US20060094944A1 - System and method for analyte sampling and analysis with error correction - Google Patents

System and method for analyte sampling and analysis with error correction Download PDF

Info

Publication number
US20060094944A1
US20060094944A1 US11223957 US22395705A US2006094944A1 US 20060094944 A1 US20060094944 A1 US 20060094944A1 US 11223957 US11223957 US 11223957 US 22395705 A US22395705 A US 22395705A US 2006094944 A1 US2006094944 A1 US 2006094944A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
analyte
biological membrane
glucose
medium
embodiment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11223957
Inventor
Han Chuang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sontra Medical Corp
Original Assignee
Sontra Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • A61B5/14514Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes electrical and mechanical details of in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • Y10T436/144444Glucose

Abstract

The invention relates to a transdermal analyte monitoring system comprising a medium adapted to interface with a biological membrane and to receive an analyte from the biological membrane and an electrode assembly comprising a plurality of electrodes, wherein the medium is adapted to react continuously with the analyte, an electrical signal is detected by the electrode assembly, and the electrical signal correlates to an analyte value. The analyte value may be the flux of the analyte through the biological membrane or the concentration of the analyte in a body fluid of a subject. The medium may comprise a vinyl acetate based hydrogel, an agarose based hydrogel, or a polyethylene glycol diacrylate (PEG-DA) based hydrogel, for example. The surface region of the electrode may comprise pure platinum. The system may include an interference filter located between the biological membrane and the electrode assembly for reducing interference in the system. The system may comprise a processor programmed to implement an error correction method that corrects for sensor drift.

