WO1997027494A1 - Delay time measuring method and pulse generator for measuring delay time for use in said measuring method - Google Patents

Delay time measuring method and pulse generator for measuring delay time for use in said measuring method Download PDF

Info

Publication number
WO1997027494A1
WO1997027494A1 PCT/JP1997/000154 JP9700154W WO9727494A1 WO 1997027494 A1 WO1997027494 A1 WO 1997027494A1 JP 9700154 W JP9700154 W JP 9700154W WO 9727494 A1 WO9727494 A1 WO 9727494A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
delay time
signal path
pulse
loop
Prior art date
Application number
PCT/JP1997/000154
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiko Baba
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to GB9720222A priority Critical patent/GB2316493A/en
Priority to DE19780113T priority patent/DE19780113T1/en
Publication of WO1997027494A1 publication Critical patent/WO1997027494A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • G01R31/3016Delay or race condition test, e.g. race hazard test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/3193Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
    • G01R31/31937Timing aspects, e.g. measuring propagation delay

Definitions

  • the present invention generally relates to a delay time measuring method suitable for use in measuring a delay time of a signal transmitted through each signal path in an apparatus having a plurality of signal paths.
  • a delay time measuring method for measuring the delay time of each signal path with the signal path being almost the same as or close to the actual operation state and measuring the delay time of this signal path, and the delay time measurement used for implementing this method BACKGROUND OF THE INVENTION 1.
  • an IC test apparatus for testing various semiconductor integrated circuits (hereinafter referred to as Ic) for testing various semiconductor integrated circuits (hereinafter referred to as Ic)
  • Ic semiconductor integrated circuits
  • a test signal of a predetermined pattern is applied to each input terminal of an IC under test (IC under test).
  • the response output signal is compared with the expected value signal, and a failure (FAIL) signal is generated each time the two signals do not match.
  • FAIL failure
  • the I under test is Therefore, the IC test apparatus is provided with at least the number of test signal supply paths, ie, signal paths, equal to the number of input terminals of the IC under test.
  • the signal path of channel 100 it is configured to test a large number of ICs under test, such as 16, 32, and 64, so that a large number of ICs can be tested in a short time. Therefore, in practice, the signal path of channel 100 Incidentally, the phase of the test signal of a predetermined pattern given to each input terminal of the IC under test needs to be adjusted to the intended phase according to the purpose of the test. For this purpose, the delay time in the signal path of each test signal must be given as a known value, and preferably, the signal paths of all test signals have the same delay time ( s ). Therefore, conventionally, in the field of IC test equipment, measuring the delay time of each test signal supply path is regularly performed, and the variation of the delay time is measured based on the measurement result. To get the same delay time Cleaning work is also underway.
  • IC test equipment not only IC test equipment, but also electronic devices and integrated circuit devices that are configured to supply signals (pulses) such as clock signals to subsequent circuits or elements (components) through each of a plurality of signal paths.
  • signals pulses
  • the delay time of a signal propagating through each signal path is measured, and based on the measurement result. Therefore, it is necessary to perform an adjustment operation for eliminating the variation of the delay time to make the same delay time, and an operation for adjusting the delay time so that the signal is supplied to a subsequent circuit or element with a predetermined phase.
  • the work of adjusting the delay time so as to eliminate the variation in the delay time of each signal path and the work of adjusting the delay time so that a signal is supplied at a predetermined phase are generally called skew adjustment.
  • FIG. 3 shows a circuit configuration in which the delay time measuring device 20 used for carrying out this delay time measuring method is connected to one signal path 10.
  • each signal path 10 is composed of a signal path 11 in which a plurality of logic elements are cascade-connected, and a variable delay means 12 inserted in the signal path.
  • the variable delay means 12 is provided for adjusting the delay time of the signal path 10.
  • This signal path 10 can be regarded as one of a plurality of signal paths for supplying a clock signal (timing signal) from the timing signal generator to the device under test, for example, in various measuring apparatuses.
  • the IC test apparatus it can be regarded as one of a plurality of signal paths for supplying a test signal of a predetermined pattern from the pattern generator to the IC under test.
  • a delay time measuring device 20 is connected to the input terminal 14 of the signal path 10.
  • the output terminal 13 of the signal path 10 is connected to the delay time measuring device 20 via the connection line 21, and the signal path 10 ⁇ the output terminal 13 ⁇ the connection line 21 ⁇ the delay time measuring device 20 ⁇
  • a loop of the input end 14 of the signal path 10 is formed.
  • the delay time measuring device 20 includes a start pulse generator 22 that supplies a start pulse ST for loop oscillation to the signal iTO10, and a counter 23 that measures the period of the pulse circulating in the loop. ing. Next, a delay time measuring method will be described.
  • the start pulse ST When one start pulse ST is input to the input terminal 14 of the signal path 10 from the start pulse generator 22, the start pulse ST is output to the output terminal 13 after a delay time ⁇ seconds generated by the signal path 10 has elapsed. Assuming that the delay time of the connection path 21 is sufficiently smaller than the delay time of the signal path S 10 and can be ignored, the pulser s ′ which has propagated through the signal path 10 to the input terminal 14 after ⁇ seconds is fed back. The returned pulse is output again at the output terminal 13 of the signal path 10 a second later, and is returned to the input terminal 14 again.
  • Loop circuit including a signal path 10 by the repetition as shown in FIG. 4, a loop oscillation state having a period of delay time ⁇ with the signal path 10 force 5 '.
  • the counter 23 measures the cycle of the loop oscillation signal P LO and obtains the delay time ⁇ of the signal path 10.
  • the delay time ⁇ of the signal path 10 is short, and the frequency of the loop oscillation signal PLO is close to the frequency of the actual operation of the signal path 10 (hereinafter referred to as actual operation). With frequency, it is possible to measure a delay time that is quite close to the delay time of the signal path during actual operation.
  • various measuring devices, IC (MOS ⁇ IC) of MOS structure in the circuit such as a test device, in particular CMOS ( There is a tendency to make heavy use of complementary MOS (IC) structure ICs.
  • CMOS-structured ICs have the advantage that they consume much less power and can be more compact, so they can be made smaller, which is convenient in this respect.
  • the signal path circuit constituted by 1 C having the 105 ⁇ 105 structure has a relatively long signal propagation delay time. Therefore, when the signal path 10 as described above is constituted by an IC having a CMOS structure, When the above-described conventional delay time measuring method is applied to measure the delay time ⁇ and the loop circuit including the signal path 10 is loop-oscillated, the loop oscillation frequency becomes a relatively low frequency.
  • the frequency of the test signal is as high as about 100 MHz. Is set to For this reason, a large difference force s occurs between the frequency of the loop oscillation and the frequency of the actual operation.
  • Another disadvantage of the IC of the CMOS structure is that power consumption varies depending on the operation speed because it has a characteristic of consuming power only when the state of the active element is inverted. For example, when the signal path 10 operating at 10 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ at the time of operation is loop-oscillated at 1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ which is the 1/10 frequency, and the delay time is measured. In other words, the temperature inside the IC is different from that during actual operation because the power consumption is different between 10 ⁇ ⁇ ⁇ ⁇ and 1 ⁇ ⁇ ⁇ ⁇ . Since the IC delay time ⁇ of the CMOS structure changes depending on the internal temperature of the IC, there is a disadvantage that a correct delay time during actual operation cannot be measured. Disclosure of the invention
  • a first object of the present invention is to provide a delay time measuring method capable of measuring a delay time substantially equal to a delay time of a signal path in an actual operation state.
  • a second object of the present invention is to provide a pulse generator for measuring a delay time used for implementing the above-described method for measuring a delay time according to the present invention.
  • a loop oscillation circuit including a signal path for measuring a delay time is configured, and when the signal path is in an actual operation state within a cycle of a loop oscillation signal of the loop oscillation circuit.
  • a signal having a frequency equal to or close to the frequency of a signal propagating through this signal path is inserted into the signal path, and the above-described loop signal and a signal inserted within the cycle of the loop oscillation signal are propagated through the signal path.
  • the signal path is set to substantially the same state as the actual operation state, the loop oscillation signal of the loop oscillation circuit is taken out, the cycle is measured, and the measured cycle is set as the delay time of the signal path.
  • a method is provided for achieving the first objective.
  • the above-mentioned circuit is constituted by an IC having a CMOS structure. It is, within the period of the loop oscillation signal substantially equal interpolated pulse power to the frequency of the signal which the signal path to propagate the signal path to the actual operating conditions near Rutoki? Is ⁇ input.
  • the counting means when the number of interpolation pulses inserted in the cycle of the loop oscillation signal is set in the storage means in advance and the counting means counts one more interpolation pulse than the set number of interpolation pulses, the counting means generates an output signal, and measures the delay time of the signal path from the period of the output signal of the counting means.
  • a start pulse generator for generating a start pulse for causing a loop oscillation circuit including a signal path whose delay time is to be measured to oscillate in a loop, and in synchronization with the loop oscillation signal of the loop oscillation circuit
  • a synchronous oscillation that oscillates and oscillates a pulse signal having a frequency equal to or close to the frequency of the pulse signal propagating through the signal path when the signal path is in an actual operation state within the cycle of the loop oscillation signal.
