brewster condition. And are possible.
  • Laser crystal 1 has a mouth shape instead of a slab shape.
  • a slab-type laser crystal is often employed in a high-output solid-state laser oscillation device.
  • a larger crystal makes it easier to obtain high output.
  • the crystal used for the laser crystal generally has a slower crystal growth at the time of manufacture, and the larger the size, the more difficult it is to create a crystal without defects.
  • the price of the laser crystal increases exponentially with increasing size, This has caused the price of high-power solid-state laser oscillators to rise.
  • An object of the present invention is to provide a solid-state laser oscillation device that can obtain high output at low cost by using a relatively small-sized laser crystal.
  • the solid-state laser oscillating device of the present invention is arranged side by side along the optical axis of the laser light to be output so that the optical contact between adjacent laser crystals is maintained.
  • the laser device includes a plurality of laser crystals arranged, and an excitation unit for performing bombing on the plurality of laser crystals.
  • the optical force contact between a plurality of laser crystals can be ensured in the following various forms.
  • a material having a low light absorption rate is interposed between adjacent laser crystals. This is equivalent to the arrangement of (2) above, in which part or all of the narrow gap is filled with a material having a low light absorption rate. It is preferable that the material having a low light absorption has a refractive index almost equal to that of the laser crystal.
  • Adjacent laser crystals are bonded together with a low light absorption adhesive.
  • Adhesive is laser
  • it has a refractive index approximately equal to that of a crystal.
  • the end face of each laser crystal is preferably inclined so as to satisfy almost the pre-ustor condition with respect to the traveling direction of the laser light. No. However, in the cases of (3) and (4), when only the space between adjacent laser crystals is filled with a material having a refractive index substantially equal to that of the laser crystals, the pre-ustor condition is applied to the end face. It is no longer necessary to consider
  • action equivalent to using the single laser crystal of a comparatively large size is acquired using the several laser crystals of a comparatively small size.
  • the optical power of the laser crystal to be output is maintained along the optical axis direction of the laser light.
  • a good optical contact can be expected if the adjacent laser crystals are in direct contact with each other or have a sufficiently narrow gap to face each other.
  • a material having a low light absorption rate between the crystals it is possible to ensure the opti- cal contact.
  • the use of an adhesive as a material with low light absorption provides a means for mechanically bonding the laser crystals. If a material having a refractive index almost equal to that of the laser crystal is used for these low-absorbing materials, optical matching between the laser crystal and the laser crystal can be achieved. This ensures a higher degree of optical contact.
  • FIG. 1 is a conceptual diagram showing a structure of a main part of an oscillator according to an embodiment of the present invention.
  • Fig. 2 is an explanatory view showing the arrangement and optical path when the directions of the outer end faces of the laser crystals at both ends of the laser crystal assembly are parallel
  • Fig. 3 is the diagram at both ends of the laser crystal assembly.
  • Conceptual diagram showing the arrangement and optical path when the direction of the outer end face of the laser crystal is non-parallel
  • FIG. 4 is a conceptual diagram showing the structure of a conventional slab-type YAG laser oscillator.
  • FIG. 1 considering that the feature of the present invention lies in the arrangement structure of a plurality of laser crystals, only the main part structure mainly extracted from the arrangement structure of the laser crystals is considered. It is shown .
