WO1997027475A1 - Probenahmesystem für fluidische und in fluiden enthaltene analyte sowie verfahren zu seiner herstellung - Google Patents

Probenahmesystem für fluidische und in fluiden enthaltene analyte sowie verfahren zu seiner herstellung Download PDF

Info

Publication number
WO1997027475A1
WO1997027475A1 PCT/DE1997/000192 DE9700192W WO9727475A1 WO 1997027475 A1 WO1997027475 A1 WO 1997027475A1 DE 9700192 W DE9700192 W DE 9700192W WO 9727475 A1 WO9727475 A1 WO 9727475A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
sampling system
channel
carrier
cover
Prior art date
Application number
PCT/DE1997/000192
Other languages
English (en)
French (fr)
Inventor
Meinhard Knoll
Original Assignee
Meinhard Knoll
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meinhard Knoll filed Critical Meinhard Knoll
Priority to EP97914106A priority Critical patent/EP0876605A1/de
Priority to US09/117,077 priority patent/US6287438B1/en
Priority to JP9526445A priority patent/JP2000505194A/ja
Publication of WO1997027475A1 publication Critical patent/WO1997027475A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the invention relates to a sampling system and a method for its production. Such systems can be used simply and universally in chemical and biochemical analysis.
  • electrochemical sensors are used to determine substance concentrations in liquids (cf. F. Oehme: Chemical sensors, Vieweg Verlag, Braunschweig, 1991).
  • Flow systems of this type have the particular advantage that not only the liquid measuring medium but also calibration liquids can be pumped through the system alternately, so that the sensors can be calibrated regularly.
  • a disadvantage of the prior art is that flow analysis systems in silicon technology can only be implemented at low unit costs if quantities of more than 100,000 are required per year. The same applies to the microdialysis needle, which is currently still being manufactured using manual techniques.
  • connection technology for flow sensors and microdialysis needles has not been developed to such an extent that hose and channel connections for the liquid measuring medium can be produced at reasonable cost without widening the cross section and dead volume.
  • the object of this invention is therefore to provide a sampling system which is simple in construction, can be used universally and alone and in combination and can be produced with little effort.
  • the sampling system designed according to the invention for fluid or analytes contained in fluids consists of a flat carrier into which various openings are made, through which the respective fluid enters a channel and then again can leave.
  • the channel is at least partially covered by a cover on the side opposite the carrier.
  • a membrane permeable to the analyte is used, which at least partially covers the channel on its open upper side. The areas left free from the cover can be used for taking the analyte or for direct measurement there.
  • the channel can also be formed directly in the carrier.
  • a channel carrier If a channel carrier is used, it is favorable to provide it with additional openings which correspond in the assembled state of the sampling system designed according to the invention to the openings already mentioned in the carrier.
  • the sampling system designed according to the invention has a very simple structure and can be used universally for the various measuring tasks. It is thus possible to take a sample, to separate the analyte to be determined from the carrier fluid and to take it for a subsequent analysis.
  • the sampling system can, however, also be used in direct combination with sensor elements and, for example, substance concentrations of a specific analyte can be carried out directly on the sampling system.
  • the simple structure and, consequently, the very cost-effective production are particularly advantageous here.
  • An example of a sampling system designed according to the invention can be constructed such that a carrier 1 with at least two openings 4, 5 is firmly connected to a channel carrier 6 with at least two openings 9, 10 and at least one channel 11, and the channel carrier 6 with at least one membrane 12 is firmly connected and the membrane 12 is firmly connected to a cover 13 and through the openings 4, 5 and 9, 10 the analyte or a carrier liquid or carrier gas containing it are fed to the channel 11 can, which flows through this channel and can take up the analyte which is in contact with the membrane 12 permeable for this analyte at the uncovered area 14 of the membrane 12, and the analyte or also the carrier liquid containing it the channel can be guided past the openings 16, 17 in the cover 13, in which electrochemical or optical sensor elements can be inserted for which substance concentrations or ion activities can be measured.
  • Carrier 1 and the channel carrier 6 consist of a material inert to the analyte and the carrier fluid, for example made of plastic (polyvinyl chloride (PVC), polyethylene (PE), polyoxymethylene (POM), polycarbonate (PC), ethylene / propylene cop. (EPDM), polyvinyl nylidene chloride (PVDC), polychlorotrifluoroethylene, polyvinyl butyral (PVB), cellulose acetate (CA), polypropylene (PP), polymethyl methacrylate (PMMA), polyamide (PA), tetrafluoroethylene / hexafluoropropylene cop.
  • plastic polyvinyl chloride
  • PE polyethylene
  • POM polyoxymethylene
  • PC polycarbonate
  • EPDM polyvinyl nylidene chloride
  • PVDC polychlorotrifluoroethylene
  • PVB polyvinyl butyral
  • CA cellulose acetate
  • PP polypropylene
  • FEP polytetrafluoroethylene
  • PF Phenol-formaldehyde
  • EP epoxy
  • PUR polyurethane
  • polyester UP
  • silicone melamine-formaldehyde
  • UF urea-formaldehyde
  • Capton aniline-formaldehyde
  • the carrier 1 can also be made of glass, ceramic or silicon. The same applies to the channel carrier 6.
  • the openings 4, 5 and 9, 10 in the carrier 1 and in the channel carrier 6 as well as the channel 11 are produced in such a way that the carrier 1 and / or the channel carrier 6 by injection molding, pressing techniques or the LIGA process with these Structures are produced, or these structures subsequently by cutting, punching, milling, drilling, etching, laser cutting, spark erosion or the like getting produced.
  • the typical dimensions of the carrier 1 are 1 to 10 cm for the length, 0.5 to 5 cm for the width and 0.1 to 1 mm for the thickness. The same or similar sizes apply to the channel support 6.
  • the openings 4, 5 and 9, 10 have diameters between 0.1 and 10 mm.
  • the width of the channel 11 is between 0.1 and 10 mm.
  • ger 6 can be carried out according to the state of the art by gluing, welding or laminating (for plastics) or gluing (for glass, ceramic, silicon) or anodic bonding (for glass on silicon).
  • the membrane 12 is designed as a dialysis membrane, gas-permeable membrane, lattice or fabric made of plastic, paper or textile fibers. Their thickness is between 10 and 1000 ⁇ m.
  • the following materials can be used for dialysis membranes: polycarbonate, cellulose acetate, cellulose hydrate, cuprophan, Thomapor, regenerated cellulose, polyacrylonitrile, polysulfone, polyamide, polymethyl methacrylate or the like.
  • the following materials can be used for a gas-permeable membrane: polyvinyl chloride (PVC), polyethylene (PE), polyoxymethylene (POM), polycarbonate (PC), ethylene / propylene cop. (EPDM), polyvinylidene chloride (PVDC), polychlorotrifluoroethylene , Polyvinyl butyral (PVB), cellulose acetate (CA), polypropylene (PP), polymethyl methacrylate (PMMA), polyamide (PA), tetrafluoroethylene / hexafluoropropylene cop.
  • PVC polyvinyl chloride
  • PE polyethylene
  • POM polyoxymethylene
  • PC polycarbonate
  • EPDM polyvinylidene chloride
  • PVDC polychlorotrifluoroethylene
  • PVB polyvinyl butyral
  • CA cellulose acetate
  • PP polypropylene
  • PMMA polymethyl methacrylate
  • PA polyamide
  • FEP polytetrafluoroethylene
  • PF phenol-formaldehyde
  • EP epoxy
  • PUR polyurethane
  • polyester UP
  • silicone melamine-formaldehyde
  • UF urea-formaldehyde
  • Capton calcium phosphate
  • the fixed connection between membrane 12 and channel support 6 can be made according to the prior art by gluing, welding or laminating.
  • the cover 13 is produced by the same or similar methods as the carrier 1 and is firmly connected to the membrane by gluing, welding or laminating in such a way that the cover 13 is completely or partially covered.
  • All sensor elements can be integrated into the openings 16, 17 of the cover 13, which can be realized small enough and are known, for example, from F. Oehme: Chemical sensors, Vieweg Verlag, Braunschweig, 1991 or from DE 41 15 414.
  • the particular advantages of this invention lie in the fact that chemical and biochemical sensors in multi-sensor arrangements together with flow channels and microdialysis elements can be realized as a unit in such a way that they can be produced with little effort.
  • the device can be used to take the sample and measure substance concentrations with the help of integrated sensors.
  • the flow arrangement makes it possible to regularly calibrate the sensors with the aid of calibration liquids. With a small channel cross section, the system can be used on the principle of microdialysis due to the capillary throttling effect.
  • FIGS. 1 to 22 Exemplary embodiments of the invention are shown in FIGS. 1 to 22.
  • 1 a layer structure of a first example of a sampling system into which sensor elements can be integrated
  • 2 a sampling system according to FIG. 1
  • 3 a sensor element of a sampling system which can be integrated into openings
  • 4 a second exemplary embodiment of a sampling system with an ion-selective sensor element
  • 5 a third exemplary embodiment of a sampling system with a biosensor element
  • 6 shows a fourth exemplary embodiment of a sampling system with a sensor element for measuring gases dissolved in liquids
  • 7 a fifth exemplary embodiment of a sampling system with a glucose sensor
  • 8 an electrode carrier according to FIG. 7
  • 9 a sampling system according to FIG. 7 with glucose sensor
  • 10 a sampling system of a sixth exemplary embodiment with an additional channel end;
  • Fig. 11 a seventh embodiment of a
  • Sampling system 12: a sampling system according to an eighth exemplary embodiment; 13: a sampling system of a ninth exemplary embodiment with an additional membrane; 14: a sampling system in an eleventh embodiment with an external connection of sensor elements; 15: a sampling system in a twelfth exemplary embodiment; Fig. 16: a sampling system in a thirteenth
  • Embodiment 17 a sampling system in a fourteenth exemplary embodiment, into which sensor elements can be integrated; 18: a sampling system as a fifth exemplary embodiment, in which sensor elements can be integrated; Fig. 19: a sampling system in a sixteenth
  • FIG. 1 shows the layer sequence of a sampling unit in which sensor elements can be integrated.
  • FIG. 2 shows the layer structure after the various planes have been joined and firmly connected.
  • Sensor elements such as are known, for example, from DE 41 15 414 can be integrated into the openings 16, 17 of the cover 13.
  • Such a sensor element is shown in FIG. 3.
  • an ion-selective membrane 18 is in direct contact with a noble metal derivation 19 made of silver.
  • This sensor element is inserted into the opening 16 of the cover 13 in such a way that the ion-selective membrane 18 is in direct contact with the membrane 12 and the noble metal derivative 19 contacts through the opening 16 with a contact pin from the outside and with a measuring device electronics can be connected.