  • a circuit a storage means for storing the number of pulses signal oscillating in a cycle of the synchronous oscillator power?
  • the synchronizing oscillation circuit of a pulse signal that oscillates in a circumferential phase of the loop oscillator signal A counter for counting the number of pulses, and counting the number of pulse signals oscillated in the cycle of the loop oscillation signal by the number stored in the storage means by the power counter.
  • the gate means for stopping the oscillation of the synchronous oscillation circuit, the loop oscillation signal propagating along the signal path and fed back, and the period of the loop oscillation signal
  • a pulse extracting means for extracting only the loop oscillation signal from the pulse train composed of the pulse signal oscillated in the step, and returning the counter to an initial state by the loop oscillation signal extracted by the pulse extracting means;
  • a control means for restarting the oscillation of the oscillation circuit.
  • a pulse generation device for delay time measurement used to carry out the delay time measurement method is provided, and the second object is achieved.
  • the signal path whose delay time is to be measured is substantially the same as the actual operation state, and the delay time of the signal path is measured in the same operation state as the actual operation state. . Therefore, a correct delay time substantially equal to the delay time in the actual operation state of the signal path can be obtained.
  • the pulse generator for measuring delay time of the present invention a relatively simple The signal path can be brought into the same state as the actual operation state by the circuit configuration. Therefore, the implementation of the delay time measuring method according to the present invention is facilitated.
  • FIG. 1 is a block diagram showing a circuit configuration of a delay time measuring pulse generator used for carrying out the delay time measuring method according to the present invention. .
  • FIG. 2 is a timing chart for explaining the operation of the delay time measuring pulse generator shown in FIG.
  • FIG. 3 is a block diagram showing a circuit configuration of a delay time measuring device used for implementing the conventional delay time measuring method.
  • Figure 4 is the best mode for carrying out the c invention is a timing Chiya one bets for explaining the operation of the delay time measuring device shown in FIG. 3
  • each signal path 10 has a signal path in which a plurality of logic elements are connected in cascade and a variable delay means inserted in this signal path.
  • each signal i 0 can be regarded as one of a plurality of signal paths for supplying a timing signal from a timing signal generator to a device under test in various measurement circuits, and in an IC test apparatus, It can be regarded as one of a plurality of signal paths for supplying a test signal of a predetermined pattern from the pattern generator to the IC under test.
  • a pulse generator 30 for delay time measurement is connected to the input terminal 14 of the signal path 10 and the signal path 10 has the same frequency as that of the signal propagating during actual operation. Supply a pulse with a frequency close to it.
  • the signal path 10 Since the output terminal 13 of the signal path 10 is connected to the delay time measuring pulse generator 30 by the connection path 21, the signal path 10 ⁇ the output terminal 13 ⁇ the connection path 2 1—delay A loop consisting of a pulse generator for delay time measurement 30 ⁇ an input terminal 14 of the signal path 10 is formed.
  • the pulse generator for delay time measurement 30 includes a start pulse generator 35 for generating a start pulse ST for loop oscillation, and a counter 41 for receiving a loop oscillation signal PLO fed back through the connection path 21. , and that the counter 4 1 and the control hand stage 4 2 for controlling is supplied to the connection path 2 1 loop oscillation signal PLO force s' non-inverting input is fed back through the output of the counter 4 1 is supplied to the inverting input Gate 31; storage means 38 for storing the number of interpolation pulses PI that can be entered within the loop oscillation cycle; output of AND gate 31 and output power s of start pulse generator 35 The value of the interpolation pulse PI stored in the storage means 38 is preset in the synchronous oscillating circuit 36, the counter 39 supplied with the output power of the synchronous oscillating circuit 36, and the power counter 39. And control means 40 for .
  • the synchronous oscillating circuit 36 includes an output of the AND gate 31, an output of the start pulse generator 35, an output of the synchronous oscillating circuit 36, an OR gate 32 supplied with a power of 5 ft, and an OR gate 32.
  • the pulse shaping circuit 33 and AND gate 34) constitute a loop oscillation circuit.
  • the frequency of the interpolation pulse PI is selected to be equal to or close to the frequency of the signal propagating through the signal path 10 in the actual operation state. Therefore, the frequency of the interpolation pulse P i may differ by the apparatus power?, Known Value.
  • the interpolation pulse PI When an interpolation pulse PI having a frequency equal to or close to the frequency of the signal transmitted on the signal path 10 in the actual operation state is inserted within the period of the loop oscillation signal PLO, the interpolation pulse PI becomes the loop oscillation signal PL.
  • the signal propagates along the signal path 10 together with 0. Therefore, the signal path 10 is in the same state as the actual state or a state close thereto.
  • the power consumed in the signal path 10 is substantially the same as the power consumed in the actual operation, so that the temperature fluctuation of the signal 10 is also substantially the same as in the actual operation.
  • the delay time of the signal path 10 can be measured in a temperature fluctuation state substantially the same as the temperature fluctuation of the signal path 10 in the actual operation state.
  • the synchronous oscillation circuit 36 includes a return path 37 for immediately returning the pulse obtained at the output of the AND gate 34 to the OR gate 32, an OR gate 32, a pulse shaping circuit 33, and an AND gate 34.
  • the short loop circuit including the feedback path 37 generates the interpolation pulse PI having a frequency equal to or close to the frequency of the signal propagating through the signal path 10 in the actual operation state.
  • the pulse shaping circuit 33 shapes the waveform of the input pulse into a pulse having a constant pulse width, and performs an operation of amplifying the peak value of the pulse to a predetermined value.
  • the loop oscillation operation power is maintained by this amplification operation.
  • the number of interpolation pulses PI inserted in the oscillation period ⁇ of the loop oscillation circuit including the signal path 10 is stored in the storage means 38 of the pulse generator 30 for measuring delay time.
  • the oscillation cycle of the loop oscillation circuit is a force obtained by measurement.This measured value may be an approximate value.c
  • the numerical value is stored in the storage means 38.
  • Set N This value N is first preset in the counter 39 by the start pulse ST under the control of the control means 40.
  • the counter 39 counts the interpolation pulse PI, which is the oscillation output of the synchronous oscillation circuit 36, and subtracts (1 1) from the preset value N by one each time the interpolation pulse PI is input.
  • the loop oscillation signal PLO fed back from the signal path 10 through the connection path 21 is input to the control means 40 through the AND gate 31 and stored in the storage means 38 under the control of the control means 40.
  • the value N is reset to counter 39 again. Since the output of the counter 39 is returned to the H (high level) logic by the presetting of the numerical value N, the AND gate 34 is in an open (on) state (enabled state).
  • the AND gate 31 cooperates with the counter 41 and the control means 42 to perform an operation of extracting only the loop oscillation signal P L0 from the pulse train fed back through the connection path 21. That is, an operation of extracting the first pulse from a pulse train consisting of one loop oscillation signal P LO and a train of interpolation pulses PI following it is performed.
  • the counter 41 presets the numerical value N stored in the storage means 38 under the control of the control means 42 at the timing of the start pulse ST and the loop oscillation signal PLO. You. When a numerical value N is preset in the counter 41 from the storage means 38, the counter 41 becomes H logic, so that one input of the AND gate 31 is supplied with L logic which is an inverted output thereof. . Therefore, the AND gate 31 is closed, and the passage of the pulse train following the loop oscillation signal P 0 is prevented.
  • the counter 41 decrements ( ⁇ 1) the preset value N by one each time the interpolation pulse PI fed back through the connection path 21 is input.
  • the output of the counter 41 falls to L logic, and the AND gate 31 is opened. Therefore, the loop oscillation signal PLO that has been fed back passes through the AND gate 31 and is input to the control means 40 and 42, so that the counters 39 and 41 are preset.
  • the AND gate 31 is returned to the closed state, and eventually the AND gate 31 passes only the loop oscillation signal PLO.
  • the output cycle of counter 39 or 41 (Fig. 2C) By measuring the delay time, the delay time of the signal path 10 can be measured.
  • the signal path 10 Since the loop oscillation signal PLO and the interpolation pulse PI force f propagate through this signal path 10, the signal path 10 has substantially the same state as in the actual operation, and therefore, the loop oscillation signal PL shown in FIG.
  • the cycle of 0 is substantially the same as the delay time of the signal path 10 in the actual operation. That is, the correct delay time of the signal path 10 can be measured.
  • the AND gate 34 is controlled by the counter 39 and the control means 40.
  • a counter 41 and a control means 42 are provided to provide the AND gate 31.
  • the counter 39 and the control means 40 may be shared without providing the counter 41 and the control means 42 separately.
  • a synchronous oscillator of another type or configuration may be used, in which the synchronous oscillation circuit 36 is a loop oscillation circuit.
  • the propagation delay time of the signal path is long. Since the delay time of the signal path is measured by inserting an interpolation pulse with a frequency equal to or close to the frequency of the propagating signal into the loop oscillation cycle, the signal path operates with almost the same power consumption as in the actual operation. And the temperature fluctuations are also substantially the same. As a result, even if the signal path is largely affected by temperature fluctuations, as in the case where the signal path is composed of CMOS-structured ICs, the signal path (IC chip) is at almost the same temperature state as in actual operation. Since the delay time is measured, the remarkable advantage that the correct delay time without error can be measured is obtained.

