WO1997011401A1 - Verre a foyer progressif a indice de gradient - Google Patents

Verre a foyer progressif a indice de gradient Download PDF

Info

Publication number
WO1997011401A1
WO1997011401A1 PCT/JP1996/002689 JP9602689W WO9711401A1 WO 1997011401 A1 WO1997011401 A1 WO 1997011401A1 JP 9602689 W JP9602689 W JP 9602689W WO 9711401 A1 WO9711401 A1 WO 9711401A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
lens
progressive multifocal
multifocal lens
distance
Prior art date
Application number
PCT/JP1996/002689
Other languages
English (en)
French (fr)
Inventor
Akira Kitani
Original Assignee
Hoya Corporation
Hoya Lens Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation, Hoya Lens Corporation filed Critical Hoya Corporation
Priority to AU70005/96A priority Critical patent/AU723308B2/en
Priority to EP96931246A priority patent/EP0872755A4/en
Priority to CA002232539A priority patent/CA2232539C/en
Publication of WO1997011401A1 publication Critical patent/WO1997011401A1/ja
Priority to HK99100655A priority patent/HK1015890A1/xx

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/065Properties on the principal line

Definitions

  • the present invention relates to a spectacle lens, and more particularly, to a progressive multifocal lens for presbyopia.
  • a progressive multifocal lens has an area for viewing the distance called the "distance section", an area for viewing the intermediate distance called the “intermediate section”, and an area for viewing the near area called the “near section”.
  • the intermediate distance generally refers to a distance from 50 cm to 2 m, and there are many bases that call a farther distance a far distance and a closer distance a near distance.
  • proximal refers to 3 0 c m to 3 3 cm, no not exist convincing definitions are real information.
  • a progressive multifocal lens does not have a clear boundary line that can be seen from the external eyes, so there is no inconvenience in actual wearing even if these definitions are not fixed.
  • some reference points are needed on the lens when designing, manufacturing, inspecting, and even framing the lens.
  • the most common ones at present are (1) distance measurement position F (2) near measurement position N (3) position where the line of sight passes when the lens wearer looks in front.
  • Determining the positions of the distance measuring point F and the near measuring point N is indispensable for the verification of the standards set by ISO and JIS, and the position E through which the line of sight passes is to frame the lens. It is indispensable to determine the vertical and horizontal directions at the time.
  • the setting position Q of the prism refractive power of the lens is essential.
  • Force ⁇ Many bases match the geometric center point G.
  • Q, N, and E are also further inset from the normal position by the same amount as F. It is common.
  • the starting point and the end point of the progressive change are also important positions, they are not obligated to be displayed on the lens, and it is difficult to specify them with a real card. Therefore, they are somewhat unsuitable as reference points for describing the technical contents of patents. Appropriate.
  • the positions of F and N are shifted upward and downward by the starting point and the ending point of these progressive changes, or by a distance (about 2 to 4 mm) corresponding to the half of the lens meter opening from those points. Often it is just that.
  • the quality of a progressive multifocal lens depends on the optical condition of the lens surface (for example, changes in surface astigmatism, changes in surface astigmatism in the ⁇ direction, changes in surface average additional power, changes in prism power).
  • the change in the horizontal component and the change in the vertical component of the prismatic power have been discussed as appropriate.
  • a series of microspheres called "navel-like meridian" is located at the position of the main gazing line almost at the center of the lens.
  • the second surface which is the prescription surface
  • this non-spherical surface is a prescription surface, it must be manufactured after receiving an order, and there is no way to manufacture it in advance. Therefore, not only the time and cost of production, but also the problem of delivery time after receiving an order for prescription values are disadvantageous compared to the current method.
  • an object of the present invention is to provide a progressive multifocal lens that can provide a substantially good “wide field of view” to spectacle wearers without increasing the time and cost of manufacturing a prescription surface. It was done as. Disclosure of the invention
  • the progressive multifocal lens according to the present invention has a common wearing purpose in which basic elements as a progressive multifocal lens, such as a distance power measuring position F and a near power measuring position N, are common.