  • the structure and functions of the parts other than the laser crystal array structure (such as the configuration of the optical resonator, the cooling water circulation mechanism, the reflector, and the driving power supply for the excitation lamp) are described in ⁇ Return Description is omitted.
  • each of the laser crystals 1a, 1b, and 1c has a slab shape having substantially the same size, but a rod shape is used. You can.
  • the number of laser crystals to be used is generally arbitrary, and must always be the same size. There is no.
  • Adjacent laser crystals 1 a and 1 b, 1 b and 1 c each have a surface facing each other with thin adhesive layers 10 and 20 sandwiched therebetween, and are linearly assembled as a whole. They are arranged to form a body. It is desirable that each end face of each of the laser crystals 1a to 1c be polished with high precision in order to prevent light scattering. In addition, in order to suppress unnecessary reflections as much as possible and maintain a high laser light output, an angle that almost satisfies the pre-ustor condition with respect to light passing through the laser crystal. It is preferable that the inclined surface has ⁇ and ⁇ .
  • the inclination angle ⁇ of the facing surface of the laser crystal that satisfies the pre-wasteer condition is the same as that of the laser crystal ensemble that satisfies the blister condition.
  • the angle of inclination of both ends of the body is different from 0. This is natural considering that the refractive index of the medium (cooling water) surrounding the laser crystals 1a to 1c and the refractive index of the adhesive are generally different.
  • the adhesive forming the adhesive layers 10 and 20 it is preferable to use an adhesive exhibiting the lowest possible absorptivity to light having the laser oscillation wavelength or excitation light. Also, if the refractive index of the adhesive is approximately the same as the laser crystal 1a to 1c used, optical matching can be achieved, so that the blue except at both ends of the laser crystal aggregate is achieved. Unnecessary reflection is sufficiently suppressed without considering the star condition.
  • the gap should be made of a material (liquid, semi-liquid material, Dali) that exhibits the lowest possible absorptivity to the laser's torsional wave length light or excitation light.
  • the refractive index of the material is almost the same as the laser crystal 1a to 1c used, optical matching is realized, and pre-processing is performed except at both ends of the laser crystal assembly. Even if the user condition is not taken into account, unnecessary reflection is sufficiently suppressed as in the case of using an adhesive.
  • the optical path of the output light S extracted in the length direction of the laser crystal aggregate is indicated by a dashed line S ".
  • the advantages of the zigzag optical path were described in the related explanation of Fig. 1. Street.
  • FIGS. 2 and 3 Even when a slab-type laser crystal is used, the arrangement shown in FIGS. 2 and 3 may be adopted, but the optical path in the laser crystal is formed in a zigzag shape. You will not be able to do that.
  • the optical axis will not move. Displacement (almost the gap size and position shift) can occur. However, this gap can usually be made very narrow, so that the misalignment of the optical axis is not large enough to cause problems. If the refractive index is matched by the above-described method, the deviation can be naturally solved.
  • the present invention it is not necessary to use a large-sized laser crystal which is difficult and expensive to manufacture, but it is possible to use a small-sized laser crystal which is easy to manufacture and is inexpensive. Since laser output is obtained, the manufacturing cost of the solid-state laser oscillator S with high output can be kept low.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