Abstract

A method for accurately measuring the delay time of a signal path (10) constituted by an IC of a CMOS structure in a state which is the same as, or approximate to, the actual operation state. A loop oscillation circuit including the signal path (10) is constittuted, and is brought into a loop oscillation state by feeding a start pulse ST to the circuit. An interpolation pulse P1 having a frequency which is the same as, or approximate to, the frequency of the pulse signal propagated with the signal path is in an actual operation state, is inserted, this interpolation pulse P1 and the loop oscillation signal PLO are fed to the signal path, and the signal path is brought into the substantially same temperature state as that of the actual operation state. The cycle of the loop oscillation signal PLO is measured under this state so as to measure the delay time of the signal path.

Description

明 細 書 遅延時間測定方法及びこの方法の実施に使用する遅延時間測定用パルス発生装置 技術分野  Description: Delay time measuring method and delay time measuring pulse generator used for implementing this method
この発明は、 一般的には、 複数の信"^路を持つ装置において各信号経路を伝 搬する信号の遅延時間を測定する際に適用して好適な遅延時間測定方法に関し、 詳しく言うと、 各信号経路を実際の動ィ ^態と殆ど同じ状態又はそれに近い状態 にしてこの信号経路の遅延時間を測定するようにした遅延時間測定方法及びこの 方法を実施するために使用される遅延時間測定用パルス発生装置に関する。 背景技術  The present invention generally relates to a delay time measuring method suitable for use in measuring a delay time of a signal transmitted through each signal path in an apparatus having a plurality of signal paths. A delay time measuring method for measuring the delay time of each signal path with the signal path being almost the same as or close to the actual operation state and measuring the delay time of this signal path, and the delay time measurement used for implementing this method BACKGROUND OF THE INVENTION 1. Field of the Invention
例えば各種の半導体集積回路 (以下、 I cと称す) を試験する I C試験装置 (一般に I Cテスタと呼ばれる) においては試験を受ける I C (被試験 I C ) の 各入力端子に所定のパターンの試験信号を印加し、 その応答出力信号を期待値信 号と比較して両信号が一致しないときごとに不良(FAIL)信号を発生し、 発生され た不良信号に基づいて被試験 I (:カ不良であるか否かを判定している。 従って、 I C試験装置には少なくとも被試験 I Cの入力端子の数に等しい数の試験信号の 供給経路、 即ち、 信号経路が設けられている。 I C試験装置は同時に 1 6個、 3 2個、 6 4個のような多数個の被試験 I Cの試験を実施できるように構成されて おり、 短時間に多量の I Cを試験することができるようになっている。 従って、 実際には数 1 0 0チャンネルの信号経路が I C試験装置に設けられている。 ところで、 被試験 I Cの各入力端子に与えられる所定のパターンの試験信号の 位相は、 試験の目的に応じて意図された位相に調整されている必要がある。 この ためには、 各試験信号の信号経路における遅延時間が既知の値として与えられて いなければならない。 さらに、 望ましくは全ての試験信号の信号経路は遅延時間 力 s揃っている (同一である) ことが要求される。 従って、 従来より、 I C試験装 置の分野では各試験信号供給経路の遅延時間を測定することが定期的に行われて おり、 測定結果に基づいて遅延時間のバラツキを無く して同じ遅延時間にする調 整作業も行われている。 For example, in an IC test apparatus (generally called an IC tester) for testing various semiconductor integrated circuits (hereinafter referred to as Ic), a test signal of a predetermined pattern is applied to each input terminal of an IC under test (IC under test). The response output signal is compared with the expected value signal, and a failure (FAIL) signal is generated each time the two signals do not match. Based on the generated failure signal, the I under test is Therefore, the IC test apparatus is provided with at least the number of test signal supply paths, ie, signal paths, equal to the number of input terminals of the IC under test. It is configured to test a large number of ICs under test, such as 16, 32, and 64, so that a large number of ICs can be tested in a short time. Therefore, in practice, the signal path of channel 100 Incidentally, the phase of the test signal of a predetermined pattern given to each input terminal of the IC under test needs to be adjusted to the intended phase according to the purpose of the test. For this purpose, the delay time in the signal path of each test signal must be given as a known value, and preferably, the signal paths of all test signals have the same delay time ( s ). Therefore, conventionally, in the field of IC test equipment, measuring the delay time of each test signal supply path is regularly performed, and the variation of the delay time is measured based on the measurement result. To get the same delay time Cleaning work is also underway.
I C試験装置に限らず、 複数の信号経路のそれぞれを通じて、 例えばクロック 信号のような信号 (パルス) を後段の回路或いは素子 (部品) に供給するように 構成されている電子装置や集積回路装置においても、 或いは同じく複数の信号経 路を有する I C以外の他の電子部品や素子を する試験装置や各種の測定装置 においても、 各信号経路を伝搬する信号の遅延時間を測定し、 測定結果に基づい て遅延時間のバラツキを無く して同じ遅延時間にする調整作業や、 所定の位相で 信号が後段の回路或いは素子に供給されるように遅延時間を調整する作業を行う 必要がある。  Not only IC test equipment, but also electronic devices and integrated circuit devices that are configured to supply signals (pulses) such as clock signals to subsequent circuits or elements (components) through each of a plurality of signal paths. Also, in a test device or various measuring devices for other electronic components and elements other than an IC having a plurality of signal paths, the delay time of a signal propagating through each signal path is measured, and based on the measurement result. Therefore, it is necessary to perform an adjustment operation for eliminating the variation of the delay time to make the same delay time, and an operation for adjusting the delay time so that the signal is supplied to a subsequent circuit or element with a predetermined phase.
このように各信号経路の遅延時間のバラツキを無く して同じ遅延時間に調整す る作業や所定の位相で信号が供給されるように遅延時間を調整する作業を一般に スキュー調整と呼んでいる。  The work of adjusting the delay time so as to eliminate the variation in the delay time of each signal path and the work of adjusting the delay time so that a signal is supplied at a predetermined phase are generally called skew adjustment.
従来の遅延時間測定方法の一例を図 3を参照して説明する。 図 3はこの遅延時 間測定方法を実施するために使用された遅延時間測定装置 2 0を 1つの信号経路 1 0に接続した回路構成を示す。 一般に、 各信号経路 1 0は複数個の論理素子を 縦続接続した信号路 1 1とこの信号路中に挿入された可変遅延手段 1 2とから構 成されている。 なお、 可変遅延手段 1 2は信号経路 1 0の遅延時間を調整するた めに設けられている。 この信号経路 1 0は、 各種の測定装置においては、 例えば タイミング信号発生部から被測定デバイスにクロック信号 (タイミング信号) を 供給する複数の信号経路の 1つとみなすことができる。 また、 I C試験装置にお いては、 パターン発生器から所定のパターンの試験信号を被試験 I Cに供給する 複数の信号経路の 1つとみなすことができる。  An example of a conventional delay time measuring method will be described with reference to FIG. FIG. 3 shows a circuit configuration in which the delay time measuring device 20 used for carrying out this delay time measuring method is connected to one signal path 10. In general, each signal path 10 is composed of a signal path 11 in which a plurality of logic elements are cascade-connected, and a variable delay means 12 inserted in the signal path. The variable delay means 12 is provided for adjusting the delay time of the signal path 10. This signal path 10 can be regarded as one of a plurality of signal paths for supplying a clock signal (timing signal) from the timing signal generator to the device under test, for example, in various measuring apparatuses. Further, in the IC test apparatus, it can be regarded as one of a plurality of signal paths for supplying a test signal of a predetermined pattern from the pattern generator to the IC under test.
信号経路 1 0の遅延時間を測定するために信号経路 1 0の入力端 1 4に遅延時 間測定装置 2 0を接続する。 信号経路 1 0の出力端 1 3は接続路 2 1によって遅 延時間測定装置 2 0に接続されており、 信号経路 1 0→その出力端 1 3→接続路 2 1→遅延時間測定装置 2 0→信号経路 1 0の入力端 1 4というループが形成さ れる。 遅延時間測定装置 2 0は、 信号 iTO l 0にループ発振用のスタートパルス S Tを供給するスタートパルス発生器 2 2と、 上記ループを周回するパルスの周 期を計測するカウンタ 2 3とによって構成されている。 次に、 遅延時間測定方法について説明する。 信号経路 10の入力端 14にスタ ―トパルス発生器 22からスタートパルス STを 1個入力すると、 このスタート パルス STは信号経路 10によって生じる遅延時間 τ秒経過後に出力端 13に出 力される。 接続路 21の遅延時間が信^ S路 10の遅延時間と比較して充分小さ く、 無視できるものとすると、 τ秒後に入力端 14に信号経路 10を伝搬したパ ルスカ s '帰還される。 帰還されたパルスは再びて秒後に信号経路 10の出力端 13 に出力され、 入力端 1 4に再帰還される。 この繰り返しによって信号経路 10を 含むループ回路は、 図 4に示すように、 信号経路 10力5'持つ遅延時間 τを周期と するループ発振状態となる。 カウンタ 23はループ発振信号 P LOの周期を計測 し、 信号経路 10の遅延時間 τを求める。 In order to measure the delay time of the signal path 10, a delay time measuring device 20 is connected to the input terminal 14 of the signal path 10. The output terminal 13 of the signal path 10 is connected to the delay time measuring device 20 via the connection line 21, and the signal path 10 → the output terminal 13 → the connection line 21 → the delay time measuring device 20 → A loop of the input end 14 of the signal path 10 is formed. The delay time measuring device 20 includes a start pulse generator 22 that supplies a start pulse ST for loop oscillation to the signal iTO10, and a counter 23 that measures the period of the pulse circulating in the loop. ing. Next, a delay time measuring method will be described. When one start pulse ST is input to the input terminal 14 of the signal path 10 from the start pulse generator 22, the start pulse ST is output to the output terminal 13 after a delay time τ seconds generated by the signal path 10 has elapsed. Assuming that the delay time of the connection path 21 is sufficiently smaller than the delay time of the signal path S 10 and can be ignored, the pulser s ′ which has propagated through the signal path 10 to the input terminal 14 after τ seconds is fed back. The returned pulse is output again at the output terminal 13 of the signal path 10 a second later, and is returned to the input terminal 14 again. Loop circuit including a signal path 10 by the repetition, as shown in FIG. 4, a loop oscillation state having a period of delay time τ with the signal path 10 force 5 '. The counter 23 measures the cycle of the loop oscillation signal P LO and obtains the delay time τ of the signal path 10.
