WO1997024571A1 - Four a flux gazeux - Google Patents

Four a flux gazeux Download PDF

Info

Publication number
WO1997024571A1
WO1997024571A1 PCT/JP1996/003887 JP9603887W WO9724571A1 WO 1997024571 A1 WO1997024571 A1 WO 1997024571A1 JP 9603887 W JP9603887 W JP 9603887W WO 9724571 A1 WO9724571 A1 WO 9724571A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
heat
airflow
flow
circulating
Prior art date
Application number
PCT/JP1996/003887
Other languages
English (en)
French (fr)
Inventor
Mamoru Matsuo
Original Assignee
Nippon Furnace Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Kogyo Kabushiki Kaisha filed Critical Nippon Furnace Kogyo Kabushiki Kaisha
Priority to EP96943346A priority Critical patent/EP0871004A1/en
Priority to KR1019980704523A priority patent/KR100293836B1/ko
Priority to US09/091,700 priority patent/US6109914A/en
Publication of WO1997024571A1 publication Critical patent/WO1997024571A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/10Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by hot air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3044Furnace regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • F27B9/3011Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases arrangements for circulating gases transversally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • F27D2003/124Sleds; Transport supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/007Systems for reclaiming waste heat including regenerators

Definitions

  • the present invention relates to a gas flow furnace. More specifically, in the present invention, the circulating airflow is once taken out of the furnace, then accelerated back into the furnace again, and the circulating airflow of a volume much larger than the supplied airflow (in this specification, This is called a strong circulation flow).
  • An extra-furnace circulation path 106 composed of 105 is provided.> A part of the combustion exhaust gas is taken out from the exhaust chamber 103 and returned to the combustion chamber 102 again to form a circulating airflow. I have.
  • the airflow heated by the flame in the combustion chamber 102 passes through the furnace 107 in the direction perpendicular to the direction of transport of the object to be heated, and flows out to the exhaust chamber 103.
  • the heated object W is heated at the same time, a part of the circulating airflow introduced into the exhaust chamber 103 is exhausted, and the rest is introduced into the duct (circulation circuit) 105 for forced circulation. Is being done.
  • a combustion chamber 102 and an exhaust chamber 103 are provided on both side walls of the furnace body 101, and are provided so that a circulating air flow traversing the furnace is formed in each zone.
  • An exhaust port 110 is provided in the zone 107a adjacent to the workpiece entrance 1108, and the heat generated by the airflow generated in each zone 107a,. Exhaust gas from one place It is provided as follows.
  • the energy required to generate a strong circulation flow is determined by the flow S and the pressure of the airflow. Therefore, there is a limit to the strong circulation that can be obtained with a conventional gas-flow furnace that forcibly circulates hot air. That is, the pressure is proportional to the square of the flow velocity, so to increase the flow velocity, the pressure must be increased in proportion to the square of the flow velocity.
  • the power of the circulation fan 106 increases extremely, so the discharge pressure cannot be reduced to S and the circulation amount is limited. That is, it is difficult to form a large strong circulation flow.
  • heat resistance and cooling of the fan shaft are required, and there are many problems.
  • the bottom of the furnace is set on the work inlet port 108 side to minimize the exhaust temperature.
  • the combustion gas generated due to the heat of the crucible in each zone 107 a,..., 107 e is collected at the bottom of the furnace and discharged from the exhaust port 110. Therefore, the temperature inside the zone is affected by the zone on the upstream side in the flow of the combustion gas (upper right in Fig. 12), and the independence of the furnace temperature cannot be maintained.
  • the furnace temperature is higher at the exit port 109 side of the heated object W and lower at the entrance port 108 side, and the temperature of the zone 107 a of the heated object entrance port 108 requiring heat is also to be increased. Can not.
  • the flow direction of the air current is constant, uniform heating is not possible on the left and right sides of the object to be heated W (front and back sides in the air flow direction).
  • the heat transfer between the upstream side and the downstream side in the transport direction of the heated object due to the transfer of heat by the irradiation of the heated object staying in the zone in contact with K
  • K there is a difference.
  • the same object to be heated or the object to be mounted on the same tray receives radiant heat from the object to be heated at a higher temperature on the upstream side, but draws heat to the object to be cooled at a lower temperature on the downstream side. Temperature difference. This made uniform heating difficult.
  • An object of the present invention is to provide an airflow furnace having high heat transfer performance. Another object of the present invention is to provide an airflow furnace that can ensure a high temperature and a large amount of circulating flow with low power. Further, another object of the present invention is to provide an airflow furnace capable of forming an airflow having a uniform temperature in the entire furnace.
  • an airflow furnace of the present invention includes a heating chamber provided with a heat source that is disposed on each side wall of the furnace and heats a circulating airflow before being injected into the furnace. And a circulation path outside the furnace for taking out the circulating airflow inside the furnace outside the furnace and returning it to the furnace again.
  • the extra-furnace circulation system is provided with a heating element provided near the circulating air outlet of the heating chamber, and one of the circulating fan and the circulating fan on the suction side and the discharge port side.
  • a flow path switching device that selectively connects alternately to one of the heat storage elements to switch the flow direction of the airflow with respect to the heat storage elements.
  • Heat removal for changing the gas property of the circulating air flow in a section between the two heat storage elements Or a heat removal means for dilution is formed in the furnace by periodically switching the flow path switching device.
  • a part of the airflow that has passed through the furnace and has been used to heat the object to be heated is drawn out to the circulation path outside the furnace by the negative pressure generated by the circulation fan, and is circulated. After being boosted in pressure, it is injected again into the furnace at high speed.
  • the circulating airflow is cooled to a low temperature by the sensible heat being taken by the regenerator on the suction side of the external circulation circuit. Then, the circulating airflow, which has become the low-temperature state 6, is pressurized by the circulating fan, passes through the regenerator on the opposite side, is heated again by direct heat exchange there, and is injected into the furnace. Therefore, a high-temperature strong circulation can be formed in the furnace using the low-temperature circulation fan.
  • the size of the circulation fan can be increased (capacity can be increased), and the discharge flow rate can be increased to generate a strong circulation flow. I do.
  • the higher the flow rate of the air flow the greater the heat transfer rate, and the faster the heat treatment. Therefore, a firing temperature of 1 ooot or more was required in the past. For example, even a small object can be heated uniformly.
  • the circulating airflow flows at a high flow velocity, so that the amount of circulation can be significantly increased over a wide area of the heated air by the momentum. And heat transfer can be achieved.
  • increasing the circulating air flow and increasing the temperature increase the amount of convective heat transfer, so that the furnace can be made more compact or the heat treatment time can be shortened.
  • the gas flow furnace of the present invention since the direction of the gas flow is periodically reversed, the temperature difference inside the furnace is reduced by uniformizing the furnace temperature, and the heat stress on the furnace structure is reduced. And the object to be heated can be uniformly heated. In addition, since the direction of the high-temperature strong circulation flow is periodically reversed, the temperature distribution in the furnace can be made more uniform, and uneven heating of the object to be heated can be reduced.
  • the gas properties of the circulating air flow are changed by heat removal or dilution by the heat removal means, thereby preventing the equilibrium temperature from rising.
  • the equilibrium temperature and the return temperature due to the heat removal of the circulating air flow are expressed by the following equation (1).
  • Airflow equilibrium temperature tc of the circulating fan suction port is governed by the temperature efficiency of the regenerator and heat extraction temperature Sa ⁇ t of the circulating air flow, for example, when outlet temperature t h of ⁇ airflow in 1 0 0 0 The relationship is shown in FIG.
  • the equilibrium temperature and return port temperature due to dilution of the circulating airflow are expressed by the following equation (2).
  • the airflow equilibrium temperature te at the circulating fan inlet is governed by the amount of diluted air in the circulating airflow ⁇ G and the temperature efficiency of the 31 heating elements.
  • the equilibrium temperature is obtained by changing the gas properties by removing heat or diluting the appropriate S in the extra-furnace circulation circuit. Can be prevented from rising.
  • the above-mentioned heat removal means is not particularly limited to the installation site, as long as it is between the two heat storage units provided at the circulation air outflow and entrance of the heating chamber of the extra-furnace circulation system, respectively. It is preferably arranged between the path switching device and the suction side of the circulation fan.