明 細 書
固体レ ーザ発振装置
技 術 分 野
本発明は、 レ ーザ加工装置等に搭載し て使用さ れる 固 体レ ーザ発振装置に関する 。
背 景 技 術
Y A G ( イ ッ ト リ ゥ ム ア ルミ ニ ゥ ム ガ ーネ ッ ト ) レ ー ザのよ う な 固体レ ーザ発振装置は、 高出力で安定し たレ 一ザビ ーム が得ら れる こ と から 、 金属あ る いは非金属の 材料の切断、 溶接な ど を 行なう レ ーザ加工装置等に広く 使用さ れて いる 。 図 4 は、 ス ラ ブ形 Y A G レ 一ザ発振装 置を 例にと り 、 従来の固体レ ーザ発振装置の構造の概略 を 示す図であ る 。
図 4 において 、 レ ーザ結晶 ( Y A G レ ーザ結晶) 1 は 例え ばキ セノ ンラ ンプから なる 励起ラ ンプ L 1 及び L 2 と 共にレ フ レ ク タ 3 0 內に配置さ れる 。 レ ーザ結晶 1 の 両端には全反射鏡 M l と 部分反射鏡 M 2 が配置さ れ、 フ ア ブリ ペロ ー型の光共振器が構成さ れる 。 レ フ レ ク タ 3 0 の 內壁 3 1 は高光反射率の面と さ れている。
ま た 、 レ フ レ ク タ 3 0 の内部を循環する よ う 〖こ冷却水 ( 純水) を 流通さ せる こ と でレ ーザ結晶、 励起ラ ンプ、 レ フ レ ク タ 等を 含む装置各部の過熱を 防ぎ 、 温度上昇に よ る レ ーザ光の品質低下を 防止し て いる 。 矢印 C 1 及び C 2 は夫々 循環する 冷却水の入 口及び出 口 を 表わ し てい る 。 励起ラ ンプ L 1 及び L 2 は励起電源 4 0 で駆動さ れ, 励起光 5 0 を 放射する 。
励起ラ ン プ L 1 及び L 2 から 放射さ れた励起光 5 0 が 直接あ る いはレ フ レ ク タ 3 0 の高光反射率の内壁 3 1 で 反射さ れてから レ ーザ結晶 1 に入射する と 、 レ ーザ結晶 1 がボ ン ビ ン グさ れて 、 レ ーザ光 S が生成さ れる 。 レ ー ザ光は全反射鏡 M l と 部分反射鏡 M 2 の光共振器空間を 往復する 過程で增幅さ れ、 その一部 S ' が外部に取り 出 さ れて 、 レ ーザ加工等の 目 的に利用さ れる 。
レ ーザ結晶 1 の表面は空気又は冷却水 ( 純水) に直接 接触し て いる 。 従っ て 、 レ 一ザ結晶 1 への光入射並びに レ ーザ結晶 1 から の光出射は、 レ ーザ結晶 1 と 空気又は 冷却水 ( 純水) と の間の界面を通し て行なわれる 。 レ 一 ザ結晶 1 と 空気又は冷却水 ( 純水) の間には 当 然相 当大 き な屈折率差が存在する。 そこ で、 レ ーザ結晶 1 の 両端 面 2 及び 3 は、 光共振器の効率を 高く 保っために、 プリ ユ ース タ 条件を ほぼ満たす角度を持たせて斜め にカ ツ ト さ れた面と さ れる 。 Y A G レ ーザ結晶の場合、 ブリ ュ 一 ス タ 角 は 6 0 度〜 6 2 度前後である から 、 本例のよ う に , 全反射鏡 M l 、 レ ーザ結晶 1 及び部分反射鏡 M 2 を 一直 線上に並べた配置では、 レ ーザ結晶 1 の両端面 2 及び 3 の傾斜角 6 は、 2 8 度〜 3 0 度前後と さ れる 。
ス ラ ブ 形 の レ ーザ結晶を用いれば、 図 中に破線で示し たよ う に、 レ ーザ結晶 1 内の光路を ジグザグ状にと る こ と が出来る 。 レ ーザ結晶 1 内の光路を ジグザグ 状にと る こ と は、 レ ーザ結晶 1 内に生じ る 屈折率勾配によ る ビ ー ム 品質の低下を 回避する 上で有利であ る 。 即ち 、 レ ーザ 結晶 内では 中心軸付近から 周辺へ向けて低下する 温度分 布が生じ 易く 、 それに応じ て屈折率も 同心状のプロ フ ァ ィ ノレが形成さ れる こ と になる 。 従っ て 、 も し レ ーザ結晶 1 内 の光路を 一直線状にと る と 往復ビ ーム の通過する 径 方向位置によ つ て光学的光路差が発生し 、 光共振に悪影 響を及ぼす。 こ れに対し て 、 ジグザグ状の光路では、 往 復ビ ーム 間の光学的光路長が平均化さ れ、 光学的光路差 が発生し 難く なる 。 なお、 レ ーザ結晶の両端面が傾斜し て い る 場合、 その傾斜角がブリ ュ ース タ 条件を満た し て いな く と も レ ーザ結晶内でジグザグ状の光路を と ら せる こ と は可能である 。