  • the sensor element according to FIG. 3 can then additionally be fixed with an adhesive on the surface of the cover 13 in such a way that the noble metal derivative remains free of adhesive.
  • the membrane 12 can be covered in the opening 16 with a thin hydrogel film (for example HEMA), which is used as a solution in the membrane, before the sensor element is inserted Opening (16) is filled, after formation of the hydrogel film, the sensor element according to Figure 3 is used.
  • a thin hydrogel film for example HEMA
  • a reference electrode is inserted into the opening 17 and is constructed in the same way as the sensor element according to FIG. 3.
  • the layer 18 in FIG. 3 consists of a KCl gel and the layer 19 consists of a chloridized silver film.
  • carrier 1, channel carrier 6 and cover 13 are produced from a 150 ⁇ m thick laminating film by punching out. This film consists of polyethylene and polyester and is commercially available under the name CODOR film.
  • the membrane 12 is a 20 to 100 ⁇ m, preferably 50 ⁇ m thick dialysis membrane made of polycarbonate.
  • the carrier 1, the channel carrier 6, the membrane 12 and the cover 13 are firmly connected by lamination at 125 ° C.
  • a carrier liquid for example a saline solution
  • the carrier liquid leaves the arrangement via the opening 4 in the carrier 1.
  • the surface 14 of the membrane 12 not covered by the cover 13 is brought into direct contact with the liquid measuring medium, for example, by immersion and the analyte can be removed there.
  • the measuring ions diffuse through the dialysis membrane 12, reach the carrier liquid flow in the channel 11 and are transported to the sensor element, which is located in the opening 16 of the cover 13.
  • the ion-selective membrane 18 of the sensor element according to FIG. 3 is thus in contact with the measuring medium via the dialysis membrane.
  • a potential difference is formed between the measuring solution and the ion-selective membrane, which can be measured between the metal leads 19 of the sensor element or the reference electrode with the aid of a high-resistance millivolt meter.
  • FIG. 4 shows an arrangement according to FIGS. 1 and 2 in section.
  • no sensor element according to FIG. 3 is inserted into the opening 16 of the cover 13.
  • a 0.1 to 1 ⁇ m thick noble metal film 20, 21 (for example made of silver) is applied to the cover 13 using vapor deposition, sputtering or screen printing technology (both noble metal films 20 , 21) are made of the same material and are connected to each other).
  • a membrane solution for example made of PVC or silicone with ion carriers, is now introduced into the opening 16 with the aid of a micropipette or an automatic dispenser.
  • Such membrane solutions include also known from F.
  • the membrane 22 After the sensor membrane 22 has solidified by evaporation of the solvent or by crosslinking under UV light, this arrangement acts as an ion-selective sensor element. A similar element can be introduced into the opening 17 as a reference electrode.
  • the membrane 22 is designed as a KC1 gel and the metal film 20, 21 as a silver film, the surface of which is chloridated.
  • FIG. 5 A third exemplary embodiment is shown in FIG. 5. This representation corresponds to the representation in FIG. 4. However, an additional membrane 23 is introduced here. If this membrane 23 is designed as a gel layer with an enzyme (for example the enzyme urease) and the membrane 22 is designed as a pH-sensitive or ammonium-selective membrane, a biosen sensor element for the measurement of urea concentrations. Both membranes 22 and 23 can be filled into the opening 16 from the liquid phase and solidified one after the other, as stated above.
  • the reference electrode is designed in the same way as in the second exemplary embodiment (FIG. 4).
  • FIG. 6 a sensor element for the measurement of dissolved gases in liquids is shown.
  • the structure is similar to that shown in Figure 4.
  • an additional gas-permeable membrane 24 is laminated between membrane 12 and cover 13 in FIG. 6.
  • This gas-permeable membrane consists, for example, of a 50 ⁇ m thick PTFE film.
  • the noble metal films 20, 21 are not made of the same material and are not connected to one another for the design of an oxygen sensor of the Clark type.
  • the noble metal film 20 consists, for example, of platinum (cathode) and the noble metal film 21 of silver, the surface of which is chloridized (Ag / AgCl anode).
  • the membrane 22 is designed as a KCl gel.
  • the oxygen can diffuse through the dialysis membrane 12 and the gas-permeable membrane 24 to the platinum cathode, where it is converted electrochemically and an electrical current flows between the Pt cathode 20 and Ag / AgCl anode 21, as described by Clark Oxygen sensor is known.
  • FIG. 7 shows a layer sequence according to FIG. 1.
  • the electrode carrier 25 has a platinum layer 26 and a silver film 27 coated with the aid of the above-mentioned methods. Both films 26, 27 have layer thicknesses between 0.1 and 1 ⁇ m. The surface of the silver film 27 is converted into silver chloride when the sensor element is in operation.
  • the electrode body 25 with the noble metal film 26 is shown enlarged in section in FIG.
  • the electrode body is provided with small holes 28, the diameters of which are between 50 and 1000 ⁇ m.
  • FIG. 9 also shows the assembled configuration in
  • the gel layer 31 consists, for example, of polyvinyl alcohol (PVA) and is introduced and solidified by pouring a solution into the opening 16 of the carrier 13, as is known from DE 44 08 352.
  • PVA polyvinyl alcohol
  • the enzyme glucose oxidase is immobilized in it.
  • a KCl gel is filled into the opening 17 for the realization of a reference electrode.
  • an electrical voltage (typically 600 mV) is applied to the electrode carrier 25 with the aid of two contact pins through the openings 29, 30 in the cover 13 between the Pt 26 and Ag / AgCl electrodes 27 and in
  • An electrical current is measured as a function of the glucose concentration.
  • FIG. 1 A sixth exemplary embodiment is shown in FIG. This configuration corresponds to the illustration in FIG. 1. However, an additional channel 11 ′′ is introduced into the channel carrier 6 ′ here. Through the openings 32 and 33, a calibration liquid can be supplied to the sensor element, which is located in the opening 16.
  • FIG. 11 shows a seventh exemplary embodiment based on FIG. 1.
  • the openings 16, 17 in the cover 13 are replaced by the openings 34, 35 which are located in the carrier 1 ′′.
  • a sensor element according to FIG. 3 and a reference electrode are inserted into these openings.
  • FIG. 12 An eighth exemplary embodiment is shown in FIG. 12 based on FIG. 1.
  • the membrane 37 (it replaces the membrane 12) only partially covers the channel support 6.
  • the cover 38 is made larger and has a window 41 through which the measuring medium can be brought into contact with the membrane 37.
  • sensor elements and reference electrodes can be implemented in the openings 39, 40.
  • FIG. 12 A ninth exemplary embodiment is shown in FIG.
  • a further membrane 42 (for example made of PTFE) is introduced here which is gas permeable.
  • a sensor for dissolved oxygen can be implemented in the opening 39.
  • Tenth embodiment It is also possible to make the membrane 42 in FIG. 13 from a thin PVC film to produce and fill in the openings 39, 40 with a solution for producing an ion-selective PVC membrane and thus to form an ion-selective sensor element analogously to the exemplary embodiment two.
  • FIG. 14 An eleventh embodiment is shown in FIG. 14. In contrast to the first exemplary embodiment, no sensor elements and reference electrodes are produced in openings in the cover (13 in FIG. 1, 36 in FIG. 14). This device serves as
  • FIG. 15 in contrast to FIG. 1, the carrier and the channel carrier (1 and 6 in FIG. 1) are joined to form a unit 43.
  • This carrier 43 consists for example of PVC and is 5 mm thick.
  • the openings 44, 45 go over the entire thickness; the channel 46 has a depth of 1 mm.
  • the thirteenth exemplary embodiment shows a configuration according to FIG. 15 in FIG. 16.
  • a sampling layer 47 is additionally glued onto the membrane 12.
  • This layer 47 consists of filter paper that can hold a drop of the liquid medium.
  • FIG. 17 shows a fourteenth exemplary embodiment.
  • a flow arrangement is shown which consists of a support 48, a channel support 51, a membrane 55 (dialysis membrane or gas-permeable membrane) and a cover 56, in the openings 57, 58, 59 of which, as stated above, sensor elements and reference electrodes can be inserted nen.
  • the arrangement works like a sensor flow cell, to which the liquid measuring medium is fed through the opening 49 and withdrawn again through the opening 50.
  • FIG. 18 shows a fifteenth exemplary embodiment based on FIG. 17. However, the membrane 55 is missing in FIG. 18. Sensor elements according to FIG. 3 can be inserted into the openings 57, 58, 59.
  • FIG. 19 A sixteenth embodiment is shown in FIG. 19 as a layer sequence. All layers are firmly connected again.
  • a liquid measuring medium is fed through the opening 64 in the carrier 63 to the channel 69 and withdrawn again via the opening 65.
  • the measuring medium flows through the channel 69 in the channel carrier 66.
  • the liquid measuring medium is in contact with a reactive material which is introduced into the channel-shaped opening (reaction path 74) in the cover 71.
  • Sensor elements and reference electrodes which measure the substance concentration before and after the reaction zone, are again introduced in the openings 72, 73.
  • a polymer, gel or hydrogel with immobilized enzymes, antibodies or microorganisms can be used as the reactive material. If, for example, there are oxygen-consuming microorganisms in the reaction zone and the sensor elements in the openings 72, 73 are designed as oxygen sensors, a sensor system for the biological oxygen requirement can be implemented.
  • An arrangement according to FIG. 4 is shown in FIG. Here, the inflow and outflow of the carrier liquid is realized with the aid of a plastic block 76 with at least one channel 77, which is sealed against the carrier 1 with the aid of an O-ring 78.
  • the membrane material 22 is sealed with an encapsulation layer 75 made of epoxy resin.
  • FIG. 21 shows an arrangement according to FIG. 2, which is needle-shaped at the tip.
  • the width of the needle probe is 0.1 to 5 mm.
  • the channel 80 of the channel carrier can be seen under the membrane 79.
  • sensor elements and reference electrodes are used in the openings 86, 87 of the cover 85.
  • the carrier liquid can be supplied and discharged through the openings 88, 89.
  • This needle-shaped design is suitable, for example, for piercing tissue.
  • FIG. 22 shows a further exemplary embodiment of a sampling system designed according to the invention.
  • the essential structure corresponds to the example already explained in the description of FIG. 4.
  • At least one electrode 90 was additionally arranged in the channel 11 in order to achieve an electrochemical conversion there.
  • the electrode (s) 90 can be applied, for example, by a known thin-film or screen printing method.
  • Electrode (s) there is also a possibility (not shown in FIG. 22) of removing the electrode (s) from the side of the membrane opposite channel 11 12 to arrange.
  • This electrode (s) can be applied, for example, as a metallic paste.
  • the electrochemical conversion that can be achieved in this way allows a further improvement in the isolation of the analyte to be determined.