  • the heat removal means includes, for example, a means for injecting a small amount of diluting gas such as air and exhaust gas into the circulating airflow, and a means for using a heat exchanger, a material preheating section of a heating device as the heat removal means, and the like.
  • the heat insulation effect of the flow path between the two heat storage bodies is reduced, for example, by making the heat insulation material thinner or using a heat insulation material with poor heat insulation.
  • a heat source in the airflow furnace of the present invention various kinds of heat sources such as a burner, a radiant tube burner, and an air heater can be used.
  • a burner is provided, particularly a heat storage body.
  • a regenerative parner system that alternately burns a pair of parners with two units that supply combustion air or exhaust the circulating airflow.
  • a part of the circulating gas after being used to heat the object to be heated is discharged.
  • the sensible heat is recovered by the heat storage body, it is used again for preheating the combustion air with extremely high thermal efficiency. Since the heat is returned into the furnace, even if the temperature of the circulating airflow is increased, the heat can be recovered and discharged to a low temperature that does not adversely affect the surrounding environment, and high heat efficiency can be maintained.
  • the airflow furnace of the present invention is a continuous airflow furnace divided into a plurality of zones in a direction in which an object to be heated is conveyed, wherein the heating chamber and the external circulation system are arranged for each zone. Then, the flow direction of the airflow is periodically reversed. 3 ⁇ 4 A strong thermal circulation flow is formed for each zone. In this case, heat is circulated by the independent formation of a circulating airflow for each zone, so that the airflow temperature in other zones is not affected.
  • the radiant heat from the object to be heated on the tray ahead of it and the radiant heat to the object to be heated on the rear tray are shut off. It is preferable to provide a partition plate.
  • the partition plate of the tray prevents heat transfer due to radiation between the objects to be heated in the zone in K-contact and maintains the independence of the zone. Therefore, it is possible to prevent the temperature difference between the front heated object and the rear heated object before and after the heated object or on the same tray, and to set the airflow temperature for each zone. Become.
  • FIG. 1 is a principle diagram showing one embodiment of an airflow furnace of the present invention.
  • Fig. 2 shows another embodiment of the gas stove of the present invention! !
  • FIG. 3 is a principle view showing still another embodiment of the gas flow furnace of the present invention.
  • Fig. 4 is a diagram showing the vertical cross-sectional structure of the airflow furnace of Fig. 3.
  • (A) shows a type with a partition door
  • (B) shows a type with a partition plate.
  • Figure 5 is a graph showing the relationship between the airflow equilibrium temperature at the circulation fan inlet and the difference in the degree of heat removal of the circulation airflow in relation to the temperature efficiency of the heating element.
  • Fig. 1 is a principle diagram showing one embodiment of an airflow furnace of the present invention.
  • Fig. 2 shows another embodiment of the gas stove of the present invention! !
  • FIG. 3 is a principle view showing still another embodiment of the gas flow furnace of the present invention.
  • Fig. 4 is a diagram showing the vertical cross-section
  • FIG. 6 is a graph showing the relationship between the airflow equilibrium temperature at the circulation fan inlet and the dilution air rate in relation to the temperature efficiency of the S heating element.
  • FIG. 7 is a principle diagram showing an embodiment in which the present invention is applied to a continuous flow furnace.
  • Fig. 8 is a perspective view showing an example of a tray used in a continuous airflow furnace.
  • Fig. 9 is a diagram of the temperature distribution inside the furnace using the rapid airflow furnace of Fig. 7.
  • 0 10 is an Iuchi temperature distribution diagram of the conventional continuous airflow furnace of FIG.
  • FIG. 11 is a principle view showing an example of a conventional gas flow furnace.
  • FIG. 12 is a principle diagram showing an example of a conventional rapid airflow furnace.
  • FIG. 1 shows an embodiment in which the present invention is applied to a batch type gas stove.
  • This air-flow furnace includes a furnace 1 and heating chambers 2, 2 connected to both side walls of the furnace 1, and a parner 3 as a heat source for heating and heating the circulating air stream 30 in the heating chamber 2.
  • A, 3B and the heated high-temperature airflow pass through the furnace 18 and are taken out to the heating chamber 2 on the opposite side. It is mainly composed of a circulation path 4 outside the furnace for reflux into the heating chamber 2.
  • a hot-air burner system composed of a pair of burners 3A and 3B that burn alternately is adopted.
  • the out-of-furnace circulation system 4 is provided so that the flow direction of the air flow is periodically reversed in accordance with the switching of the heat source parners 3A and 3B. ing.
  • the circulating air flow inlets and outlets 9 A, 9 B of the extra-furnace circulation system 4 are arranged above the heating chamber 2.
  • the circulating air flow injected from the circulation path 4 outside the furnace is heated to a predetermined temperature in the heating chamber 2 and then blown out into the furnace 18.
  • the circulating airflow 30 passes through the combustion chambers 2 and 2 on both sides and the external circulation path 4 to form a high-temperature strong circulation flow 10 passing through Inai 18 in a direction orthogonal to the conveying direction of the object to be heated W. I do.
  • the thermal type panner system includes a pair of parners 3 A and 3 B having heat storage bodies 11 A and 11 B, respectively, which are connected to an air supply system 13 or an exhaust system 14 via flow path switching means 12.
  • the combustion gas used for heating the object to be heated W is exhausted from the stopped one while burning one of the pair of parners 3A and 3B while the other is burning. This is how it works.
  • Each of the wrench 3 A, 3 B is installed on the top of each heating chamber 2 installed on both side walls of the furnace 1, for example, and operates alternately.
  • Reference numeral 16 in the figure denotes a fuel nozzle.
  • the heating elements 11 A and 11 B are housed in a Pana body or a casing separate from the Pana body and incorporated in the Pana 3 A and 3 B.
  • the heat storage bodies 11 A and 11 B exchange heat with the passing exhaust gas to recover exhaust heat and preheat combustion air with the recovered heat.
  • the heat storage bodies 11 A and 11 B of each of the parners 3 A and 3 B are connected to two of the four ports of the four-way valve 12 through ducts 15 and 15 (communicated with each other).
  • the two ports of the four-way valve 12 are connected to the air supply system 13 and the exhaust system 14 respectively. Has been done.
  • each of the burners 3 ⁇ , 3 ⁇ and the heat-receiving body 11A, 11B are provided with one of the burners and the heating body in the air supply system 13 and the other burner is in the exhaust system 14. They are connected, and the connection relationship is switched by switching the four-way valve 12.
  • the circulation path 4 outside the furnace is close to the circulation outlets 9 and 9 of each heating chamber 2 and 2.
  • the heat storage elements 5 A and 5 B and the circulation fan 6, which are installed in the respective parts, and the suction port and the discharge port side of the circulation fan 6 are selected as one of the heat elements 5 A and 5 B, respectively.
  • a flow path switching device 7 that switches the direction of the air flow with respect to the heating elements 5A and 5B by alternately connecting them, and a heat extraction device that performs heat extraction or dilution for changing the gas properties of the air flow It consists of a stage 8 and a duct 32 connecting them, and the periodic switching of the flow path switching device 7 alternately extracts and resupplies part of the combustion gas through the heat storage elements 5A and 5B.
  • Ffi A strong strong circulation flow 10 that periodically reverses the flow direction of the air flow is formed in the furnace 18.
  • the heat storage bodies 11 A and 11 B used in the heat source parners 3 A and 3 B and the heat storage bodies 5 A and 5 B arranged in the extra-furnace circulation system 4 also have relatively high pressure. It is preferable to use a highly durable structure and material having a large heat capacity S for a low loss, for example, a honeycomb-shaped ceramic droplet having many cell holes. For example, heat exchange between high-temperature fluid such as exhaust gas and around 1 OOOt. 2O such as combustion air; low-temperature fluid before and after is carried out by extrusion molding of ceramic materials such as cordier toe light. It is preferable to use a honeycomb-shaped one manufactured as above.
  • the honeycomb-shaped regenerator is made of ceramics other than cordierite and mullite, such as materials other than alumina and ceramics, such as metals such as heat-resistant copper, or composites of ceramics and metals, such as ceramics having a porous skeleton.
  • Al 2 O one A 1 complex that completely fills pores by spontaneously penetrating molten gold into the pores and oxidizing or nitriding some of the metal to form ceramics, S i C-A 1 2 0 3 — A 1 It may be manufactured using a composite or the like.
  • the honeycomb shape means originally hexagonal cells (holes), but the present specification includes not only original hexagons but also countless square or triangular cells.
  • a honeycomb-shaped S heat body may be obtained by bundling tubes or the like without forming them integrally.
  • the shape of the heat storage bodies 5A, 5B, 11A.11B is not particularly limited to the honeycomb shape.> A flat or corrugated heat storage material is radially arranged in a rectangular casing. Alternatively, a pipe-shaped heat storage material may be filled in a ⁇ ⁇ ⁇ ⁇ ⁇ -shaped casing so that the fluid passes in the axial direction.
  • a ⁇ -shaped casing is formed, which is divided into two chambers in the circumferential direction by a wall and allows fluid to pass in the axial direction, and spherical, short pipes, short rods, and strips are provided in each of these chambers.
  • Nugget> mesh It may be constituted by filling a mass of heat storage material.