Description

  • The present application is a divisional of U.S. application Ser. No. 11/201,334, filed Aug. 11, 2005, which is a continuation of U.S. application Ser. No. 10/974,963, filed Oct. 28, 2004, both of which are hereby incorporated by reference in their entireties. The present application is related to the following patent and applications, each of which is incorporated herein by reference it its entirety: U.S. application Ser. No. 09/979,096, filed Mar. 16, 2001; U.S. application Ser. No. 09/868,442, filed Dec. 17, 1999; U.S. Provisional Application No. 60/112,953, filed Dec. 18, 1998; U.S. Provisional Application No. 60/142,941, filed Jul. 12, 1999; U.S. Provisional Application No. 60/142,950, filed Jul. 12, 1999; U.S. Provisional Application No. 60/142,951, filed Jul. 12, 1999; U.S. Provisional Application No. 60/142,975, filed Jul. 12, 1999; U.S. Pat. No. 6,190,315; and U.S. Provisional Application No. 60/070,813, filed Jan. 8, 1998.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to non-invasive sampling of body fluids, and, more particularly, to a system, method, and device for non-invasive body fluid sampling and analysis.
  • 2. Description of the Related Art
  • Diabetics frequently prick their fingers and forearms to obtain blood in order to monitor their blood glucose concentration. This practice of using blood to perform frequent monitoring can be painful and inconvenient. New, less painful methods of sampling body fluids have been contemplated and disclosed. For example, these painless methods include the use of tiny needles,
  • the use of iontophoresis, and the use of ultrasound to sample body fluid, such as blood and interstitial fluid.
  • It has been shown that the application of ultrasound can enhance skin permeability. Examples of such are disclosed in U.S. Pat. Nos. 4,767,402, 5,947,921, and 6,002,961, the disclosures of which are incorporated, by reference, in their entireties. Ultrasound may be applied to the stratum corneum via a coupling medium in order to disrupt the lipid bilayers through the action of cavitation and its bioacoustic effects. The disruption of stratum corneum, a barrier to transport, allows the enhanced diffusion of analyte, such as glucose or drugs, through, into, and out of the skin.
  • Transport of analytes and body fluids can be enhanced further by the action of a motive force. These motive forces include, inter alia, sonophoretic, iontophoretic, electromotive, pressure force, vacuum, electromagnetic motive, thermal force, magnetic force, chemomotive, capillary action, and osmotic. The use of active forces provide a means for obtaining fluid for subsequent analysis.
  • The application of a motive force before, during, and after making the skin permeable has been disclosed in U.S. Pat. Nos. 5,279,543, 5,722,397, 5,947,921, 6,002,961, and 6,009,343, the disclosures of which are incorporated by reference in their entireties. The purpose of using a motive force is to actively extract body fluid and its content out of the skin for the purpose of analysis. As mentioned, active forces, such as vacuum, sonophoresis, and electrosmotic forces, can create convective flow through the stratum corneum. Although these forces can be used for extraction of body fluids, there are certain limitations that may apply when the forces are applied to human skin. For example, a major limitation is the flow and volume of body fluid that can be transported across the stratum corneum. In general, high-pressure force is necessary in order to transport fluid across an enhanced permeable area of stratum corneum. The application of vacuum on skin for an extended period may cause physical separation of the epidermis from the dermis, resulting in bruises and blisters.
  • Another example of a limitation is the amount of energy that can be applied to the skin in order to create convective flow. Extraction of usable volume of body fluid has the potential to cause pain and skin damage with prolonged exposure to ultrasound. In a similar manner, electro-osmotic extraction of body fluid through stratum corneum has the potential to cause skin damage due the need to use high current density. It is evident that there are limitations to the use of the mentioned extraction methods when applied to human skin.
  • SUMMARY OF THE INVENTION
  • Therefore, a need has arisen for a system, method, and device for noninvasive body fluid sampling and analysis that overcomes these and other drawbacks of the related art.
  • Therefore, a need has arisen for a method of enhancing the permeability of a biological membrane, such as skin, buccal, and nails, for an extended period of time, and a method for extracting body fluid to perform blood, interstitial fluid, lymph, or other body fluid analyte monitoring in a discrete or continuous manner that is noninvasive and practical.
  • According to one embodiment, the invention relates to a transdermal analyte monitoring system comprising a medium adapted to interface with a biological membrane and to receive an analyte from the biological membrane, wherein the medium comprises a hydrogel selected from the group consisting of vinyl acetate based hydrogels, agarose based hydrogels, polyethylene glycol diacrylate (PEG-DA) based hydrogels and mixtures thereof, and an electrode assembly, wherein the medium is adapted to react continuously with the analyte, and wherein an electrical signal is detected by the electrode assembly, and the electrical signal correlates to an analyte value.
  • According to another embodiment, the invention relates to a transdermal analyte monitoring system comprising a medium adapted to interface with a biological membrane and to receive an analyte from the biological membrane, and an electrode assembly comprising a plurality of electrodes, wherein a surface region of at least one of the electrode consists essentially of pure platinum, wherein the medium is adapted to react continuously with the analyte, and wherein an electrical signal is detected by the electrode assembly, and the electrical signal correlates to an analyte value.
  • According to another embodiment, the invention relates to a transdermal analyte monitoring system comprising a medium adapted to interface with a biological membrane and to receive an analyte from the biological membrane, an electrode assembly, and an interference filter located between the biological membrane and the electrode assembly for reducing interference from non-target biological moieties in the transdermal analyte monitoring system.
  • According to another embodiment, the invention relates to a transdermal analyte monitoring system comprising a medium adapted to interface with a biological membrane and to receive an analyte from the biological membrane, a sensor comprising an electrode assembly, the electrode assembly comprising a plurality of electrodes, and a processor programmed to implement an error correction method that corrects for sensor drift, wherein the medium is adapted to react continuously with the analyte, and wherein an electrical signal is detected by the electrode assembly, and the electrical signal correlates to an analyte value.
  • A method for non-invasive body fluid sampling and analysis is disclosed. According to one embodiment of the present invention, the method includes the steps of (1) identifying an area of biological membrane having a permeability level; (2) increasing the permeability level of the area of biological membrane; (3) contacting the area of biological membrane with a receiver; (4) extracting body fluid through and out of the area of biological membrane; (5) providing an external force to enhance the body fluid extraction; (6) collecting the body fluid in the receiver; (7) analyzing the collected body fluid for the presence of at least one analyte; and (8) providing the results of the step of analyzing the body fluid.
  • The area of biological membrane may be made permeable using ultrasound with controlled dosimetry. Extraction of body fluid may be performed on the area exposed to ultrasound using osmotic transport. The body fluid may be collected using a receiver. The receiver may be attached to the biological membrane in a form of a patch, a wearable reservoir, a membrane, an absorbent strip, a hydrogel, or an equivalent. The receiver may be analyzed for the presence of various analytes indicative of blood analytes. The analysis may comprise the use of electrochemical, biochemical, optical, fluorescence, absorbance, reflectance, Raman, magnetic, mass spectrometry, infra-red (IR) spectroscopy measurement methods and combinations thereof. The receiver may also be attached to a secondary receiver where the concentration of analyte in the secondary receiver is continuously maintained substantially lower than that in the body fluid so the chemical concentration driving force between body fluid and secondary receiver is maximized. This may be achieved by chemical reaction or volume for dilution or similar means. In one embodiment, the receiver and the secondary receiver may operate on different principles (e.g., osmosis, dilution, etc.). In another embodiment, the receivers may operate on the same principle.
  • A system for non-invasive body fluid sampling and analysis is disclosed. According to one embodiment of the present invention, the system includes a controller that controls the generation of ultrasound; an ultrasonic applicator that applies the ultrasound to an area of biological membrane; a receiver that contacts the area of biological membrane and receives body fluid through and out of the area of biological membrane; and a meter that interacts with the receiver and detects the presence of at least one analyte in the body fluid in the receiver. The receiver may include a membrane and a medium, such as a hydrogel, a fluid, or a liquid, that is contained within the membrane.
  • A method for noninvasive body fluid sampling and analysis is disclosed. According to one embodiment of the present invention, the method includes the steps of (1) enhancing a permeability level of an area of biological membrane; (2) attaching a receiver to the area of biological membrane; (3) extracting an analyte through and out of the area of biological membrane; (4) collecting the body fluid in the receiver; and (5) determining a concentration of at least one analyte in the body fluid.
  • A device for noninvasive body fluid sampling and analysis is disclosed. According to one embodiment of the present invention, the device includes a receiver that is attached to an area of biological membrane with an enhanced permeability and receives body fluid through and out of the area of biological membrane, and a wearable meter that detects the presence of at least one analyte in the received body fluid and indicates a concentration of that analyte. The receiver may include a membrane and a medium, such as a hydrogel, a fluid, or a liquid, that is contained in the membrane. The meter may include a processor and a device that detects the presence of the analyte. The detecting device may include an electrochemical detector; a biochemical detector; a fluorescence detector; an absorbance detector; a reflectance detector; a Raman detector; a magnetic detector; a mass spectrometry detector; an IR spectroscopy detector; and combinations thereof.
  • According to one embodiment of the present invention, osmotic forces may be used to sample body fluid from and through a biological membrane in an on-demand manner. The osmotic agent in solution, gel, hydrogel, or other form may be applied to the ultrasound-treated biological membrane using a receiver, such as a thin liquid reservoir, whenever the concentration of an analyte needs to be determined for diagnosis and monitoring. The receiver may be attached to the biological membrane using an adhesive. The receiver may be attached to the biological membrane for a brief duration. The solution in the receiver may be subsequently removed and analyzed for the presence of analytes. In one embodiment, the receiver may be constructed in the form of a patch. The receiver may contain a hydrogel and osmotic agent. The receiver may combine the osmotic agent and the chemical reagents to detect the presence of the analyte. The reagents may allow the use of electrochemical, biochemical, optical, fluorescence, absorbance, reflectance, Raman, magnetic, mass spectrometry, infrared (IR) spectroscopy measurement methods and combinations thereof to be performed on the receiver.
  • In another embodiment, osmotic forces may be used to sample body fluid from or through a biological membrane in a periodic or a continuous manner. The osmotic agent in solution form may be applied to the ultrasound-treated biological membrane using a thin receiver, such as a thin liquid reservoir, whenever the concentration of analyte needs to be determined for diagnosis and monitoring. The receiver may be attached to biological membrane using an adhesive. In one embodiment, the receiver may be constructed in the form of a patch. The receiver may contain a hydrogel that contains the osmotic agent. The receiver may contain means for manipulating the intensity and duration of the osmotic force. The intensity of the osmotic force may be manipulated using electric field forces, magnetic field forces, electromagnetic field forces, biochemical reactions, chemicals, molarity adjustment, adjusting solvents, adjusting pH, ultrasonic field forces, electro-omostic field forces, iontophoretic field forces, electroporatic field forces and combinations thereof. The duration of the osmotic force may be manipulated using electric field forces, magnetic field forces, electromagnetic field forces, biochemical reactions, chemicals, molarity adjustment, adjusting solvents, adjusting pH, ultrasonic field forces, electroomostic field forces, iontophoretic field forces, electroporatic field forces and combinations thereof. The receiver may combine the osmotic agent and the biochemical reagents to detect the presence of the analyte. The reagents may allow the use of electrochemical, biochemical, optical, fluorescence, absorbance, reflectance, Raman, magnetic, mass spectrometry, IR spectroscopy measurement methods and combinations thereof to be performed on the receiver. The receiver may also be removed periodically for detection.
  • In one embodiment, the intensity, duration, and frequency of exposure of biological membrane to osmotic forces may be manipulated by using an electric current to cause a change in the concentration of the osmotic agent that is in contact with the ultrasound-exposed biological membrane. The osmotic agent may be a multi-charged agent that can dissociate into several charged species. These charged species may be transported using electric field forces. A membrane may be used to isolate the charged species. The charged species freely diffuse and combine upon removal of the electric field force.
  • In one embodiment, the intensity, duration, and frequency of exposure of biological membrane to osmotic forces may be manipulated by using active forces to cause a change in the concentration of the osmotic agent that is in contact with the ultrasound-exposed biological membrane. The osmotic agent may be a neutral charge agent. The agent may be transported using a variety of field forces. The field force depends on the constitutive and colligative properties of the chosen agent. The field force generates a force necessary to move the osmotic agent toward and away from the biological membrane surface. The movement of the osmotic agent modulates the periodic and continuous extraction of body fluid through the stratum corneum.
  • In one embodiment, the intensity, duration, and frequency of exposure of biological membrane to osmotic forces may be manipulated by changing the concentration of the osmotic agent that is in contact with the ultrasound-exposed biological membrane. Manipulating the volume of the solvent and the volume of the hydrogel containing the osmotic agent may cause a change in the concentration of the osmotic agent. The volume of the hydrogel can be changed by constructing a hydrogel wherein its volume is sensitive to the concentrations of molecules that can diffuse into the gel. One example is a hydrogel constructed to be sensitive to the molecule glucose. The hydrogel volume can also be changed by manipulating its temperature and by changing the pH of the gel.
  • A receiver that is attached to an area of biological membrane with an enhanced permeability and receives body fluid through and out of the area of biological membrane is disclosed. According to one embodiment of the present invention, the receiver includes a first grid; a medium layer comprising at least one agent; a membrane that induces a concentration gradient barrier for the at least one agent; a counter grid; an oxidase layer; a detection layer; and a voltage source that provides a potential difference between the first grid and the counter grid. The body fluid, which may include blood, interstitial fluid, analyte, and lymph, may flow out of, or through, the biological membrane, to the detector layer via the first grid, the counter grid, and the oxidase layer.
  • It is a technical advantage of the present invention that a system, method, and device for non-invasive sampling and analysis of body fluids is disclosed. It is another technical advantage of the present invention that a concentration of an analyte may be measured continuously or periodically.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the following descriptions taken in connection with the accompanying drawings in which:
  • FIG. 1 is a flowchart depicting a method for non-invasive body fluid sampling according to one embodiment of the present invention;
  • FIG. 2 depicts a device for controlled application of ultrasound to a biological membrane to enhance the permeability of the biological membrane according to one embodiment of the present invention;
  • FIG. 3 depicts the components to perform discrete extraction and measurement of body fluid to infer analyte concentrations according to one embodiment of the present invention;
  • FIG. 4 depicts the components to perform continuous extraction and measurement of body fluid to infer analyte concentrations according to one embodiment of the present invention;
  • FIG. 5 depicts an approach to periodic monitoring of an analyte by performing periodic osmotic extractions of body fluid according to one embodiment of the present invention;
  • FIG. 6 depicts the components of a wearable extraction chamber according to one embodiment of the present invention;
  • FIG. 7 depicts a graph of glucose flux versus blood glucose concentration according to one embodiment of the present invention;
  • FIG. 8 depicts a flow chart of a method for controlled enhancement of transdermal delivery according to one embodiment of the present invention;
  • FIG. 9 depicts an apparatus for performing continuous transdermal analyte monitoring according to one embodiment of the present invention;
  • FIG. 10 is a drawing of the sensor body shown in FIG. 9 from a first view;
  • FIG. 11 is a drawing of the apparatus shown in FIG. 9 from a second view;
  • FIG. 12 shows the signal response versus glucose concentration for various hydrogels;
  • FIG. 13 shows the signal response versus glucose concentration for pure platinum versus platinized carbon as the working electrode;
  • FIG. 14 shows the current-time profiles of a glucose sensor responding to the addition of hydrogen peroxide using platinum and platinized carbon as the working electrode;
  • FIG. 15 shows the sensor response to hydrogen peroxide (HP) over acetominophen (AM) and hydrogen peroxide over uric acid (UA) for sensors with and without a Nafion interference filter;
  • FIG. 16 shows a Clark Error Grid in the absence of an error correction method according to one embodiment of the invention;
  • FIG. 17 shows a Clark Error Grid after the application of an error correction method according to an embodiment of the invention;
  • FIG. 18 shows the absorbance spectrum of a standard glucose oxidase solution before and after incorporation into a PEGDA 3.4K gel;
  • FIG. 19 shows the signal response to glucose of glucose oxidase (GOx) loaded PEG gels of varying molecular weight;
  • FIG. 20 shows signal response to glucose of 3.4K PEG hydrogel loaded with varying concentrations of GOx;
  • FIG. 21 shows raw data of the potentiometric signals elicited from PEGDA hydrogels with GOx incorporated in the gel formulation prior to photocrosslinking;
  • FIG. 22 shows the change in signal between GOx-presoaked versus pre-incorporated hydrogels at different thickness and compositions (PEGDA-nVP, PEGDA);
  • FIG. 23(a) shows blood glucose versus time utilizing an embodiment of the continuous transdermal analyte monitoring system;
  • FIG. 23(b) shows a correlation plot of electrode signal in nanoamps versus blood glucose for an embodiment of the invention;
  • FIG. 24 shows patient data for participants in a clinical study;
  • FIG. 25 shows a noisy data set from the clinical study;
  • FIG. 26 shows another data set from the clinical study;
  • FIG. 27 shows a Clark Error Grid for sensor data from the clinical study according to one embodiment of the invention; and
  • FIG. 28 shows a Clark Error Grid for sensor data from the clinical study according to another embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The preferred embodiments of the present invention and their advantages are best understood by referring to FIGS. 1 through 28 of the drawings, like numerals being used for like and corresponding parts of the various drawings.
  • As used herein, the term “body fluid” may include blood, interstitial fluid, lymph, and/or analyte. In addition, as used herein, the term “biological membrane” may include tissue, mucous membranes and comified tissues, including skin, buccal, and nails. Further, as used herein, the term “force” may also include force gradients.
  • Although the present invention may be described in conjunction with human applications, veterinary applications are within the contemplation and the scope of the present invention.
  • Referring to FIG. 1, a flowchart depicting a method for non-invasive body fluid sampling and analysis according to one embodiment of the present invention is provided. In step 102, the permeability of an area of biological membrane is enhanced. In one embodiment, the area of biological membrane may be located on the volar forearm of a mammalian subject. In another embodiment, the area of biological membrane may be located on a thigh of a mammalian subject. In yet another embodiment, the area of biological membrane may be located on the abdomen. In still another embodiment, the area of biological membrane may be located on the back. Other body locations may also be used.
  • In general, several techniques may be used to enhance the permeability of the biological membrane, such as creating physical micropores, physically disrupting the lipid bilayers, chemically modifying the lipid bilayers, physically disrupting the stratum corneum, and chemically modifying the stratum corneum. The creation of micropores, or the disruption thereof, may be achieved by physical penetration using a needle, a microneedle, a silicon microneedle, a laser, a laser in combination with an absorbing dye, a heat source, an ultrasonic needle, an ultrasonic transducer, cryogenic ablation, RF ablation, photo-acoustic ablation, and combinations thereof.
  • In a preferred embodiment, ultrasound may be applied to the area of biological membrane to enhance its permeability. Ultrasound is generally defined as sound at a frequency of greater than about 20 kHz. Therapeutic ultrasound is typically between 20 kHz and 5 MHz. Near ultrasound is typically about 10 kHz to about 20 kHz. It should be understood that in addition to ultrasound, near ultrasound may be used in embodiments of the present invention.
  • In general, ultrasound, or near ultrasound, is preferably applied to the area of biological membrane at a frequency sufficient to cause cavitation and increase the permeability of the biological membrane. In one embodiment, ultrasound may be applied at a frequency of from about 10 kHz to about 500 kHz. In another embodiment, ultrasound may be applied at a frequency of from about 20 kHz to about 150 kHz. In yet another embodiment, the ultrasound may be applied at 50 kHz. Other frequencies of ultrasound may be applied to enhance the permeability level of the biological membrane.
  • In one embodiment, the ultrasound may have an intensity in the range of about 0 to about 100 watt/cm2, and preferably in the range of 0 to about 20 watt/cm2. Other appropriate intensities may be used as desired.
  • Techniques for increasing the permeability of a biological membrane are disclosed in U.S. Pat. No. 6,190,315 to Kost et al., the disclosure of which is hereby incorporated by reference in its entirety.
  • In step 104, body fluid is extracted through or out of the area of biological membrane. In one embodiment, an external force, such as an osmotic force, may assist in the extraction. In one embodiment, the osmotic force may be controlled before, during, and after the permeability of the biological membrane is enhanced.
  • In one embodiment, the osmotic force may be generated by the application of an osmotic agent to the area of biological membrane. The osmotic agent may be in the form of an element, a molecule, a macromolecule, a chemical compound, or combinations thereof. The osmotic agent may also be combined with a liquid solution, a hydrogel, a gel, or an agent having a similar function.
  • In step 106, the magnitude, intensity, and duration of the external force may be regulated by at least one additional first energy and/or force. In one embodiment, the first additional energy and/or force may be applied to control and regulate the movement and function of the osmotic agent for extraction of body fluid through and out of the biological membrane. The first additional energy and/or force may be provided in the form of heat, a temperature force, a pressure force, an electromotive force, a mechanical agitation, ultrasound, iontophoresis, an electromagnetic force, a magnetic force, a photothermal force, a photoacoustic force, and combinations thereof. The effect of an electric field and ultrasound on transdermal drug delivery is disclosed in U.S. Pat. No. 6,041,253, the disclosure of which is incorporated, by reference, in its entirety.
  • In one embodiment, if the first additional energy and/or force is provided by ultrasound, the frequency of the ultrasound may be provided at a different frequency than the frequency used to enhance the permeability of the biological membrane. In one embodiment, the frequency of the first additional energy/force ultrasound may be higher than the frequency of the permeability enhancing ultrasound.
  • In step 108, the body fluid may be collected in a receiver. In one embodiment, the receiver may be contacted with the biological membrane in a form of a patch, a wearable reservoir, a membrane, an absorbent strip, a hydrogel, or a structure that performs an equivalent function. Other types and configurations of receivers may be used.
  • In one embodiment, the receiver may be provided with a secondary receiver having an analyte concentration that is continuously maintained to be substantially lower than the analyte concentration in the body fluid, so the chemical concentration driving force between body fluid and secondary receiver is maximized. This may be achieved by chemical reaction or volume for dilution or similar means.
  • In one embodiment, a second external energy/force may be applied between the first receiver and the secondary receiver. In one embodiment, the second external energy/force may be different (e.g., a different type of external force) from the first external energy/force. In another embodiment, the second external energy/force may be the same (e.g., the same type of external force) as the first external energy/force. The first and second external energy/force may vary in type, duration, and intensity, and may be controlled through different additional energy and/or forces.
  • In step 110, the collected body fluid may be analyzed. In one embodiment, the analysis may include the use of appropriate methods, such as electrochemical, biochemical, optical, fluorescence, absorbance, reflectance, Raman, magnetic, mass spectrometry, infra-red (IR) spectroscopy measurement, and combinations thereof.
  • In one embodiment, multiple analytes may be analyzed simultaneously, in parallel, or in series. The results from these multiple analyses may be used in combination with algorithms, for example, to increase the accuracy, or precision, or both, of the analysis and measurements.
  • In one embodiment, the receiver may be removed from contact with the biological membrane in order to analyze the collected body fluid. In another embodiment, the receiver may remain in contact with the biological membrane as the collected body fluid is analyzed.
  • Referring to FIG. 2, a device for the controlled application of ultrasound to biological membrane to enhance the permeability of a biological membrane according to one embodiment of the present invention is shown. Device 200 includes controller 202, which interfaces with ultrasound applicator 204 by any suitable means, such as a cable. Controller 202 controls the application of ultrasound to the area of biological membrane. In one embodiment, ultrasound or near ultrasound having an intensity in the range of about 0 to about 20 watt/cm2 may be generated by controller 202 and ultrasound applicator 204. In one embodiment, the ultrasound may have a frequency of about 20 kHz to about 150 kHz. In another embodiment, the ultrasound may have a frequency of 50 kHz. Other ultrasound frequencies may also be used.
  • In addition, controller 202 may include a display, such as a LCD or a LED display, in order to convey information to the user as required. Controller 202 may also include a user interface as is known in the art.
  • Ultrasound applicator 204 may be provided with cartridge 206, which contains ultrasound coupling solution 208. Cartridge 206 may be made of any material, such as plastic, that may encapsulate ultrasound coupling solution 208. Suitable ultrasound coupling solutions 208 include, but are not limited to, water, saline, alcohols including ethanol and isopropanol (in a concentration range of 10 to 100% in aqueous solution), surfactants such as Triton X-100, SLS, or SDS (preferably in a concentration range of between 0.001 and 10% in aqueous solution), DMSO (preferably in a concentration range of between 10 and 100% in aqueous solution), fatty acids such as linoleic acid (preferably in a concentration range of between 0.1 and 2% in ethanol-water (50:50) mixture), azone (preferably in a concentration range of between 0.1 and 10% in ethanol-water (50:50) mixture), polyethylene glycol in a concentration range of preferably between 0.1 and 50% in aqueous solution, histamine in a concentration range of preferably between 0.1 and 100 mg/ml in aqueous solution, EDTA in a concentration range of preferably between one and 100 mM, sodium hydroxide in a concentration range of preferably between one and 100 mM, sodium octyl sulfate, N-tauroylsarcosine, octyltrimethyl ammoniumbromide, dodecyltrimethyl ammoniumbromide, tetradecyltrimethyl ammoniumbromide, hexadecyltrimethyl ammoniumbromide, dodecylpyridinium chloride hydrate, SPAN 20, BRIJ 30, glycolic acid ethoxylate 4-ter-butyl phenyl ether, IGEPAL CO-210, and combinations thereof.
  • In one embodiment, the coupling medium may also include a chemical enhancer. Transport enhancement may be obtained by adding capillary permeability enhancers, for example, histamine, to the coupling medium. The concentration of histamine in the coupling medium may be in the range of between 0.1 and 100 mg/ml. These agents may be delivered across the biological membrane during application of ultrasound and may cause local edema that increases local fluid pressure and may enhance transport of analytes across the biological membrane. In addition, the occurrence of free fluid due to edema may induce cavitation locally so as to enhance transport of analytes across the biological membrane.
  • In one embodiment, cartridge 206 may be pierced when inserted into ultrasound applicator 204, and ultrasound coupling solution 208 may be transferred to a chamber (not shown).
  • A target identifying device, such as target ring 210, may be attached to the area of biological membrane that will have its permeability increased. Target ring 210 may be attached to the area of biological membrane by a transdermal adhesive (not shown). In one embodiment, target ring 210 may have the transdermal adhesive pre-applied, and may be disposed after each use. In another embodiment, target ring 210 may be reusable.
  • Target ring 210 may be made of any suitable material, including plastic, ceramic, rubber, foam, etc. In general, target ring 210 identifies the area of biological membrane for permeability enhancement and body fluid extraction. In one embodiment, target ring 210 may be used to hold receiver 214 in contact with the biological membrane after the permeability of the biological membrane has been increased.
  • In one embodiment, target ring 210 may be used to monitor the permeability level of the biological membrane, as disclosed in PCT International Patent Appl'n Ser. No. PCT/US99/30067, entitled “Method and Apparatus for Enhancement of Transdermal Transport,” the disclosure of which is incorporated by reference in its entirety. In such an embodiment, target ring 210 may interface with ultrasound applicator 204.
  • Ultrasound applicator 204 may be applied to target ring 210 and activated to expose ultrasound coupling solution 208 to the biological membrane. Controller 202 controls ultrasound applicator 204 to transmit ultrasound through ultrasound coupling solution 208. During ultrasound exposure, controller 202 may monitor changes in biological membrane permeability, and may display this information to the user.
  • Controller 202 may cease, or discontinue, the application of ultrasound once a predetermined level of biological membrane permeability is reached. This level of permeability may be preprogrammed, or it may be determined in real-time as the ultrasound is applied. The predetermined level of permeability may be programmed for each individual due to biological membrane differences among individuals.
