WO1996038911A1 - Heat balance circuit - Google Patents

Heat balance circuit Download PDF

Info

Publication number
WO1996038911A1
WO1996038911A1 PCT/JP1996/001481 JP9601481W WO9638911A1 WO 1996038911 A1 WO1996038911 A1 WO 1996038911A1 JP 9601481 W JP9601481 W JP 9601481W WO 9638911 A1 WO9638911 A1 WO 9638911A1
Authority
WO
WIPO (PCT)
Prior art keywords
counter
circuit
pulse
signal
delay circuit
Prior art date
Application number
PCT/JP1996/001481
Other languages
French (fr)
Japanese (ja)
Inventor
Takeo Miura
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to KR1019970700672A priority Critical patent/KR100211230B1/en
Priority to DE19680526T priority patent/DE19680526C2/en
Publication of WO1996038911A1 publication Critical patent/WO1996038911A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/08Output circuits
    • H03K21/12Output circuits with parallel read-out

Definitions

  • the present invention balances the power consumption of a circuit configured by a semiconductor integrated circuit (IC) such as a semiconductor integrated circuit (CMOS ⁇ IC) having a CMOS structure (complementary MOS), and It relates to a heat balance circuit used to maintain a constant temperature.
  • IC semiconductor integrated circuit
  • CMOS ⁇ IC semiconductor integrated circuit having a CMOS structure (complementary MOS)
  • CMOS structure complementary MOS
  • a clock signal (pulse) having a predetermined delay time generated from a reference timing signal (pulse) is generated in order to define test timing.
  • a test pattern signal is generated at the timing of the clock pulse, and the test is performed by applying the test pattern signal to the memory under test.
  • a delay circuit that applies a delay time to a reference timing pulse includes a step-variable delay circuit that can switch the delay time step by step using the clock pulse pulse interval as a delay unit, and a clock pulse pulse interval.
  • a small delay circuit and a force s ' that can provide a small delay time within a short pulse interval are used, and a combination of the delay time of the step-variable delay circuit and the delay time of the minute delay circuit is used. It is configured so that an arbitrary delay time can be given.
  • the present invention relates to an improvement of the latter minute delay circuit.
  • This kind of minute delay circuit generally uses an active element array formed as a CMOS MOS IC.
  • the reason why the CMO S-IC is used as a delay circuit is that the CMO S-IC has extremely low power consumption s in a no-signal state, and therefore can suppress the heat generation.
  • An object of the present invention is to provide a thermal balance circuit that can provide a constant delay time to an input signal supplied to the delay circuit even if the frequency of the signal changes.
  • Another object of the present invention is to provide a dummy circuit having the same circuit configuration as a delay circuit in the vicinity of the delay circuit so that the amount of power consumed by both circuits even if the frequency of an input signal supplied to the delay circuit changes. Is to provide a heat balance circuit capable of maintaining the temperature substantially constant.
  • the object is to provide a delay circuit to which a first pulse signal to be delayed is supplied, a first pulse supply path to supply the first pulse signal to the delay circuit, A counter that counts the number of first pulse signals supplied through one pulse supply path for a certain period of time, and obtains a difference between the count value of the first pulse signal counted by this counter and a predetermined value A second pulse signal having the same number as the value of the difference calculated by the calculating means, provided near the delay circuit, and a dummy circuit having the same circuit configuration as the delay circuit. Achieved by providing a balance circuit.
  • the delay circuit is formed as a semiconductor integrated circuit such as a CMOS IC, and the frequency of the second pulse signal is equal to or higher than the highest frequency of the first pulse signal to be delayed. Are also selected for higher frequencies. Then, even if the frequency of the first pulse signal to be delayed changes, the amount of power consumed by both the delay circuit and the dummy circuit is maintained at a constant value.
  • the number of first pulse signals input within a certain time is counted, and the number of second pulse signals equal to the difference between the counted value and a preset value is counted. Is given to the dummy circuit, so that even if the frequency of the first pulse signal to be delayed changes, the power consumption of the entire thermal balance circuit remains constant. Can be maintained. Thus, even if the frequency of the first pulse signal to be delayed changes, the delay time given to the first pulse signal can be maintained at a constant value.
  • FIG. 1 is a block diagram showing one embodiment of a heat balance circuit according to the present invention.
  • FIG. 2 is a waveform diagram for explaining the operation of the thermal balance circuit of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an embodiment of a heat balance circuit according to the present invention.
  • the thermal balance circuit includes a delay circuit 10 for giving a predetermined delay time to an input signal, and a dummy circuit provided close to the delay circuit 10 and configured by the same circuit as the delay circuit 10. Including 1 and 1.
  • the delay circuit 10 and the dummy circuit 11 are formed as one CMOS IC.
  • a first pulse supply path 12 is connected to the delay circuit 10, and a first pulse signal CP 1 to be delayed is input to the delay circuit 10 through the first pulse supply path 12.
  • the second pulse supply path 13 is connected to the dummy circuit 11 via an AND gate 14 of a pulse extraction circuit 27 described later, and a second pulse signal CP 2 is supplied to the second pulse supply path 13.
  • Frequency F 2 of the second pulse signal CP 2 supplied to the dummy circuit 1 1 is equal to the highest frequency F m of the first pulse signal CP 1 to be supplied to the delay circuit 1 0 or more frequencies Is selected. That is, F 2 ⁇ F m is selected.
  • Te convex an example in which the frequency F 2 of the second pulse signal CP 2 is selected as the first higher value than the highest frequency F m of the pulse signal CP 1.
  • a counter 15 is connected to the first pulse supply path 12 via an AND gate 22.
  • the counter 15 performs an operation of counting the first pulse signal CP1 input to the delay circuit 10 through the first pulse supply path 12 for a predetermined period of time.
  • a clock means 16 is provided, and the clock means 16 causes the counter 15 to perform a counting operation for a fixed time.
  • the five output terminals Q i to Q 5 of the counter 17 are connected to the input of the AND gate 18, and the remaining output terminal Q 6 of the counter 17 is connected to one input of the AND gate 19.