  • the surface refractive power (unit: diopter) of the distance power locating position F is defined as a base curve (B i), and the surface refractive power difference at two points between the distance power measurement position F and the near power measurement position N is calculated.
  • the addition power D i (unit: diopter), and the width of the area where the value of the surface average additional refracting power along the horizontal section curve passing below the near power setting position N is Di 2 or more is W.
  • a progressive multifocal lens characterized by satisfying the relationship of W (Da, BI)> W (Da, B2) is provided on the table. More preferably, in the above-mentioned progressive multifocal lens, when a single curve passing through at least two points of the distance power measurement position F and the near power measurement position N is used as the main gazing line,
  • K is any constant such that 1.0 ⁇ K ⁇ 5.0
  • Dp is the additional surface power at point P
  • Di is the addition
  • a change in an optical state along a horizontal cross-sectional curve that intersects an arbitrary point P on the main line of sight is that the main line of sight is In the portion where the bat position is not horizontal in the horizontal direction with respect to the distance power setting position F, the mirror is bilaterally symmetrical with respect to the point P, and the main gazing line is deviated to the nose side with respect to the distance power measurement position F.
  • a progressive multifocal lens is characterized in that the change from point P to the nose side is more intense than the change to the ear side in the part where the lens is moving.
  • any one of the above progressive multifocal lenses wherein the addition power (Di) has a value in a range of 0.75 diopters to 3.00 diopters, and the horizontal power passing through the near power measurement position N
  • the width of the region where the value of astigmatism along the sectional curve in the direction is less than X diopters is W (Di, X) mm,
  • an arbitrary point P on the main line of sight has two main curvatures except for the distance power setting position F and the near power measurement position N.
  • a progressive multifocal lens characterized by having different parts.
  • the distribution of the visible area of the “distance portion”, “middle portion” and “near portion” in a general progressive multifocal lens differs slightly depending on the type of each progressive multifocal lens.
  • the “distance section” is the largest. This is due to the extremely high frequency of distant vision in daily life.
  • the sensitivity of the human eye to astigmatism is most sensitive in far vision, and tends to increase from intermediate vision to near vision.
  • the quality of a progressive lens should be argued based on whether the distribution of the optical state to the field of view of the entire lens is appropriate. Therefore, the present invention is not limited to the assumption of the logically insufficient “optical state of the lens surface” and the state of astigmatism on the line of a tree, but also reaches the eye of the spectacle wearer substantially.
  • the differences from the optical state of the lens surface can be grasped, and the differences can be identified in the optical state of the lens surface. H This is to improve the “optical state of transmitted light” by feedback.
  • the purpose itself is similar to that of the above-mentioned Japanese Patent Application Laid-Open No. 18883/1990; the present invention proposes not only a mere desire but also a specific improvement method, and reduces the time and cost of manufacturing a prescription surface. It achieves its purpose without doing anything.
  • the prescription surface must be kept in a conventional shape such as a spherical surface or an astigmatic surface, which is relatively easy to manufacture, so that the time and cost for manufacturing the prescription surface are not shortened. Therefore, when preparing semi-finished products having several types of base curves with the first surface (surface) as the “progressive surface”, the range of distance power to use these semi-finished products is determined in advance, and By making the “progressive surface” of the semi-finished product the most suitable form for the corresponding distance power range, it is substantially better for spectacle wearers without increasing the time and cost of manufacturing prescription surfaces It ensures a wide view.
  • the difference between various types of progressive multifocal lenses is the difference between “average refractive power distribution” and “distribution of astigmatic difference”, and the usability of each lens also depends on the difference in those distributions.
  • the “average refractive power distribution” is a distribution of additional refractive power for compensating for a lack of adjusting power of a spectacle wearer, and more specifically, an average refractive power on a lens surface. This is the “surface average refractive power distribution” obtained by subtracting the base curve of the lens from the power distribution, that is, the surface refractive power at the distance measuring point F.