  • a dilution air injection port 8 a as a heat removal means 8 is provided between the suction side of the circulation fan 6 and the flow path switching device 7. Normal-temperature air is injected from the dilution air injection port 8a so that heat extraction corresponding to the temperature efficiency of the heat storage bodies 5A and 5B can be performed. In this case> The thermal efficiency of the whole equipment is further improved.
  • the amount of heat removed by injecting air at room temperature is expressed by Eq.
  • the airflow equilibrium temperature tc at the circulating fan inlet is governed by the amount of dilution air G to the circulating airflow and the temperature efficiency of the heat storage material. For example, if the circulating airflow outlet temperature th is 100 and the atmospheric temperature is 200 In the case of "C, the relationship is as shown in Fig. 6. Therefore, in order to prevent the equilibrium temperature from rising, the gas properties were changed in the extra-circulatory circulation system 4 by appropriate dilution. Normally, when the thermal efficiencies of the heat storage elements 5A and 5B are about 80 to 90%, the dilution rate is set in the range of 0.1 to 0.25.
  • high-temperature strong circulation in the furnace can be realized as follows.
  • a set of regenerative parners 3 A and 3 B constituting a heat source are alternately fired to form a flame 17 in the heating chamber 2, thereby heating the circulating airflow 30 toward the furnace.
  • the four-way valve 12 is switched so that the Pana 3 A side is connected to the combustion air supply system 13, and one of the fuel control valves 31 A is opened. Close the other fuel control valve 3 1 B.
  • the supplied combustion air is preheated to a high temperature close to the exhaust gas temperature, for example, 800 to 1000, while passing through the fog heat body 11A, and then is burned in each burner throat.
  • the fuel flows into the fuel nozzles 16 and is mixed with fuel injected from the fuel nozzle 16 and burns.
  • the Pana 3A and the Pana 3B operate alternately at predetermined time intervals in synchronization with the flow path switching device B7 of the circulating airflow 30 to repeat the alternate combustion using very hot combustion air. Then, heat the circulating airflow 30 that is consumed by heating.
  • the circulating airflow 30 flowing out of the furnace 18 into the heating chamber 2 is drawn to the extra-furnace circulation system 4 by the negative pressure generated by the circulation fan 6, and the pressure is increased by the circulation fan 6. After that, it is injected again from the heating chamber 2 into the furnace 18 at high speed, and a high-temperature strong circulation flow 10 is formed in the furnace 18.
  • the circulating airflow 30 passes through the regenerator 5B at the circulating air outlet 9B of the extra-furnace circulation system 4, and the sensible heat is discarded to the regenerator 5B to be cooled. Further, the temperature is lowered by the heat removal means 8.
  • the circulation airflow 30 is heated again by direct heat exchange in the heating element 5A (or 5B). Therefore, the high-temperature circulating airflow 30 around 100 or more is cooled to 20 or less when flowing through the circulation path 4 outside the furnace, and is returned to the furnace 18 again. At times, the temperature is returned to the high temperature state described above.
  • the high-temperature and high-speed strong circulation flow 10 can significantly increase the amount of airflow circulation in a wide area of the heating space.
  • the flow rate of the gas flowing in the furnace 18 is the sum of the injected air and fuel S plus the gas fi of the circulating air flow 0.
  • the gas flow in the furnace becomes intense, which promotes gas mixing in the furnace and increases the amount of convective heat transfer, resulting in a temperature difference in the furnace. Temperature difference) is eliminated, and the temperature distribution is made uniform.
  • the heat transfer S increases due to an increase in the heat capacity of the combustion gas.
  • the speed of the air flow governs the heat transfer, so the addition of the circulating air flow S significantly improves the heat transfer efficiency.
  • the temperature of the gas flow in the furnace is made more uniform, and uneven heating is eliminated.
  • the maximum temperature inside the furnace (the temperature inside the furnace is the ambient temperature formed by the airflow temperature and the wall temperature of the furnace) decreases in inverse proportion to the gas circulation rate. The temperature hardly decreases, and the inside of the furnace * The high temperature approaches the average temperature inside the furnace, and the temperature distribution inside the furnace averages out.
  • the temperature rise due to combustion due to the heat of the circulating airflow 30 can be suppressed as small as 300 to 50, and the amount of combustion can be reduced.
  • the above embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and can be variously modified without departing from the gist of the present invention.
  • an embodiment 86 in which a heat storage type panner system in which two pairs of heat storage bodies 11 A and 11 B are used to alternately burn a pair of panners 3 A and 3 B are used as a heat source is adopted.
  • the present invention is not particularly limited to this.
  • an electric heater, a radiant-tube burner, an acid-burning burner, or another burner can be used as the heat.
  • a heat source that cannot be switched in a short time of several tens of seconds, such as an air heater or a radiant tube parner
  • the heat sources of both heating chambers 2 and 2 are always in an ON state. Even in this case, the generated heat is recovered by the heating elements 5 and 5 of the extra-circulation path 4 and used for heating the circulating air flow, so that it is not wasted.
  • the heat removal means 8 is not limited to a specific one.
  • a means for directly extracting heat from the circulating airflow as shown in Fig. 2 may be employed.
  • This gas furnace uses a heat exchanger 8 b as the heat removal means 8.
  • the characteristics of the circulating airflow are changed by heat exchange so that the opening shown in Equation 2 and FIG. 5 is established.
  • the heat removal means 8 reduces the heat insulation effect of the flow path between the two heat storage bodies 5 A and 5 B of the extra-circulatory circulation path 4, for example, by reducing the thickness of the heat insulation material or the heat insulation property.
  • It can also be configured by using an inexpensive heat insulator. In this case, the heat use efficiency is reduced, but the amount of heat insulating material used is reduced in terms of equipment. There is an advantage that the cost of equipment can be reduced by using inexpensive heat insulating material.
  • a preheating section 8 c is provided upstream of the heating section 18 ′, and the preheating section 8 c is used as the heat removal means 8.
  • a partition door 19 is provided between the heating section 18 'and the preheating section 8c to divide the chamber into two chambers so that circulation airflow does not directly enter and exit between both chambers 18' and 8c. It is provided in.
  • the preheating section 8c of the heating equipment 1 ' is connected between the flow path switching device 7 and the circulation fan 6 to remove heat by preheating the object W to be heated.
  • the heating unit 18 ′ of the heating equipment 1 ′ is connected with the heat source parner 3 and the extra-furnace circulation system 4, forming a high-temperature strong circulation flow 10.
  • Fig. 7 shows an embodiment in which the present invention is applied to a continuous airflow furnace.
  • This continuous airflow furnace 1 "has zones 18a, 18b large enough to accommodate one tray 25, which carries and transports the objects W to be heated at a time fi. , 18c, and each zone 18a, 18b, 18c is provided with a heat source 3 and an external circulation system 4 as shown in, for example, Fig. 1 or Fig. 2.
  • Each zone 1 In the present embodiment, a partition wall 26 slightly protruding into the furnace is provided at the boundary between 8a, 18b, and 18c, and an end of the tray 25 on which the object to be heated W is mounted is provided. As shown in Fig.
  • the tray 25 is an airflow that passes through the furnace in a direction perpendicular to the transport direction of the object to be heated W so as to cut through the furnace. It is composed of a combination of channel materials in a grid pattern so as not to obstruct it, and its front and rear surfaces (surfaces orthogonal to the direction of transport of the object to be heated) are There are provided cutting plates 24 and 24.
  • the dividing plate 24 is made of a material capable of shielding wide heat radiation, for example, aluminum, stainless steel, ceramics, steel, or the like. 4 is for the front and rear trains 25
  • the ffl radiant heat is not exchanged with the heated object W placed in B, so that it is not affected by the heated objects W and W of both IBs.
  • this partition plate 24 partitions the passage of the airflow for each of the zones 18a, 18b, and 18c in a practical K-shape, determines the airflow circulation, and maintains the independence of the zones. .
  • each zone 18a. 18b, 18c is provided with a heating chamber, a regenerative parner system serving as a heat source, and an external furnace circulation system.
  • the heat and speed of the circulating airflow are controlled as required for each of 8a, 18b, and 18c.
  • the combustion gas generated due to heat in each of the zones 18a, 18b, 18c is exhausted after heat recovery, so that the temperature is kept independent. Therefore, as shown in Fig. 9, the furnace temperature is highest in the zone (zone 1) near the heated object loading side, which requires the most heat, and lowest in the zone (zone 3) near the unloading side.
  • the furnace length can be shortened, and it can be reduced to approximately 1/2 to 2Z3 of the conventional type.
  • the conventional continuous airflow furnace as shown in Fig. 12, it is possible to heat uniformly to the same temperature in three zones, instead of five zones in length.
  • this continuous airflow furnace there is a case where a separate material preheating system is provided, and circulating airflow from each zone is introduced into this material preheating section to remove heat from the airflow. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Tunnel Furnaces (AREA)
  • Air Supply (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