上記従来の遅延時間測定方法においては、 信号轻路 10の遅延時間 τが短く、 ループ発振信号 P LOの周波数が信号経路 10の実際の動作 (以下、 実動作と称 す) 時の周波数に近い周波数であれば、 実動作時の信号経路の遅延時間にかなり 近い遅延時間を測定することができる。 しかしな力 sら、 最近の傾向として小型化 と低消費電力化が'要求されることから、 各種の測定装置、 試験装置等の回路には MOS構造の I C (MOS · I C) 、 特に CMOS (相補形 MO S) 構造の I C を多用する傾向がある。 CMOS構造の I Cは電力消費量がかなり少なく、 しか も集積度を高めることができるので小型化できるという利点があり、 この点では 都合がよい。 In the above conventional delay time measurement method, the delay time τ of the signal path 10 is short, and the frequency of the loop oscillation signal PLO is close to the frequency of the actual operation of the signal path 10 (hereinafter referred to as actual operation). With frequency, it is possible to measure a delay time that is quite close to the delay time of the signal path during actual operation. But force s et al., Since the miniaturization and low power consumption 'is required as a recent trend, various measuring devices, IC (MOS · IC) of MOS structure in the circuit, such as a test device, in particular CMOS ( There is a tendency to make heavy use of complementary MOS (IC) structure ICs. CMOS-structured ICs have the advantage that they consume much less power and can be more compact, so they can be made smaller, which is convenient in this respect.
しかしながら、 〇\105構造の1 Cによって構成された信号路ゃ回路は信号の 伝搬遅延時間が比較的長くなるため、 上記したような信号経路 10を CMOS構 造の I Cによって構成した場合には、 遅延時間 τを計測するために上記従来の遅 延時間測定方法を適用してこの信号経路 10を含むループ回路をル一プ発振させ ると、 そのループ発振周波数は比較的低い周波数となる。  However, the signal path circuit constituted by 1 C having the 105 \ 105 structure has a relatively long signal propagation delay time. Therefore, when the signal path 10 as described above is constituted by an IC having a CMOS structure, When the above-described conventional delay time measuring method is applied to measure the delay time τ and the loop circuit including the signal path 10 is loop-oscillated, the loop oscillation frequency becomes a relatively low frequency.
一例として、 I C試験装置において所定のパターンの試験信号の波形発生から その試験信号を被試験 I Cの端子に供^ "Τるまでの回路を CMO S構造の Iじで 構成した場合、 その遅延時間は約 100η s程度となる。 遅延時間が 100 n s であると、 ループ発振周波数は l/100 n s=10MHzとなる。  As an example, if a circuit from the generation of a test signal waveform of a predetermined pattern in the IC test equipment to the supply of the test signal to the terminal of the IC under test is composed of a CMOS structure, the delay time Is about 100 η s If the delay time is 100 ns, the loop oscillation frequency is l / 100 ns = 10 MHz.
一方、 I C試験装置では試験信号の周波数は約 100MH z程度の高い周波数 に設定される。 このために、 ループ発振の周波数と実動作時の周波数との間に大 きな違い力 s生じる。 On the other hand, in IC test equipment, the frequency of the test signal is as high as about 100 MHz. Is set to For this reason, a large difference force s occurs between the frequency of the loop oscillation and the frequency of the actual operation.
各種の測定装置や電子装置においても、 例えば高周波数のタイミング (クロッ ク) 信号を使用する場合には、 このタイミング信号力 5'供給される信号経路を C M O S構造の I Cで構成すると、 上記 I C試験装置の場合と同様に、 ループ発振の 周波数と実動作時の周波数との間に大きな違いが生じる。 For example, when a high-frequency timing (clock) signal is used in various measuring devices and electronic devices, if the signal path to be supplied with the timing signal power 5 'is constituted by an IC having a CMOS structure, the above-described IC test is performed. As in the case of the device, there is a large difference between the loop oscillation frequency and the frequency in actual operation.
C M O S構造の I Cの他の 1つの欠点として、 能動素子の状態が反転するとき だけ電力を消費する特質を持つことから、 動作速度に応じて電力消費量が変化す るということが挙げられる。 例えば、 ¾ί¾作時に 1 0 Ο Μ Η ζで動作している信 号経路 1 0を、 その 1 / 1 0の周波数である 1 Ο Μ Η ζでループ発振させてその 遅延時間を測定した場合には、 I C内部の温度は、 1 0 Ο Μ Η ζと 1 Ο Μ Η ζで は電力消費量が相違するので、 実動作時とは異なる温度となる。 C MO S構造の I Cの遅延時間 τは I C内部の温度によって変化するから、 実動作時の正しい遅 延時間を測定することができないという不都合が生じる。 発明の開示  Another disadvantage of the IC of the CMOS structure is that power consumption varies depending on the operation speed because it has a characteristic of consuming power only when the state of the active element is inverted. For example, when the signal path 10 operating at 10 Ο Μ 時 に 時 に at the time of operation is loop-oscillated at 1 あ る 周波 数 周波 数 which is the 1/10 frequency, and the delay time is measured. In other words, the temperature inside the IC is different from that during actual operation because the power consumption is different between 10Ο Μ Μ ζ and 1Ο Μ Η ζ. Since the IC delay time τ of the CMOS structure changes depending on the internal temperature of the IC, there is a disadvantage that a correct delay time during actual operation cannot be measured. Disclosure of the invention
この発明の第 1の目的は、 実動作状態にある信号経路の遅延時間と実質的に同 じ遅延時間を測定することができる遅延時間測定方法を提供することである。 この発明の第 2の目的は、 上記この発明による遅延時間測定方法を実施するた めに使用される遅延時間測定用パルス発生装置を提供することである。  A first object of the present invention is to provide a delay time measuring method capable of measuring a delay time substantially equal to a delay time of a signal path in an actual operation state. A second object of the present invention is to provide a pulse generator for measuring a delay time used for implementing the above-described method for measuring a delay time according to the present invention.
この発明によれば、 遅延時間を測定すベき信号経路を含むル—プ発振回路を構 成し、 このループ発振回路のループ発振信号の周期内に、 上記信号経路が実動作 状態にあるときにこの信号経路を伝搬する信号の周波数に等しい又はそれに近い 周波数の信号を挿入し、 上記ループ発 ¾ί言号とこのループ発振信号の周期内に揷 入した信号を上記信号経路中を伝搬させて上記信号経路を実動作状態と実質的に 同じ状態にし、 上記ループ発振回路のループ発振信号を取り出してその周期を測 定し、 この測定された周期を上記信号経路の遅延時間とする遅延時間測定方法が 提供され、 上記第 1の目的は達成される。  According to the present invention, a loop oscillation circuit including a signal path for measuring a delay time is configured, and when the signal path is in an actual operation state within a cycle of a loop oscillation signal of the loop oscillation circuit. A signal having a frequency equal to or close to the frequency of a signal propagating through this signal path is inserted into the signal path, and the above-described loop signal and a signal inserted within the cycle of the loop oscillation signal are propagated through the signal path. The signal path is set to substantially the same state as the actual operation state, the loop oscillation signal of the loop oscillation circuit is taken out, the cycle is measured, and the measured cycle is set as the delay time of the signal path. A method is provided for achieving the first objective.
好ましい実施例においては、 上記信 路は C M O S構造の I Cによって構成 されており、 上記ループ発振信号の周期内には、 上記信号経路が実動作状態にあ るときにこの信号経路を伝搬する信号の周波数に実質的に等しい補間パルス力 ?揷 入される。 In a preferred embodiment, the above-mentioned circuit is constituted by an IC having a CMOS structure. It is, within the period of the loop oscillation signal substantially equal interpolated pulse power to the frequency of the signal which the signal path to propagate the signal path to the actual operating conditions near Rutoki? Is揷input.
また、 上記ループ発振信号の周期内に挿入される補間パルスの数力 s '予め記憶手 段に設定され、 この設定された数の補間パルスより 1つ多い補間パルスを計数手 段が計数すると、 この計数手段は出力信号を発生し、 この計数手段の出力信号の 周期より上記信号経路の遅延時間を測定する。  In addition, when the number of interpolation pulses inserted in the cycle of the loop oscillation signal is set in the storage means in advance and the counting means counts one more interpolation pulse than the set number of interpolation pulses, The counting means generates an output signal, and measures the delay time of the signal path from the period of the output signal of the counting means.