  • After the predetermined level of permeability is reached, ultrasound coupling solution 208 may be vacuated from chamber (not shown) into cartridge 206, which may then be discarded. In another embodiment, ultrasound coupling solution 208 may be vacuated into a holding area (not shown) in ultrasound applicator 204, and later discharged. Ultrasound applicator 204 may then be removed from target ring 210.
  • Referring to FIG. 3, an device for the analysis of body fluid according to one embodiment of the present invention is provided. Receiver 214 may be placed into target ring 210 to perform a discrete, or on-demand, extraction of body fluid through and/or out of the biological membrane. Receiver 214 may contain a medium, such as a hydrogel layer, that incorporates an osmotic agent. In one embodiment, the hydrogel may be formulated to contain phosphate buffered saline (PBS), with the saline being sodium chloride having a concentration range of about 0.01 M to about 10 M. The hydrogel may be buffered at pH 7. Other osmotic agents may also be used in place of, or in addition to, sodium chloride. Preferably, these osmotic agents are non-irritating, non-staining, and non-immunogenic. Examples of such osmotic agents include, inter alia, lactate and magnesium sulfate.
  • In another embodiment, receiver 214 may include a fluid or liquid medium, such as water or a buffer, that is contained within a semi-permeable membrane. Receiver 214 may also include a spongy material, such as foam.
  • Receiver 214 may be applied to the biological membrane to contact the ultrasound exposed biological membrane. In one embodiment, receiver 214 may be applied to the biological membrane for a time period sufficient to collect an amount of body fluid sufficient for detection. In another embodiment, receiver 214 may be applied to the biological membrane for a sufficient time period to collect a predetermined amount of body fluid. In yet another embodiment, receiver 214 may be applied to the biological membrane for a predetermined time. In one embodiment, the contact between receiver 214 and the biological membrane may last for 15 minutes or less. In another embodiment, the contact between receiver 214 and the biological membrane may last for 5 minutes or less. In still another embodiment, the contact between receiver 214 and the biological membrane may last for 2 minutes or less. The actual duration of contact may depend on the sensitivity of the detection method used for analysis.
  • In one embodiment, the medium of receiver 214 may contain at least one reagent (not shown) in order to detect the presence of certain analytes in the body fluid that has been extracted from or through the biological membrane. In one embodiment, the hydrogel layer of receiver 214 may contain the reagents, and the reagents may be attached to the hydrogel by ionic and/or covalent means, or may be immobilized by gel entrapment. The reagents may also be arranged as an adjacent layer to the hydrogel wherein the analyte from the body fluid that has been extracted into the hydrogel can diffuse into and react to generate by-products. The by-products may then be detected using electrochemical, biochemical, optical, fluorescence, absorbance, reflectance, Raman, magnetic, mass spectrometry, IR spectroscopy measurement methods and combinations thereof.
  • The detection methods may be performed by meter 212. Meter 212 may include a processor (not shown) and a display, such as an LCD display. Other suitable displays may be provided.
  • In one embodiment, meter 212 may provide an interface that allows information be downloaded to an external device, such as a computer. Such an interface may allow the connection of interface cables, or it may be a wireless interface.
  • Meter 212 may be configured to determine body fluid glucose concentration by incorporating glucose oxidase in the medium of receiver 214. In one embodiment, glucose from extracted body fluid may react with glucose oxidase to generate hydrogen peroxide. Hydrogen peroxide may be detected by the oxidation of hydrogen peroxide at the surface of electrodes incorporated into receiver 214. The oxidation of hydrogen peroxide transfers electrons onto the electrode surface which generates a current flow that can be quantified using a potentiostat, which may be incorporated into meter 212. A glucose concentration proportional to the concentration of hydrogen peroxide may be calculated, and the result may be reported to the user via a display. Various configurations of electrodes and reagents, known to those of ordinary skill in the art, may be incorporated to perform detection and analysis of glucose and other analytes.
  • Meter 212 may also be configured to simultaneously measure the concentration of an analyte, such as glucose, where the body fluid concentration is expected to fluctuate, and an analyte, like creatinine or calcium, where the body fluid concentration is expected to remain relatively stable over minutes, hours, or days. An analyte concentration, which may be determined by an algorithm that takes into account the relative concentrations of the fluctuating and the more stable analyte, may be reported to the user via a display.
  • In another embodiment, meter 212 may analyze multiple analytes simultaneously, in parallel, or in series. The results from these multiple analyses may be used in combination with algorithms, for example, to increase the accuracy, or precision, or both, of the analysis and measurements.
  • Receiver 214 may be discarded after the extraction and measurement steps. In another embodiment, receiver 214 may be reused. In one embodiment, receiver 214 may be cleaned, sanitized, etc. before it may be reused. Various configurations of electrodes and reagents, known to those of ordinary skill in the art, may be incorporated to perform detection and analysis of glucose and other analytes.
  • Referring to FIG. 4, a device for the continuous extraction and analysis of body fluid to infer analyte concentrations according to another embodiment of the present invention is provided. As shown in the figure, a biological membrane site on the forearm, the abdomen, or thigh may be exposed to ultrasound; other biological membrane sites, such as those on the back, may also be used. Receiver 402, which may be similar to receiver 214, may contact the ultrasound exposed biological membrane site to perform continuous extraction of body fluid. In one embodiment, receiver 402 may contain a medium, such as a hydrogel layer, that may incorporate an osmotic agent, such as sodium chloride. The hydrogel is formulated to contain phosphate buffered saline (PBS), with the saline being sodium chloride in the concentration range of 0.01 M to 10 M. The hydrogel may be buffered at pH 7.
  • Other osmotic agents may also be used in place of, or in addition to, sodium chloride. These osmotic agents are preferably non-irritating, non-staining, and non-immunogenic. Examples of these other osmotic agents may include, inter alia, lactate and magnesium sulfate. Receiver 402 may be applied to contact the ultrasound exposed biological membrane. In one embodiment, the duration of this contact may be 12-24 hours, or more. In another embodiment, other durations of contact, including substantially shorter durations, and substantially longer durations, may be used as desired.
  • In another embodiment, receiver 402 may include a fluid or liquid medium, such as water or a buffer, that is contained within a semi-permeable membrane. Receiver 402 may also include a spongy material, such as foam.
  • In one embodiment, the medium of receiver 402 may contain at least one reagent (not shown) that detects the presence of analytes in the body fluid that has been extracted thorough and out of the biological membrane. In one embodiment, the hydrogel layer of receiver 402 may contain reagents that may be attached by ionic and covalent means to the hydrogel, or may be immobilized by gel entrapment. The reagents may also be arranged as an adjacent layer to the hydrogel wherein the analyte from the body fluid that has been extracted into the hydrogel may diffuse into and react to generate by-products. The by-products may be detected using electrochemical, biochemical, optical, fluorescence, absorbance, reflectance, Raman, magnetic, mass spectrometry, IR spectroscopy measurement methods and combinations thereof.
  • The detection methods and results may be performed and presented to the user by meter 404, which may be similar in function to meter 212, discussed above. In one embodiment, meter 404 may be wearable. For example, as depicted in the figure, meter 404 may be worn in a manner similar to the way a wristwatch is worn. Meter 404 may also be worn on a belt, in a pocket, etc.
  • Meter 404 may incorporate power and electronics to control the periodic extraction of body fluid, to detect analyte, and to present the analyte concentration in a continuous manner. Meter 404 may contain electronics and software for the acquisition of sensor signals, and may perform signal processing, and may store analysis and trending information.
  • In one embodiment, meter 404 may provide an interface that allows information be downloaded to an external device, such as a computer. Such an interface may allow the connection of interface cables, or it may be a wireless interface.
  • Meter 404 may be configured to determine body fluid glucose concentration by incorporating glucose oxidase in the medium. In one embodiment, glucose from extracted body fluid may react with glucose oxidase to generate hydrogen peroxide. Hydrogen peroxide may be detected by the oxidation of hydrogen peroxide at the surface of electrodes incorporated into receiver 402. The oxidation of hydrogen peroxide transfers electrons onto the electrode surface which generates a current flow that can be quantified using a potentiostat, which may be incorporated into meter 404. A glucose concentration proportional to the concentration of hydrogen peroxide may be calculated and the result may be reported to the user via a display. Various configurations of electrodes and reagents, known to those of ordinary skill in the art, may be incorporated to perform detection and analysis of glucose and other analytes.
  • In one embodiment, meter 404 may also be configured to simultaneously measure concentration of an analyte, such as glucose, where the body fluid concentration is expected to fluctuate, and an analyte, like creatinine or calcium, where the body fluid concentration is expected to remain relatively stable over minutes, hours, or days. An analyte concentration, which may be determined by an algorithm that takes into account the relative concentrations of the fluctuating and the more stable analyte, may be reported to the user via a display.
  • In another embodiment, meter 404 may analyze multiple analytes simultaneously, in parallel, or in series. The results from these multiple analyses may be used in combination with algorithms, for example, to increase the accuracy, or precision, or both, of the analysis and measurements.
  • In another embodiment, receiver 402 may be removed from contact with the biological membrane for analysis by meter 404. Receiver 402 may be put in contact with the biological membrane after such analysis.
  • Meter 404 may provide analyte readings to the user in a periodic or a continuous manner. For example, in one embodiment, in continuous monitoring of the analyte glucose, glucose concentration may be displayed to the user every 30 minutes, more preferably every 15 minutes, most preferable every 5 minutes, or even more frequently. In another embodiment, the glucose concentration may be displayed continuously. The period may depend on the sensitivity and method of analyte detection. In continuous glucose monitoring, in one embodiment, glucose detection may be performed by an electrochemical method using electrodes and reagents incorporated into receiver 402 and detection and analysis performed by meter 404. During the measurement period, osmotic extraction of body fluid may be performed continuously by the hydrogel layer of receiver 402. Body fluid may accumulate in the hydrogel of receiver 402. Glucose in body fluid diffuses to react with glucose oxidase and is converted into hydrogen peroxide. The hydrogen peroxide is consumed by poising the working electrode with respect to a reference electrode. During the resting period, hydrogen peroxide accumulates and is consumed or destroyed before the measuring period. The magnitude of the working potential can be applied to rapidly consume the build up of hydrogen peroxide.
  • Referring to FIG. 5, an approach to periodic monitoring of an analyte by performing periodic osmotic extractions of body fluid according to another embodiment of the present invention is shown. The osmotic extraction intensity and frequency may be manipulated by using an osmotic agent that dissociates into multiple charged species, and an electrical potential may be used to move the concentration of charges toward and away from biological membrane surface 550. Receiver 500 may include grid, mesh, or screen 504; medium 506, which may be a hydrogel layer; membrane 508; counter grid, mesh, or screen 510; oxidase layer 512; and detection layer 514. Grid 504 and counter grid 510 may be connected to voltage source 516. Membrane 508 may be a semi-permeable membrane that is used to induce a concentration gradient barrier for the osmotic agent contained in medium 506. The preferable osmotic agent may contain negative and positive species or counter ions. Manipulating the concentration of charged species at the boundary adjacent to the stratum corneum of the ultrasound-exposed biological membrane may provide periodic extraction of body fluid.
  • In one embodiment, receiver 500 may make contact with the skin though contact medium 502, which may be a hydrogel, or other suitable medium.
  • The concentration of the charged species may be manipulated by applying a potential difference between grid 504 and counter grid 510 using voltage source 516. In one embodiment, the potential difference may be of a magnitude that is sufficient to manipulate the osmotic agent. The polarity of the grid may also be changed to transport charges toward and away from biological membrane surface 550. Grid 504 and counter grid 510 may be configured with optimum porosity as to allow body fluid and/or analyte to travel out of stratum corneum, through grid 504, through grid 510, and into oxidase layer 512, and ultimately to detection layer 514. Oxidase layer 512 may be used with an appropriate catalyst, or enzyme, to confer specificity of analyte detection. Detection layer 514 may include working and reference electrodes (not shown) that allow for the detection of the by-products of oxidase layer 512 to quantify the concentration of the desired analyte of detection.
  • EXAMPLE 1
  • The following example does not limit the present invention in any way, and is intended to illustrate an embodiment of the present invention.
  • The following is a description of experiments which implemented painless extraction, collection, and analysis of body fluid to determine body fluid glucose concentration in a human using a hyperosmotic extraction fluid and comparing this condition with iso-osmotic extraction fluid, in accordance with one embodiment of the present invention. Although body fluid glucose concentration serves as an example to demonstrate feasibility, other analytes are within the contemplation of the present invention. In addition, multiple analytes may be measured and/or analyzed simultaneously, in parallel, or in series, and results from these multiple measurements may be used in combination with algorithms, for example, to increase the accuracy or precision or both of measurements. As may be recognized by one of ordinary skill in the art, these steps may be automated and implemented with the device described above.
  • Four sites on the volar forearm of a human volunteer were treated with ultrasound using the device described in FIG. 2. The ultrasound transducer and its housing were placed on the volar forearm of the volunteer with enough pressure to produce a good contact between the skin and the outer transducer housing, and to prevent leaking. The area surrounding the transducer was then filled with a coupling medium of sodium dodecyl sulfate and silica particles in phosphate-buffered saline (PBS). Ultrasound was briefly applied (5-30 s), the transducer apparatus was removed from the biological membrane, and the skin was rinsed with tap water and dried.
  • FIG. 6 describes the components of wearable extraction chamber 600. Four extraction chambers were placed on each sonicated site of the human volunteer. Thin circular foam chamber 602 was constructed using foam MED 5636 Avery Dennison ( 7/16″ ID× 11/8″ OD). Foam chambers 602 were attached concentrically to the sonicated biological membrane sites using double-sided adhesive (Adhesive Arcade 8570, 7/16″ ID×⅞″ OD) attached to one side of element 602. The other side of foam chamber 602 was attached concentrically to double-sided adhesive 604 (Adhesive Arcade 8570, 7/16″ ID×⅞″ OD). Thin transparent lid 606 was made of 3M Polyester 1012 ( 11/8″× 11/8″). Double-sided adhesive 604 permitted thin transparent lid 606 to be attached to foam chamber 602 after placement of liquid into the inner diameter of foam chamber 602 when attached to biological membrane. Thin transparent lid 606 acted as a lid to prevent liquid from leaking out of the extraction chamber, and to allow the extraction chambers to be wearable for an extended period of time.
  • Each extraction chamber was alternately filled with 100 μl of extraction solution for 15 min and 100 μl hydration solution for 10-40 min. Extraction solution was PBS; on two sites the PBS contained additional NaCl to bring the total concentration of NaCl to 1 M. Hydration solution was PBS for all sites.
  • Solutions were collected and analyzed for glucose concentration using high-pressure liquid chromatography. The results of the HPLC concentration were normalized for the injection amount and the total solution volume, and were reported as glucose flux (Qg), the mass of glucose that crossed the sonicated site per unit time per unit area. Body fluid glucose concentrations (Cbg) were obtained by testing capillary blood obtained from a lanced finger in a Bayer Glucometer Elite meter. It was hypothesized that Qg would be linearly proportional to Cbg. FIG. 7 shows a graph of Qg versus Cbg. Unexpectedly, Qg from the sonicated sites exposed to 1 M NaCl correlated to Cbg much more strongly than Qg from the sonicated sites exposed to 0.15 M NaCl.
  • According to another aspect of the present invention, an apparatus and method for regulating the degree of skin permeabilization through a feedback system is provided. This apparatus and method may be similar to what has been described above, with the addition of further regulation of the degree of skin permeabilization. Feedback control as a method of monitoring the degree of skin permeability is described in more detail in U.S. application Ser. No. 09/868,442, entitled “Methods and Apparatus for Enhancement of Transdermal Transport,” which is hereby incorporated by reference in its entirety. In this embodiment, the application of the skin permeabilizing device is terminated when desired values of parameters describing skin conductance are achieved. As the discussion proceeds with regard to FIG. 8, it should be noted that the descriptions above may be relevant to this description.
  • Referring to FIG. 8, a flowchart of the method is provided. In step 802, a first, or source, electrode is coupled in electrical contact with a first area of skin where permeabilization is required. The source electrode does not have to make direct contact with the skin. Rather, it may be electrically coupled to the skin through the medium that is being used to transmit ultrasound. In one embodiment, where an ultrasound-producing device is used as the skin permeabilizing device, the ultrasonic transducer and horn that will be used to apply the ultrasound doubles as the source electrode through which electrical parameters of the first area of skin may be measured and is coupled to the skin through a saline solution used as an ultrasound medium. In another embodiment, a separate electrode is affixed to the first area of skin and is used as the source electrode. In still another embodiment, the housing of the device used to apply ultrasound to the first area of skin is used as the source electrode. The source electrode can be made of any suitable conducting material including, for example, metals and conducting polymers.
  • Next, in step 804, a second, or counter, electrode is coupled in electrical contact with a second area of skin at another chosen location. This second area of skin can be adjacent to the first area of skin, or it can be distant from the first area of skin. The counter electrode can be made of any suitable conducting material including, for example, metals and conducting polymers.
  • When the two electrodes are properly positioned, in step 806, an initial conductivity between the two electrodes is measured. This may be accomplished by applying an electrical signal to the patch of skin through the electrodes. In one embodiment, the electrical signal supplied may have sufficient intensity so that the electrical parameter of the skin can be measured, but have a suitably low intensity so that the electrical signal does not cause permanent damage to the skin, or any significant electrophoresis effect for the substance being delivered. In one embodiment, a 10 Hz AC source is used to create a voltage differential between the source electrode and the counter electrode. The voltage supplied should not exceed 500 mV, and preferably not exceed 100 mV, or there will be a risk of damaging the skin. In another embodiment, an AC current source is used. The current source may also be suitably limited. The initial conductivity measurement is made after the source has been applied using appropriate circuitry. In one embodiment, a resistive sensor is used to measure the impedance of the patch of skin at 10 Hz. In another embodiment, a 1 kHz source is used. Sources of other frequencies are also possible.
  • In step 808, a skin permeabilizing device is applied to the skin at the first site. Any suitable device that increases the permeability of the skin may be used: In one embodiment, ultrasound is applied to the skin at the first site. According to one embodiment, ultrasound having a frequency of 20 kHz and an intensity of about 10 W/cm2 is used to enhance the permeability of the patch of skin to be used for transdermal transport.
  • In step 810, the conductivity between the two sites is measured. The conductivity may be measured periodically, or it may be measured continuously. The monitoring measurements are made using the same electrode set up that was used to make the initial conductivity measurement.
  • In step 812, mathematical analysis and/or signal processing may be performed on the time-variance of skin conductance data. Experiments were performed on human volunteers according to the procedure above, with ultrasound used as the method of permeabilization. Ultrasound was applied until the subjects reported pain. Skin conductivity was measured once every second during ultrasound exposure. After plotting the conductance data, the graph resembled a sigmoidal curve. The conductance data was in a general sigmoidal curve equation:
    C=C i+(C f −C i)/(1+e S(t−t*))
    where:
    • C is current;
    • Ci is current at t=0;
    • Cf is the final current;
    • S is a sensitivity constant;
    • t* is the exposure time required to achieve an inflection point; and
    • t is the time of exposure.
  • Referring again to FIG. 8, in step 814, the parameters describing the kinetics of skin conductance changes are calculated. These parameters include, inter alia, skin impedance, the variation of skin impedance with time, final skin impedance, skin impedance at inflection time, final current, exposure time to achieve the inflection time, etc.
  • In step 816, the skin permeabilizing device applied in step 808 is terminated when desired values of the parameters describing skin conductance are achieved. For instance, when the skin conductance increases to a certain value, the permeabilizing device may be deactivated. Alternatively, when the rate of change in the value of skin conductance is a maximum, the permeabilizing device may be deactivated. Additional details of the method for regulating the degree of skin permeabilization are disclosed in the aforementioned U.S. application Ser. No. 09/868,442.
  • A preferred embodiment of a continuous transdermal glucose monitoring system and method is described in connection with FIGS. 9-11. As discussed above, the term “body fluid” may include blood, interstitial fluid, lymph, and/or analyte. Body fluids include, for example, both complete fluids as well as molecular and/or ionic components thereof. Preferred embodiments of the invention may involve extraction and measurement of just the analyte.
  • FIG. 9 is a drawing of a continuous glucose monitoring system according to an exemplary embodiment of the invention. In this embodiment, the system includes a sensor assembly generally including a sensor body 901 and a backing plate 902 as well as other components as described herein. The sensor body may include electrodes, as shown in FIG. 10, on its surface for electrochemical detection of analytes or reaction products that are indicative of analytes. A thermal transducer 903, which may be housed in a housing with a shape that corresponds to that of the sensor body 901, is located between the sensor body 901 and the backing plate 902. Electrochemical sensors, such as hydrogen peroxide sensors, can be sensitive to temperature fluctuation. The thermal transducer 903 may be used to normalize and report only those changes attributed to a change in analyte or analyte indicator. An adhesive disc 904 may be attached to the side of the sensor body 901 that faces the thermal transducer 903. An adhesive ring 905 may be attached to the side of the sensor body 901 that is opposite the adhesive disc 904. The cut-out center portion of the adhesive ring 905 preferably exposes some or all of the sensor components on the sensor body 901. The adhesive ring 905 and adhesive disc 904 may have a shape that corresponds to that of the sensor body as shown in FIG. 9. A hydrogel disc 906 may be positioned within the cut-out center portion of the adhesive ring 905 adjacent a surface of the sensor body 901. During operation, the sensor assembly may be positioned adjacent a permeable region 907 of a user's skin as shown by the dashed line in FIG. 9. The sensor assembly may be attached to a potentiostat recorder 908, which may include a printed circuit board 911, by way of a flexible connecting cable 909. The connecting cable 909 preferably attaches to the potentiostat recorder 908 using a connector 910 that facilitates removal and attachment of the sensor assembly.
  • The system shown in FIG. 9 can be used to carry out continuous monitoring of an analyte such as glucose as follows. First, a region of skin on the user is made permeable using, for example, sonication as described above. The sensor assembly, such as that shown in FIG. 9, is then attached to the permeable region 907 of skin so that the hydrogel disc 906 is in fluid communication with the permeable skin. An analyte may be extracted through the permeable region 907 of the user's skin so that it is in contact with the hydrogel disc 906 of the sensor assembly. For example, an analyte such as glucose may be transported by diffusion into the hydrogel disc 906 where it can contact glucose oxidase. The glucose can then react with glucose oxidase present in the hydrogel disc 906 to form gluconic acid and hydrogen peroxide. Next, the hydrogen peroxide is transported to the surface of the electrode in the sensor body 901 where it is electrochemically oxidized. The current produced in this oxidation is indicative of the rate of hydrogen peroxide being produced in the hydrogel, which is related to the amount of glucose flux through the skin (the rate of glucose flow through a fixed area of the skin ). The glucose flux through the skin is proportional to the concentration of glucose in the blood of the user. The signal from the sensor assembly can thus be utilized to continuously monitor the blood glucose concentration of a user by displaying blood glucose concentration on the potentiostat 908 in a continuous, real-time manner.
  • Detailed views of a preferred embodiment of the sensor body 901 are shown in FIG. 10. The sensor body 901 includes a body layer 1007 upon which leads 1004, 1005, and 1006 are patterned. The leads may be formed, for example, by coating metal over the body layer 1007 in the desired locations. A working electrode 1001, is typically located at the center of the sensor body 901. The working electrode 1001 may comprise pure platinum, platinized carbon, glassy carbon, carbon nanotube, mezoporous platinum, platinum black, paladium, gold, or platinum-iridium, for example. The working electrode 1001 may be patterned over lead 1006 so that it is in electrical contact with the lead 1006. A counter electrode 1002, preferably comprising carbon, may be positioned about the periphery of a portion of the working electrode 1001, as shown in FIG. 10. The counter electrode 1002 may be patterned over lead 1005 so that it is in electrical contact with the lead 1005. A reference electrode 1003, preferably comprising Ag/AgCl, may be positioned about the periphery of another portion of the working electrode 1001 as shown in FIG. 10. The electrodes 1001, 1002, and 1003 can be formed to roughly track the layout of the electrical leads 1006, 1005, 1004, respectively, that are patterned in the sensing area of the device. The electrodes 1001, 1002, and 1003 may be screen printed over the electrical leads 1006, 1005, 1004, respectively. The leads can be pattered, using screen printing or other methods known in the art, onto the sensor body 901 in a manner that permits electrical connection to external devices or components. For example, the leads may form a 3X connector pin lead including leads 1004, 1005, and 1006 at the terminus of an extended region of the sensor body as shown in FIG. 10. A standard connector may then be used to connect the sensor electrodes to external devices or components.
  • The electrochemical sensor utilizes the working electrode 1001, the counter electrode 1002, and the reference electrode 1003 to measure the rate hydrogen peroxide or glucose is being generated in the hydrogel. The electrochemical sensor is preferably operated in potentiostat mode during continuous glucose monitoring. In potentiostat mode, the electrical potential between the working and reference electrodes of a three-electrode cell are maintained at a preset value. The current between the working electrode and the counter electrode is measured. The sensor is maintained in this mode as long as the needed cell voltage and current do not exceed the current and voltage limits of the potentiostat. In the potentiostat mode of operation, the potential between the working and reference electrode may be selected to achieve selective electrochemical measurement of a particular analyte or analyte indicator. Other operational modes can be used to investigate the kinetics and mechanism of the electrode reaction occurring on the working electrode surface, or in electroanalytical applications. For instance, according to an electrochemical cell mode of operation, a current may flow between the working and counter electrodes while the potential of the working electrode is measured against the reference electrode. It will be appreciated by those skilled in the art that the mode of operation of the electrochemical sensor may be selected depending on the application.
  • The sensor assembly described generally in relation to FIG. 9 is show in expanded detail from another angle in FIG. 11. The sensor body 901, which is covered on each side by adhesive disc 904 and adhesive ring 905, is shown in relation to the backing plate 902. The hydrogel disc 906 may be positioned in such a manner that it will face toward the user after folding over onto the backing plate 902 as shown in FIG. 9. The sensor body may be connected to the backing plate 902 using standard connectors such as a SLIM/RCPT connector 1301 with a latch that mates with a corresponding connector interface that is mounted onto the backing plate 902.
  • The sensor assembly shown in FIGS. 9-11 may be incorporated into any one of a number of detection devices. For instance, this sensor assembly may be incorporated into the receiver of FIG. 4 to provide for discrete and/or continuous glucose monitoring. Additionally, the sensor assembly may be connected to a display or computing device through a wireless connection or any other means for electrical connection in addition to the cable 909.
  • Continuous glucose monitoring as described herein can be achieved without accumulation of a certain volume of body fluid in a reservoir before measuring the concentration of the withdrawn fluid. Continuous glucose monitoring is capable of measuring the blood concentration of glucose without relying on accumulation of body fluids in the sensor device. In continuous glucose monitoring, for instance, one may prefer to minimize accumulation of both glucose and hydrogen peroxide in the hydrogel so that the current measured by the electrochemical sensor is reflective of the glucose flux through the permeable region of skin in real-time. This advantageously permits continuous real-time transdermal glucose monitoring.
  • According to another aspect of the invention, a step of skin hydration may be employed prior to or concurrently with increasing the porosity of the skin (e.g. by applying ultrasound) to improve the continuous transdermal analyte monitoring. Skin hydration prior to or concurrently with increasing the porosity, and prior to attaching the sensor may improve sensor performance by establishing or stabilizing liquid pathways between the skin and the sensor, improving the moisture balance over the sensor-skin interface, and/or continuing to maintain ample water to the hydrogel to maintain enzyme activity. The skin hydration procedure can be performed, for example, by applying a hydrating agent to the target skin site. The hydrating agent may be applied in combination with a delipidation or cleansing agent. Where both hydrating and cleansing agents are utilized, they may be applied in a single application using a single solution. Alternatively, the cleansing agent and the hydrating agent can be applied using successive application of two different solutions. In one aspect, one or both solutions are applied using a pad applicator. In another aspect, the solution can be held in contact with the skin by positioning it in the bellows of a sonication device or another device that might function to hold a liquid in contact with skin.