明細害
気流炉
技術分野
本発明は気流炉に関する。 更に詳述すると. 本発明は. 循環気流を一旦炉外に 取り出してから再び炉内へ增速して戻し、 供給される気流よ り も非常に大きなポ リ ュームの循環気流 (本明細書ではこれを強循環流と呼ぶ) を形成する気流炉に 関する。
背景技術
従来, アルミニウムやセラミ ックスなどのような非常に幅射率が小さな材料あ るいは小物の被加熱物の場合、 輻射熱を与えても熱をとる ことができなかったり 均一に熱を与えることが難しいことから、 対流伝熱による加熱が行われる。 この 対流伝熱においては気流の速度が伝熱を支配するため、 炉内に気流を強制的に循 環させる気流炉が考えられている。 例えば、 図 1 1 に示すような気流炉が使用さ れて被加熱物の加熱が行われている。 この気流炉は、 バッチ式であって, 炉 1 0 1 の両側壁に燃焼室 1 0 2 と排気室 1 0 3 とを接続する と共にこれらの間に熱風 循 ¾ファ ン 1 0 4 とダク ト 1 0 5 とで構成される炉外循環路 1 0 6を備え > 排気 室 1 0 3から燃焼排ガスの一部を取り出して再び燃焼室 1 0 2内へ戻す循環気流 を形成するよう に している。 この気流炉の場合、 燃焼室 1 0 2 内で火炎によって 加熱された気流が炉内 1 0 7 を被加熱物の搬送方向と直交する方向に通過して排 気室 1 0 3へ流出する間に被加熱物 Wを加熱し, 排気室 1 0 3 に導入される循環 気流の一部を排気すると共に残り をダク ト (循 »路) 1 0 5 に導入して強制的に 循環させる ことが行われている。
また、 図 1 2 に示すように複数のゾーン 1 0 7 a , '·· , ' 1 0 7 ε を構成した連 統式気流炉の場合、 図 1 2 には示していないが図 1 1 に示すような燃焼室 1 0 2 と排気室 1 0 3 とが炉体 1 0 1 の両側壁に設けられ、 各ゾーンごとに炉内を横切 る循環気流が形成されるように設けられている。 そして、 ワーク搬入口 1 0 8 に 隣接するゾーン 1 0 7 a には排気口 1 1 0が設けられ、 各ゾーン 1 0 7 a , ··· , 1 0 7 e で発生した気流增熱のための燃焼ガスを集合させて 1 箇所から排気する ように設けられている。
しかしながら, 強循環流を起こすエネルギは気流の流 Sと圧力によって決まる こ とから, 熱風のまま強制循環させる従来の気流炉によると, 得られる強循環に は限界がある。 即ち、 圧力は流速の二乗に比例するため、 流速を上げよう とする と、 圧力を流速の二乗に比例して上げなければならない。 しかし > 圧力が二乗で 増えると、 極端に循環ファン 1 0 6の動力が増える ことから、 吐出圧力を Sくで きず循環量が制限される。 即ち > 大きな強循環流が形成し難い。 また, 高温の熱 風を対象にしょう とすると, 耐熱性の «やファン軸の冷却が必要となる し玫障も 多く なることから . 従来には高温の熱風に耐えられるファ ンが存在せず、 ¾ fi熱 風を循¾させる ことは実現が困難であった。 このため、 従来の気流炉では、 炉外 循環できるガス温度は 6 5 程度が限界であり、 炉温を上げての伝熱効率の改 善を図る ことができなかった。 したがって、 伝熱 Sを大きくできず, バッチ式気 流炉の場合には加熱処理時間がかかる問 Sを有し、 連統気流炉の場合には炉長が 長くなる問題を有している。
また、 熱源としてパーナを使用する場合. 6 5 0 t程度以下の比較的低温の気 流の 流速化は火炎温度を下げて失火を招く處がある。 したがって, 従来の気流 炉によると. 循環気流の循環効果が不十分であ り、 炉のコンパク ト化や高性能化 が達成できない問 Sを有していた。
更に, 連統式気流炉の場合, 排気温度を極力低下させるために炉尻がワーク搬 入口 1 0 8側に設定される。 このため、 各ゾーン 1 0 7 a , ··· , 1 0 7 eでの坩 熱のために発生させられた燃焼ガスは、 全置が炉尻に集められて排気口 1 1 0か ら排出されることから, ゾーン内温度が燃焼ガスの流れにおいて上流側となるゾ ーン (図 1 2上右側) の影響を受け、 炉温の独立性を保つことができない。 炉温 は被加熱物 Wの搬出口 1 0 9側が高く搬入口 1 0 8側が低く なり、 «も熱を必要 とする被加熱物搬入口 1 0 8 のゾーン 1 0 7 aの温度を上げる ことができない。 即ち, 彼加熱物搬入口側即ち排気口 1 1 0側の炉内温度を高く して昇温を早めよ う としても, 高い温度のままガスが排出されるため、 エネルギーの無駄となるし, そのような ¾温の排ガスを大気中に放出することは周辺環境に悪影響を与える。 したがって, 入口側の温度を高くできず、 だらだら と緩やかに温めて行く しかな く、 その結果、 炉長が長く無駄に燃料を多く使う こととなる。 しかも, 排気温度 を低くするといつても, 依然と して高く 十分には低いとは言えないため. 熱効率 が悪い。
更に、 気流の流れ方向が一定のため被加熱物 Wの左右 (気流の流れ方向の手前 側と奥側) で均一加熱が不可能である。 加えて, 連統式気流炉の塌合 > K接する ゾー ンに滞留する被加熱物との問での轄射による熱授受で被加熱物の搬送方向の 上流側と下流側との問でも温度差が生じる。 即ち, 同じ被加熱物あるいは同じ ト レーに搭載されている被加熱物でも、 上流側のより S温の被加熱物からの輻射熱 を受ける反面、 下流側の低温の被加熱物には熱を奪われるので温度差が生じてし まう。 このことから、 均一加熱が困難であった。
本発明は、 伝熱性能の高い気流炉を提供することを目的とする。 また、 本発明 は. 高温かつ多量の循環流を低動力で確保できる気流炉を提供することを目的と する。 更に本発明は、 炉内全域で Kくかつ均一な温度の気流を形成できる気流炉 を提供することを目的とする。
発明の開示
かかる目的を達成するため、 本発明の気流炉は、 炉の両側壁にそれぞれ配置さ れて炉内に噴射される前の循 ¾気流を加熱する熱源を備えた加熱室と. これら加 熱室を連結して炉内の循環気流を炉外に取り出して再び炉内へ還流させる炉外循 ¾系路とを備えるようにしている。 そして更に、 炉外循環系路は、 加熱室の循環 気流出入口の近く にそれぞれ備えられた «熱体と、 循¾ファ ンと > 循¾ファ ンの 吸入口側と吐出口側とをいずれかの一方の蓄熱体にそれぞれ選択的に交互に連結 させて蓄熱体に対する気流の流れの方向を切り替える流路切替装置と. 両蓄熱体 の間の区間で循環気流のガス性状を変えるための抜熱若しく は希釈を行う抜熱手 段とを有している。 そして, 本発明の気流炉は、 流路切替装 ϋの周期的な切り替 えによって気流の流れ方向を反転する高温強循環流を炉内に形成するようにして いる。
この場合、 炉内を通過して被加熱物の加熱に使われた後の気流の一部は、 循環 ファ ンによって発生する負圧によって炉外循環系路へ抜き取られると共に循 ¾フ ア ンで昇圧された後再び炉内へ 速で噴射される。 この 、 循環気流は, 炉外循 環系路の吸入側でその顕熱が蓄熱体に奪われることによって低温とされる。 そし て、 低温状 ¾6となった循環気流は循環フア ンによって昇圧された後反対側の蓄熱 体を通過してそこでの直接熱交換によって再び高温とされてから炉内へ噴射され る。 したがって、 低温用循環ファ ンを使って炉内に高温の強循¾流を形成できる。 即ち、 炉外の熱風循¾系路を循環する間の循環気流は低温となるため循環ファン を大型化 (能力を上げること) でき, 吐出流量を大きく して強循環流の生成を可 能とする。 そして、 対流伝熱においては気流の流速が大きいほど伝熱量は大きく 早く加熱処理できるので, 従来 1 o o o t以上の焼成温度が要求されるため不可 能視されたセラミ ックスなどの気流焼成や, さ らには小物の被加熱物でも均一に 加熱する こと等が実現できる。
また. 本発明の気流炉によると、 循環気流が «流速で流れるので、 そのモーメ ンタムによって、 加熱空 の広い領域において循環量をこれまでより も格段に增 加させる ことができ、 強循現流を形成して伝熱量の堪大を図れる。 しかして、 循 »気流の增加と高温化が対流伝熱量の增加をもたらすので > 炉のコンパク ト化あ るいは加熱処理時間の短縮が可能である。