  • the “distribution of astigmatism” is the difference between the refractive powers of the two principal curvatures on the lens surface, that is, the “surface astigmatism distribution”.
  • the parameters required for this calculation include not only the refractive index of the lens material, but also all the factors that determine the shape of the spectacle lens and the positional relationship between the eyeball and the target.
  • the actual lens is framed in a spectacle frame, and is positioned about 12 to 15 in front of the eye. It is worn in a forward tilting state of about 10 ° (in Fig. 22, using 7).
  • the angle at which the line of sight intersects the two surfaces of the lens and the thickness at that position 2
  • the refractive power of the two surfaces the distance from the corneal vertex to the lens (in Fig. 22, use 12 mm), the distance from the corneal vertex to the center of rotation of the eyeball (in Fig. 22, use 13), Correction of the distance from the lens to the target and prism thinning (in Fig. 2 and 2 down one prism).
  • Optical information especially as transmitted light, also depends on the “objective distance” of what the spectacle wearer is looking at. Therefore, the “objective distance” must also be determined.
  • the “objective distance” does not depend on the distance power or addition of the spectacle wearer. In other words, the "far” that the wearer of the spectacle wants to see is usually “infinity”, and the “near” is the normal reading distance of about 30 cm to 33 cm.
  • the surface average power distribution is Assuming that the distribution is correct for that purpose, the distribution of the “objective distance” is proportionally distributed from the addition of the progressive multifocal lens worn by the spectacle wearer and the distribution of the surface average additional refractive power. Can be calculated.
  • P x (hereafter referred to as “objective power unit”.
  • objective power unit unit: dioptric power
  • P x is the basic progressive multifocal lens.
  • Addition degree D i (unit: diopter)
  • P n (unit: diopter)
  • SD i unit: diopter
  • the addition of a basic progressive multifocal lens is 2.0 diopters, the reciprocal of the short distance to be given is 3.0 diopters (33 cm), and the objective power is determined.
  • the “transmission average additional refractive power distribution” is different from the “surface average additional refractive power distribution” in that the value of the average additional refractive power along the horizontal cross-sectional curve in the area below the near power setting position N is The width W of the region of addition 2 or more becomes narrower when the distance power is positive, and becomes wider when the distance power is negative.
  • the width W of the field base with the positive distance power is set wider than before, and conversely, if the width W of the field base with the negative distance power is set narrower than before, The distribution of the average additional refractive power is obtained.
  • the value of the base curve of the semi-finished product (semi-finished lens) used for positive distance power here is generally larger than the value of the base curve of the semi-finished product used for negative distance power.
  • the progressive multifocal lens designed in consideration of the above points has better transmission average power distribution and transmission astigmatism distribution than the conventional one, and as a result, it has been found that it has the following properties did.
  • basic elements such as the progressive power multifocal lens such as the distance power measuring position F and the near power measuring position N are based on a certain regularity so as to satisfy a common wearing purpose.
  • the surface refractive power (unit: dioptric power) at the distance power measuring position F is defined as a base curve (B i), and the surface refractive power at two points, the distance power measuring position F and the near power setting position N.
  • the difference is defined as the addition power D i (unit: dioptric), and the area where the value of the surface average additional refracting power along the horizontal cross-section curve passing below the near power setting position N is D i 2 or more.
  • W (D i, B i) be the width of
  • one curve passing through at least two points of the distance power measuring position F and the near power setting position N is gazed at. Named as the main gaze in the sense that the line of sight passes most frequently, the deviation of any point P on this main gaze toward the horizontal recruitment side based on the position of the distance measurement point F.