Abstract

Die Erfindung betrifft ein Probenahmesystem sowie ein Verfahren zu seiner Herstellung. Solche Systeme lassen sich in der chemischen und biochemischen Analytik einfach und universell einsetzen. Das Probenahmesystem soll einfach aufgebaut, allein und in Kombination universell einsetzbar und mit geringem Aufwand herstellbar sein. Das erfindungsgemäß ausgebildete Probenahmesystem für fluidische oder in Fluiden enthaltene Analyte besteht aus einem flächigen Träger, in den verschiedene Durchbrüche eingebracht sind, durch die das jeweilige Fluid in einen Kanal gelangen und diesen dann wieder verlassen kann. Der Kanal ist mittels einer Abdeckung zumindest teilweise auf der dem Träger gegenüberliegenden Seite abgedeckt. Weiter wird eine für den Analyt durchlässige Membran eingesetzt, die den Kanal an seiner offenen oberen Seite zumindest teilweise überdeckt. Die von der Abdeckung freigelassenen Bereiche können zur Entnahme des Analyten oder zur dortigen direkten Messung benutzt werden.

Description

Probenahmesystem für fluidische und in Fluiden enthaltene Analyte sowie Verfahren zu seiner Herstellung
Die Erfindung betrifft ein Probenahmesystem sowie ein Verfahren zu seiner Herstellung. Solche Systeme las¬ sen sich in der chemischen und biochemischen Analytik einfach und universell einsetzen.
Es ist bekannt, daß zur Bestimmung von Stoffkonzen- trationen in Flüssigkeiten elektrochemische Sensoren eingesetzt werden (vergl. F. Oehme: Chemische Senso- ren, Vieweg Verlag, Braunschweig, 1991) .
Neben Einzelsensoren ist es auch möglich, mit Hilfe der Halbleitertechnologie Durchflußanalysensysteme mit integrierten Sensorelementen zu realisieren (DE 44 08 352) .
Solche Durchflußsysteme haben den besonderen Vorteil, daß nicht nur das flüssige Meßmedium sondern auch Kalibrierflüssigkeiten im Wechsel durch das System gepumpt werden können, so daß eine regelmäßige Kali¬ brierung der Sensoren möglich ist.
Es ist auch bekannt, daß solche Durchflußanalysensy¬ steme mit einer einfachen Probenahmevorrichtung - einer Mikrodialysenadel - ausgestattet sein können (DE 44 10 224 ) .
Darüber hinaus wurde für die Herstellung von Einzel¬ sensoren eine besonders preisgünstige Massenproduk- tionstechnologie eingeführt (DE 41 15 414) .
Nachteilig am Stand der Technik ist, daß Durchflu߬ analysensysteme in Siliziumtechnologie nur dann zu geringen Stückkosten realisiert werden können, wenn Stückzahlen von mehr als 100.000 pro Jahr benötigt werden. Gleiches gilt für die Mikrodialysenadel, die zur Zeit noch mit handwerklichen Techniken herge¬ stellt wird.
Darüber hinaus ist die Verbindungstechnik für Durch¬ flußsensoren und Mikrodialysenadeln nicht so weit entwickelt, daß Schlauch- und Kanalverbindungen für das flüssige Meßmedium ohne Querschnittserweiterungen und Totvolumen mit vertretbarem Aufwand hergestellt werden können.
Aufgabe dieser Erfindung ist es darum, ein Probenah¬ mesystem vorzugeben, das einfach aufgebaut, allein und in Kombination universell einsetzbar und mit ge- ringem Aufwand herstellbar ist.
Diese Aufgabe wird erfindungsgemäß für das Probenah¬ mesystem mit den Merkmalen des Anspruchs 1 und des Anspruchs 30 für das Herstellungsverfahren gelöst.
Das erfindungsgemäß ausgebildete Probenahmesystem für fluidische oder in Fluiden enthaltene Analyte, be¬ steht aus einem flächigen Träger, in den verschiedene Durchbrüche eingebracht sind, durch die das jeweilige Fluid in einen Kanal gelangen und diesen dann wieder verlassen kann. Der Kanal ist mittels einer Abdeckung zumindest teilweise auf der dem Träger gegenüberlie¬ genden Seite abgedeckt. Weiter wird eine für den Ana¬ lyt durchlässige Membran eingesetzt, die den Kanal an seiner offenen oberen Seite zumindest teilweise über¬ deckt. Die von der Abdeckung freigelassenen Bereiche können zur Entnahme des Analyten oder zur dortigen direkten Messung benutzt werden.
Dabei besteht die Möglichkeit, einen gesonderten Ka¬ nalträger zwischen dem eigentlichen Träger und der Membran mit der darüberliegenden Abdeckung anzuord¬ nen. Der Kanal kann aber auch direkt im Träger ausge¬ bildet sein.
Wird ein Kanalträger verwendet, ist es günstig, die¬ sen mit zusätzlichen Durchbrüchen zu versehen, die im zusammengebauten Zustand des erfindungsgemäß ausge¬ bildeten Probenahmesystems mit den bereits genannten Durchbrechungen im Träger korrespondieren.
Das erfindungsgemäß ausgebildete Probenahmesystem ist sehr einfach aufgebaut und kann für die verschiedenen Meßaufgaben universell eingesetzt werden. So besteht einmal die Möglichkeit, eine Probe zu entnehmen, den zu bestimmenden Analyten vom Trägerfluid zu trennen und diesen für eine nachfolgende Analyse zu entneh¬ men.
Das Probenahmesystem kann aber auch direkt mit Sen¬ sorelementen kombiniert verwendet werden, und bei¬ spielsweise Stoffkonzentrationen eines bestimmten Analyten direkt am Probenahmesystem vorgenommen wer¬ den. Hierbei wirkt sich insbesondere der einfache Aufbau und demzufolge die sehr kostengünstige Herstellung vorteilhaft aus.
So können mit dem erfindungsgemäßen Probenahmesystem, bei Verwendung entsprechend ausgebildeter Sensorele¬ mente, gemeinsam mit entsprechenden Referenzelektro¬ den sehr einfache und genaue Messungen durchgeführt werden.
Desweiteren können auch auf einfache und günstige Art und Weise Kalibrierungen durchgeführt werden.
Ein Beispiel für ein erfindungsgemäß ausgeführtes Probenahmesystem kann so aufgebaut sein, daß ein Trä¬ ger 1 mit mindestens zwei Durchbrüchen 4, 5 mit einem Kanalträger 6 mit mindestens zwei Durchbrüchen 9, 10 sowie mindestens einem Kanal 11 fest verbunden ist, und der Kanalträger 6 mit mindestens einer Membran 12 fest verbunden ist und die Membran 12 mit einer Ab¬ deckung 13 fest verbunden ist und durch die Durchbrü¬ che 4, 5 sowie 9, 10 der Analyt oder eine dieses ent¬ haltende Trägerflüssigkeit bzw. Trägergas dem Kanal 11 zugeführt werden kann, die diesen Kanal durch- strömt und den Analyten aufnehmen kann, der mit der für diesen Analyten permeablen Membran 12 an dem nicht abgedeckten Bereich 14 der Membran 12 in Kon¬ takt steht, und der Analyt oder auch die diese ent¬ haltende Trägerflüssigkeit durch den Kanal an den Öffnungen 16, 17 in der Abdeckung 13 vorbeigeführt werden kann, in denen elektrochemische oder optische Sensorelemente einfügbar sind, mit denen Stoffkonzen- trationen oder Ionenaktivitäten meßbar sind.
Träger 1 und der Kanalträger 6 bestehen aus ein ge- genüber den Analyten und dem Trägerfluid inerten Ma¬ terial, zum Beispiel aus Kunststoff (Polyvinylchlorid (PVC) , Polyethylen (PE) , Polyoxymethylen (POM) , Poly- carbonat (PC) , Ethylen/Propylen-Cop. (EPDM) , Polyvi- nylidenchlorid (PVDC) , Polychlortrifluorethylen, Po- lyvinylbutyral (PVB) , Celluloseacetat (CA) , Polypro¬ pylen (PP) , Polymethylmethacrylat (PMMA) , Polyamid (PA) , Tetrafluorethylen/Hexafluorpropylen-Cop. (FEP) , Polytetrafluorethylen (PTFE) , Phenol-Formaldehyd (PF) , Epoxid (EP) , Polyurethan (PUR) , Polyester (UP) , Silicon, Melamin-Formaldehyd (MF) , Harnstoff-Formal¬ dehyd (UF) , Anilin-Formaldehyd, Capton o.a.).
Der Träger 1 kann aber auch aus Glas, Keramik oder Silizium gefertigt sein. Gleiches gilt für den Kanal¬ träger 6.
Die Durchbrüche 4, 5 und 9, 10 im Träger 1 und im Kanalträger 6 sowie der Kanal 11 werden so herge- stellt, daß der Träger 1 und/oder der Kanalträger 6 durch Spritzgieß-, Preßtechniken oder das LIGA-Ver- fahren mit diesen Strukturen hergestellt werden, oder diese Strukturen nachträglich durch Schneiden, Stan¬ zen, Fräsen, Bohren, Ätzen, Laserschneiden, Funken- erosion o.a. hergestellt werden.
Die typischen Abmessungen des Trägers 1 liegen für die Länge bei 1 bis 10 cm, für die Breite bei 0,5 bis 5 cm und für die Dicke bei 0,1 bis l mm. Für den Ka- nalträger 6 gelten gleiche oder ähnliche Größen. Die Durchbrüche 4, 5 und 9, 10 haben Durchmesser zwischen 0,1 und 10 mm. Die Breite des Kanals 11 liegt zwi¬ schen 0,1 und 10 mm.
Die feste Verbindung zwischen Träger 1 und Kanalträ- ger 6 kann - je nach Material - nach dem Stand der Technik durch Kleben, Schweißen oder Laminieren (bei Kunststoffen) oder Kleben (bei Glas, Keramik, Silizi¬ um) oder anodisches Bonden (bei Glas auf Silizium) erfolgen.
Für das Laminieren von Kunststoffolien werden auch spezielle Laminierfolien am Markt angeboten, die sich heiß laminieren lassen (z.B. CODOR-Folie aus Polyet- hylen und Polyester der Firma TEAM CODOR, Deutsch¬ land, Mari) .
Die Membran 12 ist je nach Anwendungsfall als Dialy¬ semembran, gaspermeable Membran, Gitter oder Gewebe aus Kunststoff-, Papier- oder Textilfasern ausge¬ führt. Ihre Dicke liegt zwischen 10 und 1000 μm. Für Dialysemembranen lassen sich folgende Materialien verwenden: Polycarbonat, Celluloseacetat, Cellulose- hydrat, Cuprophan, Thomapor, regenerierte Cellulose, Polyacrylnitril, Polysulfon, Polyamid, Polymethylme¬ thacrylat o.a..
Für eine gaspermeable Membran lassen sich folgende Materialien einsetzen: Polyvinylchlorid (PVC) , Polyethylen (PE) , Polyoxyme- thylen (POM) , Polycarbonat (PC) , Ethylen/Propylen- Cop. (EPDM) , Polyvinylidenchlorid (PVDC) , Polychlor- trifluorethylen, Polyvinylbutyral (PVB) , Cellulose¬ acetat (CA) , Polypropylen (PP) , Polymethylmethacrylat (PMMA) , Polyamid (PA) , Tetrafluorethylen/Hexafluor- propylen-Cop. (FEP) , Polytetrafluorethylen (PTFE) , Phenol-Formaldehyd (PF) , Epoxid (EP) , Polyurethan (PUR) , Polyester (UP) , Silicon, Melamin-Formaldehyd (MF) , Harnstoff-Formaldehyd (UF) , Anilin-Formaldehyd, Capton o.a.. Entscheidend für die Gaspermeabilität ist neben der Materialauswahl die Dicke der Membran.