  • In one embodiment, a glycerin/water prep pad solution may be prepared for skin hydration. The following batch formulation can be used to prepare the glycerin/water prep pad solution. 300.00 grams of glycerin 99% USP is added to the first container. 2.70 grams of Nipagin M (methylparaben), 0.45 grams of Nipasol M (propylparaben), and 30.00 grams of benzyl alcohol NF are dissloved in a second container and then added to the first container. The glycerin and benzyl alcohol solutions are then mixed in the first container until the solution clears. 1133.85 grams of deionized water is then added to the solution in the first container and mixed until homogeneous. 1.50 grams of Potassium Sorbate NF is added to the solution in the first container and mixed until homogenious. 1.50 grams of Glydant 2000 is then added to the solution in the first container and mixed until homogenious. Lastly, 30.00 grams of deionized water is added to the solution in the first container and mixed until homogeneous.
  • In one embodiment, a 1 3/16″ prep pad is utilized. Preferably the prep pads are composed of 70% polypropylene/30% cellulose. In one embodiment, the prep pad has a width that ranges from 1 1/16″ to 1 5/16″. In one embodiment, the thickness of the prep pad is 21-29 mils. In another embodiment, the thickness of the prep pad is 26-34 mils. In one embodiment the prep pad has a basis weight of 1.43-1.87 g/yd using ATM#102. In another embodiment, the prep pad has a basis weight of 1.72-2.24 g/yd using ATM#102. Preferably, the prep pad is utilized with a prep pad solution, such as the prep pad solution above, to hydrate a biological membrane before increasing its porosity.
  • According to another aspect of the invention, the working electrode 1001 of FIG. 10 may include a surface layer of pure platinum. The pure platinum working electrode 1001 may be screen printed or otherwise coated onto the surface of a lead 1006. Using pure platinum as the working electrode can enhance sensitivity and increase the rate of conversion of hydrogen peroxide. This can provide advantages for continuous transdermal glucose monitoring as the conversion of hydrogen peroxide is preferably fast to prevent its accumulation, which may cause positive sensor drift and/or enzyme deactivation. In transdermal glucose sensing applications, pure platinum can offer advantages over traditional platinized carbon materials.
  • One advantage that pure platinum can offer relative to platinized carbon is an enhanced sensitivity to glucose concentration. FIG. 13 shows the glucose sensitivity of both pure platinum and platinized carbon. As shown by this comparison, the glucose sensitivity of pure platinum is about 2.9 times that of platinized carbon. The glucose sample size used to generate the data of FIG. 13 was 2 microliters.
  • Another advantage that pure platinum can offer relative to platinized carbon is enhanced sensitivity to hydrogen peroxide. FIG. 14 shows the hydrogen peroxide sensitivity of both pure platinum and platinized carbon. Specifically, FIG. 14 shows the current-time profiles of a glucose sensor responding to the addition of hydrogen peroxide (sometimes referred to as a hydrogen peroxide “challenge”) using platinum and platinized carbon as the working electrode. As shown by this comparison, the hydrogen peroxide sensitivity of pure platinum is about 5 times that of platinized carbon.
  • Another advantage that pure platinum can offer relative to platinized carbon is a higher success rate for glucose monitoring. The percentage success rate for glucose monitoring using pure platinum was 83% versus 60% for platinized carbon (correlation coefficient R2>=0.5 as the passing criteria). R refers to the correlation between conventional whole blood glucose measurements and measurements of blood glucose using the system of FIG. 9. R is calculated by comparing the continuous data from the system of FIG. 9 with discrete whole blood measurements (taken every 20 minutes). A linear regression analysis is run on the two data sets to generate an R value. The correlation between sensor signal and blood glucose levels using pure platinum was R2=0.87 versus R2=0.71 for platinized carbon.
  • According to another aspect of the invention, a protective interference filter can be provided to reduce or even eliminate interference effects from unwanted electrochemical oxidation and/or biofouling. One form of interference, for example, involves the production of unwanted anodic signal by electrochemical oxidation of ascorbic acid, uric acid, and/or acetaminophen, which can all be oxidized electrochemically at voltage levels applied in glucose monitoring. Another form of interference can involve biofouling, which can occur when biological species deposit on a sensor surface thereby limiting the sensor's free access to analyte or deactivating its functionality by reacting with the electrode. It is generally advantageous to reduce or eliminate the effects of interfering species through the use of an interference filter since many of these species may be present in body fluids during glucose monitoring.
  • According to an exemplary embodiment of the invention, the interference filter comprises a Nafion film coated onto one or more surfaces of the sensor assembly. Other interference filter materials such as (3-mercaptopropyl)trimethylsilane, cellulose acetate, electropolymerized films such as 1,8-diaminonapthaline and phenylenediamine, PTFE or other hydrophobic, Nylon or other hydrophylic membranes may be used. Nafion is a biocompatible anionic fluoropolymer that can be coated on sensor surfaces as a protective layer against physiological interferents and biofouling based on hydrophobicity, charge selection, and size exclusion, for example. Nafion is available from Aldrich Chemical of Milwaukee, Wis. A Nafion film may be coated directly on the surface of at least the working electrode 1001 of the sensor body 901. Alternatively, a Nafion film may be coated on an outer surface of the sensor assembly such as the hydrogel layer 906. In general, one or more interference filter layers may be provided between the working electrode surface and any other layer or on the outermost surface of the sensor assembly that contacts the user's skin during operation.
  • A Nafion layer can be conveniently coated on a sensor surface using a micropipette, for example, or by dip-coating the sensor in aqueous or organic Nafion solution followed by air drying for several hours before use. FIG. 15 shows the effect of a Nafion coating on the sensor response to glucose relative to the interferents acetaminophen and uric acid. The plot shows the hydrodynamic sensor response to 0.294 mM of hydrogen peroxide (HP) over acetominophen (AM) and uric acid (UA) in phosphate buffered saline with 0.5 V of applied voltage. The amperometric current produced by acetaminophen and uric acid is greatly reduced for a sensor coated with Nafion relative to an uncoated sensor. Thus, Nafion can significantly improve the analyte/interferent signal ratio.
  • In various embodiments of the invention described herein, hydrogels can be used as part of the analyte monitoring system. Hydrogels constitute an important class of biomaterials utilized for medical and biotechnological applications such as in contact lenses, biosensors, linings for artificial implants and drug delivery devices. FIGS. 9 and 11 show a preferred hydrogel disc 906 in relation to the sensor assembly. The hydrogel disc 906 may be located over the sensor body 901 within the cutout center portion of the adhesive ring 905 of the sensor assembly. The continuous transdermal analyte monitoring system may utilize one or more of the preferred hydrogel materials described below. Classes of hydrogel materials that may be used in exemplary embodiments of the invention include: agarose based hydrogels, polyethylene glycol diacrylate (PEG-DA) based hydrogels, and vinyl acetate based hydrogels, for example. Following a general description of these gels are examples detailing the procedures used to produce and/or characterize the various hydrogels.
  • Agarose based hydrogels can offer advantages for continuous transdermal analyte monitoring. For instance, agarose can offer one or more of the following features: good response to glucose and hydrogen peroxide due to its high water content, high enzyme loading, good bio-compatibility, and excellent permeation and diffusion properties. In addition, agarose hydrogels may offer cleanliness, low cost, and/or ease of preparation.
  • An agarose gel may be formed, for example, from 1-20% agarose in buffer solution containing 0-1 M sodium or potassium phosphate, 0-1 M sodium chloride, 0-1 M potassium chloride, 0-2 M lactic acid, surfactant such as 0-1 M Triton X-100, Tween 80 or sodium lauryl sulfate, and any other biocompatible components. Loading of glucose oxidase in agarose hydrogel can be up to 0-20% (by weight), for example, by soaking the solid hydrogel in concentrated glucose oxidase solution, or alternatively by mixing concentrated glucose oxidase powder or solution with agarose solution during its melting stage (15-65° C.), followed by cooling and gelling at lower temperature (40° C. or lower).
  • PEG based hydrogels can offer several advantages for continuous transdermal analyte monitoring. Structurally, PEG is highly hydrophilic and presents a high degree of solvation in aqueous solvents. The preferential solvation of PEG molecules can effectively exclude proteins from the PEG chain volume, thereby protecting the surface from bio-fouling by proteins. An advantage that can be provided by chemically crosslinked PEG-based hydrogels is that their physical and chemical properties can be modulated by varying the molecular weight of the PEG chains and varying the initiator concentration. For example, increasing the molecular weight of the polyethylene oxide backbone increases the network mesh size. The release of a bioactive molecule such as an enzyme can be controlled by control of the network density. Therefore, a hydrogel comprised of PEGs of molecular weight 8000 daltons would have a higher rate of release of an entrapped drug than a hydrogel comprised of PEGs of molecular weight 3.3K. Furthermore, ionic moieties can be incorporated into the hydrogels to impart added functionalities such as bioadhesiveness, etc. For example, hyaluronic acid or polyacrylic acid can be added to the PEG macromer prior to crosslinking to create bioadhesive hydrogels. In another example, an ionic character can be imparted to the crosslinked hydrogels to provide molecular interaction with entrapped drugs to slow down rates of release of drug from the matrix.
  • PEG-hydrogels used in biosensors can provide one or more of the following features: (a) a biocompatible, non-biofouling surface appropriate for long-term exposure to biological fluids without compromise of sensor function, (b) a reservoir for glucose oxidase, (c) a matrix that can be incorporated with ionic moieties to enhance entrapment of glucose oxidase, (d) a matrix that can be modulated in terms of its physical and chemical properties (network density, swelling) by varying the molecular weight of the backbone and (e) a matrix that can be rendered bioadhesive by addition of ionic excipients such as chitosan gluconate, polyacrylic acid, poly(amidoamine), poly(ethyleneimine) and hyaluronic acid.
  • Vinyl acetate based hydrogels, such as n-vinylpyrolidone/vinyl acetate copolymer, can exhibit features such as transparency, tackiness, non-toxicity, flexibility, and/or hydrophobicity. Vinyl acetate based hydrogels typically have a good ability to retain moisture and entrap enzymes such as glucose oxidase, biocompatibility, and tackiness to skin to improve skin-sensor coupling. A glucose flux sensor using n-vinylpyrolidone/vinyl acetate copolymer as the hydrogel material shows good performance in tracking the plasma glucose levels of a patient with diabetes during a glucose clamping study.
  • The following examples set forth exemplary hydrogels that can be used with transdermal analyte monitoring according to embodiments of the present invention.
  • EXAMPLE 2
  • Vinyl acetate based hydrogels for use with glucose monitoring can be prepared as follows. A 1:1 mixture of n-vinylpyrolidone and vinyl acetate can be polymerized by ultraviolet radiation using 0-0.5% Irgacure as the photoinitiator. A non-woven plastic scrim (such as Delstar product# RB0707-50P) is used to provide mechanic support. The hydrogel's equilibrium water content is 20-95% with its aqueous composition containing 0-1 M sodium or potassium phosphate, 0-1 M sodium chloride, 0-1 M potassium chloride, 0-2 M lactic acid, surfactant such as 0-1 M Triton X-100, Tween 80 or sodium lauryl sulfate, and any other biocompatible components. Glucose oxidase can be loaded by soaking the solid hydrogel layer in concentrated glucose oxidase solution for a period of time.
  • A particular example of a vinyl acetate based hydrogel was made with the following constituents: 15% n-vinylpyrolidone, 15% vinyl acetate, 0.05% Irgacure, 0.05 M potassium phosphate, 0.30 M sodium chloride, 0.025 M potassium chloride, 0.5 M lactic acid, 0.1% Triton X-100, 0.5% GOx, and the remaining composition is water, approximately 65%
  • The continuous transdermal analyte monitoring system according to an exemplary embodiment of the present invention was used to reliably predict hypoglycemia (blood glucose<70 mg/dl) with 96% specificity and 77% sensitivity using a vinyl acetate hydrogel. In a study, thirty six glucose flux biosensors (3 per patient) were placed on the skin of twelve adults with either Type 1 or Type 2 diabetes. Patient data for participants in the study are shown in FIG. 24. Blood glucose measurements were collected over an eight hour period. These measurements included collecting current versus time data from the patients using a continuous transdermal analyte monitoring system as described herein. The blood glucose of each patient was rapidly increased or decreased through the administration of insulin or glucose intravenously in a controlled manner at a rate of change two times greater than that usually experienced by patients with diabetes. Specifically, the ranges tested were 35-372 mg/dl blood glucose, with a rate of glucose concentration decrease of 21 mg/(dl*min) and rate of glucose concentration increase of 11 mg/(dl*min). As a control, blood glucose measurements were collected from an intravenous catheter. A total of 2039 sensor-blood glucose data pairs from 29 data sets were generated. Five of the data sets had significant noise as shown in FIG. 25. The typical data set, however, kept noise below an excessive level as shown, for example, in FIG. 26. The data sets were analyzed with both an individually optimized algorithm and an independent algorithm, and the results are shown in FIGS. 27 and 28, respectively. The individually optimized algorithm used each data set's optimal lag time and baseline for data analysis. The independent algorithm was developed from a separate glucose clamping study, from which a single lag time value and a single baseline value were found, then were used in the algorithm for data analysis. As will be described below in connection with FIG. 17, an additional algorithm can also be utilized to compensate for temperature change and sensor drift. Completed data sets from the glucose biosensors showed a 90 percent (R=0.9) correlation to blood glucose measurements obtained via intravenous catheter over a period of 8 hours. Ninety six percent of the sensor-blood glucose pairs fell within the A+B regions in the Clark Error Grid. Seventy seven percent (164 out of 212) hypoglycemic events (BG<70 mg/dL) were successfully predicted. Sonication treatment (using Sonoprep) averaged 15 seconds and the glucose sensor required only 89±6 minutes on average to break in. No pain or irritation was reported during the sonication procedure. Accordingly, the glucose biosensor was able to reliably predict hypoglycemia (blood glucose<70 mg/dl) with 96% specificity and 77% sensitivity.
  • EXAMPLE 3
  • Agarose based hydrogels for use with glucose monitoring were prepared as follows. 0.0116 g of sodium chloride, 0.015 g of potassium chloride, 0.0348 g of dibasic potassium phosphate and 0.002 g of Triton X-100 were dissolved in 10 mL of water. The pH of the solution was adjusted to 7.0 using 0.5 M hydrochloric acid with the aid of a pH meter. The solution was diluted with water to 20 mL. This was Solution A. 0.2 g of agarose powder was mixed and dispersed in Solution A. Agarose was heated and dissolved until boiling in a water bath. This was Solution B. Solution B was allowed to cool down to 35° C. 0.01 g of glucose oxidase powder was completely mixed and dissolved in Solution B. This was Solution C. Solution C was cast and filled onto a warm, flat mold surface. The mold was transferred to room temperature or lower to form gels.
  • FIG. 12 shows sensor signal response as a function of glucose concentration for two types of agarose hydrogels relative to a polyethylene oxide polymer, and a n-vinyl pyrolidone/vinyl acetate copolymer. It can be seen from FIG. 12 that agarose offers improved signal response relative to polyethylene oxide polymer and n-vinyl pyrolidone/vinyl acetate copolymer.
  • EXAMPLE 4
  • Agarose based hydrogels for use with glucose monitoring can also be prepared as follows. Mix and disperse 0.2 g of agarose powder in water. Heat and dissolve agarose until boiling in a water bath. Cast and fill the solution onto a warm, flat mold surface. Transfer the mold to room temperature or lower to form gels. Dissolve 0.01 g of glucose oxidase powder in Solution A to form Solution D. Soak the gel in Solution D overnight or longer to ensure sufficient loading of glucose oxidase in the gel.
  • EXAMPLE 5
  • PEG-diacrylate (PEGDA) hydrogels utilized in glucose monitoring were prepared according to the following procedures.
  • 10% weight/volume (“w/v”) solutions of (100 mg/ml) PEG2K-diacrylate, PEG3.4K-diacrylate and PEG8K-diacrylate (SunBio, Korea) were prepared in 0.01M phosphate buffered saline (PBS), pH 7.4 (ultrapure, Spectrum Chemicals, Gardena, Calif.). The solutions all contained Irgacure 2959 (Ciba Specialty Chemicals, Tarrytown, N.Y.) as the photoinitiator. Irgacure concentrations were varied to determine the effect of photoinitiator concentration on gel strength. Similarly, the polymer molecular weights were varied (2K, 3.4K, 8K) to determine the effect of molecular weight on the strength of the gelled network. As used herein, the notation “PEG2K” refers to PEG having a molecular weight of 2,000, etc.
  • 100 mg of dry polymer was weighed into a scintillation vial. 900 μl of phosphate buffered saline (PBS) containing 500 ppm of Irgacure 2959 was added to the vial and the final weight of the solution was recorded. The vial was screw-capped and the vial swirled gently to dissolve the PEGDA. The gel solution was stored in the drawer (in the dark) for 5 minutes to ensure homogeneity. 900 μl of the gel solution was placed between two glass plates (250μ spacers) and clamped. The glass assembly containing the polymer solution was placed under a UV Blak-Ray lamp, at an intensity of 15-20 mW/cm2 and photo-crosslinked between 5-30 minutes. The gel was removed carefully from the glass and weighed before transferring to 10 ml of PBS in a plastic petri dish. After removal from the glass plates, the hydrogels were placed in approximately 10 ml of PBS. The hydrogels were then qualitatively assessed for bulk gel properties such as brittleness, gel strength and photo-yellowing as a function of molecular weight and initiator concentration.
  • The following procedure was used to measure the equilibrium hydration of the gels. The gels were weighed after curing was complete. The initial weight of the gel was obtained, post wiping gently with a Kim-wipe. 10 ml of PBS was added to the petri dish containing the gels. The petri dishes were placed on an orbital shaker. The buffer was replaced at pre-determined time intervals. The retrieved buffer solutions were saved to analyze for residual Irgacure. At each time interval, the gel was wiped dry with a Kim Wipe and weighed. The percent swelling (% hydration) was calculated by the change in total weight as compared to the initial weight of the gel.
  • By qualitative assessment, the gels varied in gel strength in the following order (strongest gel to weakest gel): PEG8K>PEG3.4K>PEG2K. Gel strength was ascertained by degree of pliability, ease of handling, and brittleness. Gel strength was also noted to vary with concentration of the photoinitiator, with higher concentrations yielding hydrogels that were hard and brittle. Photoyellowing from Irgacure photoinitiation was noted in hydrogels in the following order (most photoyellowing to least photoyellowing): 5000 ppm>2500 ppm>1500 ppm>500 ppm. The photoinitiator concentration of 500 ppm and a PEGDA molecular weight of 8K resulted in the highest gel strength.
  • The following procedures were performed to incorporate glucose oxidase (GOx) into the gels. First, the gels were tested for residual Irgacure 2959. Next a glucose oxidase solution was prepared. The glucose oxidase was then loaded into the PEGDA hydrogels. The glucose oxidase concentration in the gels was measured. Lastly, the bioactivity of the gels was measured. The following describes these steps in detail.
  • The hydrogels were washed twice with buffer until there was no detectable residual Irgacure extracted from the hydrogels. The wash solutions were scanned on the UV-Vis from 200-400 nm, for the presence of Irgacure 2959. Non-detectable levels of Irgacure were determined to be an absorbance at 280 nm<0.010, equivalent to 0.13 ppm, as compared to a 25 ppm Irgacure solution that had an absorbance of 1.8 at 280 nm.
  • An LPT buffer solution was prepared by mixing 5% w/v glucose oxidase in PBS solution with 0.25 M lactic acid and 0.05% Triton X-100. This was accomplished by adding 0.5 grams of GOx to a total volume of 10 ml of a stock solution comprised of 0.25 M lactic acid and 0.05% Triton X-100 dissolved in PBS. The solution was kept at 4° C.
  • PEGDA hydrogels comprised of varying PEG molecular weights (2K, 3.4K, 8K) were soaked in the glucose oxidase solution. The gels were soaked for overnight or longer at 4° C., but no more than seven days.
  • Glucose oxidase concentrations were measured by the Bradford Assay, a method commonly used to determine concentrations of solubilized protein. The method involves addition of an acidic blue dye (Coomassie Brilliant Blue G-250) to a protein solution. The dye binds primarily to basic and aromatic amino acid residues, especially arginine, with the absorption maximum shifting from 465 nm to 595 nm with complete dye-protein binding. The molar extinction coefficient of the dye-protein complex has been determined to be constant over a 10-fold concentration range; therefore, Beer-Lambert's Law can be utilized to accurately determine concentrations of protein. A standard curve of glucose oxidase solutions at concentrations 0.125%, 0.25%, 0.375%, 0.5% and 2.5% w/v was obtained by UV-Vis Spectroscopy at 595 nm after treatment of the standard solutions and the gel fragments with standard Bradford protein assay dye procedure. See Bradford Assay, BioRad Laboratories Brochure. A linear correlation of 0.999 was obtained for the standard curve. GOx incorporation in the hydrogels was determined in the following method: (a) a piece of gel was soaked in 4 ml LPT solution containing 1 ml of protein assay dye concentrate, (b) A piece of GOx-soaked then dyed (Coomassie dye) hydrogel was sandwiched between two glass cuvettes, (c) a non-GOx soaked and dyed hydrogel was used in the reference cell, (d) The gels were scanned from 400-800 nm and (e) the concentration of GOx incorporated in the hydrogels were calculated from Beer Lambert's Law: A=εbc, where A=absorbance, ε=molar extinction coefficient, b=path length and c=concentration of the analyte. Concentrations of glucose oxidase incorporated in 2K, 3.4K and 8K molecular weight PEG hydrogels were determined. FIG. 18(a) is a UV-Vis spectrum of a standard glucose oxidase solution. FIG. 18(b) is an UV-Vis spectrum of Coomassie-bound glucose oxidase. The concentration in the gels is approximately 0.6%.
  • Electrochemical sensors were used to test the enzymatic activity of the hydrogel-incorporated GOx. Prior to the placement on sensor, the PEGDA hydrogels are cut to the diameter of the sensor surface and rinsed briefly in LPT to remove surface residual GOx. Solutions of glucose (0.25 and 0.50 mg/dl) in PBS were used as the standard test solutions and solutions of hydrogen peroxide (20 and 55 M) in PBS were used as the positive controls. Hydrogen peroxide, the reaction product of glucose and GOx, produced amperometric current, which was recorded by a potentiostat connecting to the sensor. Therefore, positive sensor signal in response to a glucose challenge (addition of glucose) indicates that the incorporated enzyme was bioactive, while a positive sensor signal in response to a hydrogen peroxide challenge (addition of hydrogen peroxide) indicates that the eletrochemical sensor is functioning. PEGDA hydrogels with incorporated GOx were tested for peak signal strength and baseline stability. These tests demonstrate that all hydrogels (2K, 3.4K, 8K) contain bioactive GOx, and that 2K and 3.4K are advantageous for signal strength and baseline stability (See FIGS. 19-20). FIG. 19 shows the signal response to glucose of glucose oxidase loaded PEG gels of varying molecular weight. FIG. 19 demonstrates that the PEG gels contain bioactive GOx and that 2K and 3.4K molecular weight PEG hydrogels are advantageous for signal strength and baseline stability. FIG. 20 shows signal response to glucose of PEG3.4K-diacrylate hydrogel loaded with varying concentrations of GOx in the gel as well as for GOx immobilized on the sensor surface. The label “n” in FIGS. 19-20 corresponds to the number of data sets that were taken with respect to each condition tested. FIG. 21 shows the raw data of the potentiometric signals elicited from PEGDA hydrogels with GOx incorporated in the gel formulation prior to photocrosslinking. The data from FIG. 21 demonstrates that hydrogels with a thickness of 400 μm had significant non-Gaussian peak shapes and tailing relative to gels at 200 μm, which is indicative of slow diffusion of glucose and hydrogen peroxide through the hydrogel. FIG. 22 shows the change in signal between GOx-presoaked versus pre-incorporated, i.e., preloaded, hydrogels at different gel thickness and gel compositions (PEGDA-nVP, PEGDA). Among the variations of gels tested were PEGDA hydrogels at varied thickness (200 μm, 400 μm) and PEGDA-nVP at 200 μm. The data from FIG. 22 demonstrates that the GOx incorporated in the hydrogels is bioactive. Baseline stability was acceptable for all formulations and signals were not compromised.
  • The following describes ex vivo glucose testing on a patient with diabetes using GOx loaded PEGDA hydrogel in a complete sensor assembly. The ultrasonic skin permeation procedure, sensing mechanism, sensor configuration and protocols for clinical trials are described in Chuang H, Taylor E, and Davison T., “Clinical Evaluation of a Continuous Minimally Invasive Glucose Flux Sensor Placed Over Ultrasonically Permeated Skin,” Diabetes Technology & Therapeutics, 6:21-30 (2004). In this clinical trial, PEGDA3.4K and pure platinum were used as the hydrogel and sensor materials, respectively.
  • Glucose sensor function using PEGDA hydrogel is shown in FIGS. 23(a)-(b). FIG. 23(a) shows an example of sensor signal (nA) responding continuously to changes of blood glucose (BG) levels in a glucose-clamping clinical study over a period of seven hours. The corresponding nA-BG correlation plot shown in FIG. 23 b has a Perason's correlation coefficient R=0.9476 (R2 square=0.8979), revealing excellent sensor's function to monitor BG levels. Use of GOx loaded PEGDA hydrogel enables successful, continuous transdermal glucose monitoring.
  • EXAMPLE 6
  • PEG-diacrylate-n-vinyl pyrrolidone-GOx hydrogels (PEGDA-NVP) for use with glucose monitoring were prepared according to the following procedures. PEGDA-NVP are slightly cationic, which provides ionic interaction that retains GOx. Incorporating GOx within the hydrogel prior to crosslinking also contributes to physical entrapment of GOx in the matrix. PEGDa-NVP hydrogels were prepared and characterized according to the following procedure.
  • 100 mg of dry polymer was weighed into a tared scintillation vial. 500 μl PBS containing 1000 ppm of Irgacure 2959, 250 μl of 20% GOx in PBS, and 150 μl of 2% n-vinyl pyrrolidone (“n-VP”) was added to the vial and the final weight of the solution was recorded. The vial was screw-capped and the vial swirled gently to dissolve the PEGDA. The gel solution was stored in the drawer (in the dark) for 5 minutes to ensure homogeneity. 900 μl of the gel solution was placed between two glass plates (200μ spacers) and clamped. The glass assembly containing the polymer solution was placed under an UV Blak-Ray lamp, at an intensity of 15-20 mW/cm2 and cured for 5 minutes. The gel was removed carefully from the glass and weighed before transferring to 10 ml of LPT in a plastic petri dish.
  • The 200 micron hydrogels were transparent, easy to handle, pliable with considerable gel strength, as assessed qualitatively. Water content of the hydrogels were approximately 90%. The GOx was incorporated in the hydrogels prior to crosslinking, resulting in semi-interpenetrating networks. The hydrogels retained their yellow color (due to the GOx), post hydration. This indicated higher retention of the enzyme within the hydrogel.
  • Bioactivity of the incorporated enzyme was determined by potentiometry. This experiment demonstrated that glucose oxidase incorporated with PEG diacrylate-n-vinyl pyrrolidone hydrogels is bioactive and chemically compatible with the hydrogel delivery system. Data in FIGS. 21-22 demonstrate that GOx incorporated within the hydrogels are bioactive and functional.
  • EXAMPLE 7
  • PEG-diacrylate/Polyethyleneimine (PEGDA-PEI) hydrogels for use with glucose monitoring can be prepared according to the following procedures. PEGDA-PEI are cationic hydrogels. Polyethyleneimine (branched, or dendrimer, Sigma Chemicals) can be incorporated within PEG diacrylate hydrogels to impart cationic character. A cationic hydrogel can ionically interact with slightly anionic glucose oxidase to provide a controlled release reservoir for the enzyme. A solution comprised of 0.3-0.5% PEI, 10% PEGDA, 500 ppm Irgacure 2959 and 5% glucose oxidase can be photocrosslinked with a BlakRay UV light, as described in previous sections. Incorporation of the highly cationic PEI can provide a high-binding substrate for GOx resulting in enhanced retention of the enzyme in the matrix. Furthermore, the highly cationic character of the hydrogels can provide the added functionality of bioadhesivity to the skin. Other cationic, bioadhesive macromolecules that can be incorporated into PEGDA hydrogels are chitosan, polyamidoamine, poly(n-vinyl pyrrolidone), etc.
  • According to another aspect of the invention, an error correction method can be utilized to correct for sensor drift in a measured blood glucose value as a function of time. FIG. 16 shows a Clark Error Grid without the error correction method to correct for sensor drift. The data in FIG. 16 were taken from ten ex vivo tests on diabetic subjects in a clinical trial. The different data labels indicate data from different patients. FIG. 17 shows the Clark Error Grid after application of the error correction method to correct sensor drift. The data in FIG. 17 were taken from ten ex vivo tests on diabetic subjects in a clinical trial. The error correction method is described below.
  • The sensor signal, Y, as a function of time, t, is related to the sensor sensitivity, m, blood glucose value, X, and a constant offset value, b, according to the following linear relationship:
    Y=mX(t)+b
  • The above equation can be rearranged, and the blood glucose value can be conveniently predicted with a single point calibration protocol as follows:
    X(t)=(Y−b)/m, and m=(Yc−b)/Xrc(t)
  • The value of sensor sensitivity, m, can be found from each ex vivo study using the sensor's current reading Yc and a standard reference blood glucose value Xrc(t) at the sensor calibration time point. When comparing subsequent blood glucose value, X(t), with corresponding standard reference blood glucose value Xr(t), it is found that a drift factor D(t) can be computed at different points as follows:
    D(t)=Xr(t)/X(t)
  • By plotting D(t) vs. time, t, from a bulk number of successful ex vivo studies, a best fit for the D(t) vs. t plot was a third order polynomial function, which can be represented as follows:
    D(t)=c*t 3 +d*t 2 +e*t+f
    where c, d, e, f are numerical coefficients calculated to provide the best fit for the D(t) vs. t data to the above third order polynomial. The use of a third order polynomial is, however, exemplary and other methods of representing the drift factor such as an algorithm fitting the drift data to an exponential function, or utilizing a direct look-up table method can also be utilized.
  • To predict a drift-corrected blood glucose value Xp(t) at time t, one can simply multiply X(t) by D(t) as follows:
    Xp(t)=X(t)*D(t)=X(t)*(c*t 3 +d*t 2 +e*t+f)
  • This equation represents an error correction method, and its utility may be appreciated by a comparison of the Clark Error Grid where the algorithm is not applied (FIG. 16) versus where it is applied (FIG. 17). The negative bias and wide scattering of data pairs in FIG. 16 is effectively corrected, and as a result all data points fall in the clinically relevant A and B regions in the Clark Error Grid, as shown in FIG. 17. This error correction method may be applied to data generated using the continuous transdermal analyte monitoring system according an exemplary embodiment of the present invention.
  • Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all U.S. and foreign patents and patent applications, are specifically and entirely hereby incorporated herein by reference. It is intended that the specification and examples be considered exemplary only, with the true scope and spirit of the invention indicated by the following claims.