  • the other input of the AND gate 19 is connected to the second pulse supply path 13, and its output is connected to the clock terminals CL of the counters 15 and 17, respectively.
  • the output of the AND gate 18 is connected to one input of the AND gate 22 via the inverter 21. Therefore, the AND gate 18 is used only when all of the outputs of the five output terminals QQ to Q5 of the counter 17 are at a logic high level (hereinafter abbreviated as H) (this corresponds to 32 counts).
  • H logic high level
  • the H signal Since the H signal is output, it detects that the count value of the counter 17 has reached 32.
  • the detection output (H signal) of the AND gate 18 is supplied to one input terminal of the AND gate 22 connected to the input side of the counter 15 through the inverter 21. Since the other input terminal of the AND gate 22 is connected to the first pulse supply path 12, when the count value of the counter 17 reaches 32 counts, the output power of the inverter 21? It falls to a logic low level (hereinafter abbreviated as L) and controls the AND gate 22 to be closed. As a result, the counter 15 stops counting.
  • L logic low level
  • the count value counted by the counter 15 is supplied to the operation means 23 at the subsequent stage.
  • the calculating means 23 calculates a difference between the value counted by the counter 15 and a predetermined value, and supplies this difference signal to a subsequent pulse extraction circuit 27 via a NAND gate 24. It works like that.
  • the pulse extraction circuit 27 is composed of a flip-flop 25, an inverter 26, and an AND gate 14. An operation of extracting the second pulse signal CP2 of a number equal to the difference value from the determined value and inputting the same to the dummy circuit 11 is performed.
  • a configuration using a counter that can be preset is shown as the arithmetic means 23.
  • the load input terminal LD of the presettable counter is supplied with the output signal from the AND gate 18 of the timing means 16, and the input terminal is supplied with the second pulse signal CP 2.
  • this presettable counter five output terminals Q 5 are connected to the input terminals of the NAND gate 24, so that the five output terminals Q i to Q 5 are similar to the counter 17 of the timer 16.
  • the full count value (32 counts) is when all of the outputs at H are high.
  • the count value of the counter 17 is read into the arithmetic means 23 when the count value of the counter 17 reaches 32 and the AND gate 18 outputs the H signal.
  • the counter constituting the calculating means 23 stops at the state where the second pulse signal CP 2 has been counted 32 times last time. This is because the frequency of the second pulse signal is higher than the frequency of the first pulse signal as described above. Therefore, the NAND gate 24 is in the state of outputting the L signal, and the flip-flop 25 of the pulse extraction circuit 27 reads the H signal whose polarity has been inverted. As a result, the flip-flop 25 outputs the H signal from its Q output terminal, and the H signal is inverted to the L signal by the inverter 26 and supplied to the AND gate 14, so that the AND gate 14 is in a closed state. It is in.
  • the calculating means 23 reads the count value of the counter 15, the count value is smaller than 32 counts, and the NAND gate 24 outputs an H signal.
  • the flip-flop 25 reads the L signal and outputs the L signal to its output terminal Q. Since the polarity of this L signal output is inverted by the inverter 26, the H signal is given to the AND gate 14, and the AND gate 14 is controlled to be open.
  • the AND gate 14 is controlled to be open at the same time that the arithmetic means 23 reads the count value of the counter 15, and the second pulse signal ⁇ ? 2 kami 'supplied.
  • the arithmetic means 23 starts counting the second pulse signal CP2 from the read count value of the counter 15 (because it is smaller than 32 counts).
  • the calculation means 23 reaches the full count value (32 counts)
  • the output of the NAND gate 24 becomes L. Since the signal is read as an H signal, the output of the inverter 26 falls to L and the AND gate 14 is controlled to be closed.
  • the AND gate 14 is opened when the counter 17 counts 32 second pulse signals CP 2, and the second pulse signal CP 2 is supplied to the dummy circuit 11 1 begins to supply the count value of the operation means 23 is controlled to the closed state at the time T 2 has reached the Furukaun preparative value, it stops the second supply of the pulse signal CP 2 to the dummy circuit 1 1. Therefore, in the illustrated embodiment, the flip-flop 25, the inverter 26 and the AND gate 26 constitute a pulse extraction circuit 27 for extracting the second pulse signal.
  • the frequency F 2 of the second pulse signal CP 2 shown in FIG. 2 B than the highest frequency F m of the first pulse signal CP 1 shown in FIG. 2 A is a high value Is set. That is, F m ⁇ F 2 .
  • the signal LOAD shown in FIG. 2C is a load signal supplied from the AND gate 18 to the calculating means 23 when the counter 17 reaches the full count value, and the signal CLEAR shown in FIG. Indicates the clear signal supplied to the clear input terminal CL of the counters 15 and 17 from.
  • the delay circuit and the dummy circuit are configured as one CMOS IC.
  • the present invention can be applied to a case where the delay circuit and the dummy circuit are configured by an integrated circuit other than the CMOS and IC, and the same operation and effect can be obtained.
  • the number of the first pulse signals CP1 supplied to the delay circuit within a certain period of time is counted by the counter 15, and the counted value is set to a predetermined set value ( Since the number N 2 of second pulse signals CP 2 is supplied to the dummy circuit 11, the number N 2 of the second pulse signals CP 2 is equal to the number insufficient for the number of the counters constituting the arithmetic means 23.
  • the total number of pulses applied to both dummy circuits 11 can be maintained at a constant value. This relationship is maintained even if the frequency of the first pulse signal CP1 changes.
  • the delay time of the delay circuit 10 can be maintained at a constant value even when the frequency of the first pulse signal CP1 changes.

Abstract

A heat balance circuit which can give a constant delay time to an input signal even though there is a change in the frequency of the input signal to a delay circuit formed in a CMOS IC. A delay circuit (10) and a dummy circuit (11) having the same circuit construction are formed in a CMOS IC. A counter counts first pulse signals CP1 supplied to the delay circuit for a predetermined time, and arithmetic means outputs the difference between the counted value of this counter and a set value. A number of second pulse signals equivalent to the difference output from the arithmetic means are supplied to a dummy circuit, and the numbers of the first and second pulses per unit time supplied to the CMOS IC are controlled to a predetermined value so as to make the heat generation of the CMOS IC uniform.