Die feste Verbindung zwischen Membran 12 und Kanal- träger 6 kann nach dem Stand der Technik durch Kle¬ ben, Schweißen oder Laminieren erfolgen.
Die Abdeckung 13 wird nach gleichen oder ähnlichen Verfahren wie der Träger 1 hergestellt und durch Kle- ben, Schweißen oder Laminieren fest so mit der Mem¬ bran verbunden, daß diese ganz oder zum Teil von der Abdeckung 13 bedeckt ist.
In die Öffnungen 16, 17 der Abdeckung 13 sind alle Sensorelemente integrierbar, die klein genug reali¬ siert werden können und zum Beispiel aus F. Oehme: Chemische Sensoren, Vieweg Verlag, Braunschweig, 1991 oder aus DE 41 15 414 bekannt sind.
Die besonderen Vorteile dieser Erfindung liegen dar¬ in, daß chemische und biochemische Sensoren in Multi- sensoranordnungen gemeinsam mit Durchflußkanälen so¬ wie Mikrodialyseelementen so als Einheit realisiert werden können, daß sie sich mit geringem Aufwand pro- duzieren läßt. Damit kann mit einer Vorrichtung die Probe genommen und Stoffkonzentrationen mit Hilfe integrierter Sensoren gemessen werden. Die Durchflu߬ anordnung macht es möglich, die Sensoren mit Hilfe von Kalibrierflüssigkeiten regelmäßig zu kalibrieren. Bei geringem Kanalquerschnitt kann das System auf¬ grund Kapillardrosselwirkung nach dem Prinzip der Mikrodialyse eingesetzt werden.
Darüber hinaus entfallen Querschnittsveränderungen zwischen dem Ort der Probenahme im Bereich 14 der nicht abgedeckten Membranoberfläche und den Orten, an denen Sensorelemente in den Öffnungen 16, 17 der Ab¬ deckung 13 mit der Trägerflüssigkeit in Kontakt ste¬ hen.
Außerdem ist es dadurch sehr leicht möglich, Sensor¬ elemente in das Durchflußsystem zu integrieren, da der Kanal vor dem Einbringen des Sensorelementes schon mit einer für den Analyten permeablen Membran 12 bedeckt ist, was auch das Einfüllen von zusätzli¬ chen Membranlösungen ermöglicht, ohne daß diese in den darunterliegenden Kanal fließen.
Ausführungsbeispiele der Erfindung sind in den Figu- ren 1 bis 22 dargestellt.
Dabei zeigen:
Fig. 1: einen Schichtaufbau eines ersten Beispiels eines Probenahmesystems, in das Sensorele¬ mente integrierbar sind; Fig. 2: ein Probenahmesystem nach Figur 1; Fig: 3 ein Sensorelement eines Probenahmesystems, das in Durchbrüche integrierbar ist; Fig. 4: eine zweites Ausführungsbeispiel eines Pro¬ benahmesystems mit einem ionenselektiven Sensorelement; Fig. 5: ein drittes Ausführungsbeispiel eines Pro¬ benahmesystem mit einem Biosensorelement; Fig. 6: ein viertes Ausführungsbeispiel eines Pro¬ benahmesystems mit Sensorelement zur Mes¬ sung von in Flüssigkeiten gelösten Gasen; Fig. 7: ein fünftes Ausfuhrungsbeispiel eines Pro- benahmesystems mit einem Glucosesensor; Fig. 8: ein Elektrodenträger nach Figur 7; Fig. 9: ein Probenahmesystem nach Figur 7 mit Glu- cosesensor; Fig. 10: ein Probenahmesystem eines sechsten Ausfüh¬ rungsbeispieles mit zusätzlichem Kanal- Schluß;
Fig. 11: ein siebentes Ausführungsbeispiel eines
Probenahmesystems; Fig. 12: ein Probenahmesystem nach einem achten Aus¬ führungsbeispie1; Fig. 13: ein Probenahmesystem eines neunten Ausfüh¬ rungsbeispieles mit zusätzlicher Membran; Fig. 14: ein Probenahmesystem in einem elften Aus¬ fuhrungsbeispiel mit externem Anschluß von Sensorelementen; Fig. 15: ein Probenahmesystem in einem zwölften Aus¬ führungsbeispiel; Fig. 16: ein Probenahmesystem in einem dreizehnten
Ausführungsbeispiel; Fig. 17: ein Probenahmesystem in einem vierzehnten Ausführungsbeispiel, in die Sensorelemente integrierbar sind; Fig. 18: ein Probenahmesystem als fünftes Ausfüh¬ rungsbeispiel, in die Sensorelemente inte¬ grierbar sind; Fig. 19: ein Probenahmesystem in einem sechzehnten
Ausführungsbeispiel mit integrierter Reak¬ tionsstrecke; Fig. 20: ein Probenahmesystem nach Figur 4 mit Anschlußblock; Fig. 21: eine nadeiförmige Probenahme- und Sensor¬ einheit und Fig. 22: Probenahmesystem in einem weiteren Ausfü- rungsbeispiel. Ein erstes Ausführungsbeispiel ist in den Figuren 1 bis 3 dargestellt. Es zeigt die Figur 1 die Schich¬ tenfolge einer Probenahmeeinheit, in die Sensorele¬ mente integrierbar sind. In Figur 2 ist der Schicht- aufbau nach dem Zusammenfügen der verschiedenen Ebe¬ nen und dem festen Verbinden derselben dargestellt. In die Öffnungen 16, 17 der Abdeckung 13 können Sen¬ sorelemente integriert sein, wie sie zum Beispiel aus DE 41 15 414 bekannt sind. Ein solches Sensorelement ist in Figur 3 gezeigt. Hier steht eine ionenselekti¬ ve Membran 18 in direktem Kontakt mit einer Edelme¬ tallableitung 19 aus Silber. Dieses Sensorelement wird so in die Öffnung 16 der Abdeckung 13 einge¬ setzt, daß die ionenselektive Membran 18 in direktem Kontakt mit der Membran 12 steht und die Edelmetall¬ ableitung 19 durch die Öffnung 16 hindurch mit einem Kontaktstift von außen kontaktiert und mit einer Me߬ elektronik verbunden werden kann. Das Sensorelement nach Figur 3 kann dann zusätzlich mit einem Klebstoff an der Oberfläche der Abdeckung 13 so fixiert werden, daß die Edelmetallableitung von Klebstoff frei bleibt. Zur Verbesserung des elektrochemischen Kon¬ taktes zwischen der Membran 12 und der ionenselekti¬ ven Membran 18 kann vor dem Einsetzen des Sensorele- mentes die Membran 12 in der Öffnung 16 mit einem dünnen Hydrogelfilm (zum Beispiel HEMA) überzogen werden, der als Lösung in die Öffnung (16) gefüllt wird, nach Ausbildung des Hydrogelfilms wird das Sen¬ sorelement nach Figur 3 eingesetzt.
In die Öffnung 17 wird eine Referenzelektrode einge¬ setzt, die in gleicher Weise wie das Sensorelement nach Figur 3 aufgebaut ist. Hier besteht allerdings die Schicht 18 in Figur 3 aus einem KCl-Gel und die Schicht 19 aus einem chloridisierten Silberfilm. Träger 1, Kanalträger 6 und Abdeckung 13 werden in diesem Beispiel aus einer 150 μm dicken Laminierfolie durch Ausstanzen hergestellt. Diese Folie besteht aus Polyethylen und Polyester und ist unter dem Namen CODOR-Folie im Handel erhältlich. Die Membran 12 ist eine 20 bis 100 μm, bevorzugt 50 μm dicke Dialysemem¬ bran aus Polycarbonat. Das feste Verbinden des Trä¬ gers 1, des Kanalträgers 6, der Membran 12 und der Abdeckung 13 erfolgt durch Laminieren bei 125 °C.
Für die Durchführung einer Messung wird eine Träger¬ flüssigkeit (zum Beispiel eine Kochsalzlösung) durch den Durchbruch 5 des Trägers in den Kanalbereich 11 gepumpt. Die Trägerflüssigkeit verläßt die Anordnung über den Durchbruch 4 im Träger 1. Die nicht von der Abdeckung 13 bedeckte Oberfläche 14 der Membran 12 wird zum Beispiel durch Eintauchen in direkten Kon¬ takt mit dem flüssigen Meßmedium gebracht und der Analyt kann dort entnommen werden.
Die Meßionen diffundieren durch die Dialysemembran 12, gelangen im Kanal 11 in den Trägerflüssigkeits¬ strom und werden zum Sensorelement transportiert, das sich in der Öffnung 16 der Abdeckung 13 befindet. Die ionenselektive Membran 18 des Sensorelementes nach Figur 3 steht somit über die Dialysemembran in Kon¬ trakt mit dem Meßmedium. Es bildet sich in Abhängig¬ keit von der Aktivität des Meßions eine Potentialdif¬ ferenz zwischen Meßlösung und ionenselektiver Membran aus, die zwischen den Metallableitungen 19 des Sen¬ sorelementes bzw. der Referenzelektrode mit Hilfe eines hochohmigen Millivoltmeters gemessen werden kann.
Es ist aber auch möglich, in die Öffnungen 16, 17 keine elektrochemischen Sensorelemente sondern be¬ kannte optische Sensorelemente einzusetzen.
Ein zweites Ausführungsbeispiel ist in Figur 4 darge- stellt. Die Figur 4 zeigt eine Anordnung nach Figur l und 2 im Schnitt. Abweichend von den Figuren 1 und 2 ist hier in die Öffnung 16 der Abdeckung 13 kein Sen¬ sorelement nach Figur 3 eingefügt. Hier in Figur 4 ist für die Realisierung eines Sensorelementes auf der Abdeckung 13 ein 0,1 bis 1 μm dicker Edelmetall¬ film 20, 21 (z.B. aus Silber) mit Hilfe der Auf¬ dampf-, Sputter- oder Siebdrucktechnik aufgebracht (beide Edelmetallfilme 20, 21) sind aus gleichem Ma¬ terial und miteinander verbunden) . In die Öffnung 16 wird nun mit Hilfe einer Mikropipette, oder einem automatischen Dispenser eine Membranlösung zum Bei¬ spiel aus PVC oder Silicon mit Ionencarriern einge¬ bracht. Solche Membranlösungen sind u.a. auch aus F. Oehme, Chemische Sensoren, Vieweg Verlag, Braun- schweig, 1991 bekannt. Nach Verfestigung der Sensor¬ membran 22 durch Abdampfen des Lösungsmittels oder durch Vernetzung unter UV-Licht wirkt diese Anordnung als ionenselektives Sensorelement. Als Referenzelek¬ trode kann in der Öffnung 17 ein ähnliches Element eingebracht werden. Hier wird die Membran 22 als KC1- Gel und der Metallfilm 20, 21 als Silberfilm ausge¬ führt, dessen Oberfläche chloridisiert ist.
Ein drittes Ausführungsbeispiel zeigt die Figur 5. Diese Darstellung entspricht der Darstellung in Figur 4. Allerdings ist hier eine zusätzliche Membran 23 eingebracht. Wird diese Membran 23 als Gelschicht mit einem Enzym (z.B. dem Enzym Urease) ausgeführt und die Membran 22 als pH-empfindliche oder ammoniumse- lektive Membran ausgeführt, so entsteht ein Biosen- sorelement für die Messung von Harnstoffkonzentratio¬ nen. Beide Membranen 22 und 23 lassen sich nachein¬ ander wie oben ausgeführt aus flüssiger Phase in die Öffnung 16 einfüllen und verfestigen. Die Ausgestal- tung der Referenzelektrode geschieht in gleicher Wei¬ se wie im zweiten Ausführungsbeispiel (Figur 4) .