レ ーザ結晶 1 にはス ラ ブ形のも のに代えて 口 ッ ド 形
( 円棒形状) のも のを 用いる こ と が出来る 。 し かし 、 そ の場合には、 ジグザグ状の光路を と ら せる こ と は出来な いため 、 両端面を 長手方向に対し て 垂直にカ ッ ト し 、 A R コ ート を施すこ と が通常である 。
こ のよ う な事情も あっ て 、 高出力の 固体レ ーザ発振装 置ではス ラ ブ形のレ ーザ結晶が採用さ れる こ と が多い。 ま た 、 ス ラ ブ形ある いはロ ッ ド 形いずれのレ ーザ結晶を 用いる にし ても 、 大き な結晶ほど 高出力が得易く なる 。 し かし 、 レ ーザ結晶に使用さ れる 結晶は一般に製造時の 結晶成長が遅く 、 且つ、 サイ ズが大き く なる 程欠陥のな い結晶を創造する こ と が難し く なる 。 そ の結果、 レ ーザ 結晶の価格はサイ ズが増大する と 指数関数的に増大し 、 高出力の 固体レ ーザ発振装置の価格を 押し 上げる 原因に なっ ていた。
発 明 の 開 示
本発明の 目 的は、 比較的小さ なサイ ズのレ ーザ結晶を 用いて 安価で高出力が得ら れる 固体レ ーザ発振装置を 提 供する こ と にある 。
本発明の固体レ ーザ発振装置は、 隣合う レ ーザ結晶間 に相互のォプティ カルコ ンタ ク ト が保たれる よ う に、 出 力さ れる レ ーザ光の光軸に沿っ て 並んで配置さ れた複数 の レ ーザ結晶と 、 複数のレ ーザ結晶にボ ン ビ ン グ を行な う 励起手段と を 備え る 。 複数のレ ーザ結晶間のォプティ 力 ノレコ ン タ ク ト は、 次のよ う な種々 の形態で確保さ れ得 る 。
( 1 ) 隣合う レ ーザ結晶が直接面接触し 合う よ う に SS 置する 。
( 2 ) 隣合う レ ーザ結晶が狭いギャ ッ プを挟んで相互 に向い合う よ う に配置する 。
( 3 ) 隣合う レ ーザ結晶間に低光吸収率の材料を介在 さ せる 。 こ れは、 上記 ( 2 ) の配置で、 狭いギャ ッ プの 一部ま た は全部を低光吸収率の材料で埋めた配置に相当 する 。 低光吸収率の材料はレ ーザ結晶と ほぼ等し い屈折 率を 有し ている こ と が好ま し い。
( 4 ) 隣合う レ ーザ結晶間を 低光吸収率の接着剤で結 合し た配置。 こ れは、 上記 ( 3 ) の配置で、 低光吸収率 の材料を 接着剤と し たも の相 当する 。 接着剤は、 レ ーザ 結晶と ほ ぼ等し い屈折率を 有し ている こ と が好ま し い。 なお、 いずれの配置形態においても 、 各レ ーザ結晶の 端面は、 レ ーザ光の進行方向に対し てほ ぼプリ ユ ース タ 条件を満たすよ う に傾斜し ている こ と が好ま し い。 但し ( 3 ) 及び( 4 ) の形態において 、 隣合う レ ーザ結晶間 のみを レ 一ザ結晶と ほぼ等し い屈折率の材料で満たし た 場合には、 その端面についてプリ ユ ース タ 条件を 考慮す る 必要はなく なる。
本発明によ れば、 相対的に小さ なサイ ズの複数のレ ー ザ結晶を 用いて 、 相対的に大き なサイ ズの単一のレ ーザ 結晶を 用いたと 同等の作用が得ら れる 。 即ち 、 個々 のレ —ザ結晶のサイ ズは相対的に小さ なも のであっ ても 、 そ れら を 出力さ れる レ ーザ光の光軸方向に沿っ てォプティ 力ノレコ ンタ ク ト を保つよ う に配置する こ と で、 固体レ 一 ザ発振装置全体のレ ーザ活性媒体の有効長を加算的に增 大さ せる こ と が出来る 。