Claims (14)

  1. 1. A transdermal analyte monitoring system comprising:
    a medium adapted to interface with a biological membrane and to receive an analyte from the biological membrane;
    an electrode assembly comprising a plurality of electrodes; and
    a processor programmed to implement an error correction method that corrects for drift;
    wherein the medium is adapted to react continuously with the analyte, an electrical signal is detected by the electrode assembly, and the electrical signal correlates to an analyte value.
  2. 2. The transdermal analyte monitoring system of claim 1, wherein the analyte comprises glucose.
  3. 3. The transdermal analyte monitoring system of claim 2, wherein the medium comprises a hydrogel and glucose oxidase.
  4. 4. The transdermal analyte monitoring system of claim 2, wherein the processor is programmed to apply a drift factor D(t) to a blood glucose value X(t) to calculate a drift-corrected blood glucose value Xp(t).
  5. 5. The transdermal analyte monitoring system of claim 4, wherein the drift factor D(t) is represented by a third order polynomial.
  6. 6. The transdermal analyte monitoring system of claim 5, wherein the drift factor D(t) is represented as D(t)=c*t3+d*t2+e*t+f, wherein c, d, e and f are numerical coefficients calculated to provide a best fit for D(t) to empirical data.
  7. 7. A method for monitoring an analyte comprising:
    positioning a medium with respect to a biological membrane such that the medium can receive an analyte from the biological membrane, wherein an electrode assembly is coupled to the medium;
    continuously reacting the analyte with the medium;
    detecting an electrical signal with the electrode assembly;
    calculating an analyte value based on the electrical signal; and
    applying an error correction to the analyte value to correct for drift.
  8. 8. The method of claim 7, further comprising pretreating the biological membrane to increase a permeability of the biological membrane.
  9. 9. The method of claim 8, wherein the pretreating step comprises applying low frequency ultrasound to the biological membrane.
  10. 10. The method of claim 7, wherein the analyte comprises glucose.
  11. 11. The method of claim 10, wherein the medium comprises a hydrogel and glucose oxidase.
  12. 12. The method of claim 7, wherein the step of applying an error correction comprises applying a drift factor D(t) to a blood glucose value X(t) to calculate a drift-corrected blood glucose value Xp(t).
  13. 13. The method of claim 12, wherein the drift factor D(t) is represented by a third order polynomial.
  14. 14. The method of claim 13, wherein the drift factor D(t) is represented as D(t)=c*t3+d*t2+e*t+f, wherein c, d, e and f are numerical coefficients calculated to provide a best fit for D(t) to empirical data.
US11223957 2004-10-28 2005-09-13 System and method for analyte sampling and analysis with error correction Abandoned US20060094944A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US97496304 true 2004-10-28 2004-10-28
US20133405 true 2005-08-11 2005-08-11
US11223957 US20060094944A1 (en) 2004-10-28 2005-09-13 System and method for analyte sampling and analysis with error correction