  • the quantity H is
  • K is any constant that is 1.0 ⁇ K ⁇ 5.0
  • the additional surface power at point ⁇ is Dp
  • the reason why the additional surface refraction is reduced along the main line of sight is to look at the target at a closer distance, and to see the target at a closer distance means that the line of sight of the left and right eyes is further increased. It means that it shifts to the nose side (the convergence effect of the eye increases), and it is necessary to reduce the amount of deviation of the main gaze to the nose side in order to cope with it. Therefore, the deviation H of an arbitrary point P on the main line of sight is proportional to the value obtained by dividing the additional surface power D at the point P by D i.
  • the content of the above-described “left-right ⁇ -shaped design” can be further improved by using the following technology.
  • the astigmatism on the lens through which the line of sight passes, the direction in which it passes, the average power (spherical power + astigmatic power of 1 to 2), and the prismatic refractive power of the lens It is necessary to match the horizontal and vertical components with the left and right eyes. In this case, it is sufficient for the platform where the target to be viewed is in front of the lens wearer only to consider the arrangement of the main gaze and the distribution of the surface refractive power described above.
  • the angle of the line of sight of the left and right eyes will be the same when moving from front view to side view, so the distribution of optical conditions on the lens will be Horizontal mirror symmetry in the horizontal direction from the main gaze line described above (a symmetrical arrangement in which a mirror is placed at the position of the main gaze line. Symmetrical arrangement is not simply referred to as “lateral symmetry”. It is because we would like to include those with directionality in the above-mentioned “optical situation.”).
  • the angle of the line of sight of the left and right eyes changes when moving from frontal to lateral, and it moves toward the ear.
  • the line of sight is larger than the line of sight moving to the nose. This tendency is due to the rotation of the head in lateral view (usually the head rotates about half of the angle from front view to side view and the eyeball rotates in the rest). It becomes more condensed and conspicuous on the rotating eyeglass lens. Therefore, in order to see the finite distance, it is desirable that the portion where the main gazing line is deviated to the nose side with respect to the position of the F as described above is horizontally asymmetric in the horizontal direction.
  • the distribution of optical conditions on the lens in the horizontal direction from the main line of sight usually changes, so that the optical conditions on the lenses through which the left and right lines of sight pass are the same. Therefore, it is desirable that the change from the main gaze to the nose be more intense than the change from the ear to the ear.
  • At least one of the optical conditions, such as a change in the vertical component of the prism refractive power, is mirror-symmetrical about the point P as a boundary at the part that is not horizontally displaced with respect to the position of the distance power measurement position F. It is desirable that the change from point P to the nose side should be more intense than the change to the ear side in the part deviated to the nose side with reference to the distance power ⁇ fixed position F position. Will be.
  • a progressive addition lens having a larger addition (D i) is required with aging, so that the addition (D i) becomes larger.
  • a wearer with a relatively low degree of addition (D i) is relatively young and has a strong visual life, and requires a stable visual field (dynamic visual field) when the head and gaze are moved significantly.
  • a wearer with a relatively high degree (D i) is relatively old and therefore has a quiet visual life, and a stable visual field (static visual field) when the head and gaze are not moved too much is required. Therefore, the design itself depends on the value of the addition power (D i), that is, the astigmatism on the progressive multifocal lens, the direction of the astigmatism, the average power (spherical power + astigmatic power 1 Z 2), and the prism refraction of the lens. Distribution of horizontal and vertical components of force Should be changed to meet the above requirements.
  • the near vision zone tends to go away when the addition power (D ⁇ ) increases.
  • the above tendency can be alleviated by changing the design to increase the width W of astigmatism of about 1.00 diopter or less as the near vision zone. .
  • the diopter has a range of 0.25 dips to 5.00 dips, at least 0.75 dips to 3.00 diopters, and the horizontal direction passing through the near dioptric power measurement position N
  • the width of the region where the astigmatism value along the cross-sectional curve of X is less than X diopters is W (Di, X) mm
  • the addition (Di) increases, the tendency of the near vision zone to gouge can be reduced.
  • the addition (Di) increases, astigmatism in the near zone increases when the astigmatism in the near zone increases, so the static field of view becomes more stable but dynamic.