Im vierten Ausführungsbeispiel (Figur 6) ist ein Sen¬ sorelement für die Messung von gelösten Gasen in Flüssigkeiten gezeigt. Der Aufbau erfolgt ähnlich wie in Figur 4 dargestellt. Allerdings ist hier in Figur 6 eine zusätzliche gaspermeable Membran 24 zwischen Membran 12 und Abdeckung 13 einlaminiert. Diese gas¬ permeable Membran besteht zum Beispiel aus einem 50 μm dicken PTFE-Film. Für die Ausgestaltung eines Sau¬ erstoffsensors vom Clark-Typ sind im Gegensatz zu den vorhergehenden Ausführungsbeispielen die Edelmetall¬ filme 20, 21 nicht aus gleichem Material und nicht miteinander verbunden. Der Edelmetallfilm 20 besteht zum Beispiel aus Platin (Kathode) und der Edelmetall¬ film 21 aus Silber, dessen Oberfläche chloridisiert ist (Ag/AgCl-Anode) . Die Membran 22 ist als KCl-Gel ausgeführt. Durch die Dialysemembran 12 und die gas¬ permeable Membran 24 kann der Sauerstoff bis zur Pla- tinkathode diffundieren, wo er elektrochemisch umge¬ setzt wird und ein elektrischer Strom zwischen Pt- Kathode 20 und Ag/AgCl-Anode 21 fließt, wie dies vom Clark-Sauerstoffsensor bekannt ist.
Ein fünftes Ausführungsbeispiel (Figuren 7 bis 9) stellt einen Glucose-Sensor dar. In Figur 7 ist eine Schichtenfolge gemäß Figur 1 gezeigt. Zusätzlich be¬ findet sich hier in Figur 7 ein Elektrodenträger 25 aus gleichem Material wie Träger 1 und Kanalträger 6. Der Elektrodenträger 25 ist mit einer Platinschicht 26 und einem Silberfilm 27 mit Hilfe der oben angege¬ benen Verfahren beschichtet. Beide Filme 26, 27 haben Schichtdicken zwischen 0,1 und 1 μm. Die Oberfläche des Silberfilms 27 wird im Betrieb des Sensorelemen- tes in Silberchlorid umgewandelt. Der Elektrodenkör¬ per 25 mit dem Edelmetallfilm 26 ist in Figur 8 ver¬ größert im Schnitt dargestellt. Der Elektrodenkörper ist mit kleinen Löchern 28 versehen, deren Durchmes¬ ser zwischen 50 und 1000 μm liegen. Die Figur 9 zeigt die zusammengefügte Konfiguration ebenfalls im
Schnitt. Die Gelschicht 31 besteht zum Beispiel aus Polyvinylalkohol (PVA) und wird durch Einfüllen einer Lösung in die Öffnung 16 des Trägers 13 eingebracht und verfestigt wie dies aus der DE 44 08 352 bekannt ist. In ihr ist das Enzym Glucoseoxidase immobili¬ siert.
In die Öffnung 17 wird für die Realisierung einer Referenzelektrode ein KCl-Gel eingefüllt.
Zur Messung der Glucosekonzentration wird mit Hilfe von zwei Kontaktstiften durch die Durchbrüche 29, 30 in der Abdeckung 13 zwischen Pt- 26 und Ag/AgCl- Elektrode 27 auf den Elektrodenträger 25 eine elek- trische Spannung (typisch 600 mV) angelegt und in
Abhängigkeit von der Glucosekonzentration ein elek¬ trischer Strom gemessen.
Es ist aber auch möglich, den Elektrodenkörper 25 so auszubilden, daß die Löcher 28 erst nach dem Aufbrin¬ gen der Metallschichten 26, 27 eingebracht werden, so daß die Innenwände der Löcher 28 nicht metallbe¬ schichtet sind. Dies ist wichtig, wenn mit solchen Elektrodenkörpern 25 anstelle von amperometrischen potentiometrische Sensorelemente realisiert werden. Ein sechstes Ausführungsbeispiel ist in der Figur 10 dargestellt. Diese Konfiguration entspricht der Dar¬ stellung in Figur 1. Allerdings ist hier ein zusätz¬ licher Kanal 11'' in den Kanalträger 6' eingebracht. Durch die Durchbrüche 32 und 33 kann eine Kalibrier¬ flüssigkeit dem Sensorelement zugeführt werden, das sich in der Öffnung 16 befindet.
In der Figur 11 ist ein siebentes Ausführungsbeispiel in Anlehnung an Figur 1 dargestellt. Hier sind aller¬ dings die Öffnungen 16, 17 in der Abdeckung 13 (Fig. 1) durch die Öffnungen 34, 35 ersetzt, die sich im träger 1 ' ' befinden. In diese Öffnungen werden wie im Ausführungsbeispiel 2 gezeigt, ein Sensorelement nach Figur 3 und eine Referenzelektrode eingesetzt.
Ein achtes Ausführungsbeispiel zeigt in Anlehnung an Figur 1 die Figur 12. Hier bedeckt die Membran 37 (sie ersetzt die Membran 12) den Kanalträger 6 nur teilweise. Die Abdeckung 38 ist größer ausgeführt und besitzt ein Fenster 41 durch das das Meßmedium mit der Membran 37 in Kontakt gebracht werden kann. In den Öffnungen 39, 40 können wie oben beschrieben Sen¬ sorelemente und Referenzelektroden realisiert werden.
In Figur 13 ist ein neuntes Ausführungsbeispiel dar¬ gestellt. Zusätzlich zu einer Dialysemembran 37 (vergl. auch Fig. 12) ist hier eine weitere Membran 42 (zum Beispiel aus PTFE) eingebracht, die gasper- meabel ist. In der Öffnung 39 kann analog zum vierten Ausführungsbeispiel ein Sensor für gelösten Sauer¬ stoff realisiert werden.
Zehntes Ausführungsbeispiel: Es ist ebenso möglich, die Membran 42 in Figur 13 aus einer dünnen PVC-Folie herzustellen und in die Öffnungen 39, 40 eine Lösung zur Erzeugung einer ionenselektiven PVC-Membran ein¬ zufüllen und damit analog zum Ausführungsbeispiel zwei ein ionenselektives Sensorelement auszubilden.
Ein elftes Ausführungsbeispiel ist in der Figur 14 gezeigt. Im Gegensatz zum ersten Ausführungsbeispiel werden hier keine Sensorelemente und Referenzelektro¬ den in Öffnungen der Abdeckung (13 in Fig. 1, 36 in Fig. 14) hergestellt. Diese Vorrichtung dient als
Probenahmeeinheit nach dem Mikrodialyseprinzip. Sen¬ soren können extern in den Flüssigkeitsstrom einge¬ bracht werden, der den Kanal 11 durchströmt.
In einem zwölften Ausführungsbeispiel (Figur 15) sind im Gegensatz zu Figur 1 der Träger und der Kanalträ¬ ger (1 und 6 in Fig. 1) zu einer Einheit 43 zusammen¬ gefügt. Dieser Träger 43 besteht zum Beispiel aus PVC und ist 5 mm dick. Die Durchbrüche 44, 45 gehen über die gesamte Dicke; der Kanal 46 hat eine Tiefe von 1 mm.
Das dreizehnte Ausführungsbeispiel zeigt in Figur 16 eine Konfiguration nach Figur 15. Hier ist zusätzlich eine Probenahmeschicht 47 auf die Membran 12 aufge¬ klebt. Diese Schicht 47 besteht aus Filterpapier, das einen Tropfen des flüssigen Mediums aufnehmen kann.
Die Figur 17 zeigt ein vierzehntes Ausführungsbei- spiel. Es ist eine Durchflußanordnung dargestellt, die aus einem Träger 48, einem Kanalträger 51, einer Membran 55 (Dialysemembran oder gaspermeable Mem¬ bran) , sowie einer Abdeckung 56 besteht, in deren Öffnungen 57, 58, 59, wie oben ausgeführt, Sensorele- mente und Referenzelektroden eingebracht werden kön- nen. Die Anordnung arbeitet wie eine Sensor-Durch¬ flußzelle, der das flüssige Meßmedium durch den Durchbruch 49 zugeführt und durch den Durchbruch 50 wieder entzogen wird.
Ein fünfzehntes Ausführungsbeispiel zeigt die Figur 18 in Anlehnung an Figur 17. Allerdings fehlt in Fi¬ gur 18 die Membran 55. In die Öffnungen 57, 58, 59 können Sensorelemente nach Figur 3 eingesetzt werden.
Ein sechzehntes Ausführungsbeispiel ist in Figur 19 als Schichtenfolge dargestellt. Alle Schichten sind wieder miteinander fest verbunden.
Hier wird ein flüssiges Meßmedium durch den Durch¬ bruch 64 im Träger 63 dem Kanal 69 zugeführt und über den Durchbruch 65 wieder entzogen. Das Meßmedium fließt durch den Kanal 69 im Kanalträger 66. Durch die Dialysemembran 70 hindurch steht das flüssige Meßmedium mit einem reaktiven Material in Kontakt, das in den kanalformigen Durchbruch (Reaktionsstrecke 74) in der Abdeckung 71 eingebracht ist. In den Öff¬ nungen 72, 73 sind wieder Sensorelemente und Referen¬ zelektroden eingebracht, die die Stoffkonzentration vor und nach der Reaktionsstrecke messen.
Als reaktives Material kann ein Polymer, Gel oder Hydrogel mit immobilisierten Enzymen, Antikörpern oder Mikroorganismen verwendet werden. Befinden sich zum Beispiel sauerstoffverbrauchende Mikroorganismen in der Reaktionsstrecke und sind die Sensorelemente in den Öffnungen 72, 73 als SauerstoffSensoren ausge¬ bildet, so kann ein Sensorsystem für den biologischen Sauerstoffbedarf realisiert werden. In der Figur 20 ist eine Anordnung nach Figur 4 ge¬ zeigt. Hier ist der Zu- und Abfluß der Trägerflüssig¬ keit mit Hilfe eines Kunststoffblocks 76 mit minde¬ stens einem Kanal 77 realisiert, der gegen den Träger 1 mit Hilfe eines O-Ringes 78 abgedichtet ist. Zu¬ sätzlich zu Figur 4 ist das Membranmaterial 22 mit einer Verkapselungsschicht 75 aus Epoxidharz versie¬ gelt.
Die Figur 21 zeigt eine Anordnung gemäß Figur 2, die an der Spitze nadeiförmig ausgebildet ist. Die Breite der Nadelsonde beträgt 0,1 bis 5 mm. Unter der Mem¬ bran 79 ist der Kanal 80 des Kanalträgers erkennbar. In den Öffnungen 86, 87 der Abdeckung 85 werden, wie oben ausgeführt, Sensorelemente und Referenzelektro¬ den eingesetzt. Die Trägerflüssigkeit kann durch die Durchbrüche 88, 89 zu- und abgeführt werden. Diese nadeiförmige Ausbildung eignet sich beispielsweise zum Einstechen in Gewebe.
In der Figur 22 ist ein weiteres Ausführungsbeispiel eines erfindungsgemäß ausgebildeten Probenahmesystems dargestellt. Dabei entspricht der wesentliche Aufbau dem bereits bei der Beschreibung der Figur 4 erklär- ten Beispiel. Dabei wurde zusätzlich mindestens eine Elektrode 90 im Kanal 11 angeordnet, um dort eine elektrochemische Umsetzung zu erreichen.
Die Elektrode(n) 90 können beispielsweise durch ein bekanntes Dünnschicht- oder Siebdruckverfahren aufge¬ bracht werden.
Daneben besteht aber auch eine in der Figur 22 nicht dargestellte Möglichkeit darin, die Elektrode(n) aus der dem Kanal 11 gegenüberliegenden Seite der Membran 12 anzuordnen. Diese Elektrode(n) können beispiels¬ weise als metallische Paste aufgebracht werden.
Durch die so erreichbare elektrochemische Umsetzung kann eine weitere Verbesserung bei der Isolation des zu bestimmenden Analyten erreicht werden.