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US11223957 US20060094944A1 (en) 2004-10-28 2005-09-13 System and method for analyte sampling and analysis with error correction
EP20050824881 EP1819283A4 (en) 2004-10-28 2005-10-27 System and method for analyte sampling and analysis with hydrogel
PCT/US2005/038786 WO2006050033A9 (en) 2004-10-28 2005-10-27 System and method for analyte sampling and analysis
PCT/US2005/038784 WO2006050031A3 (en) 2004-10-28 2005-10-27 System and method for analyte sampling and analysis with error correction
AU2005302584A AU2005302584B2 (en) 2004-10-28 2005-10-27 System and method for analyte sampling and analysis with hydrogel
PCT/US2005/038785 WO2006050032A9 (en) 2004-10-28 2005-10-27 System and method for analyte sampling and analysis with hydrogel
CA 2584699 CA2584699C (en) 2004-10-28 2005-10-27 System and method for analyte sampling and analysis with hydrogel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US20133405 Division 2005-08-11 2005-08-11

Publications (1)

Publication Number Publication Date
US20060094944A1 true true US20060094944A1 (en) 2006-05-04

Family

ID=36262984

Family Applications (6)

Application Number Title Priority Date Filing Date
US11223960 Abandoned US20060094945A1 (en) 2004-10-28 2005-09-13 System and method for analyte sampling and analysis
US11223971 Active 2027-10-03 US8224414B2 (en) 2004-10-28 2005-09-13 System and method for analyte sampling and analysis with hydrogel
US11223957 Abandoned US20060094944A1 (en) 2004-10-28 2005-09-13 System and method for analyte sampling and analysis with error correction
US11666270 Active 2032-02-23 US9549697B2 (en) 2004-10-28 2005-10-27 Hydrogel composition
US15244837 Pending US20160376431A1 (en) 2004-10-28 2016-08-23 Electrochemical sensor system
US15381578 Pending US20170145203A1 (en) 2004-10-28 2016-12-16 Hydrogel composition

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11223960 Abandoned US20060094945A1 (en) 2004-10-28 2005-09-13 System and method for analyte sampling and analysis
US11223971 Active 2027-10-03 US8224414B2 (en) 2004-10-28 2005-09-13 System and method for analyte sampling and analysis with hydrogel

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11666270 Active 2032-02-23 US9549697B2 (en) 2004-10-28 2005-10-27 Hydrogel composition
US15244837 Pending US20160376431A1 (en) 2004-10-28 2016-08-23 Electrochemical sensor system
US15381578 Pending US20170145203A1 (en) 2004-10-28 2016-12-16 Hydrogel composition

Country Status (2)

Country Link
US (6) US20060094945A1 (en)
JP (1) JP5815652B2 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080058699A1 (en) * 2006-09-06 2008-03-06 Iomed, Inc. Iontophoresis apparatus and method
WO2008109739A1 (en) * 2007-03-07 2008-09-12 Echo Therapeutics, Inc. Transdermal analyte monitoring systems and methods for analyte detection
US20080311670A1 (en) * 2004-10-28 2008-12-18 Boru Zhu Hydrogel Composition
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US20100055184A1 (en) * 2008-09-04 2010-03-04 Zeitels Steven M Hydrogels for vocal cord and soft tissue augmentation and repair
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7841992B2 (en) 2001-06-12 2010-11-30 Pelikan Technologies, Inc. Tissue penetration device
WO2010082820A3 (en) * 2009-01-13 2010-12-02 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno A non-invasive chemical sensor, a skin patch, a packaging material and a monitoring system using the same
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8214030B2 (en) 2006-09-06 2012-07-03 Encore Medical Asset Corporation Iontophoresis apparatus and method
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
EP2578164A1 (en) * 2011-10-04 2013-04-10 Canon Kabushiki Kaisha Acoustic wave acquiring apparatus
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8747316B2 (en) 2008-07-31 2014-06-10 Sysmex Corporation In vivo component measurement method, data processing method for in vivo component measurement, in vivo component measurement apparatus and collection member
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9198568B2 (en) 2010-03-04 2015-12-01 The General Hospital Corporation Methods and systems of matching voice deficits with a tunable mucosal implant to restore and enhance individualized human sound and voice production
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US20060270922A1 (en) 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US7946984B2 (en) 2004-07-13 2011-05-24 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
WO2006086019A3 (en) * 2004-10-21 2006-10-26 Optiscan Biomedical Corp Methods of treating diabetes
JP2007037868A (en) * 2005-08-05 2007-02-15 Transcutaneous Technologies Inc Transdermal administration device and its controlling method
US20070083094A1 (en) * 2005-10-11 2007-04-12 Colburn Joel C Medical sensor and technique for using the same
US7432069B2 (en) * 2005-12-05 2008-10-07 Sontra Medical Corporation Biocompatible chemically crosslinked hydrogels for glucose sensing
CN101454667B (en) 2005-12-27 2013-04-24 拜尔保健有限公司 Electrochemical sensor system using a substrate with at least one aperature and method of making the same
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
WO2007123707A1 (en) * 2006-03-30 2007-11-01 Tti Ellebeau, Inc. Controlled release membrane and methods of use
US9101264B2 (en) 2006-06-15 2015-08-11 Peerbridge Health, Inc. Wireless electrode arrangement and method for patient monitoring via electrocardiography
US20070299617A1 (en) * 2006-06-27 2007-12-27 Willis John P Biofouling self-compensating biosensor
JP2009542685A (en) * 2006-07-05 2009-12-03 Tti・エルビュー株式会社 Delivery devices and methods of use thereof with a self-organizing resinous polymer
EP2061553A2 (en) * 2006-09-05 2009-05-27 Tti Ellebeau, Inc. Impedance systems, devices and methods for evaluating iontophoretic properties of compounds
GB0619322D0 (en) * 2006-09-30 2006-11-08 Greater Glasgow Nhs Board Apparatus for coupling an ultrasound probe to an object
US8298142B2 (en) 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8532730B2 (en) 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
JPWO2008087884A1 (en) * 2007-01-16 2010-05-06 Tti・エルビュー株式会社 Drug dose prediction method and program
US7713196B2 (en) * 2007-03-09 2010-05-11 Nellcor Puritan Bennett Llc Method for evaluating skin hydration and fluid compartmentalization
ES2387419T3 (en) * 2007-04-27 2012-09-21 Echo Therapeutics, Inc. Skin permeation device for detecting analytes or transdermal drug
EP2152350A4 (en) 2007-06-08 2013-03-27 Dexcom Inc Integrated medicament delivery device for use with continuous analyte sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US9839395B2 (en) 2007-12-17 2017-12-12 Dexcom, Inc. Systems and methods for processing sensor data
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
CA2715628A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
JP5406646B2 (en) * 2009-09-16 2014-02-05 シスメックス株式会社 Interstitial fluid collection kit and interstitial fluid collection sheet used for the interstitial fluid collection method
US9357951B2 (en) * 2009-09-30 2016-06-07 Dexcom, Inc. Transcutaneous analyte sensor
WO2011075575A1 (en) 2009-12-17 2011-06-23 Bayer Healthcare Llc Transdermal systems, devices, and methods to optically analyze an analyte
US20120252046A1 (en) 2009-12-17 2012-10-04 Bayer Healthcare Llc Transdermal systems, devices, and methods for biological analysis
WO2011156095A3 (en) * 2010-06-10 2012-04-19 The Regents Of The University Of California Textile-based printable electrodes for electrochemical sensing
WO2013032940A1 (en) 2011-08-26 2013-03-07 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US9199201B2 (en) * 2011-12-15 2015-12-01 General Electric Company Self contained electroosmotic pump and method of making thereof
GB2505694B (en) * 2012-09-07 2017-03-22 Lifescan Scotland Ltd Electrochemical-based analytical test strip with bare interferent electrodes
US9828620B2 (en) 2013-06-28 2017-11-28 Verily Life Sciences Llc Porous polymeric formulation prepared using monomer
US9750445B2 (en) 2013-06-28 2017-09-05 Verily Life Sciences Llc Porous polymeric formulation prepared using porogens
US9763605B2 (en) 2013-11-27 2017-09-19 Verily Life Sciences Llc Adjustment of sensor sensitivity by controlling copolymer film thickness through a controlled drying step
US9617578B2 (en) 2013-12-06 2017-04-11 Verily Life Sciences Llc Sensor membrane with low temperature coefficient
US20160157764A1 (en) * 2014-12-03 2016-06-09 IMAST scarl Microneedle array device and method of making

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711602A (en) * 1970-10-30 1973-01-16 Crown Zellerbach Corp Compositions for topical application for enhancing tissue penetration of physiologically active agents with dmso
US3711606A (en) * 1970-09-02 1973-01-16 Crown Zellerbach Corp Enhancing tissue penetration of physiologically active steroidal agents with dmso
US3828769A (en) * 1973-02-28 1974-08-13 H Mettler Method and apparatus for ultrasonic treatment of lower tissues simultaneous with heating of subcutaneous, outer muscle and lower tissues
US4002221A (en) * 1972-09-19 1977-01-11 Gilbert Buchalter Method of transmitting ultrasonic impulses to surface using transducer coupling agent
US4020830A (en) * 1975-03-12 1977-05-03 The University Of Utah Selective chemical sensitive FET transducers
US4144646A (en) * 1975-12-05 1979-03-20 Lion Hamigaki Kabushiki Kaisha Torsional ultrasonic vibrators
US4249531A (en) * 1979-07-05 1981-02-10 Alza Corporation Bioerodible system for delivering drug manufactured from poly(carboxylic acid)
US4280494A (en) * 1979-06-26 1981-07-28 Cosgrove Robert J Jun System for automatic feedback-controlled administration of drugs
US4309989A (en) * 1976-02-09 1982-01-12 The Curators Of The University Of Missouri Topical application of medication by ultrasound with coupling agent
US4372296A (en) * 1980-11-26 1983-02-08 Fahim Mostafa S Treatment of acne and skin disorders and compositions therefor
US4457748A (en) * 1982-01-11 1984-07-03 Medtronic, Inc. Non-invasive diagnosis method
US4537776A (en) * 1983-06-21 1985-08-27 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing N-(2-hydroxyethyl) pyrrolidone
US4563184A (en) * 1983-10-17 1986-01-07 Bernard Korol Synthetic resin wound dressing and method of treatment using same
US4595011A (en) * 1984-07-18 1986-06-17 Michael Phillips Transdermal dosimeter and method of use
US4646725A (en) * 1983-11-16 1987-03-03 Manoutchehr Moasser Method for treating herpes lesions and other infectious skin conditions
US4657543A (en) * 1984-07-23 1987-04-14 Massachusetts Institute Of Technology Ultrasonically modulated polymeric devices for delivering compositions
US4683242A (en) * 1985-10-28 1987-07-28 A. H. Robins Company, Incorporated Transdermal treatment for pain and inflammation with 2-amino-3-aroylbenzeneacetic acids, salts and esters
US4732153A (en) * 1984-07-18 1988-03-22 Michael Phillips Transdermal dosimeter
US4767402A (en) * 1986-07-08 1988-08-30 Massachusetts Institute Of Technology Ultrasound enhancement of transdermal drug delivery
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4820720A (en) * 1987-08-24 1989-04-11 Alza Corporation Transdermal drug composition with dual permeation enhancers
US4821733A (en) * 1987-08-18 1989-04-18 Dermal Systems International Transdermal detection system
US4821740A (en) * 1986-11-26 1989-04-18 Shunro Tachibana Endermic application kits for external medicines
US4834978A (en) * 1984-10-01 1989-05-30 Biotek, Inc. Method of transdermal drug delivery
US4855298A (en) * 1986-11-21 1989-08-08 Tanabe Seiyaku Co., Ltd. 6-Halo-1,2,3,4-tetrahydroquinazoline-4-spiro-4-imidazolidine-2,2'5'-triones useful for the treatment and prophylaxis of diabetic complications
US4860058A (en) * 1987-02-02 1989-08-22 Seiko Epson Corporation Image forming apparatus
US4933062A (en) * 1989-03-07 1990-06-12 University Of Connecticut Modified composite electrodes with renewable surface for electrochemical applications and method of making same
US4948587A (en) * 1986-07-08 1990-08-14 Massachusetts Institute Of Technology Ultrasound enhancement of transbuccal drug delivery
US4981779A (en) * 1986-06-26 1991-01-01 Becton, Dickinson And Company Apparatus for monitoring glucose
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5001051A (en) * 1986-12-12 1991-03-19 Regents Of The University Of California Dose critical in-vivo detection of anti-cancer drug levels in blood
US5006342A (en) * 1986-12-22 1991-04-09 Cygnus Corporation Resilient transdermal drug delivery device
US5016615A (en) * 1990-02-20 1991-05-21 Riverside Research Institute Local application of medication with ultrasound
US5019034A (en) * 1988-01-21 1991-05-28 Massachusetts Institute Of Technology Control of transport of molecules across tissue using electroporation
US5078144A (en) * 1988-08-19 1992-01-07 Olympus Optical Co. Ltd. System for applying ultrasonic waves and a treatment instrument to a body part
US5082786A (en) * 1987-11-26 1992-01-21 Nec Corporation Glucose sensor with gel-immobilized glucose oxidase and gluconolactonase
US5086229A (en) * 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
US5115805A (en) * 1990-02-23 1992-05-26 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
US5118404A (en) * 1989-04-28 1992-06-02 Nec Corporation Enzyme electrode and a method of determining concentration of an analyte in a sample solution
US5120544A (en) * 1989-06-19 1992-06-09 Henley International, Inc. Crosslinked hydrogel and method for making same
US5119819A (en) * 1990-05-02 1992-06-09 Miles Inc. Method and apparatus for non-invasive monitoring of blood glucose
US5134057A (en) * 1988-10-10 1992-07-28 501 Ppg Biomedical Systems, Inc. Method of providing a substrate with a layer comprising a polyvinyl based hydrogel and a biochemically active material
US5135753A (en) * 1991-03-12 1992-08-04 Pharmetrix Corporation Method and therapeutic system for smoking cessation
US5139023A (en) * 1989-06-02 1992-08-18 Theratech Inc. Apparatus and method for noninvasive blood glucose monitoring
US5197946A (en) * 1990-06-27 1993-03-30 Shunro Tachibana Injection instrument with ultrasonic oscillating element
US5215520A (en) * 1991-09-17 1993-06-01 Centre Internationale De Recherches Dermatologiques Galderma (C.I.R.D. Galderma) Method for delivering an active substance topically or percutaneously
US5215887A (en) * 1990-11-30 1993-06-01 Nec Corporation Glucose sensor measurement
US5230334A (en) * 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
US5279543A (en) * 1988-01-29 1994-01-18 The Regents Of The University Of California Device for iontophoretic non-invasive sampling or delivery of substances
US5282785A (en) * 1990-06-15 1994-02-01 Cortrak Medical, Inc. Drug delivery apparatus and method
US5315998A (en) * 1991-03-22 1994-05-31 Katsuro Tachibana Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same
US5330756A (en) * 1990-10-18 1994-07-19 Steuart Gary M Polyphase fluid extraction process, resulting products and methods of use
US5386837A (en) * 1993-02-01 1995-02-07 Mmtc, Inc. Method for enhancing delivery of chemotherapy employing high-frequency force fields
US5401237A (en) * 1991-06-28 1995-03-28 Shunro Tachibana Blood processing for treating blood disease
US5405614A (en) * 1992-04-08 1995-04-11 International Medical Associates, Inc. Electronic transdermal drug delivery system
US5405366A (en) * 1991-11-12 1995-04-11 Nepera, Inc. Adhesive hydrogels having extended use lives and process for the preparation of same
US5413550A (en) * 1993-07-21 1995-05-09 Pti, Inc. Ultrasound therapy system with automatic dose control
US5415629A (en) * 1993-09-15 1995-05-16 Henley; Julian L. Programmable apparatus for the transdermal delivery of drugs and method
US5421816A (en) * 1992-10-14 1995-06-06 Endodermic Medical Technologies Company Ultrasonic transdermal drug delivery system
US5429735A (en) * 1994-06-27 1995-07-04 Miles Inc. Method of making and amperometric electrodes
US5534496A (en) * 1992-07-07 1996-07-09 University Of Southern California Methods and compositions to enhance epithelial drug transport
US5618275A (en) * 1995-10-27 1997-04-08 Sonex International Corporation Ultrasonic method and apparatus for cosmetic and dermatological applications
US5626554A (en) * 1995-02-21 1997-05-06 Exogen, Inc. Gel containment structure
US5646221A (en) * 1995-03-31 1997-07-08 Kowa Co., Ltd. Adhesive base material
US5722397A (en) * 1993-11-15 1998-03-03 Altea Technologies, Inc. Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
US5730714A (en) * 1988-01-29 1998-03-24 The Regents Of The University Of California Method for the iontophoretic non-invasive determination of the in vivo concentration level of glucose
US5735273A (en) * 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
US5746217A (en) * 1993-10-13 1998-05-05 Integ Incorporated Interstitial fluid collection and constituent measurement
US5771890A (en) * 1994-06-24 1998-06-30 Cygnus, Inc. Device and method for sampling of substances using alternating polarity
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5902603A (en) * 1995-09-14 1999-05-11 Cygnus, Inc. Polyurethane hydrogel drug reservoirs for use in transdermal drug delivery systems, and associated methods of manufacture and use
US5906830A (en) * 1995-09-08 1999-05-25 Cygnus, Inc. Supersaturated transdermal drug delivery systems, and methods for manufacturing the same
US6018678A (en) * 1993-11-15 2000-01-25 Massachusetts Institute Of Technology Transdermal protein delivery or measurement using low-frequency sonophoresis
US6041253A (en) * 1995-12-18 2000-03-21 Massachusetts Institute Of Technology Effect of electric field and ultrasound for transdermal drug delivery
US6190315B1 (en) * 1998-01-08 2001-02-20 Sontra Medical, Inc. Sonophoretic enhanced transdermal transport
US6212416B1 (en) * 1995-11-22 2001-04-03 Good Samaritan Hospital And Medical Center Device for monitoring changes in analyte concentration
US6223471B1 (en) * 1998-12-31 2001-05-01 Jerry Keith Barber Sliding door with wheel repair kit
US6234990B1 (en) * 1996-06-28 2001-05-22 Sontra Medical, Inc. Ultrasound enhancement of transdermal transport
US6251083B1 (en) * 1999-09-07 2001-06-26 Amira Medical Interstitial fluid methods and devices for determination of an analyte in the body
US6503198B1 (en) * 1997-09-11 2003-01-07 Jack L. Aronowtiz Noninvasive transdermal systems for detecting an analyte obtained from or underneath skin and methods
US20030027240A1 (en) * 1996-11-06 2003-02-06 University Of Pittsburgh Intelligent polymerized crystalline colloidal array carbohydrate sensors
US6535753B1 (en) * 1998-08-20 2003-03-18 Microsense International, Llc Micro-invasive method for painless detection of analytes in extra-cellular space
US6540675B2 (en) * 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
US20030100846A1 (en) * 1998-01-08 2003-05-29 Linda Custer System, method, and device for non-invasive body fluid sampling and analysis
US20030100040A1 (en) * 1997-12-05 2003-05-29 Therasense Inc. Blood analyte monitoring through subcutaneous measurement
US6595919B2 (en) * 1998-05-13 2003-07-22 Cygnus, Inc. Device for signal processing for measurement of physiological analytes
US6673596B1 (en) * 1997-11-25 2004-01-06 Ut-Battelle, Llc In vivo biosensor apparatus and method of use
US20040039418A1 (en) * 2002-04-17 2004-02-26 Elstrom Tuan A. Preparation for transmission and reception of electrical signals
US20040087671A1 (en) * 2002-08-19 2004-05-06 Tamada Janet A. Compositions and methods for enhancement of transdermal analyte flux
US6766817B2 (en) * 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US20050027180A1 (en) * 2003-08-01 2005-02-03 Goode Paul V. System and methods for processing analyte sensor data
US20060015058A1 (en) * 1998-01-08 2006-01-19 Kellogg Scott C Agents and methods for enhancement of transdermal transport