また, 本発明の気流炉によると、 気流の方向が周期的に反転するため、 炉内温 度の均一化によって^内温度差が小さ くなり、 炉構造物に対する熱ス ト レスを小 さ くすると共に被加熱物を均一に加熱できる。 また、 高温強循¾流の流れの方向 が周期的に反転するので, 炉内温度分布がより均一化でき、 被加熱物の加熱むら が少なく なる。
—方、 炉外循環系路内では、 抜熱手段による抜熱あるいは希釈によって循¾気 流のガス性状の変更が行われ, 平衡温度の上昇が防がれている。 ここで. 循¾気 流の抜熱による平衡温度および戻し口温度は、 次の式 1 によって表される。
循環気流の抜熱による平衡温度
Δ t
t c = t h 一
1 - τ? t
- ( 1 ) t I = ( 1 - T) « ) t e + T) , C ft 平衡温度 *
循環気流 (取出口) 温度 :
循環気流 (戻し口) 温度 t
厶 t 循環気流の抜熱温度差
Τ) ι 蓄熱器の温度効率
この循環ファン吸い込み口の気流平衡温度 t c は循環気流の抜熱温度差厶 t と 蓄熱体の温度効率に支配され, 例えば循現気流の取り出し口温度 t h が 1 0 0 0 での場合には図 5に示す関係にある。 また, 循環気流の希釈による平衡温度およ び戻し口温度は, 次の式 2によって表される。
循環気流の希釈による平衡温度
厶 G , AG
- ( 1 + ) TJ I t » + t
G G
厶 G
( 1 + ) ( 1 - 7J ,)
G
( 2 ) t . = ( l - n t ) t t c : 平衡温度 X:
t h : 循環気流 (取出口) 温度 :
t , : 循¾気流 (戻し口) 诅度 t
t . : 大気温度
厶 G : 希釈空気量 Nm,/h
G 循環気流量 Nm,/h
7} , : 蓄熱器の温度効率
この循環フ ァン吸い込み口の気流平衡温度 t e は循¾気流への稀釈空気量△ G と 31熱体の温度効率に支配され、 例えば循環気流の取り出し口温度 t „ が 1 0 0 0 t:、 大気温度 t : が 2 0での場合には, 図 6に示す関係にある。 かく して . 炉 外循環系路内での適 Sの抜熱あるいは希釈によるガス性状の変更によって平衡温 度の上昇が起こるのを防ぐことができる。 ここで, 上述の抜熱手段は炉外循環系路の加熱室の循環気流出入口にそれぞれ 設 atされた両蓄熱体の間であれば特に設匱齒所に限定を受けるものではないが, 流路切替装置と循環ファ ンの吸い込み側との間に配 sされている ことが好ま しい。 この場合、 循環ファ ンに流れ込む循環気流がよ り低温となり, 循環ファ ンに与え るダメージが少なくなると共に気流の循環量をより增やすことかできる。 また、 抜熱手段は、 例えば、 空気ゃ排ガスなどの少 sの希釈用気体を循環気流に注入す るもの, 熱交換器、 加熱股備の材料予熱部などを抜熱手段に用いるもの、 あるい は両蓄熱体の間の流路の保温効果を低くすること、 例えば保温材を薄く したり, 保温性の劣る保温材の使用などによって構成される。
また, 本発明の気流炉における熱源としては、 各種パーナやラジアン トチュー ブバ一ナ, ¾気ヒータなどの熱源が使用可能であるが、 なかでもパーナ、 特に蓄 熱体を備え該 «熱体を介して燃焼用空気の供給若しく は循環気流の排気を行う 2 基で 1組のパーナを交互に燃暁させる蓄熱型パーナシステムを使用することが好 ま しい。 この場合、 被加熱物の加熱に使われた後の循環ガスの一部が排出される ΚΠこ、 その顕熱が蓄熱体に回収されてから、 再び極めて高い熱効率で燃焼用空気 の予熱に使われて炉内へ戻されるため、 循環気流の温度を «く しても、 その熱を 回収して周辺 ¾境に悪影響を与えない程度の低温にしてから排出でき、 高い熱効 率を維持できる。
また、 本発明の気流炉は、 被加熱物が搬送される方向に複数のゾーンに区画さ れた連統式気流炉であって、 各ゾーン毎に前記加熱室と炉外循環系路を配置し、 周期的に気流の流れ方向を反転する ¾温強循環流を各ゾーン毎に形成するように している。 この場合、 各ゾーン毎に独立して循環気流が形成されることによ り熱 が循 するので, 他のゾーンの気流温度に影響を与えない。 このため、 各ゾーン 毎に循環気流の温度及び循環量をゾーン内の被加熱物の材質などに合わせて最も 適切な熱量が与えられるように設定することができ > 伝熱の最適化を図りつつ炉 のコンパク ト化等の合理化と同時に省エネルギー化を実現する ことができる。 ま た、 各ゾーン毎に高温の強循¾気流が形成されるため、 炉温の独立性を保ちつつ 伝熱量の増大が図られる。 特に, 被加熱物搬入口寄りのゾーンの気流温度が被加 熱物排出口寄りのゾーンの気流温度より も高い場合には、 最も熱を必要とする被 マ 加熱物搬入口のゾーンの温度が上げられて被加熱物の昇温が早められる。 依って > 循環気流の高温化と相まって、 加熱炉の炉長を大幅に短く でき, 熱設備コス トが 大幅に低減できるようになる。
加えて, 被加熱物を搬送する ト レーの前後には、 それよ り も前方の ト レー上の 被加熱物からの輻射熱と後方の 卜 レー上の被加熱物への幅射熱を遮断する仕切板 を設ける ことが好ましい。 この場合, トレーの仕切板によって K接するゾーンの 被加熱物間の輻射による熱授受の防止とゾーンの独立性が維持される。 依って、 被加熱物の前後あるいは同一 ト レー上の前側の被加熱物と後側の被加熱物との間 の温度差が発生するのを防ぐと共に各ゾーン毎の気流温度の設定が可能となる。
図面の簡単な説明
図 1 は本発明の気流炉の実施の一形 ! を示す原理図である。 図 2 は本発明の気 流炉の他の実施の一形!!!を示す原理図である。 図 3は本発明の気流炉の更に他の 実施の一形態を示す原理図である。 図 4は図 3の気流炉の縦断面構造を示す図で, ( A ) は仕切扉を有するタイプ、 ( B ) は仕切板を有するタイプを示す。 図 5 は 循環ファ ン吸入口の気流平衡温度と循環気流の抜熱度差との関係を «熱体の温度 効率との関係で示すグラフである。 図 6は循環ファン吸入口の気流平衡温度と稀 釈空気率との間係を S熱体の温度効率との関係で示すグラフである。 図 7は本発 明を連統式気流炉に適用した実施の形態を示す原理図である。 図 8 は連統式気流 炉に使用される ト レーの一例を示す斜視図である。 図 9 は図 7 の速統式気流炉に よる炉内温度分布図である。 0 1 0 は図 1 2の従来の連統式気流炉による伊内温 度分布図である。 図 1 1 は従来の気流炉の一例を示す原理図である。 図 1 2 は従 来の速統式気流炉の一例を示す原理図である。
発明を実施するための最良の形態
以下、 本発明の構成を図面に示す最良の実施の形態に基づいて詳細に説明する。 図 1 に本発明をバッチ式気流炉に適用した一実施形態を示す。 この気流炉は, 炉 1 と. 炉 1 の両側壁に接統された加熱室 2 , 2 と, これら加熱室 2 内で循環気 流 3 0 を.加熱して增熱させる熱源としてのパーナ 3 A , 3 B及び増熱された高温 の気流を炉内 1 8 を通過させて反対側の加熱室 2 に取り出した後に再び喷射側の 加熱室 2内へ還流させる炉外循環系路 4 とから主に構成されている。 熱源として は > 本実施例の場合, 交互に燃焼する 1組のパーナ 3 A, 3 Bによって構成され る蓥熱型バ一ナシステムが採用されている。 炉外循環系路 4は, 熱源用パーナ 3 A. 3 Bの切り替えに応じて周期的に気流の流れ方向を反転する ¾温強循環流 1 0を炉内 1 8 に形成するように設けられている。 この炉外循環系路 4の循環気流 出入口 9 A, 9 Bは加熱室 2の上部に配置されている。 そして, 炉外循環系路 4 から噴射される循¾気流が加熱室 2内で所定温度まで加熱昇温されてから炉内 1 8へ噴き出されるように股けられている。 循環気流 3 0は両側の燃焼室 2 , 2 と 炉外循 ¾系路 4 を経て被加熱物 Wの搬送方向と直交する方向に伊内 1 8を通過す る高温強循環流 1 0を形成する。