Claims

Patentansprüche
1. Probenahmesystem für fluidische oder in Fluiden enthaltene Analyte, mit einem flächigen Träger (1, 43, 48, 63), einem Kanal (11, 46, 54, 69, 80) durch den über Durchbrüche (4, 5, 44, 45, 49, 50, 64, 65, 88, 89) im Träger (1, 43, 48, 63) Fluid führbar ist und der Kanal (11, 45, 54,
69, 80) mittels einer Abdeckung (13, 56, 71, 85) zumindest teilweise überdeckt ist, d a d u r c h g e k e n n z e i c h n e t , daß zwischen Abdeckung (13, 36, 56, 71, 85) und der offenen oberen Seite des Kanals (11, 46, 54,
69, 80), diesen zumindest teilweise überdeckend, eine für den Analyt durchlässige Membran (12, 37, 42, 55, 70, 79) angeordnet ist und der Ana¬ lyt aus Bereichen (14, 16, 17, 29, 30, 39, 40, 57, 58, 59, 72, 73, 74, 86, 87), die nicht mit der Abdeckung (13, 36, 71, 85) verschlossen sind, entnehmbar oder dort meßbar ist.
2. Probenahmesystem nach Anspruch 1, dadurch gekennzeichnet, daß der Kanal (11, 54,
69) in einem mit dem Träger (1, 48, 63) verbun¬ denen Kanalträger (6, 51, 66) ausgebildet ist.
3. Probenahmesystem nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß im Kanalträger (6,
51, 66) mit den Durchbrüchen (4, 5, 44, 45, 49, 50, 64, 65, 88, 89) korrespondierende Durchbrü¬ che (9, 10, 52, 53, 67, 68) ausgebildet sind.
4. Probenahmesystem nach einem der Ansprüche 1 oder
3, dadurch gekennzeichnet, daß der Träger (1) , der Kanalträger (6) und/oder die Abdeckung (13, 56, 71, 85) aus Kunststoff (Polyvinylchlorid (PVC),
Polyethylen (PE) , Polyoxymethylen (POM) , Poly¬ carbonat (PC) , Ethylen/Propylen-Cop. (EPDM) , Polyvinylidenchlorid (PVDC) , Polychlortrifluo- rethylen, Polyvinylbutyral (PVB) , Celluloseace- tat (CA) , Polypropylen (PP) , Polymethylmethacry¬ lat (PMMA) , Polyamid (PA) , Tetrafluorethylen/- Hexafluorpropylen-Cop. (FEP) , Polytetrafluoret¬ hylen (PTFE) , Phenol-Formaldehyd (PF) , Epoxid (EP) , Polyurethan (PUR) , Polyester (UP) , Sili- con, Melamin-Formaldehyd (MF) , Harnstoff-Formal¬ dehyd (UF) , Anilin-Formaldehyd, Capton o.a.) oder aus Glas, Keramik oder Silizium bestehen.
5. Probenahmesystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Träger (1, 48, 63) in einer Länge von 1 bis 10 cm, einer Breite 0,5 bis 5 cm und einer Dicke von 0,1 bis 1 mm ausgebildet ist, und der Kanalträger (6, 51, 66) annähernd die gleiche Größe aufweist, die Durch¬ brüche (4, 5, 9, 10, 32, 33, 49, 50, 52, 53, 64, 65, 67, 68) einen Durchmesser zwischen 0,1 und 10 mm haben, und die Breite des Kanals (11, 46, 54, 69, 80) zwischen 0,1 und 10 mm liegt.
6. Probenahmesystem nach einem der Ansprüche 1 bis
5, dadurch gekennzeichnet, daß die Membran (12) je nach Anwendungsfall als Dialysemembran oder gas- permeable Membran ausgeführt ist, und ihre Dicke zwischen 10 und 1000 μm liegt.
7. Probenahmesystem nach Anspruch 6, dadurch gekennzeichnet, daß die Dialysemembranen aus Materialien, wie Polycarbonat, Celluloseace- tat, Cellulosehydrat, Cuprophan, Thomapor, rege¬ nerierte Cellulose, Polyacrylnitril, Polysulfon, Polyamid, Polymethylmethacrylat bestehen.
8. Probenahmesystem nach Anspruch 6, dadurch gekennzeichnet, daß die gaspermeable Membran aus Materialien, wie Polyvinylchlorid (PVC) , Polyethylen (PE) , Polyoxymethylen (POM) , Polycarbonat (PC) , Ethylen/Propylen-Cop. (EPDM) , Polyvinylidenchlorid (PVDC) , Polychlortrifluo- rethylen, Polyvinylbutyral (PVB) , Celluloseace- tat (CA) , Polypropylen (PP) , Polymethylmethacry¬ lat (PMMA) , Polyamid (PA) , Tetrafluorethylen/- Hexafluorpropylen-Cop. (FEP) , Polytetrafluoret- hylen (PTFE) , Phenol-Formaldehyd (PF) , Epoxid
(EP) , Polyurethan (PUR) , Polyester (UP) , Sili¬ con, Melamin-Formaldehyd (MF) , Harnstoff-Formal¬ dehyd (UF) , Anilin-Formaldehyd, Capton bestehen.
9. Probenahmesystem nach einem der Ansprüche 1 bis
8, dadurch gekennzeichnet, daß mindestens ein Sen¬ sorelement in eine Öffnung (16, 39, 57, 58, 59, 72, 86), die als nicht abgedeckter Bereich der Abdeckung (13, 38, 56, 71, 85) ausgebildet ist, einsetzbar ist.
10. Probenahmesystem nach Anspruch 9, dadurch gekennzeichnet, daß das Sensorelement so einsetzbar ist, daß seine ionenselektive Membran (18) in direktem Kontakt mit der Membran (12) steht, und eine Edelmetallableitung (19) durch die Öffnung (16) hindurch mit einer Meßelektro¬ nik verbindbar ist.
11. Probenahmesystem nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß zwischen der Membran (12) und der ionenselektiven Membran (18) des Sensorelementes ein Hydrogelfilm ausgebildet ist.
12. Probenahmesystem nach einem der Ansprüche 1 bis
11, dadurch gekennzeichnet, daß in eine zweite Öff- nung (17) der Abdeckung (13) eine zusätzliche
Referenzelektrode einsetzbar ist, bei der die mit der Membran (12) in Kontakt stehende Schicht (18) aus einem KCl-Gel und die Schicht (19) aus einem chloridisierten Silberfilm besteht.
13. Probenahmesystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß in die Öffnungen (16, 17, 39, 40, 57, 58, 59, 72, 73, 86, 87) optische Sensorelemente einsetzbar sind.
14. Probenahmesystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß auf der Abdeckung (13) ein 0,1 bis 1 μm dicker Edelmetallfilm (20,
21) mittels Aufdampf-, Sputter- oder Siebdruck¬ technik aufgebracht ist, beide Edelmetallfilme (20, 21) aus gleichem Material und miteinander verbunden sind, und in die Öffnung (16) eine Membranlösung aus PVC oder Silicon mit lonencar- riern eingebracht ist, und als Referenzelektrode in der Öffnung (17) ein ähnliches Element einge¬ bracht ist, bei der die Membran (22) als KCl-Gel und der Metallfilm (20, 21) als Silberfilm aus- geführt ist, dessen Oberfläche chloridisiert ist.
15. Probenahmesystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß eine zusätzliche
Membran (23) eingebracht ist, diese Membran (23) als Gelschicht mit einem Enzym ausgeführt ist und die Membran (22) als pH-empfindliche oder ammoniumselektive Membran ausgebildet ist.
16. Probenahmesystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß am Sensorelement eine zusätzliche gaspermeable Membran (24) zwi- sehen Membran (12) und Abdeckung (13) angeordnet ist, die gaspermeable Membran (24) aus einem 20 bis 100 μm dicken PTFE-Film, der Edelmetallfilm
(20) aus Platin (Kathode) und der Edelmetallfilm
(21) aus Silber besteht, dessen Oberfläche chlo- ridisiert ist (Ag/AgCl-Anode) , und die Membran
(22) als KCl-Gel ausgeführt ist.
17. Probenahmesystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß ein Elektrodenträger
(25) zwischen Membran (12) und Abdeckung (13) eingefügt ist, und der Elektrodenträger (25) mit einem Platinfilm (26) und einem Silberfilm (27) beschichtet ist, und beide Filme (26, 27) Schichtdicken zwischen 0,1 und 1 μm haben, der Elektrodenkörper (25) mit kleinen Löchern (28) versehen ist, deren Durchmesser zwischen 50 und 1000 μm liegen; eine Gelschicht (31) aus Polyvi¬ nylalkohol (PVA) in die Öffnung (16) des Trägers (13') eingebracht und verfestigt ist, wobei in der Gelschicht (31) das Enzym Glucoseoxidase immobilisiert ist, und in die Öffnung (17) Re¬ ferenzelektrode ein KCl-Gel eingefüllt ist.
18. Probenahmesystem nach Anspruch 17, dadurch gekennzeichnet, daß der Elektrodenkörper (25) so ausgebildet ist, daß die Innenwände der Löcher (28) nicht metallbeschichtet sind.
19. Probenahmesystem nach einem der Ansprüche l bis 18, dadurch gekennzeichnet, daß ein zusätzlicher Kanal (11'') in den Kanalträger (6') eingebracht ist, und durch Durchbrüche (32) und (33) eine Kalibrierflüssigkeit dem Sensorelement zuführbar ist, das in die Öffnung (16) eingesetzt ist.
20. Probenahmesystem nach einem der Ansprüche l bis