  • the field of view becomes unstable. That is, if a progressive multifocal lens having a relatively small addition is designed to stabilize the dynamic field of view, and if the above method is applied to a progressive multifocal lens having a relatively large addition, a relatively large addition will be obtained.
  • the static field of view of the progressive multifocal lens having the degree of stabilization is stabilized, and the above-mentioned requirements are satisfied at the same time.
  • astigmatism is defined as transmission astigmatism
  • average power is defined as transmission average power
  • the refraction power may be taken as a value calculated from the deflection angle of the line of sight.
  • addition especially “additional surface refractive power”, is in accordance with the definition of addition.
  • the present invention can be implemented even with a “line free of surface astigmatism (navel meridian)” which is often used in the past.
  • FIG. 1 is an explanatory view of a progressive multifocal lens for left eye 1 (diameter of 70) according to Example 1 as viewed from the surface side
  • FIG. 2 is a surface average of a basic design lens in Example 1.
  • FIG. 3 is a transmission average power distribution diagram of the basic design lens in Example 1
  • FIG. 4 is a surface average power distribution diagram of the progressive multifocal lens according to Example 1
  • FIG. FIG. 6 is a transmission average power distribution diagram of the progressive multifocal lens according to the first embodiment.
  • FIG. 6 is a surface astigmatism distribution diagram of the basic design lens in the first embodiment.
  • FIG. 8 is a transmission astigmatism distribution diagram of the designed lens.
  • FIG. 1 is an explanatory view of a progressive multifocal lens for left eye 1 (diameter of 70) according to Example 1 as viewed from the surface side
  • FIG. 2 is a surface average of a basic design lens in Example 1.
  • FIG. 3 is a transmission average power distribution
  • FIG. 8 is a surface astigmatism distribution diagram of the progressive multifocal lens according to the first embodiment.
  • FIG. 9 is a transmission astigmatism distribution diagram of the progressive multifocal lens according to the first embodiment.
  • FIG. 10 is a graph showing the astigmatism distribution.
  • FIG. 11 is a transmission average power distribution diagram of the basic design lens in Example 2
  • FIG. 12 is a surface average power distribution diagram of the progressive multifocal lens according to Example 2.
  • FIG. 13 is a transmission average power distribution diagram of the progressive multifocal lens according to Example 2
  • FIG. 14 is a surface astigmatism distribution diagram of the basic design lens in Example 2.
  • FIG. 5 is a transmission astigmatism distribution diagram of the basic design lens in Example 2
  • FIG. 5 is a transmission astigmatism distribution diagram of the basic design lens in Example 2
  • FIG. 16 is a surface astigmatism distribution diagram of the progressive multifocal lens according to Example 2
  • FIG. FIG. 18 is a transmission astigmatism distribution diagram of a progressive multifocal lens according to Example 2
  • FIG. 18 is a surface astigmatism distribution diagram of a progressive multifocal lens according to another embodiment of the present invention
  • FIG. 10 is a surface astigmatism distribution diagram of a multifocal lens according to another embodiment of the present invention.
  • the figure shows the surface average power distribution diagram of the progressive multifocal lens of Example 1 in FIG. 4 below the near power measurement position ⁇ .
  • FIG. 21 is a diagram in which the width W i of an area where the value of the surface average additional refractive power along the horizontal cross-sectional curve passing through the area is equal to or greater than D i / 2 is shown, and FIG. 21 is the embodiment of FIG.
  • the width of the area where the value of the surface average additional refractive power is equal to or greater than D i Z 2 along the horizontal cross-sectional curve passing below the near power measurement position N W2 is filled in
  • Fig. 22 is an explanatory diagram of the positional relationship between the spectacle lens and the eyeball
  • Fig. 23 is a table showing the tendency of the transmission distribution map with respect to the surface distribution map. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an explanatory diagram of a progressive multifocal lens for left eye 1 (diameter 7 Omni) according to Example 1 as viewed from the surface side.