—方、 «熱型パーナシステムは、 それぞれ蓄熱体 1 1 A, 1 1 Bを有する一対 のパーナ 3 A, 3 Bを流路切替手段 1 2 を介して空気供給系 1 3あるいは排気系 1 4 に ¾択的に交互に接統して, 一対のパーナ 3 A, 3 Bの一方を燃焼させてい る間に停止中の他方から被加熱物 Wの加熱に使った後の燃焼ガスを排気させるよ うにして成る。 各パーナ 3 A, 3 Bは, 例えば炉 1 の両側壁に設置された加熱室 2のそれぞれの頂部に据え付けられており, 交互に作動する。 なお、 図中の符号 1 6は燃料ノ ズルである。
«熱体 1 1 A , 1 1 Bはパーナボディ あるいはこれと別体のケーシングなどに 収められてパーナ 3 A, 3 Bに組み込まれている。 この蓄熱体 1 1 A, 1 1 Bは、 通過する排ガスとの間で熱交換を行い排熱を回収すると共に回収した熱で燃焼用 空気を予熱する。 各パーナ 3 A, 3 Bの蓄熱体 1 1 A, 1 1 Bは、 ダク ト 1 5, 1 5を介して四方弁 1 2の 4つのポー 卜のうちの 2つのポー ト (互いに連通され ることのない位 ϋ関係にある 2つのポー ト) に接統されている, また、 四方弁 1 2の残りの 2つのポー トには, 空気供給系 1 3及び排気系 1 4がそれぞれ接統さ れている。 したがって、 各パーナ 3 Α, 3 Β並びに審熱体 1 1 A, 1 1 Bは何れ か一方のパーナ及び ¾熱体が空気供給系 1 3に、 他方のパーナ及び蓄熱体が排気 系 1 4に接統されており、 その接続関係は四方弁 1 2の切り替えによって、 切り 替えられる。
他方、 炉外循環系路 4は. 各加熱室 2, 2の循 ¾気流出入口 9 Α, 9 Βに近い 部分にそれぞれ設 SIされた蓄熱体 5 A, 5 Bと循環ファ ン 6 と、 この循環ファン 6 の吸入口側と吐出口側とを菴熱体 5 A, 5 Bのいずれか一方にそれぞれ選択的 に交互に連結させて蓥熱体 5 A, 5 Bに対する気流の流れの方向を切り替える流 路切替装置 7 と、 気流のガス性状を変えるための抜熱若し く は希釈を行う抜熱手 段 8及びこれらを連結するダク ト 3 2 とから構成され、 流路切替装置 7 の周期的 な切り替えによって蓄熱体 5 A, 5 Bを通した一部の燃焼ガスの抜き取り と再供 給を交互に行なわせ、 気流の流れ方向を周期的に反転する ffi温強循環流 1 0 を炉 内 1 8 に形成するようにしている。
こ こで, 熱源用パーナ 3 A, 3 Bに使用される蓄熱体 1 1 A, 1 1 Bも、 また 炉外循環系路 4 に配置される蓄熱体 5 A, 5 Bも、 比較的圧力損失が低い割に熱 容 Sが大きく耐久性の高い構造並びに材料の使用、 例えば多数のセル孔を有する ハニカム形状のセラミ ックス製滴体の使用が好ま しい。 例えば、 排ガスのような 1 O O O t前後の高温流体と. 燃焼用空気のような 2 O ;前後の低温流体との熱 交換には, コージライ トゃムライ ト等のセラミ ックス材料の押し出し成形によつ て製造されるハニカム形状のものの使用が好ましい。 また, ハニカム形状の蓄熱 体は、 コージライ ト、 ムライ ト以外のセラミックス例えばアルミナやセラミ ック ス以外の素材例えば耐熱銅等の金属あるいはセラミ ックスと金属の複合体例えば ポーラスな骨格を有するセラミ ックスの気孔中に溶融した金厲を自発浸透させ、 その金属の一部を酸化あるいは窒化させてセラミ ックス化し、 気孔を完全に埋め た A l 2 O , 一 A 1 複合体、 S i C - A 1 2 03 — A 1 複合体などを用いて製作 しても良い。 尚、 ハニカム形伏とは、 本来六角形のセル (穴) を意味しているが、 本明細謇では本来の六角形のみならず四角形や三角形のセルを無数にあけたもの を含む。 また. 一体成形せずに管などを束ねることによってハニカム形状の S熱 体を得るよう にしても良い。 しかし、 蓄熱体 5 A, 5 B , 1 1 A. 1 1 Bの形状 も特にハニカム形状に限定されず > 平板形状や波板形状の蓄熱材料を简状のケー シング内に放射状に配置したり, パイプ形状の蓄熱材料を軸方向に流体が通過す るように简状のケーシング内に充填したものであっても良い。 または、 ¾壁によ つて周方向に 2室に区画形成され、 軸方向に流体が通過可能と した简状のケーシ ングを用意し、 これの各室に球状、 短管、 短棒、 細片、 ナゲッ ト状 > 網状などの 蓄熱材料の塊り を充填することによって構成されたものでも良い。
また > 循環ファ ン 6の吸入側と流路切替装匿 7 との間には抜熱手段 8 としての 希釈空気注入口 8 aが設けられている。 この希釈空気注入口 8 aからは蓄熱体 5 A, 5 Bの温度効率に見合った抜熱が実施できるように、 常温の空気が注入され る。 この場合 > 設備全体の熱効率が更に向上する。 この常温の空気の注入による 抜熱量は, 前述の式 1 によって表される。
この循¾ファ ン吸い込み口の気流平衡温度 t c は循環気流への稀釈空気量厶 G と蓄熱体の温度効率に支配され、 例えば循環気流取り出し口温度 t hが 1 0 0 0 で 大気温度が 2 0 "Cの場合には図 6に示す関係にある。 そこで、 平衡温度の 上昇が起こ らないようにするため、 炉外循環系路 4内で適量の希釈によるガス性 状の変更が行われている。 通常、 蓄熱体 5 A, 5 Bの温度効率が 8 0〜 9 0 %程 度の場合には希釈率は、 0. 1 ~ 0. 2 5の範囲に設定される。 循環気流取り出 し口温度 t hが 1 O O O tにおいて、 希釈率厶 GZG = 0における温度効率が t o = 0. 9の蓄熱器を用いて、 厶 G/G = 0. 1 で希釈したときの平衡温度 t c . 温度効率?} t、 戻し口の循環気流温度 t l を求めるとぐ t c = 3 8 0 " , τ) t = 0. 8 5 5、 t 1 = 9 1 0でとなる。
以上のよう に構成された気流炉によると、 次のようにして炉内に高温の強循穠 流を実現できる。
熱源を構成する 1組の蓄熱型パーナ 3 A, 3 Bを交互に焚いて加熱室 2内で火 炎 1 7を形成して炉に向かう循環気流 3 0の增熱を図る。 例えば、 パーナ 3 Aを 作動させる場合には. パーナ 3 A側を燃焼用空気供給系 1 3 に接統するように四 方弁 1 2を切り替え、 かつ一方の燃料制御弁 3 1 Aを開く と共に他方の燃料制御 弁 3 1 Bを閉じる。 これによ り、 供給される燃焼用空気は、 畚熱体 1 1 Aを通過 しながら排ガス温度に近い高温例えば 8 0 0〜 1 0 0 0で程度に予熱された後, 各バーナスロー ト内に流れ込み、 各燃料ノ ズル 1 6から嘴射された燃料と混合さ れて燃焼する。 一方、 排気系に接統されているパーナ 3 B側では炉内 1 8を通過 した後のガス (循環気流 3 0 と燃焼ガス) の一部が排出される。 このとき, 排ガ スの熱は蓄熱体 1 1 Bで回収される。 そして. パーナ 3 A側が作動を開始してか ら例えば, 6 0秒以内の短時間、 好ましく は 2 0秒程度あるいはそれ以下の短時 間が経過すると、 四方弁 1 2が切り替わると共に、 これに連動して燃料制御弁 3 1 A , 3 1 Bの一方が閉じて他方が開く。 これにより、 パーナ 3 B側に燃焼用空 気及び燃料が供給されて燃焼を開始する一方、 パーナ 3 Aが非作動の待機状態に なる。 このとき、 パーナ 3 B側へ供給される燃焼用空気は、 排ガスの熱で加熱さ れた蓥熱体 1 1 Bで予熱され、 非常に高温 (例えば、 8 0 0 〜 1 0 0 0 ;程度) になる。
通常 > «流速の循環気流 3 0 の流れが火炎 1 7 に衝突すると、 火炎温度を下げ て失火を招くが 循環気流 3 0の温度が燃料の自己着火温度よ り も «温となるた め (排ガス温度に近い高温) , 着火ポイ ン トでの温度がそう下がらないので着火 性に僅れ火炎の安定性があり火炎が吹き消えることがない。
以後、 パーナ 3 A及びパーナ 3 Bは循環気流 3 0の流路切替装 B 7 と同期して 所定時間毎に交互に作動し、 非常に «温の燃焼用空気を用いて交互燃焼を操り返 し, 加熱によって消费した分の循環気流 3 0の增熱を図る。