隣合う レ ーザ結晶が直接密着し 合う か、 ある いは十分 狭いギャ ッ プを挟んで向き 合う 関係にあれば良好なォプ ティ カ ルコ ンタ ク ト を期待し 得る が、 隣合う レ ーザ結晶 間に低光吸収率の材料を 介在さ せる こ と で、 ォプティ カ ノレコ ンタ ク ト を確実にする こ と が出来る 。 低光吸収率の 材料と し て接着剤を 用いれば、 レ ーザ結晶の機械的な結 合手段が 同時に提供さ れる 。 こ れら 低光吸収率の材料に レ ーザ結晶と ほぼ等し い屈折率を 有する も のを使用すれ ば、 レ ーザ結晶と の間で光学的なマッ チングがと れる の で、 よ り 高度のオプティ カルコ ンタ ク ト が確保さ れる 。
図面の簡単な説明
図 1 は、 本発明の一実施例に係る一ザ発振装置の要部 構造を 示す概念図、
図 2 は、 レ ーザ結晶集合体の両端のレ ーザ結晶の外側 端面の方向を 平行と し た場合の配置と 光路を 示す説明図、 図 3 は、 レ ーザ結晶集合体の 両端のレ ーザ結晶の外側 端面の方向を 非平行と し た場合の配置と 光路を 示す概念 図、
図 4 は、 従来のス ラ ブ形 Y A G レ ーザ発振装置の構造 を 示す概念図である 。
発明を 実施する ための最良の形態
図 1 では、 本発明の特徴が複数のレ ーザ結晶の配列構 造にあ る こ と を 考慮し て 、 主と し てレ ーザ結晶の配列構 造を抽出し た要部構造のみが示さ れている 。 ま た 、 レ ー ザ結晶の配列構造以外の部分 ( 光共振器の構成、 冷却水 の循環機構、 レ フ レ ク タ 、 励起ラ ンプの駆動電源な ど ) の構造、 機能等について は、 緣り 返し 説明を 省略する 。
図 1 を 参照する と 、 光共振器の光軸に沿っ て計 3 個の レ ーザ結晶 ( Y A G レ 一ザ結晶ま たは他のレ ーザ結晶) 1 a 、 1 b 及び 1 c が配置さ れている 。 本実施例では、 各レ ーザ結晶 1 a 、 1 b 及び 1 c は、 ほぼ等サイ ズのス ラ ブ形のも のが使用さ れている が、 ロ ッ ド 形状のも のを 使用 し ても 良い。 ま た 、 使用する レ ーザ結晶の個数も一 般には任意であ り 、 ま た 、 必ずし も 等サイ ズであ る 必要 も 無い。
隣接する レ ーザ結晶同士 1 a と 1 b 、 1 b と 1 c は夫 々 、 薄い接着剤層 1 0 及び 2 0 を鋏んで互いに向き 合う 面を 有し 、 全体と し て 直線状の集合体を 形成する よ う に 配列さ れている 。 各レ 一ザ結晶 1 a 〜 1 c の各端面は、 光散乱を 防止する ために高精度に平面研磨さ れる こ と が 望ま し い。 ま た 、 無用な反射を 出来る だけ抑制し て高い レ ーザ光出力を維持する ために、 レ ーザ結晶 中を 通過す る 光に対し てほぼプリ ユ ース タ 条件を満たすよ う な角度 ø 、 Θ を 持つよ う な傾斜面と さ れる こ と が好ま し い。 接 着剤層 1 0 、 2 0 が存在する 場合、 プリ ユ ース タ 条件を 満たすレ ーザ結晶の対向面の傾斜角 Φ は、 同じ く ブリ ュ ース タ 条件を満たすレ ーザ結晶集合体の両端の傾斜角 0 と は若千異なる 。 こ れは、 レ ーザ結晶 1 a 〜 1 c を 取り 囲む媒体 ( 冷却水) と 接着剤の屈折率は一般に異なる こ と から 考えて 当然であ る 。