Description

明 細 書 熱バランス回路 技術分野  Description Heat balance circuit Technical field
この発明は、 例えば CMO S (相補形 MO S ) 構造の半導体集積回路 (CMO S · I C) のような半導体集積回路 (I C) で構成される回路の消費電力量をバ ランスさせ、 I C内の温度を一定値に維持させる場合に使用される熱バランス回 路に関する。 景技術  The present invention balances the power consumption of a circuit configured by a semiconductor integrated circuit (IC) such as a semiconductor integrated circuit (CMOS · IC) having a CMOS structure (complementary MOS), and It relates to a heat balance circuit used to maintain a constant temperature. Landscape technology
I Cで構成されるメモリを試験するためのメモリ試験装置においては、 試験の タイミングを規定するために、 基準タイミング信号 (パルス) から所定の遅延時 間が与えられたクロック信号 (パルス) を発生させ、 このクロックパルスのタイ ミングで試験パタ一ン信号を生成し、 この試験パタ一ン信号を被試験メモリに与 えて試験を行なっている。  In a memory test device for testing a memory composed of ICs, a clock signal (pulse) having a predetermined delay time generated from a reference timing signal (pulse) is generated in order to define test timing. A test pattern signal is generated at the timing of the clock pulse, and the test is performed by applying the test pattern signal to the memory under test.
基準タイミングパルスに遅延時間を与える遅延回路としては、 一般に、 クロッ クパルスのパルス間隔を遅延単位として遅延時間を段喈的に切り換えることがで きるステツプ可変型の遅延回路と、 クロックパルスのパルス間隔より短いパルス 間隔内の微少の遅延時間を与えることができる微少遅延回路と力 s '用いられ、 ステ ップ可変型の遅延回路の遅延時間と、 微少遅延回路の遅延時間との組合せによつ て任意の遅延時間を与えることができるように構成されている。 この発明は後者 の微少遅延回路の改良に関するものである。 In general, a delay circuit that applies a delay time to a reference timing pulse includes a step-variable delay circuit that can switch the delay time step by step using the clock pulse pulse interval as a delay unit, and a clock pulse pulse interval. A small delay circuit and a force s ' that can provide a small delay time within a short pulse interval are used, and a combination of the delay time of the step-variable delay circuit and the delay time of the minute delay circuit is used. It is configured so that an arbitrary delay time can be given. The present invention relates to an improvement of the latter minute delay circuit.
この種の微少遅延回路は、 一般に、 CMO S · I Cとして形成される能動素子 列を利用している。 CMO S · I Cを遅延回路として利用する理由は、 CMO S - I Cは無信号状態では消費電力力 s極めて小さく、 従って発熱量を小さく抑える ことができるからである。 This kind of minute delay circuit generally uses an active element array formed as a CMOS MOS IC. The reason why the CMO S-IC is used as a delay circuit is that the CMO S-IC has extremely low power consumption s in a no-signal state, and therefore can suppress the heat generation.
CMO S . I Cで構成された遅延回路は、 信号が入力され、 能動素子がオン、 オフ動作を始めると、 電力を消費する状態となる。 I C内の温度は電力消費量に 比例して上昇し、 この温度変化によつて入力信号の遅延時間が変動する不都合が ある。 特に、 遅延させるべき入力信号の周波数が高くなるに従って、 電力消費量 が上昇し、 これに伴なつて遅延時間が変化してしまう欠点がある。 発明の開示 When a signal is input to the delay circuit composed of CMOS.IC and the active elements start to turn on and off, power is consumed. Temperature inside IC depends on power consumption There is a disadvantage that the delay time of the input signal fluctuates due to the temperature change. In particular, there is a disadvantage that the power consumption increases as the frequency of the input signal to be delayed increases, and the delay time changes accordingly. Disclosure of the invention
この発明の 1つの目的は、 遅延回路に供給される入力信号の周波数が変ィ匕して も一定の遅延時間をこの入力信号に与えることができる熱バランス回路を提供す し し め 。  An object of the present invention is to provide a thermal balance circuit that can provide a constant delay time to an input signal supplied to the delay circuit even if the frequency of the signal changes.
この発明の他の目的は、 遅延回路と同じ回路構成のダミー回路をこの遅延回路 に近接して設け、 遅延回路に供給される入力信号の周波数が変化しても両回路で 消費される電力量を実質的に一定に維持することができる熱バランス回路を提供 することである。  Another object of the present invention is to provide a dummy circuit having the same circuit configuration as a delay circuit in the vicinity of the delay circuit so that the amount of power consumed by both circuits even if the frequency of an input signal supplied to the delay circuit changes. Is to provide a heat balance circuit capable of maintaining the temperature substantially constant.
この発明によれば、 上記目的は、 遅延させるべき第 1のパルス信号が供給され る遅延回路と、 上記第 1のパルス信号をこの遅延回路に供給する第 1のパルス供 給路と、 この第 1のパルス供給路を通じて供給される第 1のパルス信号の数を一 定時間の間計数するカウンタと、 このカウンタで計数した第 1のパルス信号の計 数値と予め定めた値との差を求める演算手段と、 この演算手段で算出した差の値 と同数の第 2のパルス信号が供給され、 上記遅延回路に近接して設けられ、 上記 遅延回路と同じ回路構成のダミ一回路とを具備するバランス回路を提供すること によって、 達成される。  According to the present invention, the object is to provide a delay circuit to which a first pulse signal to be delayed is supplied, a first pulse supply path to supply the first pulse signal to the delay circuit, A counter that counts the number of first pulse signals supplied through one pulse supply path for a certain period of time, and obtains a difference between the count value of the first pulse signal counted by this counter and a predetermined value A second pulse signal having the same number as the value of the difference calculated by the calculating means, provided near the delay circuit, and a dummy circuit having the same circuit configuration as the delay circuit. Achieved by providing a balance circuit.
上記遅延回路は、 CMO S · I Cのような半導体集積回路として形成されてお り、 上記第 2のパルス信号の周波数は遅延させるべき上記第 1のパルス信号の最 高周波数に等しいか、 それよりも高い周波数に選定されている。 そして、 遅延さ せるべき上記第 1のパルス信号の周波数が変わっても遅延回路及ぴダミー回路の 双方で消費される電力量は一定値に維持される。  The delay circuit is formed as a semiconductor integrated circuit such as a CMOS IC, and the frequency of the second pulse signal is equal to or higher than the highest frequency of the first pulse signal to be delayed. Are also selected for higher frequencies. Then, even if the frequency of the first pulse signal to be delayed changes, the amount of power consumed by both the delay circuit and the dummy circuit is maintained at a constant value.