同時に、 炉内 1 8から加熱室 2へ流出した循環気流 3 0 は、 循環フ ァ ン 6 によ つて発生する負圧によって炉外循環系路 4へ锈引され、 循環フ ア ン 6で昇圧され た後再び加熱室 2から炉内 1 8へと高速で噴射され, 炉内 1 8 に高温の強循環流 1 0 を形成する。 この «5、 循環気流 3 0 は炉外循環系路 4 の循環気流出入口 9 B の蓄熱体 5 Bを経てその顕熱を蓄熱体 5 Bに捨てて低温とされる。 更に、 抜熱手 段 8 によってよ り低温とされる。 そして、 低温状態で循環ファ ン 6 に導入され、 昇圧された後反対側の審熱体 5 Aを通過して炉内 1 8へ噴射される。 このとき, 循環気流 3 0 は «熱体 5 A (あるいは 5 B ) における直接熱交換によって再び高 温とされている。 したがって, 1 0 0 0 前後あるいはそれ以上の高温の循環気 流 3 0は、 炉外循環系路 4 を流れる際には 2 0 あるいはそれ以下の低温にさ れ、 再び炉内 1 8へ戻されるときには上述の高温状態に戻される。
高温でかつ高速の強循環流 1 0 は、 加熱空間の広い領域において気流循環量を これまでよ り も格段に增加させることができる。 これによつて, 炉内 1 8 を流れ るガスの流量は投入された空気及び燃料の Sに循環気流 0のガス fiを加えたも のになり, 循環気流 Sの增大によって炉内 1 8 のガス流動が激しくなり、 炉内ガ スの混合の促進や対流伝熱量の増加が起きて炉内温度差 (炉内各所での雰囲気の 温度差) が解消されて温度分布は均一化される。
更に. ガス循¾率が堪加すると、 燃焼ガスの熱容量の增加のために伝熱 Sが增 大する。 つまり、 対流伝熱においては気流の速度が伝熱を支配するため、 循環気 流 Sが堆加すると, 伝熱効率を格段に改善する。 また > 強循環気流 1 0の方向が 周期的に反転するため、 炉内での気流の温度がよ り均一化され加熱むらがなくな る。 しかも, ガス循 ¾率の堆加と共に炉内最高温度 (炉内温度は気流温度と炉壁 温度とによって形成される雰囲気温度である。 ) は逆比例して低下してく るが, 炉内平均温度はほとんど低下せず、 炉内 *高温度は炉内平均温度に近づき炉内温 度分布は平均化してく る。
したがって. 本発明の気流炉では, 循環気流 3 0 の增熱のための燃焼による温 度上昇分を 3 0 0 〜 5 0 と小さ く抑えることができ、 燃焼量を少なくできる。 尚、 上述の実施例は本発明の好適な実施の一例ではあるがこれに限定されるも のではなく 本発明の要旨を逸脱しない範囲において種々変形実施可能である。 例 えば、 本実施例においては、 蓄熱体 1 1 A , 1 1 Bを備える 2基で一組のパーナ 3 A , 3 Bを交互に燃焼させる蓄熱型パーナシステムを熱源とする実施の形 86に 適用した場合について説明したがこれに特に限定されない。 熱瀕としては、 例え ば電気ヒータやラジアン トチューブパーナあるいは酸索燃焼パーナやその他のパ —ナなどが使用可能である。 ここで、 ¾気ヒータやラジアン 卜チューブパーナの ような数十秒の短時間で切り替え不可能な熱源の場合には両加熱室 2 , 2 の熱源 は常時 O N状 ϋとする。 この場合においても、 発生する熱は炉外循環経路 4 の ¾ 熱体 5 Α , 5 Βに回収されて循¾気流の加熱に使用されるため無駄となることが ない。
また, 抜熱手段 8 についても特定のものに限られるものではなく、 例えば > 図 2 に示すように、 循環気流から直接熱を取り出す手段を採用 しても良い。 この気 流炉は, 抜熱手段 8 として熱交換器 8 bを使用したものである。 この場合、 熱交 換によって循環気流の性状を変えて前述の式 2及び図 5 に示す開係が成立するよ うにしたものである。
また、 図示していないが、 抜熱手段 8 は炉外循環系路 4 の両蓄熱体 5 A , 5 B の間の流路の保温効果を低くすること、 例えば保温材を薄く したり保温性に劣る 安価な保温材の使用等によっても構成できる。 この場合、 熱の利用効率は低下す るが、 設備的には保温材がの使用量少なく なつたり . 安価な保温材の使用により 設備コス トを下げ得るという利点が有る。
更に、 図 3及び図 4に他の実施の形態を示す。 この気流炉は、 加熱部 1 8 ' の 上流側に予熱部 8 c を設け, この予熱部 8 c を抜熱手段 8 と して利用したもので ある。 二の場合, 加熱部 1 8 ' と予熱部 8 c との間に仕切扉 1 9を設けて 2室に 区切り、 両室 1 8 ' , 8 cの間で循環気流の出入りが直接起きないように設けら れている。 そして、 流路切替装置 7 と循環ファン 6との間に加熱設備 1 ' の予熱 部 8 cを接統して被加熱物 Wの予熱によって抜熱させるものである。 この加熱設 備 1 ' の加熱部 1 8 ' には熱源用パーナ 3 と炉外循環系路 4 とが接統され, «温 の強循環流 1 0が形成されている。
また、 予熱部 8 c と加熱部 1 8 ' にはそれぞれ被加熱物搬入口 2 2 とそれを開 閉する挿入扉 2 0、 また搬出口 2 3 とそれを開閉する取り出し扉 2 1 とが設けら れている。
なお, 図 4の ( B) に示すように、 被加熱物 Wを載 11する ト レーの前後に仕切 板 2 4を設け、 この仕切板 2 4を仕切扉 1 9に代用することも可能である。
また, 図 7に本発明を連統式気流炉に適用 した実施例を示す。 この連統式気流 炉 1 " は, 一度に加熱する単位 fiの被加熱物 Wを搭載して搬送する ト レー 2 5を 1 つずつ収容する程度の大きさのゾーン 1 8 a, 1 8 b, 1 8 c に仕切られ、 各 ゾーン 1 8 a, 1 8 b, 1 8 c毎に例えば図 1 あるいは図 2 に示すような熱源 3 と炉外循 ¾系路 4が備えられる。 各ゾーン 1 8 a , 1 8 b, 1 8 cの境界部分に は、 本実施例の場合、 僅かに炉内へ突出する仕切壁 2 6が設けられ, 被加熱物 W を搭載する ト レー 2 5の端部との間で実 的に仕切られている。 ト レー 2 5は、 図 8に示すような, 炉内を桷切るように被加熱物 Wの搬送方向と直交する方向に 通過する気流の流れを妨げることのないようにチャネル材を格子状に組み合わせ たものから構成されている。 そして, その前面と後面 (被加熱物の搬送方向と直 交する面) にはそれぞれ仕切板 2 4 , 2 4が設けられている。 この仕切板 2 4は, 幅射熱を遮蔽し得る材料、 例えばアルミニウム、 ステンレス、 セラミ ックス、 ス ティールなどから構成されている。 この仕切板 2 4は前方と後方の ト レー 2 5に 載 Bされた被加熱物 Wとの間で ffl射熱の授受を行わないよう に遮断して両 IBの被 加熱物 W, Wの影響を受けないようにしている。 また、 この仕切板 2 4は、 ゾー ン 1 8 a , 1 8 b, 1 8 c毎に気流の流れる通路を実 K的に区画し、 気流循¾を 確定 してゾーンの独立性を保たせる。
他方, 図示していないが各ゾーン 1 8 a. 1 8 b, 1 8 c にはそれぞれ加熱室 と、 熱源となる蓄熱型パーナシステムと、 炉外循 ¾系路とが設けられ、 各ゾーン 1 8 a, 1 8 b, 1 8 c毎に循¾気流の塌熱と墦速とが必要に応じてコン トロー ルされる。 しかも、 各ゾーン 1 8 a, 1 8 b, 1 8 c毎に增熱のために発生した 燃焼ガスは熱回収されてから排気されるため、 ^温の独立性が保たれている。 そ こで、 炉温は、 図 9 に示すように、 最も熱を必要とする被加熱物搬入側寄りのゾ ーン (ゾーン 1 ) が高く、 搬出側寄りのゾーン (ゾーン 3 ) が最も低く なるよう にコン トロールされる。 この場合、 被加熱物 Wを急激に加熱昇温させ得るので、 炉長を短くすることができ、 従来型のほぼ 1 / 2〜 2 Z 3 とすることができる。 例えば, 図 1 2に示すような従来の連統式気流炉によると、 5ゾーンの長さであ つたのが 3ゾーンの長さで同じ温度にまでしかも均一に加熱することができる。 尚. この連統式気流炉の場合においても、 別個に材料予熱股備を設け、 この材 料予熱部に各ゾーンからの循環気流を導入して気流から抜熱することが行われる こともある。