接着剤層 1 0 及び 2 0 を形成する 接着剤は、 レ ーザの 発振波長の光や励起光に対し て 出来る だけ低い光吸収率 を 示すも のが使用さ れる こ と が好ま し い。 ま た 、 接着剤 の屈折率が使用する レ 一ザ結晶 1 a ~ 1 c と ほぼ同じ で あれば、 光学的なマッ チング が実現する ので、 レ ーザ結 晶集合体の両端以外ではブリ ュ ース タ 条件を 考慮し なく と も 、 無用な反射は十分に抑制さ れる 。
レ ーザ結晶 1 a 〜 1 c が他の手段 ( 例え ば、 適当な枠 体) で固定さ れて いれば、 接着剤を使用し なく ても 良い。 そ の際、 隣接する レ ーザ結晶に面接触を 確保出来れば、 接着剤層 1 0 及び 2 0 に代わる 材料を 隣接レ ーザ結晶間 に介在さ せなく と も 良いと 考えら れる が、 狭いギャ ッ プ が残っ ている 場合には、 そのギャ ッ プを レ ーザの発捩波 長の光や励起光に対し て 出来る だけ低い光吸収率を 示す 材料 ( 液体、 半液体材料、 ダリ ース 等) で満たすこ と が 好ま し い。 ま た、 その材料の屈折率が使用する レ ーザ結 晶 1 a 〜 1 c と ほ ぼ同じ であれば、 光学的なマッ チング が実現さ れ、 レ ーザ結晶集合体の 両端以外ではプリ ユ ー ス タ 条件を 考慮し なく と も 、 無用な反射が十分に抑制さ れる 点は接着剤を使用し た場合と 同様である 。
と こ ろ で、 図 1 の例ではレ ーザ結晶集合体の長さ 方向 に取り 出さ れる 出力光 S の光路が一点鎖線 S " で描示さ れて いる が 、 こ れは図 4 の事例と 同様の趣旨でス ラ ブ形 のレ ーザ結晶内でジ グザグ の光路を 確保し ている こ と を 表わ し て いる 。 ジ グザグ の光路の利点は、 図 1 の 関連説 明で述べた通り である 。
ま た 、 ロ ッ ド 形のレ ーザ結晶を 用いた場合には、 ジ グ ザグ の光路が確保出来ず、 両端面 ( 両端の結晶の外側端 面) を 垂直にカ ッ ト し て A R コ ート が施さ れる こ と も 既 に述べた通り であ る 。 但し 、 両端の結晶の外側端面を ブ リ ユ ース タ 条件を満たすよ う にカ ッ ト し て A R コ ート を 施さ ないよ う にする こ と も 可能であ る。 その場合、 各レ 一ザ結晶の配列姿勢と 光軸方向の 関係に注意する 必要が あ る 。 即ち 、 両端に置かれる レ ーザ結晶 1 a 及び 1 c の 外側端面 2 及び 3 の方向を 図 2 のよ う に平行と する か、 図 3 のよ う に非平行と する ( レ ーザ結晶集合体の断面形 状が台形) かに応じ て 、 レ ーザ結晶集合体の両端におけ る 光軸の振れ方向が異なる ので 、 それに応じ て光共振器 を構成する 反射鏡 ( 図 4 の M l 、 M 2 参照) の配置位置 と 向き を調整する 必要がある 。
なお、 ス ラ ブ形のレ ーザ結晶を 用いた場合でも 、 図 2 、 図 3 のよ う な配置を と ら せても よ いが、 レ ーザ結晶内の 光路をジ グザグ状にと る こ と は出来な く なる 。
ま た 、 ス ラ ブ形、 ロ ッ ド 形いずれのレ ーザ結晶を 使用 し た場合であっ ても 、 レ ーザ結晶同士が隣り 合う 端面間 にギャ ッ プが存在する と 、 光軸のずれ ( ほぼ空隙の大き さ 位置シ フ ト ) が起こ り 得る 。 し 力 し 、 通常こ のギヤ ッ プは非常に狭く 出来る ので 、 光軸のずれも 問題が生じ る よ う な大き さ にはなら ない。 なお、 上述し た方法で屈折 率のマッ チングを行なえ ば、 当然、 こ のずれは解消さ れ る 。
本発明によ れば、 製造が難し く 高価な大サイ ズのレ ー ザ結晶を 使用し なく と も 、 いく つかの製造が容易で安価 な 小サイ ズのレ ーザ結晶を 用いて 同等のレ ーザ出力が得 ら れる の で 、 高出力の 固体レ ーザ発振装 Sの製造原価を 低く 抑える こ と が出来る 。