従って、 この発明による熱バランス回路によれば、 一定時間内に入力される第 1のパルス信号の個数が計数され、 その計数値と予め設定した値との差の個数分 の第 2のパルス信号がダミー回路に与えられるから、 遅延させるべき第 1のパル ス信号の周波数が変わっても、 熱バランス回路全体としての電力消費量を一定値 に維持することができる。 かくして、 遅延させるべき第 1のパルス信号の周波数 が変わつても、 この第 1のパルス信号に与える遅延時間を一定値に維持すること が'できる。 図面の簡単な説明 Therefore, according to the heat balance circuit according to the present invention, the number of first pulse signals input within a certain time is counted, and the number of second pulse signals equal to the difference between the counted value and a preset value is counted. Is given to the dummy circuit, so that even if the frequency of the first pulse signal to be delayed changes, the power consumption of the entire thermal balance circuit remains constant. Can be maintained. Thus, even if the frequency of the first pulse signal to be delayed changes, the delay time given to the first pulse signal can be maintained at a constant value. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明による熱バランス回路の一実施例を示すブロック図である。 図 2は図 1の熱バランス回路の動作を説明するための波形図である。 発明を実施するための最良の形態  FIG. 1 is a block diagram showing one embodiment of a heat balance circuit according to the present invention. FIG. 2 is a waveform diagram for explaining the operation of the thermal balance circuit of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1にこの発明による熱バランス回路の一実施例を示す。 この熱バランス回路 は、 入力信号に所定の遅延時間を与えるための遅延回路 1 0と、 この遅延回路 1 0に近接して設けられ、 かつ遅延回路 1 0と同一の回路で構成されたダミー回路 1 1とを含む。 これら遅延回路 1 0及ぴダミー回路 1 1は 1つの C M O S · I C として形成されている。 遅延回路 1 0には第 1のパルス供給路 1 2が接銃され、 遅延させるべき第 1のパルス信号 C P 1はこの第 1のパルス供給路 1 2を通じて 遅延回路 1 0に入力される。 ダミー回路 1 1には第 2のパルス供給路 1 3が後述 するパルス抽出回路 2 7のアンド (A N D) ゲート 1 4を介して接続され、 第 2 のパルス信号 C P 2がこの第 2のパルス供給路 1 3及びアンドゲート 1 4を介し てダミー回路 1 1に入力される。 ダミー回路 1 1に供給される第 2のパルス信号 C P 2の周波数 F 2 は、 遅延回路 1 0に供給される第 1のパルス信号 C P 1の最 高周波数 F m に等しいか又はそれ以上の周波数に選定される。 即ち、 F 2 ≥F m に選定される。 なお、 以下においては第 2のパルス信号 C P 2の周波数 F 2 が第 1のパルス信号 C P 1の最高周波数 F m より高い値に選定された場合を例に取つ て説明する。 FIG. 1 shows an embodiment of a heat balance circuit according to the present invention. The thermal balance circuit includes a delay circuit 10 for giving a predetermined delay time to an input signal, and a dummy circuit provided close to the delay circuit 10 and configured by the same circuit as the delay circuit 10. Including 1 and 1. The delay circuit 10 and the dummy circuit 11 are formed as one CMOS IC. A first pulse supply path 12 is connected to the delay circuit 10, and a first pulse signal CP 1 to be delayed is input to the delay circuit 10 through the first pulse supply path 12. The second pulse supply path 13 is connected to the dummy circuit 11 via an AND gate 14 of a pulse extraction circuit 27 described later, and a second pulse signal CP 2 is supplied to the second pulse supply path 13. The signal is input to the dummy circuit 11 via the path 13 and the AND gate 14. Frequency F 2 of the second pulse signal CP 2 supplied to the dummy circuit 1 1 is equal to the highest frequency F m of the first pulse signal CP 1 to be supplied to the delay circuit 1 0 or more frequencies Is selected. That is, F 2 ≥F m is selected. In the following description Te convex an example in which the frequency F 2 of the second pulse signal CP 2 is selected as the first higher value than the highest frequency F m of the pulse signal CP 1.
第 1のパルス供給路 1 2にはアンドゲート 2 2を介してカウンタ 1 5が接続さ れている。 このカウンタ 1 5は第 1のパルス供給路 1 2を通じて遅延回路 1 0に 入力される第 1のパルス信号 C P 1を、 予め設定した一定時間だけ計数する動作 を行なう。 このため、 この実施例では計時手段 1 6が設けられ、 この計時手段 1 6によりカウンタ 1 5を一定時間計数動作させるようにしている。 この実施例で は計時手段 1 6は、 入力端子が第 2のパルス供給路 1 3に接続され、 この第 2の パルス供給路 1 3を通じて供給される第 2のパルス信号 C P 2を所定個数分計数 するカウンタ 1 7と、 このカウンタ 1 7の計数値が所定値に達したことを検出す るアンドゲ一ト 1 8及ぴ 1 9と、 アンドゲート 1 8の出力信号を極性反転して出 力するインバータ 2 1とによって構成されている。 A counter 15 is connected to the first pulse supply path 12 via an AND gate 22. The counter 15 performs an operation of counting the first pulse signal CP1 input to the delay circuit 10 through the first pulse supply path 12 for a predetermined period of time. For this reason, in this embodiment, a clock means 16 is provided, and the clock means 16 causes the counter 15 to perform a counting operation for a fixed time. In this example Is a timer 1 whose input terminal is connected to the second pulse supply path 13, and counts a predetermined number of second pulse signals CP 2 supplied through the second pulse supply path 13. 7, AND gates 18 and 19 for detecting that the count value of the counter 17 has reached a predetermined value, and an inverter 21 for inverting and outputting the output signal of the AND gate 18 And is constituted by.
具体的には、 カウンタ 1 7の 5つの出力端子 Q i 〜Q 5 がアンドゲート 1 8の 入力に接続され、 カウンタ 1 7の残りの出力端子 Q 6 がアンドゲ一ト 1 9の一方 の入力に接続される。 アンドゲート 1 9の他方の入力は第 2のパルス供給路 1 3 に接続され、 その出力はカウンタ 1 5及び 1 7のクロック端子 C Lにそれぞれ接 続されている。 また、 アンドゲート 1 8の出力はインバ一タ 2 1を介してアンド ゲート 2 2の一方の入力に接続されている。 よって、 アンドゲート 1 8はカウン タ 1 7の 5つの出力端子 Q丄 〜Q 5 の出力が全て論理高レベル (以下、 Hと略称 する) になったときにのみ (これは 3 2カウントに相当する) H信号を出力する から、 カウンタ 1 7の計数値が 3 2に達したことを検出することになる。 このァ ンドゲート 1 8の検出出力 (H信号) は、 インバ一タ 2 1を通じてカウンタ 1 5 の入力側に接続されたアンドゲート 2 2の一方の入力端子に供給される。 このァ ンドゲート 2 2の他方の入力端子は第 1のパルス供給路 1 2に接続されているか ら、 カウンタ 1 7の計数値が 3 2カウントに達すると、 インバータ 2 1の出力力? 論理低レベル (以下、 Lと略称する) に立ち下がり、 アンドゲート 2 2を閉じた 状態に制御する。 これによりカウンタ 1 5は計 ¾I 乍を停止する。 Specifically, the five output terminals Q i to Q 5 of the counter 17 are connected to the input of the AND gate 18, and the remaining output terminal Q 6 of the counter 17 is connected to one input of the AND gate 19. Connected. The other input of the AND gate 19 is connected to the second pulse supply path 13, and its output is connected to the clock terminals CL of the counters 15 and 17, respectively. The output of the AND gate 18 is connected to one input of the AND gate 22 via the inverter 21. Therefore, the AND gate 18 is used only when all of the outputs of the five output terminals QQ to Q5 of the counter 17 are at a logic high level (hereinafter abbreviated as H) (this corresponds to 32 counts). Yes) Since the H signal is output, it detects that the count value of the counter 17 has reached 32. The detection output (H signal) of the AND gate 18 is supplied to one input terminal of the AND gate 22 connected to the input side of the counter 15 through the inverter 21. Since the other input terminal of the AND gate 22 is connected to the first pulse supply path 12, when the count value of the counter 17 reaches 32 counts, the output power of the inverter 21? It falls to a logic low level (hereinafter abbreviated as L) and controls the AND gate 22 to be closed. As a result, the counter 15 stops counting.