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305514A (en) * 1964-02-06 1967-02-21 Standard Oil Co Vinyl halide resin, epoxy or alkyd resin, monoalkenyl and polyalkenyl monomer reinforced thermoplastic composition
US3397192A (en) * 1966-05-18 1968-08-13 Gaf Corp Alkoxy-and aryloxy-ethylated polymers of heterocyclic nu-vinyl monomers and process of preparing the same
US3551554A (en) 1968-08-16 1970-12-29 Crown Zellerbach Corp Enhancing tissue penetration of physiologically active agents with dmso
FR2336116B1 (en) 1975-12-22 1980-04-30 Lion Hamigaki Kk
GB1577551A (en) 1976-02-09 1980-10-22 Fahim M Medication for topical application by ultrasound
DE2756460A1 (en) 1977-12-17 1979-06-21 Fraunhofer Ges Forschung Therapeutic substances application - using ultrasonic bursts to improve penetration into tissue
US4176664A (en) 1978-03-13 1979-12-04 Stanley Kalish Impregnated bandage
CA1165240A (en) 1980-07-09 1984-04-10 The Procter & Gamble Company Penetrating topical pharmaceutical compositions
JPH0318876B2 (en) * 1982-12-01 1991-03-13 Mitsubishi Petrochemical Co
DE3324835A1 (en) 1983-07-09 1985-01-17 Cassella Ag Crosslinked copolymer, process for its manufacture and its use as a sorbent
US4557943A (en) 1983-10-31 1985-12-10 Advanced Semiconductor Materials America, Inc. Metal-silicide deposition using plasma-enhanced chemical vapor deposition
US4605670A (en) 1984-02-01 1986-08-12 Nitto Electric Industrial Co., Ltd. Method for percutaneously administering metoclopramide
US4779806A (en) 1984-07-23 1988-10-25 Massachusetts Institute Of Technology Ultrasonically modulated polymeric devices for delivering compositions
US4786277A (en) 1986-11-21 1988-11-22 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation
US4698058A (en) 1985-10-15 1987-10-06 Albert R. Greenfeld Ultrasonic self-cleaning catheter system for indwelling drains and medication supply
DE246341T1 (en) 1986-05-20 1989-03-30 Massachusetts Institute Of Technology, Cambridge, Mass., Us Bioerodible products suitable for use as implants or prosthesis having a predictable resorbierungsgrad.
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
JPS6336172A (en) 1986-07-29 1988-02-16 Toshiba Corp Ultrasonic coupler
US4863970A (en) 1986-11-14 1989-09-05 Theratech, Inc. Penetration enhancement with binary system of oleic acid, oleins, and oleyl alcohol with lower alcohols
US5489625A (en) 1986-11-19 1996-02-06 Sunstar Kabushiki Kaisha Dental adhesive coating base composition and oral composition
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4780212A (en) 1987-07-31 1988-10-25 Massachusetts Institute Of Technology Ultrasound enchancement of membrane permeability
US4866050A (en) 1988-04-27 1989-09-12 Ben Amoz Daniel Ultrasonic transdermal application of steroid compositions
US5076273A (en) 1988-09-08 1991-12-31 Sudor Partners Method and apparatus for determination of chemical species in body fluid
US5008110A (en) 1988-11-10 1991-04-16 The Procter & Gamble Company Storage-stable transdermal patch
US5250419A (en) 1988-12-16 1993-10-05 L'oreal Method for the direct measurement of at least one chemical parameter of skin using a biosensor
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
US5069908A (en) 1989-06-19 1991-12-03 Henley International, Inc. Crosslinked hydrogel and method for making same
US5050604A (en) 1989-10-16 1991-09-24 Israel Reshef Apparatus and method for monitoring the health condition of a subject
US5140985A (en) 1989-12-11 1992-08-25 Schroeder Jon M Noninvasive blood glucose measuring device
US5231975A (en) 1990-02-23 1993-08-03 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
CA2196746A1 (en) 1990-02-23 1991-08-24 The Regents Of The University Of California Ultrasound-enhanced delivery of materials through the skin
JP3046346B2 (en) 1990-03-12 2000-05-29 昭和電工株式会社 External preparation base or adjuvants and human or animal external preparation containing the same
US5161532A (en) 1990-04-19 1992-11-10 Teknekron Sensor Development Corporation Integral interstitial fluid sensor
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5236410A (en) 1990-08-02 1993-08-17 Ferrotherm International, Inc. Tumor treatment method
JP2684871B2 (en) 1991-05-16 1997-12-03 日本電気株式会社 Body fluid component measurement method and measurement device
US5171215A (en) 1991-08-22 1992-12-15 Flanagan Dennis F Endermic method and apparatus
WO1993015722A1 (en) 1992-02-07 1993-08-19 Syntex (Usa) Inc. Controlled delivery of pharmaceuticals from preformed porous microparticles
US5165418B1 (en) 1992-03-02 1999-12-14 Nikola I Tankovich Blood sampling device and method using a laser
US5334640A (en) * 1992-04-08 1994-08-02 Clover Consolidated, Ltd. Ionically covalently crosslinked and crosslinkable biocompatible encapsulation compositions and methods
JPH0670987A (en) 1992-08-28 1994-03-15 Katsuro Tachibana Medicine dosing and body liquid taking-out unit and device therefor
US5364838A (en) 1993-01-29 1994-11-15 Miris Medical Corporation Method of administration of insulin
US5267985A (en) 1993-02-11 1993-12-07 Trancell, Inc. Drug delivery by multiple frequency phonophoresis
CA2114968A1 (en) 1993-02-25 1994-08-26 John Wille Transdermal treatment with mast cell degranulating agents for drug-induced hypersensitivity
US5667487A (en) 1993-04-07 1997-09-16 Henley; Julian L. Ionosonic drug delivery apparatus
DE69322968D1 (en) 1993-10-22 1999-02-18 Siemens Elema Ab Method and device for continuous monitoring of a Anolytpegels
US5445611A (en) 1993-12-08 1995-08-29 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal delivery with ultrasound and chemical enhancers
US5443080A (en) 1993-12-22 1995-08-22 Americate Transtech, Inc. Integrated system for biological fluid constituent analysis
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US5573778A (en) 1995-03-17 1996-11-12 Adhesives Research, Inc. Drug flux enhancer-tolerant pressure sensitive adhesive composition
US5773146A (en) * 1995-06-05 1998-06-30 Ppg Industries, Inc. Forming size compositions, glass fibers coated with the same and fabrics woven from such coated fibers
WO1997002811A1 (en) 1995-07-12 1997-01-30 Cygnus, Inc. Hydrogel patch
US20040062759A1 (en) 1995-07-12 2004-04-01 Cygnus, Inc. Hydrogel formulations for use in electroosmotic extraction and detection of glucose
US6002961A (en) 1995-07-25 1999-12-14 Massachusetts Institute Of Technology Transdermal protein delivery using low-frequency sonophoresis
US5989409A (en) 1995-09-11 1999-11-23 Cygnus, Inc. Method for glucose sensing
US6689265B2 (en) 1995-10-11 2004-02-10 Therasense, Inc. Electrochemical analyte sensors using thermostable soybean peroxidase
US5947921A (en) 1995-12-18 1999-09-07 Massachusetts Institute Of Technology Chemical and physical enhancers and ultrasound for transdermal drug delivery
WO1997024059A1 (en) 1995-12-28 1997-07-10 Cygnus, Inc. Continuous monitoring of physiological analyte
DE19602861C2 (en) 1996-01-28 1997-12-11 Meinhard Prof Dr Knoll Sampling system for contained in carrier liquids analytes and to methods for its preparation
US6009343A (en) 1996-02-23 1999-12-28 Abbott Laboratories Enhanced transdermal transport of fluid using vacuum
US5655539A (en) 1996-02-26 1997-08-12 Abbott Laboratories Method for conducting an ultrasound procedure using an ultrasound transmissive pad
US5656016A (en) 1996-03-18 1997-08-12 Abbott Laboratories Sonophoretic drug delivery system
US6375932B1 (en) * 1996-09-10 2002-04-23 Mitsubishi Chemical Corporation Hair cosmetic composition containing amine-oxide polymer
US6063039A (en) 1996-12-06 2000-05-16 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6558321B1 (en) 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US5961451A (en) 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
EP0975390B1 (en) 1997-04-14 2005-03-09 The University of Alabama at Birmingham Research Foundation Implantable triphasic waveform defibrillator
US6153211A (en) * 1997-07-18 2000-11-28 Infimed, Inc. Biodegradable macromers for the controlled release of biologically active substances
US5851438A (en) 1997-08-29 1998-12-22 E. I. Du Pont De Nemours And Company Thick film compositions for making medical electrodes
US6468229B1 (en) 1998-10-20 2002-10-22 Abbott Laboratories Apparatus and method for the collection of interstitial fluids
US8287483B2 (en) 1998-01-08 2012-10-16 Echo Therapeutics, Inc. Method and apparatus for enhancement of transdermal transport
US6038464A (en) 1998-02-09 2000-03-14 Axelgaard Manufacturing Co., Ltd. Medical electrode
DE19806642A1 (en) * 1998-02-18 1999-08-19 Huels Chemische Werke Ag Biosensor for specific binding assays, having organic hydrogel passivation layer
CA2265119C (en) 1998-03-13 2002-12-03 Cygnus, Inc. Biosensor, iontophoretic sampling system, and methods of use thereof
JP3507437B2 (en) 1998-05-13 2004-03-15 シグナス, インコーポレイテッド Collection assembly for the transdermal sampling system
DE69906992T2 (en) 1998-09-04 2004-02-05 Powderject Research Ltd. Second medical indication of a particle administration method
US20040171980A1 (en) 1998-12-18 2004-09-02 Sontra Medical, Inc. Method and apparatus for enhancement of transdermal transport
US6615078B1 (en) * 1999-04-22 2003-09-02 Cygnus, Inc. Methods and devices for removing interfering species
WO2000078992A3 (en) * 1999-06-18 2001-07-19 Therasense Inc Mass transport limited in vivo analyte sensor
DE19933611A1 (en) * 1999-07-17 2001-01-18 Aventis Res & Tech Gmbh & Co A process for preparing amines by homogeneously catalyzed reductive amination of carbonyl compounds
EP1225831A2 (en) * 2000-03-17 2002-07-31 Sontra Medical, Inc. Non-invasive body fluid sampling and analysis
DE10021139B4 (en) * 2000-04-29 2005-06-30 Basf Coatings Ag Multicomponent coating materials, adhesives and sealing compounds and their use
US6442413B1 (en) 2000-05-15 2002-08-27 James H. Silver Implantable sensor
US7181261B2 (en) 2000-05-15 2007-02-20 Silver James H Implantable, retrievable, thrombus minimizing sensors
US6459917B1 (en) * 2000-05-22 2002-10-01 Ashok Gowda Apparatus for access to interstitial fluid, blood, or blood plasma components
US6585765B1 (en) * 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US6394965B1 (en) * 2000-08-15 2002-05-28 Carbon Medical Technologies, Inc. Tissue marking using biocompatible microparticles
DE10047989A1 (en) * 2000-09-28 2002-04-18 Basf Coatings Ag And thermally curable with actinic radiation multicomponent coating materials, adhesives and sealing compounds and their use
US6487447B1 (en) 2000-10-17 2002-11-26 Ultra-Sonic Technologies, L.L.C. Method and apparatus for in-vivo transdermal and/or intradermal delivery of drugs by sonoporation
ES2331302T3 (en) * 2001-05-01 2009-12-29 A.V. Topchiev Institute Of Petrochemical Synthesis Hydrogel compositions.
US6875613B2 (en) * 2001-06-12 2005-04-05 Lifescan, Inc. Biological fluid constituent sampling and measurement devices and methods
US6837988B2 (en) 2001-06-12 2005-01-04 Lifescan, Inc. Biological fluid sampling and analyte measurement devices and methods
EP1456371A1 (en) * 2001-12-05 2004-09-15 Dow Global Technologies Inc Method for immobilizing a biologic in a polyurethane-hydrogel composition, a composition prepared from the method, and biomedical applications
US20030113934A1 (en) * 2001-12-17 2003-06-19 Sung-Yun Kwon Diagnostic sensing apparatus
US20050070688A1 (en) * 2003-09-26 2005-03-31 3M Innovative Properties Company Reactive hydrophilic oligomers
US7384984B2 (en) * 2003-12-10 2008-06-10 3M Innovative Properties Company Reactive hydrophilic oligomers
US7074839B2 (en) * 2004-03-01 2006-07-11 3M Innovative Properties Company Crosslinkable hydrophilic materials from reactive oligomers having pendent photoinitiator groups
US7342047B2 (en) * 2004-03-02 2008-03-11 3M Innovative Properties Company Crosslinkable hydrophilic materials from reactive oligomers having pendent unsaturated groups
US20060094945A1 (en) * 2004-10-28 2006-05-04 Sontra Medical Corporation System and method for analyte sampling and analysis
EP1832607B1 (en) * 2004-12-28 2015-07-01 Kaneka Corporation Crosslinked polymer particle and process for producing the same
US7335690B2 (en) * 2005-01-25 2008-02-26 3M Innovative Properties Company Crosslinkable hydrophilic materials from polymers having pendent Michael donor groups
US8609131B2 (en) * 2005-01-25 2013-12-17 3M Innovative Properties Company Absorbent dressing comprising hydrophilic polymer prepared via Michael reaction
EP1962673B1 (en) * 2005-12-16 2010-10-13 Bayer HealthCare, LLC Transdermal analyte sensor assembly and methods of using the same
DK2540225T3 (en) * 2007-05-30 2015-10-12 Bayer Healthcare Llc A process for producing a multilayer coating