Claims

請 求 の 範 囲
1 . 共振器内でレ ーザ光を発振し て 出力する 固体レ ーザ 発振装置であっ て 、
前記共振器內に、 隣合う レ ーザ結晶間に相互のォプテ ィ カ ルコ ンタ ク ト が保たれる よ う に、 前記共振器の光軸 に沿っ て並んで配置さ れた複数のレ ーザ結晶と 、
前記複数のレ ーザ結晶にポンビ ング を行なう 励起手段 と を備えた、 固体レ ーザ発振装置。
2 . 前記隣合う レ ーザ結晶は、 直接面接触し 合っ て配置 さ れている 、 請求の範囲第 1 項に記載の固体レ ーザ発振 装置。
3 . 前記隣合う レ ーザ結晶は、 狭いギャ ッ プを挟んで相 互に向い合っ て配置さ れている 、 請求の範囲第 1 項に記 載の固体レ一ザ発振装置。
4 . 前記隣合う レ ーザ結晶間に低光吸収率の材料が介在 し ている 、 請求の範囲第 3 項に記載の 固体レ ーザ発振装 置。
5 . 前記低光吸収率の材料の屈折率は、 前記レ ーザ結晶 の屈折率と ほぼ等し い、 請求の範囲第 4 項に記載の 固体 レ ーザ発振装置。
6 . 前記複数のレ ーザ結晶の内、 両端に位置する レ ーザ 結晶の外側端面が 、 励起さ れたレ ーザ光の進行方向に対 し てほぼプリ ユ ース タ 条件を満たす角度を 以て傾斜し て いる 、 請求の範囲第 5 項に記載の 固体レ ーザ発振装置。
7 . 前記隣合う レ ーザ結晶は、 低光吸収率の接着剤で結 合さ れている 、 請求の範囲第 3 項に記載の固体レ ーザ発 振装置。
8 . 前記接着剤の屈折率は、 前記レ ーザ結晶の屈折率と ほぼ等し い、 請求の範囲第 7 項に記載の固体レ ーザ発振 装置。
9 . 前記複数のレ ーザ結晶の内、 両端に位置する レ ーザ 結晶の外側端面が、 励起さ れたレ 一ザ光の進行方向に対 し てほぼプリ ユ ー ス タ 条件を満たす角度を 以て傾斜し て いる 、 請求の範囲第 8 項に記載の固体レ ーザ発振装置。
1 0 . 前記複数のレ ーザ結晶の各端面が、 励起さ れたレ 一ザ光の進行方向に対し てほぼプリ ユ ー ス タ 条件を満た す角度を 以て傾斜し ている 、 請求の範囲第 1 項から 第 4 項及び第 7 項のいずれかに記載の固体レ ーザ発振装置。
PCT/JP1997/000260 1996-02-02 1997-02-03 Oscillateur laser transistorise WO1997028585A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97901823A EP0820129A4 (en) 1996-02-02 1997-02-03 TRANSISTORIZED LASER OSCILLATOR
US08/930,345 US6055263A (en) 1996-02-02 1997-02-03 Solid-state laser oscillating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/39092 1996-02-02
JP8039092A JPH09214024A (ja) 1996-02-02 1996-02-02 固体レーザ発振装置

Publications (1)

Publication Number Publication Date
WO1997028585A1 true WO1997028585A1 (fr) 1997-08-07

Family

ID=12543445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000260 WO1997028585A1 (fr) 1996-02-02 1997-02-03 Oscillateur laser transistorise

Country Status (4)