第 2のパルス信号 C P 2の周波数 F 25'常に一定周波数であるとすると、 カウ ンタ 1 7力 s第 2のパルス信号 C P 2を 3 2個計数する時間は常に一定となる。 従 つて、 カウンタ 1 5は第 1のパルス信号 C P 1を常に一定時間計数することにな る。 なお、 計時手段 1 6の構成は任意に変更できるものである。 When a second frequency F 2 force 5 'always constant frequency pulse signal CP 2, counter 1 7 force s second pulse signal CP 2 3 2 time counting is always constant. Therefore, the counter 15 always counts the first pulse signal CP1 for a certain period of time. The configuration of the clocking means 16 can be arbitrarily changed.
カウンタ 1 5が計数した計数値は後段の演算手段 2 3に供給される。 この演算 手段 2 3は、 カウンタ 1 5で計数した値と予め定めた値との差を求め、 この差信 号をナンド (N A N D) ゲート 2 4を介して後段のパルス抽出回路 2 7に供給す るように動作する。 パルス抽出回路 2 7は、 フリップフロップ 2 5と、 インバー タ 2 6と、 アンドゲ一ト 1 4とから構成され、 上記カウンタ 1 5の計数値と予め 定めた値との差の値に等しい数の第 2のパルス信号 C P 2を取出して、 ダミー回 路 1 1に入力する動作を行なう。 The count value counted by the counter 15 is supplied to the operation means 23 at the subsequent stage. The calculating means 23 calculates a difference between the value counted by the counter 15 and a predetermined value, and supplies this difference signal to a subsequent pulse extraction circuit 27 via a NAND gate 24. It works like that. The pulse extraction circuit 27 is composed of a flip-flop 25, an inverter 26, and an AND gate 14. An operation of extracting the second pulse signal CP2 of a number equal to the difference value from the determined value and inputting the same to the dummy circuit 11 is performed.
上記演算手段 2 3として、 この実施例ではプリセッ ト可能なカウンタを利用し た構成を示す。 このプリセット可能なカウンタのロード入力端子 L Dに計時手段 1 6のアンドゲート 1 8からの出力信号を与え、 また、 入力端子には第 2のパル ス信号 C P 2を与える。 このプリセット可能なカウンタは 5つの出力端子 〜 Q 5 がナンドゲート 2 4の入力端子に接続されているので、 計時手段 1 6のカウ ンタ 1 7と同様に、 その 5つの出力端子 Q i 〜Q 5 の出力が全て Hになったとき がフルカウント値 (3 2カウント) である。 In this embodiment, a configuration using a counter that can be preset is shown as the arithmetic means 23. The load input terminal LD of the presettable counter is supplied with the output signal from the AND gate 18 of the timing means 16, and the input terminal is supplied with the second pulse signal CP 2. In this presettable counter, five output terminals Q 5 are connected to the input terminals of the NAND gate 24, so that the five output terminals Q i to Q 5 are similar to the counter 17 of the timer 16. The full count value (32 counts) is when all of the outputs at H are high.
このように構成すると、 カウンタ 1 7の計数値が 3 2カウントに達し、 アンド ゲ一ト 1 8が H信号を出力した時点で演算手段 2 3にカウンタ 1 5の計数値が読 み込まれる。 演算手段 2 3を構成するカウンタは、 カウンタ 1 5の計数値を取り 込む前の状態では、 前回第 2のパルス信号 C P 2を 3 2カウント計数した状態で 停止している。 これは上述したように第 2のパルス信号の周波数が第 1のパルス 信号の周波数よりも高いからである。 このためナンドゲート 2 4は L信号を出力 してる状態にあり、 パルス抽出回路 2 7のフリップフロップ 2 5は極性反転した H信号を読み込む。 その結果、 フリップフロップ 2 5は H信号をその Q出力端子 から出力し、 この H信号はインバータ 2 6で L信号に反転されてアンドゲート 1 4に供給されるからアンドゲート 1 4は閉じた状態にある。  With this configuration, the count value of the counter 17 is read into the arithmetic means 23 when the count value of the counter 17 reaches 32 and the AND gate 18 outputs the H signal. Before taking in the count value of the counter 15, the counter constituting the calculating means 23 stops at the state where the second pulse signal CP 2 has been counted 32 times last time. This is because the frequency of the second pulse signal is higher than the frequency of the first pulse signal as described above. Therefore, the NAND gate 24 is in the state of outputting the L signal, and the flip-flop 25 of the pulse extraction circuit 27 reads the H signal whose polarity has been inverted. As a result, the flip-flop 25 outputs the H signal from its Q output terminal, and the H signal is inverted to the L signal by the inverter 26 and supplied to the AND gate 14, so that the AND gate 14 is in a closed state. It is in.
これに対し、 演算手段 2 3がカウンタ 1 5の計数値を読み込むと、 この計数値 は 3 2カウントよりも小さいから、 ナンドゲート 2 4は H信号を出力する。 よつ て、 フリップフロップ 2 5は L信号を読み込み、 その出力端子 Qに L信号を出力 する。 この L信号出力はインバ一タ 2 6で極性反転されるから、 アンドゲート 1 4には H信号が与えられ、 アンドゲート 1 4は開いた状態に制御される。  On the other hand, when the calculating means 23 reads the count value of the counter 15, the count value is smaller than 32 counts, and the NAND gate 24 outputs an H signal. Thus, the flip-flop 25 reads the L signal and outputs the L signal to its output terminal Q. Since the polarity of this L signal output is inverted by the inverter 26, the H signal is given to the AND gate 14, and the AND gate 14 is controlled to be open.