19, dadurch gekennzeichnet, daß im Träger (1'') Öff¬ nungen (34, 35) ausgebildet sind, in die ein Sensorelement und eine Referenzelektrode ein¬ setzbar sind.
21. Probenahmesystem nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß die Membran (37) den Kanal (11) , teilweise überdeckbar, in ein Fen¬ ster (41) der Abdeckung (38) einsetzbar ist, und in den Öffnungen (39, 40) Sensorelemente und Referenzelektroden einsetzbar sind.
22. Probenahmesystem nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß zusätzlich zu einer
Dialysemembran (37) , eine weitere gaspermeable Membran (42) eingebracht ist, und in der Öffnung (39) ein Sensor für gelösten Sauerstoff reali¬ siert ist.
23. Probenahmesystem nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß die Membran (42) aus einer dünnen PVC-Folie besteht und in die Öff- nungen (39, 40) eine Lösung zur Erzeugung einer ionenselektiven PVC-Membran eingefüllt ist, und damit ein ionenselektives Sensorelement ausge¬ bildet ist.
24. Probenahmesystem nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß Träger und Kanalträ¬ ger als Einheit (43) ausgebildet sind, und sich die Durchbrüche (44, 45) über die gesamte Dicke erstrecken, und der Kanal (46) eine Tiefe von 1 mm hat.
25. Probenahmesystem nach einem der Ansprüche 1 biε 24, dadurch gekennzeichnet, daß zusätzlich eine Pro¬ benaufnahmeschicht (47) auf die Membran (12) aufgebracht ist, und diese Schicht (47) aus Fil¬ terpapier besteht.
26. Probenahmesystem nach Anspruch 1, dadurch gekennzeichnet, daß eine Durchflußanord¬ nung aus einem Träger (48) , einem Kanalträger (51) , einer Membran (55) sowie einer Abdeckung (56) besteht, in deren Öffnungen (57, 58, 59)
Sensorelemente und Referenzelektroden einsetzbar sind, das Fluid durch den Durchbruch (49) zu¬ führ- und durch den Durchbruch (50) abführbar ist.
27. Probenahmesystem nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß in der Abdeckung (71) ein ein reaktives Material enthaltender kanalförmiger Durchbruch als Reaktionsstrecke
(74) eingebracht ist, und in den Öffnungen (72, 73) Sensorelemente und Referenzelektroden, zur Messung der Stoffkonzentration vor und nach der Reaktionsstrecke (74) , eingebracht sind.
28. Probenahmesystem nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, daß der Zu- und Abfluß der Trägerflüssigkeit mittels eines Kunststoff- blocks (76) mit mindestens einem Kanal (77) rea¬ lisiert ist, der gegen den Träger (1) mit Hilfe eines O-Ringes (78) abgedichtet ist, und zusätz¬ lich das Membranmaterial (22) mit einer Verkap- selungsschicht (75) aus Epoxidharz versiegelt ist.
29. Probenahmesystem nach einem der Ansprüche l bis 28, dadurch gekennzeichnet, daß die Anordnung nadei¬ förmig ausgebildet ist, und die Breite der Na- delsonde 0,1 bis 5 mm beträgt.
30. Probenahmesystem nach einem der Ansprüche l bis 29, dadurch gekennzeichnet, daß im Kanal (ll, 46, 54, 69, 80) oder oberhalb der für den Analyten durchlässige Membran (12) mindestens eine elek¬ trochemische Umsetzungen bewirkende Elektrode (90) angeordnet ist.
31. Verfahren zur Herstellung eines Probenahmesy¬ stems nach den Ansprüchen 1 bis 30, dadurch gekennzeichnet, daß die Durchbrüche (4, 5, 16, 17, 29, 30, 39, 40, 41, 44, 45, 49, 50, 64, 65, 88, 89, 57, 58, 59, 72, 73, 74, 86, 87) im Träger (1, 43, 48, 63) und im Kanalträger (6,
51, 66) sowie der Kanal (11, 46, 54, 69, 80) so hergestellt werden, daß der Träger (1, 43, 48, 63), die Abdeckung (13, 36, 56, 71, 85) und/oder der Kanalträger (6) durch Spritzgieß-, Preßtech- niken oder das LIGA-Verfahren mit diesen Struk¬ turen erzeugt werden, oder diese Strukturen nachträglich durch Schneiden, Stanzen, Fräsen, Bohren, Ätzen, Laserschneiden, Funkenerosion hergestellt werden.
31. Verfahren nach Anspruch 30, dadurch gekennzeichnet, daß die feste Verbindung zwischen Träger (1, 43, 48, 63), Kanalträger (6, 51, 66), Abdeckung (13, 36, 56, 71, 85) und Mem- bran (12, 27, 42, 55, 70, 79) durch Kleben, Schweißen oder Laminieren (bei Kunststoffen) oder Kleben (bei Glas, Keramik und Silizium) oder anodisches Bonden (bei Glas auf Silizium) erfolgt, und für das Laminieren spezielle Lami- nierfolien verwendet werden.
32. Verfahren nach Anspruch 30 oder 31, dadurch gekennzeichnet, daß Träger (1, 48, 63), Kanalträger (6, 51, 66) und Abdeckung (13, 36, 56, 71, 85) aus einer 150 μm dicken Laminierfo¬ lie durch Ausstanzen hergestellt werden, diese Folie aus Polyethylen oder Polyester besteht, ferner die Membran (12, 37, 42, 55, 70, 79) eine 50 μm dicke Dialysemembran aus Polycarbonat ist, und das feste Verbinden des Trägers (1, 43, 48,
63), des Kanalträgers (6, 51, 66), der Membran (12, 37, 42, 55, 70, 79) und/oder der Abdeckung (13, 36, 71, 85) durch Laminieren bei 125 °C er¬ folgt.
33. Verfahren nach einem der Ansprüche 1 bis 32, dadurch gekennzeichnet, daß für die Realisierung eines Sensorelementes auf der Abdeckung (13) ein 0,1 bis 1 μm dicker Edelmetallfilm (20, 21) mit- tels der Aufdampf-, Sputter- oder Siebdrucktech¬ nik aufgebracht wird, und in die Öffnung (16) mit Hilfe einer Mikropipette, oder einem automa¬ tischen Dispenser eine Membranlösung eingebracht wird, und nach Verfestigung der Sensormembran (22) durch Abdampfen des Lösungsmittels oder durch Vernetzung unter UV-Licht ein Sensorele¬ ment entsteht, und in der Öffnung (17) ein ähn¬ liches Element als Referenzelektrode eingebracht wird, und diese Membran (22) als KCl-Gel und der Metallfilm (20, 21) als Silberfilm ausgeführt ist, dessen Oberfläche chloridisiert ist.
34. Verfahren nach Anspruch 33, dadurch gekennzeichnet, daß PVC oder Silicon mit Ionencarriern in die Öffnung (16) , ein ionense¬ lektives Sensorelement ausbildend, eingebracht wird und in die Öffnung (17) zur Ausbildung ei¬ ner Referenzelektrode ein KCl-Gel eingebracht und der Metallfilm (20, 21) als ein an der Ober- fläche chloridisierter Silberfilm ausgebildet wird.
PCT/DE1997/000192 1996-01-28 1997-01-28 Probenahmesystem für fluidische und in fluiden enthaltene analyte sowie verfahren zu seiner herstellung WO1997027475A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97914106A EP0876605A1 (de) 1996-01-28 1997-01-28 Probenahmesystem für fluidische und in fluiden enthaltene analyte sowie verfahren zu seiner herstellung
US09/117,077 US6287438B1 (en) 1996-01-28 1997-01-28 Sampling system for analytes which are fluid or in fluids and process for its production
JP9526445A JP2000505194A (ja) 1996-01-28 1997-01-28 液体アナライトと液体に含有されたアナライトのサンプル抽出機構、およびそのサンプル抽出機構の製作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19602861.2 1996-01-28
DE19602861A DE19602861C2 (de) 1996-01-28 1996-01-28 Probenahmesystem für in Trägerflüssigkeiten enthaltene Analyte sowie Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO1997027475A1 true WO1997027475A1 (de) 1997-07-31

Family

ID=7783802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000192 WO1997027475A1 (de) 1996-01-28 1997-01-28 Probenahmesystem für fluidische und in fluiden enthaltene analyte sowie verfahren zu seiner herstellung

Country Status (5)

Country Link
US (1) US6287438B1 (de)
EP (1) EP0876605A1 (de)
JP (1) JP2000505194A (de)
DE (1) DE19602861C2 (de)
WO (1) WO1997027475A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295846A1 (de) * 2000-06-20 2003-03-26 Kawamura Institute Of Chemical Research Mikrobauteil mit einer vielschichtigen struktur und verfahren zur dessen herstellung
US6544393B1 (en) * 1998-01-16 2003-04-08 Trace Biotech Ag Flow analysis cell and layered sensor pertaining thereto
US6572566B2 (en) 2000-03-03 2003-06-03 Roche Diagnostics Corporation System for determining analyte concentrations in body fluids