さらに、 この発明によれば、 遅延時間を測定すべき信号経路を含むループ発振 回路をループ発振させるためのスタートパルスを発生するスタートパルス発生器 と、 上記ループ発振回路のループ発振信号と同期して発振し、 かつ上記信号経路 が実動作状態にあるときにこの信号経路を伝搬するパルス信号の周波数に等しい 又はそれに近い周波数のパルス信号を上記ル一プ発振信号の周期内で発振する同 期発振回路と、 上記同期発振回路力 ?上記ループ発振信号の周期内で発振するパル ス信号の数を記憶する記憶手段と、 上記同期発振回路が上記ループ発振信号の周 期内で発振するパルス信号の数を計数するカウンタと、 上記力ゥンタが上記記憶 手段に記憶した数だけ上記ループ発振信号の周期内で発振されたパルス信号の数 を計数した後で、 さらに 1つのパルス信号を計数すると、 上記同期発振回路の発 振を停止させるゲ—ト手段と、 上記信号経路を伝搬して帰還する上記ループ発振' 信号及び上記ループ発振信号の周期内で発振された上記パルス信号よりなるパル ス列のから上記ループ発振信号のみを取り出すパルス取り出し手段と、 上記パル ス取り出し手段によって取り出された上記ループ発振信号により上記カウンタを 初期状態に戻し、 上記同期発振回路の発振を再開させる制御手段とを具備する、 上記遅延時間測定方法を実施するために使用される遅延時間測定用パルス発生装 置か'提供され、 上記第 2の目的は達成される。 Furthermore, according to the present invention, a start pulse generator for generating a start pulse for causing a loop oscillation circuit including a signal path whose delay time is to be measured to oscillate in a loop, and in synchronization with the loop oscillation signal of the loop oscillation circuit A synchronous oscillation that oscillates and oscillates a pulse signal having a frequency equal to or close to the frequency of the pulse signal propagating through the signal path when the signal path is in an actual operation state within the cycle of the loop oscillation signal. a circuit, a storage means for storing the number of pulses signal oscillating in a cycle of the synchronous oscillator power? the loop oscillator signal, the synchronizing oscillation circuit of a pulse signal that oscillates in a circumferential phase of the loop oscillator signal A counter for counting the number of pulses, and counting the number of pulse signals oscillated in the cycle of the loop oscillation signal by the number stored in the storage means by the power counter. Later, when one more pulse signal is counted, the gate means for stopping the oscillation of the synchronous oscillation circuit, the loop oscillation signal propagating along the signal path and fed back, and the period of the loop oscillation signal A pulse extracting means for extracting only the loop oscillation signal from the pulse train composed of the pulse signal oscillated in the step, and returning the counter to an initial state by the loop oscillation signal extracted by the pulse extracting means; And a control means for restarting the oscillation of the oscillation circuit. A pulse generation device for delay time measurement used to carry out the delay time measurement method is provided, and the second object is achieved.
上記この発明の遅延時間測定方法によれば、 遅延時間を測定すべき信号経路は 実動作状態と実質的に同じ状態となり、 この実動作状態と同じ動作状態において 信号経路の遅延時間が測定される。 従って、 信号経路の実動作状態における遅延 時間と実質的に同じである正しい遅延時間を求めることができる。  According to the delay time measuring method of the present invention, the signal path whose delay time is to be measured is substantially the same as the actual operation state, and the delay time of the signal path is measured in the same operation state as the actual operation state. . Therefore, a correct delay time substantially equal to the delay time in the actual operation state of the signal path can be obtained.
また、 上記この発明の遅延時間測定用パルス発生装置によれば、 比較的簡単な 回路構成によって信号経路を実動作状態と同じ状態にすることができる。 従つ て、 この発明による遅延時間測定方法の実施を容易にする。 図面の簡単な説明 According to the pulse generator for measuring delay time of the present invention, a relatively simple The signal path can be brought into the same state as the actual operation state by the circuit configuration. Therefore, the implementation of the delay time measuring method according to the present invention is facilitated. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明による遅延時間測定方法を実施するために使用された遅延時間 測定用パルス発生装置の回路構成を示すブロック図である。 .  FIG. 1 is a block diagram showing a circuit configuration of a delay time measuring pulse generator used for carrying out the delay time measuring method according to the present invention. .
図 2は図 1に示した遅延時間測定用パルス発生装置の動作を説明するためのタ イミングチヤ一トである。  FIG. 2 is a timing chart for explaining the operation of the delay time measuring pulse generator shown in FIG.
図 3は従来の遅延時間測定方法を実施するために使用された遅延時間測定装置 の回路構成を示すプロック図である。  FIG. 3 is a block diagram showing a circuit configuration of a delay time measuring device used for implementing the conventional delay time measuring method.
図 4は図 3に示した遅延時間測定装置の動作を説明するためのタイミングチヤ 一トである c 発明を実施するための最良の形態 Figure 4 is the best mode for carrying out the c invention is a timing Chiya one bets for explaining the operation of the delay time measuring device shown in FIG. 3
以下、 この発明の実施例について図 1及び図 2を参照して詳細に説明する c 図 1はこの発明による遅延時間測定方法を実施するために使用された遅延時間 測定用パルス発生装置 3 0を】つの信 路1 0に接続した回路構成を示す。 こ の実施例においても、 図 3に示した信 路1 0と同様に、 各信号経路 1 0は複 数個の論理素子を縦続接続した信号路とこの信号路中に挿入された可変遅延手段 とから構成されている。 また、 各信号 i 0は、 各種の測定回路においては、 例えばタイミング信号発生部から被測定デバイスにタイミング信号を供給する複 数の信号経路の 1つとみなすことができ、 また、 I C試験装置においては、 バタ ―ン発生器から所定のパターンの試験信号を被試験 I Cに供給する複数の信号経 路の 1つとみなすことができる。 Hereinafter, the delay time measurement pulse generator 3 0 which is used for c Figure 1 to implement the delay time measuring method according to the invention to be described in detail with reference to FIGS. 1 and 2 for the embodiment of the present invention 1 shows a circuit configuration connected to one signal line 10. In this embodiment, as in the case of the signal path 10 shown in FIG. 3, each signal path 10 has a signal path in which a plurality of logic elements are connected in cascade and a variable delay means inserted in this signal path. It is composed of Further, each signal i 0 can be regarded as one of a plurality of signal paths for supplying a timing signal from a timing signal generator to a device under test in various measurement circuits, and in an IC test apparatus, It can be regarded as one of a plurality of signal paths for supplying a test signal of a predetermined pattern from the pattern generator to the IC under test.
この発明による遅延時間測定方法を するために信号経路 1 0の入力端 1 4 に遅延時間測定用パルス発生装置 3 0を接続し、 信号経路 1 0に実動作時に伝搬 する信号の周波数と同じ又はそれに近い周波数のパルスを供給する。  In order to use the delay time measurement method according to the present invention, a pulse generator 30 for delay time measurement is connected to the input terminal 14 of the signal path 10 and the signal path 10 has the same frequency as that of the signal propagating during actual operation. Supply a pulse with a frequency close to it.
信号経路 1 0の出力端 1 3は接続路 2 1 によって遅延時間測定用パルス発生装 置 3 0に接続されているから、 信号経路 1 0→その出力端 1 3→接続路 2 1—遅 延時間測定用パルス発生装置 3 0→信号経路 1 0の入力端 1 4というループが'形 成される。 Since the output terminal 13 of the signal path 10 is connected to the delay time measuring pulse generator 30 by the connection path 21, the signal path 10 → the output terminal 13 → the connection path 2 1—delay A loop consisting of a pulse generator for delay time measurement 30 → an input terminal 14 of the signal path 10 is formed.
遅延時間測定用パルス発生装置 3 0は、 ループ発振用のスタートパルス S Tを 発生するスタートパルス発生器 3 5と、 接続路 2 1を通じて帰還されるループ発 振信号 P L Oが入力されるカウンタ 4 1 と、 このカウンタ 4 1 を制御する制御手 段 4 2と、 接続路 2 1を通じて帰還されるループ発振信号 P L O力 s '非反転入力に 供給され、 カウンタ 4 1の出力が反転入力に供給されるアンドゲート 3 1と、 ル —プ発振周期内に揷入できる補間パルス P Iの数を記憶する記憶手段 3 8と、 ァ ンドゲ一ト 3 1の出力とスタートパルス発生器 3 5の出力力 s供給される同期発振 回路 3 6と、 この同期発振回路 3 6の出力力供給されるカウンタ 3 9と、 この力 ゥンタ 3 9に、 記憶手段 3 8に記憶された補間パルス P Iの数値をプリセッ トす るための制御手段 4 0とから構成されている。 The pulse generator for delay time measurement 30 includes a start pulse generator 35 for generating a start pulse ST for loop oscillation, and a counter 41 for receiving a loop oscillation signal PLO fed back through the connection path 21. , and that the counter 4 1 and the control hand stage 4 2 for controlling is supplied to the connection path 2 1 loop oscillation signal PLO force s' non-inverting input is fed back through the output of the counter 4 1 is supplied to the inverting input Gate 31; storage means 38 for storing the number of interpolation pulses PI that can be entered within the loop oscillation cycle; output of AND gate 31 and output power s of start pulse generator 35 The value of the interpolation pulse PI stored in the storage means 38 is preset in the synchronous oscillating circuit 36, the counter 39 supplied with the output power of the synchronous oscillating circuit 36, and the power counter 39. And control means 40 for .
同期発振回路 3 6は、 アンドゲート 3 1の出力と、 スタートパルス発生器 3 5 の出力と、 同期発振回路 3 6の出力と力5 ft給されるオアゲート 3 2と、 このオア ゲート 3 2の出力を波形整形するパルス整形回路 3 3と、 このパルス整形回路 3 3の出力とカウンタ 3 9の出力が入力されるアンドゲ一ト 3 4とを具備し、 アン ドゲート 3 4の出力力 s信号経路 1 0の入力端 1 4に供給される。 よって、 アンド ゲ一ト 3 1及び同期発振回路 3 6は帰還ループの一部を構成するから、 信号経路 1 0、 接続路 2 1、 アンドゲート 3 1及び同期発振回路 3 6 (オアゲ—ト 3 2、 パルス整形回路 3 3及びアンドゲ—ト 3 4 ) はループ発振回路を構成する。 かく して、 スタートパルス発生器 3 5からスタートパルス S Tが同期発振回路 3 6に与えられると、 ループ発振が開始され、 図 2 Aに示すように信号経路 1 0 の遅延時間 τによつて決まる周期でループ発振信号 P L 0が上記ループを周回す るループ発振状態となる。 The synchronous oscillating circuit 36 includes an output of the AND gate 31, an output of the start pulse generator 35, an output of the synchronous oscillating circuit 36, an OR gate 32 supplied with a power of 5 ft, and an OR gate 32. A pulse shaping circuit 33 for shaping the output; and an AND gate 34 to which the output of the pulse shaping circuit 33 and the output of the counter 39 are input, and the output power s signal path of the AND gate 34 Supplied to input terminal 14 of 10. Therefore, since the AND gate 31 and the synchronous oscillation circuit 36 form a part of the feedback loop, the signal path 10, the connection path 21, the AND gate 31, and the synchronous oscillation circuit 36 (OR gate 3) 2. The pulse shaping circuit 33 and AND gate 34) constitute a loop oscillation circuit. Thus, when the start pulse ST is supplied from the start pulse generator 35 to the synchronous oscillation circuit 36, loop oscillation starts and is determined by the delay time τ of the signal path 10 as shown in FIG. 2A. The loop oscillation state in which the loop oscillation signal PL0 goes around the above-mentioned loop in a cycle.