以上の動作の結果、 演算手段 2 3がカウンタ 1 5の計数値を読み込むのと同時 にアンドゲート 1 4が開の状態に制御され、 ダミー回路 1 1に第 2のパルス信号 〇? 2カミ'供給される。 その上、 演算手段 2 3は、 読み込んだカウンタ 1 5の計数 値 (3 2カウントよりも小さいので) から第 2のパルス信号 C P 2の計数を開始 する。 演算手段 2 3がフルカウント値 (3 2カウント) に達すると、 即ち、 カウ ンタ 15の計数値と自己のフルカウント値 (32カウント) との差の値である第 2のパルス信号の個数を計数し終わると、 ナンドゲート 24の出力は Lとなり、 この L信号がフリップフロップ 25に H信号として読み込まれるから、 インバー タ 26の出力は Lに立ち下がり、 アンドゲート 14を閉じた状態に制御する。 かくして、 アンドゲート 14は、 図 2 Eに示すように、 カウンタ 1 7が第 2の パルス信号 CP 2を 32個計数した時点 から開の状態となり、 第 2のパルス 信号 CP 2をダミー回路 1 1に供給し始め、 演算手段 23の計数値がフルカウン ト値に達した時点 T2 で閉の状態に制御され、 ダミー回路 1 1への第 2のパルス 信号 CP 2の供給を停止する。 従って、 図示の実施例ではフリ ップフロップ 25 、 インバータ 26及ぴアンドゲート 26は第 2のパルス信号を抽出するパルス抽 出回路 27を構成することになる。 As a result of the above operation, the AND gate 14 is controlled to be open at the same time that the arithmetic means 23 reads the count value of the counter 15, and the second pulse signal 〇? 2 kami 'supplied. In addition, the arithmetic means 23 starts counting the second pulse signal CP2 from the read count value of the counter 15 (because it is smaller than 32 counts). When the calculation means 23 reaches the full count value (32 counts), After counting the number of second pulse signals, which is the difference between the count value of the counter 15 and its own full count value (32 counts), the output of the NAND gate 24 becomes L. Since the signal is read as an H signal, the output of the inverter 26 falls to L and the AND gate 14 is controlled to be closed. Thus, as shown in FIG. 2E, the AND gate 14 is opened when the counter 17 counts 32 second pulse signals CP 2, and the second pulse signal CP 2 is supplied to the dummy circuit 11 1 begins to supply the count value of the operation means 23 is controlled to the closed state at the time T 2 has reached the Furukaun preparative value, it stops the second supply of the pulse signal CP 2 to the dummy circuit 1 1. Therefore, in the illustrated embodiment, the flip-flop 25, the inverter 26 and the AND gate 26 constitute a pulse extraction circuit 27 for extracting the second pulse signal.
次に、 図 2を参照して具体的に説明する。 この図 2からも明暸なように、 図 2 Aに示す第 1のパルス信号 C P 1の最高の周波数 F m よりも図 2 Bに示す第 2の パルス信号 C P 2の周波数 F 2 は高い値に設定されている。 即ち、 F m <F2 。 カウンタ 15によって計数された第 1のパルス信号 CP 1の数を (図 2 A) とし、 アンドゲート 14を通じてダミー回路 1 1に供給された第 2のパルス信号 〇? 2の数を ^2 (図 2 F) とした場合、 と N2 の和はこの例では上述した ように常に 32となる。 即ち、 N +N2 =32。 Next, a specific description will be given with reference to FIG. As is Akira暸from FIG 2, the frequency F 2 of the second pulse signal CP 2 shown in FIG. 2 B than the highest frequency F m of the first pulse signal CP 1 shown in FIG. 2 A is a high value Is set. That is, F m <F 2 . The number of the first pulse signals CP 1 counted by the counter 15 is defined as (FIG. 2A), and the second pulse signal 〇? Supplied to the dummy circuit 11 through the AND gate 14. If the number 2 is ^ 2 (Fig. 2F), then the sum of and N 2 will always be 32 in this example, as described above. That, N + N 2 = 32.
この関係は第 1のパルス信号 CP 1の周波数が変わっても維持され、 各周期毎 に第 1のパルス信号 CP 1の計数値に対し、 予め定めた数値 (演算手段 23のフ ルカウント値 32) に不足する数の第 2のパルス信号 CP 2がダミー回路 1 1に 供給されるから、 平均して見れば 1つの CMOS · I Cとして構成された遅延回 路 10及びダミー回路 1 1での発熱量、 即ち両回路を構成する CMOS · I C内 の発熱量、 を一定値に維持することができる。  This relationship is maintained even if the frequency of the first pulse signal CP1 changes, and the count value of the first pulse signal CP1 is changed by a predetermined value (the full count value 32 Insufficient number of second pulse signals CP 2 are supplied to the dummy circuit 11, so on average, heat is generated in the delay circuit 10 and the dummy circuit 11 configured as one CMOS IC. The amount of heat, that is, the amount of heat generated in the CMOS ICs constituting both circuits, can be maintained at a constant value.
なお、 図 2 Cに示す信号 LOADはカウンタ 1 7がフルカウント値に達したと きにアンドゲート 18から演算手段 23に供給されるロード信号であり、 図 2 D に示す信号 CLEARはアンドゲ一ト 19からカウンタ 15及び 1 7のクリャ入 力端子 C Lに供給されるクリァ信号を示す。  The signal LOAD shown in FIG. 2C is a load signal supplied from the AND gate 18 to the calculating means 23 when the counter 17 reaches the full count value, and the signal CLEAR shown in FIG. Indicates the clear signal supplied to the clear input terminal CL of the counters 15 and 17 from.
上記実施例では遅延回路及ぴダミー回路を 1つの CMOS · I Cとして構成し たが、 CMO S · I C以外の他の集積回路により遅延回路及びダミー回路を構成 した場合にもこの発明が適用でき、 同様の作用効果が得られることは言うまでも ない。 In the above embodiment, the delay circuit and the dummy circuit are configured as one CMOS IC. However, it is needless to say that the present invention can be applied to a case where the delay circuit and the dummy circuit are configured by an integrated circuit other than the CMOS and IC, and the same operation and effect can be obtained.
以上説明したように、 この発明によれば、 遅延回路に供給される第 1のパルス 信号 C P 1の一定時間内の数をカウンタ 1 5で計数し、 この計数値 が予め定 めた設定値 (演算手段 2 3を構成するカウンタのフルカウント値) に対して不足 する数に等しい個数 N 2 の第 2のパルス信号 C P 2をダミー回路 1 1に供給する ように構成したから、 遅延回路 1 0とダミー回路 1 1の双方に与えられるパルス の総数を一定値に維持することができる。 この関係は第 1のパルス信号 C P 1の 周波数が変わっても維持される。 よって、 遅延回路 1 0に入力される信号の周波 数が変わっても、 遅延回路 1 0及びダミー回路を構成する CMO S . I Cのよう な半導体集積回路内での発熱量を一定値に維持できるから、 第 1のパルス信号 C P 1の周波数が変わっても遅延回路 1 0の遅延時間を一定値に維持することがで きるという実益が得られる。 As described above, according to the present invention, the number of the first pulse signals CP1 supplied to the delay circuit within a certain period of time is counted by the counter 15, and the counted value is set to a predetermined set value ( Since the number N 2 of second pulse signals CP 2 is supplied to the dummy circuit 11, the number N 2 of the second pulse signals CP 2 is equal to the number insufficient for the number of the counters constituting the arithmetic means 23. The total number of pulses applied to both dummy circuits 11 can be maintained at a constant value. This relationship is maintained even if the frequency of the first pulse signal CP1 changes. Therefore, even if the frequency of the signal input to the delay circuit 10 changes, the amount of heat generated in the semiconductor integrated circuit such as the CMOS IC constituting the delay circuit 10 and the dummy circuit can be maintained at a constant value. Accordingly, there is an advantage that the delay time of the delay circuit 10 can be maintained at a constant value even when the frequency of the first pulse signal CP1 changes.