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747875A1 (de) * 1997-10-20 1999-05-06 Meinhard Prof Dr Knoll Verfahren zum Messen veränderlicher Größen und Vorrichtung zum Durchführen des Verfahrens
AU3771599A (en) * 1998-05-18 1999-12-06 University Of Washington Liquid analysis cartridge
US6830729B1 (en) 1998-05-18 2004-12-14 University Of Washington Sample analysis instrument
DE19929264A1 (de) * 1999-06-25 2001-01-11 Meinhard Knoll Universaltransducer
US7192559B2 (en) * 2000-08-03 2007-03-20 Caliper Life Sciences, Inc. Methods and devices for high throughput fluid delivery
US6572745B2 (en) * 2001-03-23 2003-06-03 Virotek, L.L.C. Electrochemical sensor and method thereof
US20030216677A1 (en) * 2002-05-15 2003-11-20 Li Pan Biosensor for dialysis therapy
US7235164B2 (en) 2002-10-18 2007-06-26 Eksigent Technologies, Llc Electrokinetic pump having capacitive electrodes
US7364647B2 (en) * 2002-07-17 2008-04-29 Eksigent Technologies Llc Laminated flow device
US7723099B2 (en) * 2003-09-10 2010-05-25 Abbott Point Of Care Inc. Immunoassay device with immuno-reference electrode
DE10360714A1 (de) * 2003-12-19 2005-07-21 TransMIT Gesellschaft für Technologietransfer mbH Nachfüllbare Mikrosonde
US7666285B1 (en) * 2004-02-06 2010-02-23 University Of Central Florida Research Foundation, Inc. Portable water quality monitoring system
SE0402078L (sv) * 2004-08-25 2006-02-07 Chemel Ab Kalibrerbar genomflödesdetektor
EP1819283A4 (de) * 2004-10-28 2011-08-10 Sontra Medical Corp System und verfahren für die analyten-entnahme und analyse mit hydrogel
US20060094944A1 (en) 2004-10-28 2006-05-04 Sontra Medical Corporation System and method for analyte sampling and analysis with error correction
CA2602259A1 (en) 2005-03-29 2006-10-05 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
EP1950569A4 (de) * 2005-10-25 2009-05-06 Shimadzu Corp Durchflusszelle und verfahren zur herstellung davon
DK1957794T3 (da) 2005-11-23 2014-08-11 Eksigent Technologies Llc Elektrokinetiske pumpeudformninger og lægemiddelfremføringssystemer
US20080058726A1 (en) * 2006-08-30 2008-03-06 Arvind Jina Methods and Apparatus Incorporating a Surface Penetration Device
US7867592B2 (en) 2007-01-30 2011-01-11 Eksigent Technologies, Inc. Methods, compositions and devices, including electroosmotic pumps, comprising coated porous surfaces
US8812071B2 (en) 2007-03-07 2014-08-19 Echo Therapeutics, Inc. Transdermal analyte monitoring systems and methods for analyte detection
US8858681B2 (en) * 2007-04-23 2014-10-14 W. L. Gore & Associates, Inc. Patterned porous venting materials
EP2027812A1 (de) * 2007-08-24 2009-02-25 F. Hoffman-la Roche AG Verfahren zur Herstellung eines Mikrodialysekatheters und durch dieses hergestellter Mikrodialysekatheter
US8251672B2 (en) 2007-12-11 2012-08-28 Eksigent Technologies, Llc Electrokinetic pump with fixed stroke volume
WO2012091540A1 (en) * 2010-12-29 2012-07-05 Mimos Berhad Integrated microfluidics sensor
DE102011009854A1 (de) * 2011-02-01 2012-08-02 Erwin Quarder Systemtechnik Gmbh Sensoreinrichtung zur Messung von Eigenschaften von Analyten
US8979511B2 (en) 2011-05-05 2015-03-17 Eksigent Technologies, Llc Gel coupling diaphragm for electrokinetic delivery systems
KR101325676B1 (ko) 2011-12-02 2013-11-06 서강대학교산학협력단 미세채널 내의 이온선택성 멤브레인 형성방법 및 미세채널 장치
CN102631957B (zh) * 2012-04-13 2014-06-25 北京大学 带有栅压调制功能的超薄封装微流体系统及其制备方法
EP3199240A1 (de) * 2016-01-26 2017-08-02 ThinXXS Microtechnology AG Mikrofluidische flusszelle mit integrierter elektrode und verfahren zu ihrer herstellung
DE102016110696A1 (de) 2016-06-10 2017-12-14 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur Herstellung einer Sensorkappe mit einer Membran
EP3825004A1 (de) * 2019-11-22 2021-05-26 Koninklijke Philips N.V. Neue multifunktionelle fluidische vorrichtung zum klemmen von biopsien
CN111604098B (zh) * 2020-06-04 2022-01-07 天津德祥生物技术有限公司 侧面加样微流控芯片

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2325920A1 (fr) * 1975-09-29 1977-04-22 Lilja Jan Dispositif pour l'echantillonnage, le melange de l'echantillon avec un reactif, et la mise en oeuvre d'une analyse notamment optique
US4413407A (en) * 1980-03-10 1983-11-08 Eastman Kodak Company Method for forming an electrode-containing device with capillary transport between electrodes
EP0138152A2 (de) * 1983-10-18 1985-04-24 Ab Leo Küvette
US4790640A (en) * 1985-10-11 1988-12-13 Nason Frederic L Laboratory slide
US4865698A (en) * 1986-03-17 1989-09-12 Fuji Photo Film Co., Ltd. Reference solution for measuring ionic activity
EP0401179A1 (de) * 1989-05-29 1990-12-05 AMPLIFON S.p.A. Kunst-Pankreas
US5393401A (en) * 1991-05-10 1995-02-28 Knoll; Meinhard Method of manufacturing miniaturized components of chemical and biological detection sensors that employ ion-selective membranes, and supports for such components
WO1995017966A1 (en) * 1993-12-29 1995-07-06 Abbott Laboratories Self-venting immunodiagnostic devices and methods of performing assays
WO1995022051A1 (en) * 1994-02-09 1995-08-17 Abbott Laboratories Diagnostic flow cell device
DE4408352A1 (de) * 1994-03-12 1995-09-14 Meinhard Prof Dr Knoll Miniaturisierte Durchflußmeßkammer mit integrierten Chemo- und Biosensorelementen sowie Verfahren zu ihrer Herstellung
DE4410224A1 (de) * 1994-03-24 1995-09-28 Meinhard Prof Dr Knoll Miniaturisiertes Analysesystem

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3010470A1 (de) * 1980-03-19 1981-10-01 Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg Verfahren zur herstellung eines elektrochemischen messfuehlers
DE3010461A1 (de) * 1980-03-19 1981-10-01 Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG, 6380 Bad Homburg Ionenselektive elektrode
US5284568A (en) * 1992-07-17 1994-02-08 E. I. Du Pont De Nemours And Company Disposable cartridge for ion selective electrode sensors

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2325920A1 (fr) * 1975-09-29 1977-04-22 Lilja Jan Dispositif pour l'echantillonnage, le melange de l'echantillon avec un reactif, et la mise en oeuvre d'une analyse notamment optique
US4413407A (en) * 1980-03-10 1983-11-08 Eastman Kodak Company Method for forming an electrode-containing device with capillary transport between electrodes
EP0138152A2 (de) * 1983-10-18 1985-04-24 Ab Leo Küvette
US4790640A (en) * 1985-10-11 1988-12-13 Nason Frederic L Laboratory slide
US4865698A (en) * 1986-03-17 1989-09-12 Fuji Photo Film Co., Ltd. Reference solution for measuring ionic activity
EP0401179A1 (de) * 1989-05-29 1990-12-05 AMPLIFON S.p.A. Kunst-Pankreas
US5393401A (en) * 1991-05-10 1995-02-28 Knoll; Meinhard Method of manufacturing miniaturized components of chemical and biological detection sensors that employ ion-selective membranes, and supports for such components
WO1995017966A1 (en) * 1993-12-29 1995-07-06 Abbott Laboratories Self-venting immunodiagnostic devices and methods of performing assays
WO1995022051A1 (en) * 1994-02-09 1995-08-17 Abbott Laboratories Diagnostic flow cell device
DE4408352A1 (de) * 1994-03-12 1995-09-14 Meinhard Prof Dr Knoll Miniaturisierte Durchflußmeßkammer mit integrierten Chemo- und Biosensorelementen sowie Verfahren zu ihrer Herstellung
DE4410224A1 (de) * 1994-03-24 1995-09-28 Meinhard Prof Dr Knoll Miniaturisiertes Analysesystem

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544393B1 (en) * 1998-01-16 2003-04-08 Trace Biotech Ag Flow analysis cell and layered sensor pertaining thereto
US6572566B2 (en) 2000-03-03 2003-06-03 Roche Diagnostics Corporation System for determining analyte concentrations in body fluids
EP1295846A1 (de) * 2000-06-20 2003-03-26 Kawamura Institute Of Chemical Research Mikrobauteil mit einer vielschichtigen struktur und verfahren zur dessen herstellung
EP1295846A4 (de) * 2000-06-20 2006-09-06 Kawamura Inst Chem Res Mikrobauteil mit einer vielschichtigen struktur und verfahren zur dessen herstellung
US7220334B2 (en) 2000-06-20 2007-05-22 Kawamura Institute Of Chemical Research Method of manufacturing microdevice having laminated structure
KR100739515B1 (ko) 2000-06-20 2007-07-13 자이단호진 가와무라 리카가쿠 겐큐쇼 적층 구조를 가지는 마이크로디바이스 및 그 제조 방법

Also Published As

Publication number Publication date
DE19602861C2 (de) 1997-12-11
EP0876605A1 (de) 1998-11-11
US6287438B1 (en) 2001-09-11
JP2000505194A (ja) 2000-04-25
DE19602861A1 (de) 1997-07-31

Similar Documents

Publication Publication Date Title
DE19602861C2 (de) Probenahmesystem für in Trägerflüssigkeiten enthaltene Analyte sowie Verfahren zu seiner Herstellung
DE102010002915B4 (de) Mikrofluidischer Sensor
EP3282250B1 (de) Elektrochemischer sensor zur ermittlung einer analyt-konzentration
EP1129778B1 (de) System zur Bestimmung von Analytkonzentrationen in Körperflüssigkeiten
DE19848112C2 (de) Minimalinvasives Sensorsystem
DE112018005405B4 (de) REGELUNG DES pH-WERTES ZUM DETEKTIEREN VON ANALYTEN
EP0566717B1 (de) Miniaturisiertes sensorelement zur bestimmung von stoffkonzentrationen in flüssigkeiten und verfahren zu seiner herstellung
DE10003507B4 (de) Vorrichtung und Verfahren zur Entnahme von Flüssigkeiten aus körpereigenem Gewebe und Bestimmung von Stoffkonzentrationen in dieser Flüssigkeit
DE19747875A1 (de) Verfahren zum Messen veränderlicher Größen und Vorrichtung zum Durchführen des Verfahrens
WO2001051205A1 (de) Optische oder elektrochemische quantitative analyse flüssiger proben
EP3646029B1 (de) Detektionssystem und verfahren zu dessen herstellung
DE102005003910B4 (de) Elektrochemisches Transducer-Array und dessen Verwendung
DE19929264A1 (de) Universaltransducer
DE10126055A1 (de) Biosensor
DE19721477A1 (de) Mikrobieller Membranreaktor zur Verwendung in Fließsystemen
DE3809624A1 (de) Verfahren zur herstellung einer pco(pfeil abwaerts)2(pfeil abwaerts)-elektrode
EP2368637B1 (de) Mikrofluidische Mehrfach-Messkammeranordnung
DE10022772C1 (de) Durchflußmeßsystem
WO2002093153A1 (de) Elektrochemische durchflussmesszelle
WO2004100229A2 (de) Biokompatible sensorelektrodenanordnung und verfahren zu deren herstellung
EP1918706A1 (de) Elektrochemischer Sensor zur Ermittlung einer Analyt-Konzentration
DE102014206789A1 (de) Implantierbare Sonde mit sensorischer Mikrodialysekammer und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997914106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09117077

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997914106

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997914106

Country of ref document: EP