この発明による遅延時間測定方法では、 図 2 Bに示すように、 ループ発振信号 In the delay time measuring method according to the present invention, as shown in FIG.
P L 0の周期て内に (従って、 隣接する 2つのループ発振信号 P L O間に) 補間 パルス P iを揷入する。 この補間パルス P Iの周波数は、 実動作状態にある信号 経路 1 0を伝搬する信号の周波数に等しいか又はそれに近い周波数に選定する。 従って、 補間パルス P iの周波数は装置によって異なるかも知れない力 ?、 既知の 値である。 In Te period of P L 0 (thus, between two adjacent loops oscillation signal PLO) to揷入interpolation pulse P i. The frequency of the interpolation pulse PI is selected to be equal to or close to the frequency of the signal propagating through the signal path 10 in the actual operation state. Therefore, the frequency of the interpolation pulse P i may differ by the apparatus power?, Known Value.
実動作状態にある信号経路 1 0を伝^ る信号の周波数に等しい又はそれに近 い周波数の補間パルス P Iをループ発振信号 P L Oの周期て内に挿入すると、 こ の補間パルス P Iはループ発振信号 P L 0とともに信号経路 1 0を伝搬すること になる。 このため、 信号経路 1 0は実謝乍状態と同じ状態又はそれに近い状態と なる。 その結果、 信号経路 1 0において消費される電力は実動作時に消费される 電力と実質的に同じになるから、 信号 1 0の温度変動も実動作時と実質的に 同じになる。 よって、 この発明の遅延時間測定方法によれば、 実動作状態にある 信号経路 1 0の温度変動と実質的に同じ温度変動状態において信号経路 1 0の遅 延時間を測定することができるので、 たとえ信号経路 1 0力 SC M 0 S構造の I C によって構成されていても、 実動作時の信号経路 1 0の遅延時間と実質的に同じ 正しい遅延時間を測定することができる。 When an interpolation pulse PI having a frequency equal to or close to the frequency of the signal transmitted on the signal path 10 in the actual operation state is inserted within the period of the loop oscillation signal PLO, the interpolation pulse PI becomes the loop oscillation signal PL. The signal propagates along the signal path 10 together with 0. Therefore, the signal path 10 is in the same state as the actual state or a state close thereto. As a result, the power consumed in the signal path 10 is substantially the same as the power consumed in the actual operation, so that the temperature fluctuation of the signal 10 is also substantially the same as in the actual operation. Therefore, according to the delay time measuring method of the present invention, the delay time of the signal path 10 can be measured in a temperature fluctuation state substantially the same as the temperature fluctuation of the signal path 10 in the actual operation state. be constituted by eg signal path 1 0 force IC of S CM 0 S structure, it is possible to measure the delay time of the signal path 1 0 in the actual operation is substantially the same as the correct delay time.
上記同期発振回路 3 6は、 アンドゲート 3 4の出力に得られたパルスを直ちに オアゲート 3 2に帰還させる帰遝路 3 7と、 オアゲート 3 2と、 パルス整形回路 3 3と、 アンドゲート 3 4とによって構成されるループによって同期発振回路を 構成した場合を示す。 従って、 帰還路 3 7を含む短いループ回路によって、 実動 作状態にある信号経路 1 0を伝搬する信号の周波数に等しい又はそれに近い周波 数の補間パルス P Iを発生させることになる。 なお、 パルス整形回路 3 3は入力 されたパルスの波形を一定のパルス幅のパルスに整形すると共に、 そのパルスの 尖頭値を所定の値に増幅する動作を行う。 この増幅動作によってループ発振動作 力維持される。  The synchronous oscillation circuit 36 includes a return path 37 for immediately returning the pulse obtained at the output of the AND gate 34 to the OR gate 32, an OR gate 32, a pulse shaping circuit 33, and an AND gate 34. Here, the case where the synchronous oscillation circuit is configured by the loop configured by the above is shown. Therefore, the short loop circuit including the feedback path 37 generates the interpolation pulse PI having a frequency equal to or close to the frequency of the signal propagating through the signal path 10 in the actual operation state. The pulse shaping circuit 33 shapes the waveform of the input pulse into a pulse having a constant pulse width, and performs an operation of amplifying the peak value of the pulse to a predetermined value. The loop oscillation operation power is maintained by this amplification operation.
上記遅延時間測定用パルス発生装置 3 0の記憶手段 3 8に信号経路 1 0を含む ループ発振回路の発振周期 τ内に挿入する補間パルス P Iの数を記憶する。 ルー プ 振回路の発振周期ては測定によって求める力 この測定値はおおよその値で もよレ c 発振周期 τ内に挿入する補間パルス P Iの数が Nであるとすると、 記憶 手段 3 8に数値 Nを設定する。 この数値 Nは、 制御手段 4 0の制御の下で、 スタ 一トパルス S Tによって最初にカウンタ 3 9にプリセッ トされる。 カウンタ 3 9 は同期発振回路 3 6の発振出力である補間パルス P Iを計数し、 補間パルス P I が入力される毎に、 プリセッ ト値 Nから 1ずつ減算 (一 1 ) する。 カウンタ 3 9 のプリセッ ト値 Nが 0となり、 計数した補間パルス P Iの数が記憶手段 3 8に設 定した数値 Nと一致した後で次の 1パルスを計数すると、 カウンタ 3 9の出力は L (低レベル) 論理に立ち下がる。 その結果、 アンドゲート 3 4は閉 (オフ) の 状態になるので、 同期発振回路 3 6の発振動作が一時停止される。 The number of interpolation pulses PI inserted in the oscillation period τ of the loop oscillation circuit including the signal path 10 is stored in the storage means 38 of the pulse generator 30 for measuring delay time. The oscillation cycle of the loop oscillation circuit is a force obtained by measurement.This measured value may be an approximate value.c Assuming that the number of interpolation pulses PI inserted in the oscillation cycle τ is N, the numerical value is stored in the storage means 38. Set N. This value N is first preset in the counter 39 by the start pulse ST under the control of the control means 40. The counter 39 counts the interpolation pulse PI, which is the oscillation output of the synchronous oscillation circuit 36, and subtracts (1 1) from the preset value N by one each time the interpolation pulse PI is input. Counter 3 9 When the next pulse is counted after the preset value N of the counter becomes 0 and the number of counted interpolation pulses PI matches the numerical value N set in the storage means 38, the output of the counter 39 becomes L (low level). ) Fall to logic. As a result, the AND gate 34 is closed (off), so that the oscillation of the synchronous oscillation circuit 36 is temporarily stopped.
信号経路 1 0から接続路 2 1を通じて帰還されたループ発振信号 P L Oはアン ドゲート 3 1を通じて制御手段 4 0に入力され、 この制御手段 4 0の制御によつ て記憶手段 3 8に記憶された数値 Nがカウンタ 3 9に再度プリセッ トされる。 こ の数値 Nのプリセッ トにより、 カウンタ 3 9の出力は H (高レベル) 論理に復帰 するから、 アンドゲート 3 4は開 (オン) の状態 (イネ一ブル状態) となり、 ル The loop oscillation signal PLO fed back from the signal path 10 through the connection path 21 is input to the control means 40 through the AND gate 31 and stored in the storage means 38 under the control of the control means 40. The value N is reset to counter 39 again. Since the output of the counter 39 is returned to the H (high level) logic by the presetting of the numerical value N, the AND gate 34 is in an open (on) state (enabled state).
—プ発振信号 P L 0を通過させる。 これによつて、 同期発振回路 3 6の発振動作 力 s再開する。 —Pass oscillation signal P L 0 is passed. As a result, the oscillation operation power s of the synchronous oscillation circuit 36 is restarted.
アンドゲート 3 1は、 カウンタ 4 1及び制御手段 4 2と協働して、 接続路 2 1 を通じて帰還されるパルス列の中からル一プ発振信号 P L 0だけを取り出す動作 を行う。 即ち、 1つのループ発振信号 P L Oとこれに続く補間パルス P Iの列よ りなるパルス列の中から第 1番目のパルスを取り出す動作を行う。 カウンタ 4 1 は、 カウンタ 3 9 と同様に、 スタートパルス S Tとループ発振信号 P L Oのタイ ミングで、 制御手段 4 2の制御の下で、 記憶手段 3 8に記憶された数値 Nがプリ セッ トされる。 カウンタ 4 1に記憶手段 3 8から数値 Nがプリセッ トされると、 カウンタ 4 1は H論理となるから、 アンドゲ一ト 3 1の一方の入力にはその反転 出力である L論理が供給される。 よって、 アンドゲート 3 1は閉の状態となり、 ル一プ発振信号 Pし 0に続くパルス列の通過を阻止する。  The AND gate 31 cooperates with the counter 41 and the control means 42 to perform an operation of extracting only the loop oscillation signal P L0 from the pulse train fed back through the connection path 21. That is, an operation of extracting the first pulse from a pulse train consisting of one loop oscillation signal P LO and a train of interpolation pulses PI following it is performed. Like the counter 39, the counter 41 presets the numerical value N stored in the storage means 38 under the control of the control means 42 at the timing of the start pulse ST and the loop oscillation signal PLO. You. When a numerical value N is preset in the counter 41 from the storage means 38, the counter 41 becomes H logic, so that one input of the AND gate 31 is supplied with L logic which is an inverted output thereof. . Therefore, the AND gate 31 is closed, and the passage of the pulse train following the loop oscillation signal P 0 is prevented.
カウンタ 4 1は、 接続路 2 1を通じて帰還される補間パルス P Iが入力される 毎に、 プリセッ ト値 Nを 1ずつ減算 (— 1 ) する。 このプリセッ ト値 Nが 0にな つてから次の補間ハルス P Iを計数すると、 カウンタ 4 1の出力が L論理に立ち 下がるため、 アンドゲート 3 1が開の状態となる。 よって、 帰還されたループ発 振信号 P L Oはアンドゲ—ト 3 1を通過して制御手段 4 0及び 4 2に入力される から、 カウンタ 3 9及び 4 1はプリセットされる。 このプリセッ トによりアンド ゲート 3 1は閉の状態に戻され、 結局アンドゲ一ト 3 1はループ発振信号 P L O だけを通過させる。 かくして、 カウンタ 3 9又は 4 1の出力の周期て (図 2 C ) を計測することにより、 信号経路 1 0の遅延時間を測定することができる。 この 信号経路 1 0にはループ発振信号 P L O及び補間パルス P I力 f伝搬するから、 信 号経路 1 0は実動作時と実質的に同じ扰態となり、 従って、 図 2 Cに示すループ 発振信号 P L 0の周期ては実動作時における信号経路 1 0の遅延時間と実質的に 同じになる。 即ち、 信号経路 1 0の正しい遅延時間を測定することができること になる。 The counter 41 decrements (−1) the preset value N by one each time the interpolation pulse PI fed back through the connection path 21 is input. When the next interpolated Hals PI is counted after the preset value N becomes 0, the output of the counter 41 falls to L logic, and the AND gate 31 is opened. Therefore, the loop oscillation signal PLO that has been fed back passes through the AND gate 31 and is input to the control means 40 and 42, so that the counters 39 and 41 are preset. By this preset, the AND gate 31 is returned to the closed state, and eventually the AND gate 31 passes only the loop oscillation signal PLO. Thus, the output cycle of counter 39 or 41 (Fig. 2C) By measuring the delay time, the delay time of the signal path 10 can be measured. Since the loop oscillation signal PLO and the interpolation pulse PI force f propagate through this signal path 10, the signal path 10 has substantially the same state as in the actual operation, and therefore, the loop oscillation signal PL shown in FIG. The cycle of 0 is substantially the same as the delay time of the signal path 10 in the actual operation. That is, the correct delay time of the signal path 10 can be measured.