Claims

請 求 の 範 囲 The scope of the claims
1 . 入力信号に所定の遅延時間を与えて出力する遅延回路と、 1. A delay circuit for giving a predetermined delay time to an input signal and outputting the signal,
この遅延回路に接続され、 遅延させるべき第 1のパルス信号を上記遅延回路 に供給するための第 1のパルス供給路と、  A first pulse supply path connected to the delay circuit for supplying a first pulse signal to be delayed to the delay circuit;
この第 1のパルス供給路から供給される第 1のパルス信号の周波数に等しい か、 それよりも高い周波数の第 2のパルス信号を供給するための第 2のパルス供 給路と、  A second pulse supply path for supplying a second pulse signal having a frequency equal to or higher than the frequency of the first pulse signal supplied from the first pulse supply path;
予め定めた一定時間内において上記第 1のパルス信号の数を計数するカウン タと、  A counter for counting the number of the first pulse signals within a predetermined time,
このカウンタの計数値と予め定めた値との差の値を求める演算手段と、 この演算手段で求めた差の値と同数の上記第 2のパルス信号を取り出すパル ス抽出手段と、  Calculating means for calculating a difference value between the count value of the counter and a predetermined value; pulse extracting means for extracting the same number of the second pulse signals as the difference value calculated by the calculating means;
このパルス抽出手段によって取り出された上記第 2のクロックパルスが与え られ、 かつ上記遅延回路に近接して設けられた、 上記遅延回路と同一構成のダミ —回路と、  A dummy circuit having the same configuration as the delay circuit, provided with the second clock pulse extracted by the pulse extracting means, and provided in proximity to the delay circuit;
を具備することを-特徴とする熱バランス回路。  A heat balance circuit.
2 . 上記演算手段はプリセッ ト可能なカウンタによって構成され、 このプリセッ ト可能なカウンタはそのフルカウント値と上記カウンタから読み込んだ上記力ゥ ンタの計数値との間の差を求めるように動作することを特徽とする請求項 1に記 載の熱バランス回路。 2. The arithmetic means is constituted by a presettable counter, and the presettable counter operates to obtain a difference between the full count value and the count value of the power counter read from the counter. The heat balance circuit according to claim 1, wherein the heat balance circuit is a special emblem.
3 . 上記遅延回路及ぴダミ一回路は 1つの半導体集積回路として構成されている ことを特徴とする請求項 1に記載の熱バランス回路。 3. The thermal balance circuit according to claim 1, wherein the delay circuit and the dummy circuit are configured as one semiconductor integrated circuit.
4 . 上記半導体集積回路が C M O S · I Cであることを特徴とする請求項 3に記 載の熱バランス回路。 4. The thermal balance circuit according to claim 3, wherein the semiconductor integrated circuit is a CMOS IC.
5 . 上記カウンタ力5'上記第 1のパルス信号を計数する時間を一定に制御するため の計時手段をさらに含むことを特徵とする請求項 1又は 2に記載の熱バランス回 路。 5. The counter force 5 'heat balance circuitry according to claim 1 or 2, Toku徵further comprising a timing means for controlling the predetermined time for counting the first pulse signal.
6 . 上記計時手段は、 上記第 2のパルス供給路に接続されたカウンタと、 この力 ゥンタの出力を論理制御する論理回路とから構成されており、 このカウンタが上 記第 2のパルス信号の計数を開始してからフル力ゥント値に達するまでの時間の 間、 上記第 1のパルス信号を計数するカウンタに計数動作を行わせることを特徴 とする請求項 5に記載の熱バランス回路。 6. The timing means is composed of a counter connected to the second pulse supply path and a logic circuit for logically controlling the output of the power counter. 6. The heat balance circuit according to claim 5, wherein a counter that counts the first pulse signal performs a counting operation during a time period from when the counting is started to when the full force value is reached.
7 . 上記計時手段は、 上記第 2のパルス供給路に接続されたカウンタと、 この力 ゥンタの出力を論理制御する論理回路とから構成されており、 このカウンタがそ のフルカウント値に達したときに、 上記第 1のパルス信号を計数するカウンタの 計数値を上記演算手段に取り込むようにしたことを特徴とする請求項 5に記載の 熱バランス回路。 7. The timing means comprises a counter connected to the second pulse supply path and a logic circuit for logically controlling the output of the power counter, and when the counter reaches its full count value. 6. The heat balance circuit according to claim 5, wherein a count value of a counter for counting the first pulse signal is taken into the arithmetic means.
PCT/JP1996/001481 1995-06-02 1996-05-31 Heat balance circuit WO1996038911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019970700672A KR100211230B1 (en) 1995-06-02 1996-05-31 Thermal balance circuit
DE19680526T DE19680526C2 (en) 1995-06-02 1996-05-31 Temperature balanced circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/136407 1995-06-02
JP13640795A JP3552176B2 (en) 1995-06-02 1995-06-02 Heat balance circuit