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711606A (en) * 1970-09-02 1973-01-16 Crown Zellerbach Corp Enhancing tissue penetration of physiologically active steroidal agents with dmso
US3711602A (en) * 1970-10-30 1973-01-16 Crown Zellerbach Corp Compositions for topical application for enhancing tissue penetration of physiologically active agents with dmso
US4002221A (en) * 1972-09-19 1977-01-11 Gilbert Buchalter Method of transmitting ultrasonic impulses to surface using transducer coupling agent
US3828769A (en) * 1973-02-28 1974-08-13 H Mettler Method and apparatus for ultrasonic treatment of lower tissues simultaneous with heating of subcutaneous, outer muscle and lower tissues
US4020830A (en) * 1975-03-12 1977-05-03 The University Of Utah Selective chemical sensitive FET transducers
US4020830B1 (en) * 1975-03-12 1984-09-04
US4144646A (en) * 1975-12-05 1979-03-20 Lion Hamigaki Kabushiki Kaisha Torsional ultrasonic vibrators
US4309989A (en) * 1976-02-09 1982-01-12 The Curators Of The University Of Missouri Topical application of medication by ultrasound with coupling agent
US4280494A (en) * 1979-06-26 1981-07-28 Cosgrove Robert J Jun System for automatic feedback-controlled administration of drugs
US4249531A (en) * 1979-07-05 1981-02-10 Alza Corporation Bioerodible system for delivering drug manufactured from poly(carboxylic acid)
US4372296A (en) * 1980-11-26 1983-02-08 Fahim Mostafa S Treatment of acne and skin disorders and compositions therefor
US4457748A (en) * 1982-01-11 1984-07-03 Medtronic, Inc. Non-invasive diagnosis method
US4537776A (en) * 1983-06-21 1985-08-27 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing N-(2-hydroxyethyl) pyrrolidone
US4563184A (en) * 1983-10-17 1986-01-07 Bernard Korol Synthetic resin wound dressing and method of treatment using same
US4646725A (en) * 1983-11-16 1987-03-03 Manoutchehr Moasser Method for treating herpes lesions and other infectious skin conditions
US4732153A (en) * 1984-07-18 1988-03-22 Michael Phillips Transdermal dosimeter
US4595011A (en) * 1984-07-18 1986-06-17 Michael Phillips Transdermal dosimeter and method of use
US4657543A (en) * 1984-07-23 1987-04-14 Massachusetts Institute Of Technology Ultrasonically modulated polymeric devices for delivering compositions
US4834978A (en) * 1984-10-01 1989-05-30 Biotek, Inc. Method of transdermal drug delivery
US4683242A (en) * 1985-10-28 1987-07-28 A. H. Robins Company, Incorporated Transdermal treatment for pain and inflammation with 2-amino-3-aroylbenzeneacetic acids, salts and esters
US4981779A (en) * 1986-06-26 1991-01-01 Becton, Dickinson And Company Apparatus for monitoring glucose
US4948587A (en) * 1986-07-08 1990-08-14 Massachusetts Institute Of Technology Ultrasound enhancement of transbuccal drug delivery
US4767402A (en) * 1986-07-08 1988-08-30 Massachusetts Institute Of Technology Ultrasound enhancement of transdermal drug delivery
US4855298A (en) * 1986-11-21 1989-08-08 Tanabe Seiyaku Co., Ltd. 6-Halo-1,2,3,4-tetrahydroquinazoline-4-spiro-4-imidazolidine-2,2'5'-triones useful for the treatment and prophylaxis of diabetic complications
US4821740A (en) * 1986-11-26 1989-04-18 Shunro Tachibana Endermic application kits for external medicines
US5007438A (en) * 1986-11-26 1991-04-16 Shunro Tachibana Endermic application kits for external medicines
US5001051A (en) * 1986-12-12 1991-03-19 Regents Of The University Of California Dose critical in-vivo detection of anti-cancer drug levels in blood
US5006342A (en) * 1986-12-22 1991-04-09 Cygnus Corporation Resilient transdermal drug delivery device
US4860058A (en) * 1987-02-02 1989-08-22 Seiko Epson Corporation Image forming apparatus
US4821733A (en) * 1987-08-18 1989-04-18 Dermal Systems International Transdermal detection system
US4820720A (en) * 1987-08-24 1989-04-11 Alza Corporation Transdermal drug composition with dual permeation enhancers
US4805623A (en) * 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US5082786A (en) * 1987-11-26 1992-01-21 Nec Corporation Glucose sensor with gel-immobilized glucose oxidase and gluconolactonase
US5019034B1 (en) * 1988-01-21 1995-08-15 Massachusetts Inst Technology Control of transport of molecules across tissue using electroporation
US5019034A (en) * 1988-01-21 1991-05-28 Massachusetts Institute Of Technology Control of transport of molecules across tissue using electroporation
US5279543A (en) * 1988-01-29 1994-01-18 The Regents Of The University Of California Device for iontophoretic non-invasive sampling or delivery of substances
US5730714A (en) * 1988-01-29 1998-03-24 The Regents Of The University Of California Method for the iontophoretic non-invasive determination of the in vivo concentration level of glucose
US5078144A (en) * 1988-08-19 1992-01-07 Olympus Optical Co. Ltd. System for applying ultrasonic waves and a treatment instrument to a body part
US5134057A (en) * 1988-10-10 1992-07-28 501 Ppg Biomedical Systems, Inc. Method of providing a substrate with a layer comprising a polyvinyl based hydrogel and a biochemically active material
US5086229A (en) * 1989-01-19 1992-02-04 Futrex, Inc. Non-invasive measurement of blood glucose
US4933062A (en) * 1989-03-07 1990-06-12 University Of Connecticut Modified composite electrodes with renewable surface for electrochemical applications and method of making same
US5118404A (en) * 1989-04-28 1992-06-02 Nec Corporation Enzyme electrode and a method of determining concentration of an analyte in a sample solution
US5139023A (en) * 1989-06-02 1992-08-18 Theratech Inc. Apparatus and method for noninvasive blood glucose monitoring
US5120544A (en) * 1989-06-19 1992-06-09 Henley International, Inc. Crosslinked hydrogel and method for making same
US4986271A (en) * 1989-07-19 1991-01-22 The University Of New Mexico Vivo refillable glucose sensor
US5016615A (en) * 1990-02-20 1991-05-21 Riverside Research Institute Local application of medication with ultrasound
US5323769A (en) * 1990-02-23 1994-06-28 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
US5115805A (en) * 1990-02-23 1992-05-26 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
US5636632A (en) * 1990-02-23 1997-06-10 Cygnus, Inc. Ultrasound-enhanced sampling of materials through the skin
US5119819A (en) * 1990-05-02 1992-06-09 Miles Inc. Method and apparatus for non-invasive monitoring of blood glucose
US5282785A (en) * 1990-06-15 1994-02-01 Cortrak Medical, Inc. Drug delivery apparatus and method
US5286254A (en) * 1990-06-15 1994-02-15 Cortrak Medical, Inc. Drug delivery apparatus and method
US5197946A (en) * 1990-06-27 1993-03-30 Shunro Tachibana Injection instrument with ultrasonic oscillating element
US5330756A (en) * 1990-10-18 1994-07-19 Steuart Gary M Polyphase fluid extraction process, resulting products and methods of use
US5215887A (en) * 1990-11-30 1993-06-01 Nec Corporation Glucose sensor measurement
US5135753A (en) * 1991-03-12 1992-08-04 Pharmetrix Corporation Method and therapeutic system for smoking cessation
US5315998A (en) * 1991-03-22 1994-05-31 Katsuro Tachibana Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same
US5401237A (en) * 1991-06-28 1995-03-28 Shunro Tachibana Blood processing for treating blood disease
US5215520A (en) * 1991-09-17 1993-06-01 Centre Internationale De Recherches Dermatologiques Galderma (C.I.R.D. Galderma) Method for delivering an active substance topically or percutaneously
US5405366A (en) * 1991-11-12 1995-04-11 Nepera, Inc. Adhesive hydrogels having extended use lives and process for the preparation of same
US5230334A (en) * 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
US5405614A (en) * 1992-04-08 1995-04-11 International Medical Associates, Inc. Electronic transdermal drug delivery system
US5534496A (en) * 1992-07-07 1996-07-09 University Of Southern California Methods and compositions to enhance epithelial drug transport
US5421816A (en) * 1992-10-14 1995-06-06 Endodermic Medical Technologies Company Ultrasonic transdermal drug delivery system
US5617851A (en) * 1992-10-14 1997-04-08 Endodermic Medical Technologies Company Ultrasonic transdermal system for withdrawing fluid from an organism and determining the concentration of a substance in the fluid
US5386837A (en) * 1993-02-01 1995-02-07 Mmtc, Inc. Method for enhancing delivery of chemotherapy employing high-frequency force fields
US5413550A (en) * 1993-07-21 1995-05-09 Pti, Inc. Ultrasound therapy system with automatic dose control
US5538503A (en) * 1993-09-15 1996-07-23 Henley; Julian L. Programmable apparatus for reducing substance dependency in transdermal drug delivery
US5415629A (en) * 1993-09-15 1995-05-16 Henley; Julian L. Programmable apparatus for the transdermal delivery of drugs and method
US5746217A (en) * 1993-10-13 1998-05-05 Integ Incorporated Interstitial fluid collection and constituent measurement
US6018678A (en) * 1993-11-15 2000-01-25 Massachusetts Institute Of Technology Transdermal protein delivery or measurement using low-frequency sonophoresis
US5722397A (en) * 1993-11-15 1998-03-03 Altea Technologies, Inc. Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5771890A (en) * 1994-06-24 1998-06-30 Cygnus, Inc. Device and method for sampling of substances using alternating polarity
US5429735A (en) * 1994-06-27 1995-07-04 Miles Inc. Method of making and amperometric electrodes
US5626554A (en) * 1995-02-21 1997-05-06 Exogen, Inc. Gel containment structure
US5646221A (en) * 1995-03-31 1997-07-08 Kowa Co., Ltd. Adhesive base material
US5906830A (en) * 1995-09-08 1999-05-25 Cygnus, Inc. Supersaturated transdermal drug delivery systems, and methods for manufacturing the same
US5735273A (en) * 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
US5902603A (en) * 1995-09-14 1999-05-11 Cygnus, Inc. Polyurethane hydrogel drug reservoirs for use in transdermal drug delivery systems, and associated methods of manufacture and use
US5618275A (en) * 1995-10-27 1997-04-08 Sonex International Corporation Ultrasonic method and apparatus for cosmetic and dermatological applications
US6212416B1 (en) * 1995-11-22 2001-04-03 Good Samaritan Hospital And Medical Center Device for monitoring changes in analyte concentration
US6041253A (en) * 1995-12-18 2000-03-21 Massachusetts Institute Of Technology Effect of electric field and ultrasound for transdermal drug delivery
US6234990B1 (en) * 1996-06-28 2001-05-22 Sontra Medical, Inc. Ultrasound enhancement of transdermal transport
US20030027240A1 (en) * 1996-11-06 2003-02-06 University Of Pittsburgh Intelligent polymerized crystalline colloidal array carbohydrate sensors
US6503198B1 (en) * 1997-09-11 2003-01-07 Jack L. Aronowtiz Noninvasive transdermal systems for detecting an analyte obtained from or underneath skin and methods
US6673596B1 (en) * 1997-11-25 2004-01-06 Ut-Battelle, Llc In vivo biosensor apparatus and method of use
US20030100040A1 (en) * 1997-12-05 2003-05-29 Therasense Inc. Blood analyte monitoring through subcutaneous measurement
US20030100846A1 (en) * 1998-01-08 2003-05-29 Linda Custer System, method, and device for non-invasive body fluid sampling and analysis
US6190315B1 (en) * 1998-01-08 2001-02-20 Sontra Medical, Inc. Sonophoretic enhanced transdermal transport
US20060015058A1 (en) * 1998-01-08 2006-01-19 Kellogg Scott C Agents and methods for enhancement of transdermal transport
US6595919B2 (en) * 1998-05-13 2003-07-22 Cygnus, Inc. Device for signal processing for measurement of physiological analytes
US6535753B1 (en) * 1998-08-20 2003-03-18 Microsense International, Llc Micro-invasive method for painless detection of analytes in extra-cellular space
US6223471B1 (en) * 1998-12-31 2001-05-01 Jerry Keith Barber Sliding door with wheel repair kit
US6251083B1 (en) * 1999-09-07 2001-06-26 Amira Medical Interstitial fluid methods and devices for determination of an analyte in the body
US6540675B2 (en) * 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
US6766817B2 (en) * 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US20040039418A1 (en) * 2002-04-17 2004-02-26 Elstrom Tuan A. Preparation for transmission and reception of electrical signals
US6887239B2 (en) * 2002-04-17 2005-05-03 Sontra Medical Inc. Preparation for transmission and reception of electrical signals
US20040087671A1 (en) * 2002-08-19 2004-05-06 Tamada Janet A. Compositions and methods for enhancement of transdermal analyte flux
US20050027180A1 (en) * 2003-08-01 2005-02-03 Goode Paul V. System and methods for processing analyte sensor data

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666149B2 (en) 1997-12-04 2010-02-23 Peliken Technologies, Inc. Cassette of lancet cartridges for sampling blood
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9802007B2 (en) 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8343075B2 (en) 2001-06-12 2013-01-01 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7841992B2 (en) 2001-06-12 2010-11-30 Pelikan Technologies, Inc. Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7850622B2 (en) 2001-06-12 2010-12-14 Pelikan Technologies, Inc. Tissue penetration device
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8162853B2 (en) 2001-06-12 2012-04-24 Pelikan Technologies, Inc. Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7988644B2 (en) 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7874994B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7862520B2 (en) 2002-04-19 2011-01-04 Pelikan Technologies, Inc. Body fluid sampling module with a continuous compression tissue interface surface
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7833171B2 (en) 2002-04-19 2010-11-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337420B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7731729B2 (en) 2002-04-19 2010-06-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US10034628B2 (en) 2003-06-11 2018-07-31 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9549697B2 (en) * 2004-10-28 2017-01-24 Ascensia Diabetes Care Holdings Ag Hydrogel composition
US20080311670A1 (en) * 2004-10-28 2008-12-18 Boru Zhu Hydrogel Composition
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8390455B2 (en) 2005-02-08 2013-03-05 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8223021B2 (en) 2005-02-08 2012-07-17 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8358210B2 (en) 2005-02-08 2013-01-22 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8542122B2 (en) 2005-02-08 2013-09-24 Abbott Diabetes Care Inc. Glucose measurement device and methods using RFID
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US7996077B2 (en) * 2006-09-06 2011-08-09 Encore Medical Asset Corporation Iontophoresis apparatus and method
US8214030B2 (en) 2006-09-06 2012-07-03 Encore Medical Asset Corporation Iontophoresis apparatus and method
US20080058699A1 (en) * 2006-09-06 2008-03-06 Iomed, Inc. Iontophoresis apparatus and method
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
WO2008109739A1 (en) * 2007-03-07 2008-09-12 Echo Therapeutics, Inc. Transdermal analyte monitoring systems and methods for analyte detection
US8812071B2 (en) 2007-03-07 2014-08-19 Echo Therapeutics, Inc. Transdermal analyte monitoring systems and methods for analyte detection
US20080281178A1 (en) * 2007-03-07 2008-11-13 Echo Therapeutics, Inc. Transdermal analyte monitoring systems and methods for analyte detection
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US8747316B2 (en) 2008-07-31 2014-06-10 Sysmex Corporation In vivo component measurement method, data processing method for in vivo component measurement, in vivo component measurement apparatus and collection member
US9682169B2 (en) 2008-09-04 2017-06-20 Massachusetts Institute Of Technology Hydrogels for vocal cord and soft tissue augmentation and repair
US20100055184A1 (en) * 2008-09-04 2010-03-04 Zeitels Steven M Hydrogels for vocal cord and soft tissue augmentation and repair
US9216188B2 (en) 2008-09-04 2015-12-22 The General Hospital Corporation Hydrogels for vocal cord and soft tissue augmentation and repair
WO2010082820A3 (en) * 2009-01-13 2010-12-02 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno A non-invasive chemical sensor, a skin patch, a packaging material and a monitoring system using the same
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9198568B2 (en) 2010-03-04 2015-12-01 The General Hospital Corporation Methods and systems of matching voice deficits with a tunable mucosal implant to restore and enhance individualized human sound and voice production
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
EP2578164A1 (en) * 2011-10-04 2013-04-10 Canon Kabushiki Kaisha Acoustic wave acquiring apparatus

Also Published As

Publication number Publication date Type
JP5815652B2 (en) 2015-11-17 grant
US20170145203A1 (en) 2017-05-25 application
US8224414B2 (en) 2012-07-17 grant
US20060094946A1 (en) 2006-05-04 application
US20160376431A1 (en) 2016-12-29 application
US20080311670A1 (en) 2008-12-18 application
JP2014057885A (en) 2014-04-03 application
US9549697B2 (en) 2017-01-24 grant
US20060094945A1 (en) 2006-05-04 application

Similar Documents

Publication Publication Date Title
US6653091B1 (en) Method and device for predicting physiological values
EP1078258B1 (en) Device for predicting physiological values
US6438414B1 (en) Collection assemblies, laminates, and autosensor assemblies for use in transdermal sampling systems
US6180416B1 (en) Method and device for predicting physiological values
US20070027383A1 (en) Patches, systems, and methods for non-invasive glucose measurement
US7361307B2 (en) Biological fluid constituent sampling and measurement devices
US6233471B1 (en) Signal processing for measurement of physiological analysis
US6553244B2 (en) Analyte monitoring device alarm augmentation system
US7153265B2 (en) Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance
US6398562B1 (en) Device and methods for the application of mechanical force to a gel/sensor assembly
US8216138B1 (en) Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US20080312518A1 (en) On-demand analyte monitor and method of use
US20050176084A1 (en) Non-or minimally invasive monitoring methods
US20050069925A1 (en) Microprocessors, devices, and methods for use in monitoring of physiological analytes
US20030113827A1 (en) Non-or minimally invasive monitoring methods
US6902905B2 (en) Glucose measuring assembly with a hydrogel
US20100025238A1 (en) Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
US7018568B2 (en) Highly catalytic screen-printing ink
US20080275468A1 (en) Skin permeation device for analyte sensing or transdermal drug delivery
Abel et al. Biosensors for in vivo glucose measurement: can we cross the experimental stage
US20100030045A1 (en) Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
US7228162B2 (en) Analyte sensor
Nichols et al. Biocompatible materials for continuous glucose monitoring devices
US6999810B2 (en) Biosensor and methods of use thereof
US20040138543A1 (en) Assembly of single use sensing elements