Claims

請求の範囲
1 . 炉外熱源で加熱した循環気流を炉内へ導入して被加熱物を加熱する気流 炉において、 炉の両側壁にそれぞれ配置されて炉内に噴射される前の循環気流を 加熱する熱源を備えた加熱室と、 これら加熱室を連結して炉内の循¾気流を炉外 に取り出して再び炉内へ a流させる炉外循環系路とを備え、 かつ該炉外循¾系路 は前記加熱室の循環気流出入口の近く にそれぞれ備えられた蓄熱体と、 循環ファ ンと, 前記循環ファンの吸入口側と吐出口側とをいずれか一方の前記 *熱体にそ れぞれ ¾択的に交互に連結させて前記蓄熱体に対する気流の流れの方向を切り替 える流路切替装置と、 両蓄熱体の間の区間で循環気流のガス性状を変えるための 抜熱若しく は希釈を行う抜熱手段とを有し、 前記流路切替装 Bの周期的な切り替 えによって気流の流れ方向を反転する高温強循環流を前記炉内に形成する ことを 特徴とする気流炉。
2 . 前記気流炉は被加熱物が搬送される方向に複数のゾーンに区画された連 統気流垆であって、 各ゾーン毎に前記加熱室と炉外循環系路を配置し、 周期的に 気流の流れ方向を反転する高温強循環流を各ゾーン毎に形成することを特徴とす る a求の範囲 1 記裁の気流炉。
3 . 被加熱物を搬送する ト レーの前後にはそれより も前方の トレー上の被加 熱物からの幅射熱と後方の ト レー上の被加熱物への糠射熱を遮断する仕切板を設 けたことを特徴とする請求の範囲 2記載の気流炉。
4 . 被加熱物搬入口寄りのゾーンの気流温度が被加熱物搬出口寄りのゾーンの 気流温度よ り も高いことを特徴とする請求の範囲 2記載の気流垆。
5 . 前紀熱源は、 蓄熱体を備えこの蓄熱体を介して燃焼用空気の供給若しく は循環気流の排気を行う 2基で 1 組のパーナを交互に燃焼させる蓄熱型パーナシ ステムであることを特徴とする請求の範囲 1 または 2妃載の気流炉。
6 . 前記抜熱手段は前記流路切替装 IIと循環ファ ンの吸い込み側との間に配 ilされていることを特徴とする請求の範囲 1 または 2記載の気流炉。
7 . 前記抜熱手段は少量の気体を注入するものである こ とを特徴とする請求 の睫囲 1 または 2記載の気流炉。 記載の気流炉。
9 . 前 K抜熱手段は材料予熱部であり, 該材料予熱部で循環気流の抜熱を行 う ことを特徴とする請求の範囲 1 または 2記載の気流炉。
1 0 . 前記抜熱手段は両蓄熱体の間の流路の保温を薄くすることによって構成 されていることを特徴とする請求の範囲 1 または 2記載の気流炉。
PCT/JP1996/003887 1995-12-28 1996-12-27 Four a flux gazeux WO1997024571A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96943346A EP0871004A1 (en) 1995-12-28 1996-12-27 Gas flow furnace
KR1019980704523A KR100293836B1 (ko) 1995-12-28 1996-12-27 기류로
US09/091,700 US6109914A (en) 1995-12-28 1996-12-27 Gas flow furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34342195A JP3719616B2 (ja) 1995-12-28 1995-12-28 気流炉
JP7/343421 1995-12-28

Publications (1)

Publication Number Publication Date
WO1997024571A1 true WO1997024571A1 (fr) 1997-07-10

Family

ID=18361391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003887 WO1997024571A1 (fr) 1995-12-28 1996-12-27 Four a flux gazeux

Country Status (7)

Country Link
US (1) US6109914A (ja)
EP (1) EP0871004A1 (ja)
JP (1) JP3719616B2 (ja)
KR (1) KR100293836B1 (ja)
CA (1) CA2241628A1 (ja)
TW (1) TW328109B (ja)
WO (1) WO1997024571A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60131269T2 (de) * 2001-07-24 2008-03-06 Elti S.R.L. Verfahren zur Vorbereitung von im Elektroofen zuzuführenden Eisenschrott und Vorrichtung zur Durchführung des Verfahrens
MX2007005298A (es) 2004-11-04 2007-10-15 Novelis Inc Aparato y metodo para limpiar lecho de medio quemador- regenerativo.
ATE388374T1 (de) * 2005-12-13 2008-03-15 Schwank Gmbh Heizungsvorrichtung und verfahren zu deren betrieb
JP5339319B2 (ja) * 2006-03-31 2013-11-13 一般財団法人電力中央研究所 加熱処理装置及び加熱処理方法
US8083517B2 (en) * 2008-03-28 2011-12-27 Fives North American Combustion, Inc. Method of operating a furnace
US20100127418A1 (en) * 2008-11-25 2010-05-27 Ronald Alan Davidson Methods For Continuous Firing Of Shaped Bodies And Roller Hearth Furnaces Therefor
US20100127421A1 (en) * 2008-11-25 2010-05-27 Dabich Ii Leonard Charles Bi-directional flow for processing shaped bodies
KR101095587B1 (ko) 2009-06-05 2011-12-19 (주) 썸백엔지니어링 열유동 균일화 및 냉각 가속 모듈 부착형 고품위 소결열처리로
DE102009058304B4 (de) * 2009-12-15 2013-01-17 Maerz Ofenbau Ag Gleichstrom-Gegenstrom-Regenerativ-Kalkofen sowie Verfahren zum Betreiben desselben
JP5408106B2 (ja) * 2010-11-02 2014-02-05 Tdk株式会社 加熱炉
CN102243025B (zh) * 2011-06-20 2013-07-10 北京中冶设备研究设计总院有限公司 一种电炉烟气余热回收利用工艺及设备
CN102359744A (zh) * 2011-10-28 2012-02-22 李恒杰 炉膛同轴分段燃烧中心回燃多回程蓄热节能炉
ITRE20120058A1 (it) * 2012-09-21 2014-03-22 Sacmi Forni Spa Forno per la cottura in continuo di laterizi su supporti a cassetta
CN104913635B (zh) * 2015-06-09 2017-03-22 江阴市天盛节能炉业有限公司 加热炉
CN105087899B (zh) * 2015-08-26 2017-06-23 江苏省沙钢钢铁研究院有限公司 一种蓄热式加热炉及其烟气循环燃烧方法
DE202017102464U1 (de) 2017-04-26 2017-05-17 Sun Shen Enterprise Co., Ltd. Elektrischer Verbinder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63488B2 (ja) * 1980-04-16 1988-01-07 Daido Steel Co Ltd
JPH01129930A (ja) * 1987-11-16 1989-05-23 Daido Steel Co Ltd 熱処理炉
JPH06228632A (ja) * 1992-11-24 1994-08-16 Nippon Furnace Kogyo Kaisha Ltd 加熱設備およびそれを使用した加熱方法
JPH06281350A (ja) * 1993-03-26 1994-10-07 Daido Steel Co Ltd 熱風循環式炉

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106721A (ja) * 1984-10-29 1986-05-24 Nippon Furnace Kogyo Kaisha Ltd 均熱炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63488B2 (ja) * 1980-04-16 1988-01-07 Daido Steel Co Ltd
JPH01129930A (ja) * 1987-11-16 1989-05-23 Daido Steel Co Ltd 熱処理炉
JPH06228632A (ja) * 1992-11-24 1994-08-16 Nippon Furnace Kogyo Kaisha Ltd 加熱設備およびそれを使用した加熱方法
JPH06281350A (ja) * 1993-03-26 1994-10-07 Daido Steel Co Ltd 熱風循環式炉

Also Published As

Publication number Publication date
CA2241628A1 (en) 1997-07-10
KR19990072169A (ko) 1999-09-27
JPH09178354A (ja) 1997-07-11
KR100293836B1 (ko) 2001-09-17
US6109914A (en) 2000-08-29
JP3719616B2 (ja) 2005-11-24
EP0871004A1 (en) 1998-10-14
TW328109B (en) 1998-03-11

Similar Documents

Publication Publication Date Title
WO1997024571A1 (fr) Four a flux gazeux
US8475161B2 (en) Regenerator burner
KR970000103B1 (ko) 철강 가열로
JP2003225761A (ja) 金属製ワークピースのコンベクション式ろう付け装置
US20050274373A1 (en) Method and apparatus for heating glass panels
JP5615020B2 (ja) 連続式箱型乾燥機が具えられた乾燥設備
WO1997024559A1 (fr) Systeme de desodorisation
US20110017423A1 (en) Method and device for heat recovery
JP3668546B2 (ja) 気流循環式管式加熱設備
JP3282955B2 (ja) 熱風循環システム
JPH09229354A (ja) 加熱炉、その燃焼制御方法及び燃焼制御装置
JP2000144239A (ja) 熱処理炉
JP3414942B2 (ja) 加熱炉
CN105408716A (zh) 用于陶瓷产品的连续循环烧制窑的辐射加热模块
JP2001065859A (ja) 燃焼装置および非鉄金属溶解炉
JP4060990B2 (ja) 交互燃焼式蓄熱型バーナシステム及びそれを利用した加熱炉
JP4445222B2 (ja) 反応炉の燃焼制御方法及び反応炉
JP2002303415A (ja) 蓄熱燃焼式排ガス処理装置での高沸点物質の除去方法
RU2362090C1 (ru) Контактный струйный воздухоподогреватель
JPH04288478A (ja) 連続焼成炉
JPS5827924A (ja) 被熱物の加熱方法
JPH0222318B2 (ja)
SU1744395A1 (ru) Камерна сушильна электропечь
JP2001255020A (ja) 熱風発生炉
PL188837B1 (pl) Instalacja do obróbki cieplnej płyt szklanych

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980704523

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09091700

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996943346

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2241628

Country of ref document: CA

Ref country code: CA

Ref document number: 2241628

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996943346

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704523

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980704523

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996943346

Country of ref document: EP