Publications (1)

Publication Number Publication Date
WO1996038911A1 true WO1996038911A1 (en) 1996-12-05

Family

ID=15174449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001481 WO1996038911A1 (en) 1995-06-02 1996-05-31 Heat balance circuit

Country Status (5)

Country Link
JP (1) JP3552176B2 (en)
KR (1) KR100211230B1 (en)
DE (1) DE19680526C2 (en)
TW (1) TW295630B (en)
WO (1) WO1996038911A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602587B (en) * 2001-11-12 2010-05-26 因芬尼昂技术股份公司 Method for preventing transients during switching processes in integrated switching circuits, and an integrated switching circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008686A (en) * 1997-06-24 1999-12-28 Advantest Corp. Power consumption control circuit for CMOS circuit
US7085982B2 (en) 2002-01-18 2006-08-01 Hitachi, Ltd. Pulse generation circuit and semiconductor tester that uses the pulse generation circuit
DE112005002247T5 (en) 2004-09-27 2007-08-09 Advantest Corp. Consumption current compensation circuit, method for adjusting a compensation current amount, timer and semiconductor test device
JP2009130715A (en) * 2007-11-26 2009-06-11 Toshiba Corp Clock generation circuit
JP2009145126A (en) * 2007-12-12 2009-07-02 Fujitsu Microelectronics Ltd Semiconductor integrated circuit and method of controlling the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296410A (en) * 1989-05-11 1990-12-07 Mitsubishi Electric Corp Delay circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833695A (en) * 1987-09-08 1989-05-23 Tektronix, Inc. Apparatus for skew compensating signals
US5136180A (en) * 1991-02-12 1992-08-04 Vlsi Technology, Inc. Variable frequency clock for a computer system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296410A (en) * 1989-05-11 1990-12-07 Mitsubishi Electric Corp Delay circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1602587B (en) * 2001-11-12 2010-05-26 因芬尼昂技术股份公司 Method for preventing transients during switching processes in integrated switching circuits, and an integrated switching circuit

Also Published As

Publication number Publication date
KR970705232A (en) 1997-09-06
TW295630B (en) 1997-01-11
KR100211230B1 (en) 1999-07-15
DE19680526T1 (en) 1997-07-31
JPH08330920A (en) 1996-12-13
JP3552176B2 (en) 2004-08-11
DE19680526C2 (en) 1999-04-22

Similar Documents

Publication Publication Date Title
US5359232A (en) Clock multiplication circuit and method
KR940001508B1 (en) Delay control circuit and mehtod for controlling delay
US5369311A (en) Clock generator control circuit
WO1996038911A1 (en) Heat balance circuit
JPH11261389A (en) Semiconductor device
US6900701B2 (en) Automatic detection, selection and configuration of clock oscillator circuitry
JPS634151B2 (en)
US7400130B2 (en) Integrated circuit device
JPH073751B2 (en) Current surge control integrated circuit
US5818277A (en) Temperature balanced circuit
US5298799A (en) Single-shot circuit with fast reset
JP3674982B2 (en) Variable division delay pulse generator
JPH04227315A (en) Asynchronous delay circuit and delaying method of input signal
US5734662A (en) Period generating device
JP2001216047A (en) Delay adjusting circuit
KR100206906B1 (en) Timer/counter circuit
US6400188B1 (en) Test mode clock multiplication
JP2964696B2 (en) Semiconductor device
JPS635713B2 (en)
JPH05313795A (en) Semiconductor integrated circuit
KR100468678B1 (en) System Clock Generator and Method
JPH04306911A (en) Pulse delay circuit
JPH01126013A (en) Duty cycle converting circuit
JP2580629B2 (en) Memory device
JPS5870336A (en) Oscillating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

WWE Wipo information: entry into national phase

Ref document number: 1019970700672

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 19680526

Country of ref document: DE

Date of ref document: 19970731

WWE Wipo information: entry into national phase

Ref document number: 19680526

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019970700672

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970700672

Country of ref document: KR