なお、 上記遅延時間測定用パルス発生装置ではカウンタ 3 9及び制御手段 4 0 によってアンドゲート 3 4を制御し、 これとは別個に、 カウンタ 4 1及び制御手 段 4 2を設けてアンドゲート 3 1を制御したが、 カウンタ 4 1及ぴ制御手段 4 2 を別個に設けずに、 カウンタ 3 9及び制御手段 4 0を兼用してもよい。 また、 同 期発振回路 3 6をループ発振回路とした力 他の型式や構成の同期発振器を用い てもよいことは言うまでもない。  In the pulse generator for measuring delay time described above, the AND gate 34 is controlled by the counter 39 and the control means 40. Separately, a counter 41 and a control means 42 are provided to provide the AND gate 31. However, the counter 39 and the control means 40 may be shared without providing the counter 41 and the control means 42 separately. Further, it goes without saying that a synchronous oscillator of another type or configuration may be used, in which the synchronous oscillation circuit 36 is a loop oscillation circuit.
以上説明したように、 この発明によれば、 信号経路の伝搬遅延時間が長く、 従 つて、 この信号経路を含むループ発振回路の発振周波数が低い場合であつても、 その信号経路の実動作時に伝搬する信号の周波数に等しい又はそれに近い周波数 の補間パルスをループ発振周期内に挿入して信号経路の遅延時間を測定するよう にしたので、 信号経路は実動作時とほぼ同じ消費電力で動作し、 かつ温度変動も 実質的に同じになる。 その結果、 C M O S構造の I Cによって信号経路を構成し た場合のように温度変動によって遅延時間が大きく影響される信号経路であって も、 実動作時とほぼ同じ温度状態にある信号経路 (I Cチップ) の遅延時間を測 定することになるので、 誤差のない正しい遅延時間を測定することができるとレ う顕著な利点力'得られる。  As described above, according to the present invention, even when the oscillation frequency of the loop oscillation circuit including the signal path is low, the propagation delay time of the signal path is long. Since the delay time of the signal path is measured by inserting an interpolation pulse with a frequency equal to or close to the frequency of the propagating signal into the loop oscillation cycle, the signal path operates with almost the same power consumption as in the actual operation. And the temperature fluctuations are also substantially the same. As a result, even if the signal path is largely affected by temperature fluctuations, as in the case where the signal path is composed of CMOS-structured ICs, the signal path (IC chip) is at almost the same temperature state as in actual operation. Since the delay time is measured, the remarkable advantage that the correct delay time without error can be measured is obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 遅延時間を測定すべき信号経路を含むループ発振回路を構成し、 このループ 発振回路の発振信号の周期を測定することによつて上記信号経路の遅延時間を測 定する遅延時間測定方法において、 1. A method for measuring a delay time of the signal path by configuring a loop oscillation circuit including a signal path whose delay time is to be measured and measuring a period of an oscillation signal of the loop oscillation circuit. ,
上記ル一プ発振回路の発振信号の周期内に、 上記信号経路が実動作状態にある ときにこの信号経路を伝搬する信号の周波数に等しい又はそれに近い周波数の信 号を挿入し、 上記発振信号と上記癸振信号の周期内に挿入した信号を上記信号経 路中を伝搬させて上記信号経路を実動ィ 態と実質的に同じ状態にし、 上記ル一 プ発振回路の発振信号を取り出してその周期を測定し、 この測定された周期を上 記信号経路の遅延時間とすることを特徴とする遅延時間測定方法。  A signal having a frequency equal to or close to the frequency of a signal propagating through the signal path when the signal path is in an actual operating state is inserted into the cycle of the oscillation signal of the loop oscillation circuit. The signal inserted within the cycle of the oscillating signal is propagated through the signal path to make the signal path substantially the same as the actual operation state, and the oscillation signal of the loop oscillation circuit is extracted. A method for measuring a delay time, comprising measuring the period and using the measured period as the delay time of the signal path.
2 . 上記信号経路が C M 0 S構造の I Cによつて構成されていることを特徴とす る請求の範囲第 1項に記載の方法。 2. The method according to claim 1, wherein said signal path is constituted by an IC having a CMOS structure.
3 . 上記発振信号の周期内に挿入する信号はパルス信号であり、 この挿入するパ ルス信号の数を予め記憶手段に設定し、 この設定した数のパルス信号より 1つ多 いパルス信号を計数したときに計数手段から出力される信号の周期を測定して上 記信号経路の遅延時間とすることを特徴とする請求の範囲第 1項に記載の方法。 3. The signal to be inserted within the period of the oscillation signal is a pulse signal. The number of pulse signals to be inserted is set in the storage means in advance, and the number of pulse signals one more than this set number of pulse signals is counted. 2. The method according to claim 1, wherein the period of the signal output from the counting means is measured at the time, and the measured period is used as the delay time of the signal path.
4 . 上記信号経路は、 各種の測定装置における、 タイミング信号発生部から被測 定デバイスにタイミング信号を供給する複数の信号経路の 1つであることを特徴 とする請求の範囲第 1項に記載の方法。 4. The signal path according to claim 1, wherein the signal path is one of a plurality of signal paths for supplying a timing signal from a timing signal generation unit to a device under test in various measuring apparatuses. the method of.
5 . 上記信号経路は、 I C試験装置における、 パターン発生器から所定のパター ンの試験信号を被試験 I Cに供給する複数の信号経路の 1つであることを特徴と する請求の範囲第 1項に記載の方法。 5. The signal path according to claim 1, wherein the signal path is one of a plurality of signal paths for supplying a test signal of a predetermined pattern from the pattern generator to the IC under test in the IC test apparatus. The method described in.
6 . 請求の範囲第 1項乃至第 5項のいずれかに記載の遅延時間測定方法を実施す るために使用される遅延時間測定用パルス発生装置であつて、 遅延時間を測定すベき信号経路を含むループ発振回路をル一プ発振させるた めのスタートパルスを発生するスタ一トパルス発生器と、 6. Perform the delay time measurement method according to any one of claims 1 to 5. Pulse generator for measuring the delay time used for generating a start pulse for loop oscillation of a loop oscillation circuit including a signal path for measuring the delay time When,
上記ル―プ発振回路のル―プ発振信号と同期して発振し、 かつ上記信号経路 が実動作状態にあるときにこの信号経路を伝搬するパルス信号の周波数に等しい 又はそれに近い周波数のパルス信号を上記ル一プ発振信号の周期内で発振する同 期発振回路と、  A pulse signal oscillating in synchronization with the loop oscillation signal of the loop oscillation circuit and having a frequency equal to or close to the frequency of the pulse signal propagating through the signal path when the signal path is in an actual operation state. A synchronous oscillation circuit that oscillates within the cycle of the loop oscillation signal,
上記同期発振回路力 s '上記ループ発 Si言号の周期内で発振するパルス信号の数 を記憶する記憶手段と、 Storage means for storing the number of pulse signals oscillating in the period of the above-mentioned synchronous oscillation circuit power s ' the above-mentioned loop-generated Si symbol
上記同期発振回路力上記ループ発 Si言号の周期内で発振するパルス信号の数 を計数するカウンタと、  A counter for counting the number of pulse signals oscillating within the period of the above-mentioned loop-generated Si signal;
上記カウンタカ 記記憶手段に記憶した数だけ上記ループ発振信号の周期内 で発振されたパルス信号の数を計数した後で、 さらに 1つのパルス信号を計数す ると、 上記同期発振回路の発振を停止させるゲート手段と、  After counting the number of pulse signals oscillated in the cycle of the loop oscillation signal by the number stored in the counter memory storage means and counting one more pulse signal, the oscillation of the synchronous oscillation circuit is stopped. Gate means for causing
上記信号経路を伝搬して帰還する上記ル一プ発振信号及び上記ル―プ発振信 号の周期内で発振された上記パルス信号よりなるパルス列のから上記ループ発振 信号のみを取り出すパルス取り出し手段と、  Pulse extracting means for extracting only the loop oscillation signal from a pulse train composed of the loop oscillation signal that propagates through the signal path and returns and the pulse signal oscillated within the cycle of the loop oscillation signal;
上記パルス取り出し手段によって取り出された上記ループ発振信号により上 記カウンタを初期状態に戻し、 上記同期発振回路の発振を再開させる制御手段 とを具偏することを特徴とする遅延時間測定用パルス発生装置。  A pulse generator for delay time measurement, wherein the counter is reset to an initial state by the loop oscillation signal extracted by the pulse extraction means, and control means for restarting oscillation of the synchronous oscillation circuit is provided. .
PCT/JP1997/000154 1996-01-25 1997-01-24 Delay time measuring method and pulse generator for measuring delay time for use in said measuring method WO1997027494A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB9720222A GB2316493A (en) 1996-01-25 1997-01-24 Delay time measuring method and pulse generator for measuring delay time for use in said measuring method
DE19780113T DE19780113T1 (en) 1996-01-25 1997-01-24 A method of measuring a delay time and a pulse generator for measuring a delay time for use in implementing this method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/10920 1996-01-25
JP8010920A JPH09203772A (en) 1996-01-25 1996-01-25 Delay time measuring method, and pulse generating device for measuring delay time