Country Link
US (1) US6055263A (ja)
EP (1) EP0820129A4 (ja)
JP (1) JPH09214024A (ja)
WO (1) WO1997028585A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813285B2 (en) * 1999-06-21 2004-11-02 Litton Systems, Inc. Q-switched microlaser
US20020186455A1 (en) * 2001-06-06 2002-12-12 Ketteridge Peter A. Optical composite ion/host crystal gain elements
JP2003023194A (ja) * 2001-07-05 2003-01-24 Japan Atom Energy Res Inst 固体レーザー増幅器
AU2002365559A1 (en) * 2001-11-21 2003-06-10 General Atomics Laser containing a distributed gain medium
US7979694B2 (en) * 2003-03-03 2011-07-12 Cisco Technology, Inc. Using TCP to authenticate IP source addresses
JP2005208557A (ja) * 2003-12-25 2005-08-04 Arisawa Mfg Co Ltd 反射型スクリーン
JP2006237540A (ja) * 2004-03-30 2006-09-07 Ricoh Co Ltd 半導体レーザ励起固体レーザ装置
US7630423B2 (en) * 2005-04-12 2009-12-08 Raytheon Company Glaze soldered laser components and method of manufacturing
JP2011233591A (ja) * 2010-04-23 2011-11-17 V Technology Co Ltd 光学ガラスロッド、光学ガラスロッドの製造方法及びレーザ発生装置
US9160136B1 (en) * 2014-05-30 2015-10-13 Lee Laser, Inc. External diffusion amplifier
US9742145B1 (en) 2016-12-01 2017-08-22 National Tsing Hua University Off-axis zigzag parametric oscillator
CN113540939A (zh) * 2021-07-05 2021-10-22 苏州英谷激光有限公司 一种双端泵浦高功率激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502492A (ja) * 1973-05-07 1975-01-11
JPS51128292A (en) * 1975-05-01 1976-11-09 Toshiba Corp Laser oscillator
JPH03145776A (ja) * 1989-10-31 1991-06-20 Hoya Corp スラブ型レーザ媒体
JPH05291654A (ja) * 1992-04-15 1993-11-05 Tokin Corp 固体レーザロッド
JPH07288352A (ja) * 1994-01-27 1995-10-31 Trw Inc 多形態結晶及びその製造装置
JPH08111552A (ja) * 1994-10-12 1996-04-30 Hitachi Ltd 固体レーザ発振器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173738A (en) * 1977-02-18 1979-11-06 Owens-Illinois, Inc. Solid state laser amplifier having two output wavelengths
US4125816A (en) * 1977-02-18 1978-11-14 Owens-Illinois, Inc. Solid state laser having two output wavelengths
US4507787A (en) * 1982-09-28 1985-03-26 Quantronix Corporation Segmented YAG laser rods and methods of manufacture
JPH04233290A (ja) * 1990-12-28 1992-08-21 Hoya Corp 固体レーザ装置
JP3132576B2 (ja) * 1991-05-14 2001-02-05 富士電機株式会社 スラブ形固体レーザ装置
US5321711A (en) * 1992-08-17 1994-06-14 Alliedsignal Inc. Segmented solid state laser gain media with gradient doping level
US5289482A (en) * 1992-12-30 1994-02-22 The United States Of America As Represented By The Secretary Of The Navy Intracavity-pumped 2.1 μm Ho3+ :YAG laser
US5808793A (en) * 1996-01-17 1998-09-15 Hewlett-Packard Company Low-cost compact optical isolators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502492A (ja) * 1973-05-07 1975-01-11
JPS51128292A (en) * 1975-05-01 1976-11-09 Toshiba Corp Laser oscillator
JPH03145776A (ja) * 1989-10-31 1991-06-20 Hoya Corp スラブ型レーザ媒体
JPH05291654A (ja) * 1992-04-15 1993-11-05 Tokin Corp 固体レーザロッド
JPH07288352A (ja) * 1994-01-27 1995-10-31 Trw Inc 多形態結晶及びその製造装置
JPH08111552A (ja) * 1994-10-12 1996-04-30 Hitachi Ltd 固体レーザ発振器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0820129A4 *

Also Published As

Publication number Publication date
US6055263A (en) 2000-04-25
JPH09214024A (ja) 1997-08-15
EP0820129A1 (en) 1998-01-21
EP0820129A4 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US6111900A (en) Solid-state laser apparatus and method with second harmonic wave features
JP2682881B2 (ja) 突き合わせ連結された単横モード励起レーザ
US7729392B2 (en) Monoblock laser with reflective substrate
US20070264734A1 (en) Solid-state laser device and method for manufacturing wavelength conversion optical member
WO1997028585A1 (fr) Oscillateur laser transistorise
JPS62262480A (ja) レ−ザ装置
EP2475054A1 (en) Collinearly pumped multiple thin disk active medium and its pumping scheme
JPH065963A (ja) 周波数2倍化固体レーザ
JPH08213689A (ja) 固体レーザ媒質および固体レーザ装置
JP2007081233A (ja) レーザ発振装置
US7839904B1 (en) Monoblock laser systems and methods
JPH05335662A (ja) 固体レーザ装置
JPH0563263A (ja) 半導体レーザ励起固体レーザ装置
WO2006098313A1 (ja) 光増幅器およびレーザ装置
JPH06120586A (ja) 固体レーザ装置
WO1998034305A1 (fr) Oscillateur laser
US20080020083A1 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
JP4627213B2 (ja) レーザ光源
JP3100948B2 (ja) 固体レーザ発振装置
JPH0537052A (ja) 半導体レーザ励起固体レーザ装置
JP2004296706A (ja) 光共振器及びレーザ発振器
JP2542576B2 (ja) 固体レ−ザ発振装置
JPH11284253A (ja) Ld励起固体レーザ発振装置
JP3481553B2 (ja) 固体スラブレーザ装置
JPH07307507A (ja) 固体レーザ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08930345

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997901823

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997901823

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997901823

Country of ref document: EP