Publications (1)

Publication Number Publication Date
WO1997027494A1 true WO1997027494A1 (en) 1997-07-31

Family

ID=11763693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000154 WO1997027494A1 (en) 1996-01-25 1997-01-24 Delay time measuring method and pulse generator for measuring delay time for use in said measuring method

Country Status (6)

Country Link
JP (1) JPH09203772A (en)
KR (1) KR19980703081A (en)
DE (1) DE19780113T1 (en)
GB (1) GB2316493A (en)
TW (1) TW320686B (en)
WO (1) WO1997027494A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787092A (en) * 1997-05-27 1998-07-28 Hewlett-Packard Co. Test chip circuit for on-chip timing characterization
DE10024476A1 (en) * 2000-05-18 2001-12-20 Infineon Technologies Ag Device for testing an electrical circuit
JP4846215B2 (en) * 2004-08-27 2011-12-28 株式会社アドバンテスト Pulse generator, timing generator, and pulse width adjustment method
JP2006189336A (en) * 2005-01-06 2006-07-20 Advantest Corp Semiconductor device, tester, and measurement method
KR100921815B1 (en) * 2007-06-18 2009-10-16 주식회사 애트랩 Delay time measurement circuit and method
JP2009031297A (en) * 2008-08-22 2009-02-12 Advantest Corp Semiconductor testing system
JP2009063567A (en) * 2008-08-22 2009-03-26 Advantest Corp Semiconductor testing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534412A (en) * 1991-07-31 1993-02-09 Advantest Corp Timing generator
JPH0534418A (en) * 1991-07-31 1993-02-09 Oki Electric Ind Co Ltd Test circuit
JPH05281288A (en) * 1992-03-31 1993-10-29 Oki Electric Ind Co Ltd Test circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534412A (en) * 1991-07-31 1993-02-09 Advantest Corp Timing generator
JPH0534418A (en) * 1991-07-31 1993-02-09 Oki Electric Ind Co Ltd Test circuit
JPH05281288A (en) * 1992-03-31 1993-10-29 Oki Electric Ind Co Ltd Test circuit

Also Published As

Publication number Publication date
GB9720222D0 (en) 1997-11-26
GB2316493A (en) 1998-02-25
KR19980703081A (en) 1998-09-05
TW320686B (en) 1997-11-21
DE19780113T1 (en) 1998-02-26
JPH09203772A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP3499051B2 (en) Timing signal generation circuit
KR960016506B1 (en) Clock generator with an automatic frequency change function
KR100884983B1 (en) Measure apparatus for improving standard cell library
US5942902A (en) Method of measuring delay time and random pulse train generating circuit used in such method
JP4874096B2 (en) Semiconductor test equipment with timing generator
US5552733A (en) Precise and agile timing signal generator based on a retriggered oscillator
JP2007278727A (en) Semiconductor integrated circuit device, measuring method therefor, and ac characteristics measuring system
KR20100078431A (en) Measure apparatus for improving standard cell library
WO1997027494A1 (en) Delay time measuring method and pulse generator for measuring delay time for use in said measuring method
US7554414B2 (en) Fast starting circuit for crystal oscillators
US4968907A (en) Digital delay generator
KR100198519B1 (en) Circuit for stabilizing delay time
US6246274B1 (en) Semiconductor device capable of trimming minimum delay time and maximum delay time of an output signal
TW201021423A (en) Delay circuit, timing generator using the delay circuit, and test device
CN1178009A (en) Delay time measuring method and pulse generator for measuring delay time for use in said measuring method
US6442704B1 (en) Ring oscillator clock frequency measuring method, ring oscillator clock frequency measuring circuit, and microcomputer
JP2007033386A (en) Timing generator and semi-conductor testing equipment
US6441602B1 (en) Method and apparatus for determining phase locked loop jitter
JP2720417B2 (en) Delay pulse generator
JP2001264397A (en) Delay time measuring device and method and semiconductor integrated circuit
JP3368572B2 (en) Period generator
WO1996038911A1 (en) Heat balance circuit
JPH0534412A (en) Timing generator
JP4388149B2 (en) Pulsar pulse width measuring device
EP4124181A1 (en) High-frequency power supply device and output control method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190033.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE GB KR US

WWE Wipo information: entry into national phase

Ref document number: 1019970706490

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 913776

Country of ref document: US

Date of ref document: 19970923

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 19780113

Country of ref document: DE

Date of ref document: 19980226

WWE Wipo information: entry into national phase

Ref document number: 19780113

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019970706490

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970706490

Country of ref document: KR