  • the progressive multifocal lens 1 of this embodiment has a distance power setting position F at a position 8 mm above the geometric center G of the lens.
  • the near power setting position N is placed at a position of 6 mm and 2.5 mm inward on the sagittal side, and when the wearer of the lens looks in front at a position 2 mm above the geometric center G of the lens, This is an example in which a position E through which the line of sight passes is arranged.
  • the distance power is S-5.5 diopter
  • the base curve used is 2 dice
  • FIG. 4 is a surface average power distribution diagram of the progressive multifocal lens according to Example 1
  • FIG. 8 is a surface astigmatism distribution diagram of the progressive multifocal lens according to Example 1.
  • a progressive multifocal lens having such a distribution is designed as follows.
  • the optical information on the lens surface is represented in the form of a distribution diagram, and whether the distribution is optimal for the spectacle wearer is examined, and based on the results, , Optimal "surface average power distribution” and “surface astigmatism distribution” Is determined as a basic design lens.
  • FIG. 2 is a surface average power distribution diagram of the basic design lens in Example 1
  • FIG. 6 is a surface astigmatism distribution diagram of the basic design lens in Example 1.
  • the contour lines in the average power distribution diagram in FIG. 2 are contour lines of the average refractive power every 0.50 dips, and the contour lines in the astigmatism distribution diagram in FIG. It is a contour line of astigmatism for every diopter. These contours are common to each distribution map described below.
  • the “transmission average power distribution” and the “transmission astigmatism distribution” of the basic design lens are calculated from the surface average power distribution and the surface astigmatism distribution of the basic design lens thus obtained.
  • this calculation is performed by simulating the power and aberration of light rays entering the wearer's eye through the spectacle lens by three-dimensional ray tracing, after adding all the above factors. I have.
  • FIG. 3 is a transmission average power distribution diagram of the basic design lens in Example 1
  • FIG. 7 is a transmission astigmatism distribution diagram of the basic design lens in Example 1. Comparing the surface average power distribution diagram of FIG. 2 with the transmission average power distribution diagram of FIG. 3, it can be seen that in the transmission state, the average power particularly in the near portion region is abnormally increased. Similarly, comparing the surface astigmatism distribution diagram in FIG. 6 with the transmission astigmatism distribution diagram in FIG. 7, the field base in FIG. 7 is particularly close to the near area compared to the field base in FIG. It can be seen that the margin of the increase has increased.
  • the basic design lens has excellent surface average power distribution and surface astigmatism distribution, but the transmission average power distribution and transmission astigmatism distribution that actually affect the feeling of wearing are considerably inferior. You can see that it is.
  • the transmission average power distribution and the transmission astigmatism distribution itself must be as far as possible in the surface average power distribution and the surface astigmatism distribution of the basic design lens. It should be close.
  • W the surface average additional refractive power along the horizontal cross-sectional curve in the area below the near power setting position N
  • the width of the area where the value is 2 or more The improved design is repeated by trial and error in the direction narrower than the width w, and the transmission average power distribution and transmission astigmatism distribution of each stage are calculated, and the transmission average power distribution and transmission
  • the progressive multifocal lens of Example 1 was obtained by obtaining a lens whose astigmatism distribution was closest to the surface average power distribution and the surface astigmatism distribution of the basic design lens. The repetition of this design actually makes use of optimization methods using a computer.
  • FIG. 5 is a transmission average power distribution diagram of the first embodiment
  • FIG. 9 is a transmission astigmatism distribution diagram of the first embodiment.
  • the transmission average power distribution of Example 1 is more similar to the transmission average power distribution of the basic design lens. However, it can be seen that the average power is suppressed particularly in the near portion area and the distribution is closer to the target surface average power distribution of the basic design lens in FIG. 2, which is the target.
  • the transmission astigmatism distribution of Example 1 is the target, in particular, the aberration in the near portion is reduced, compared to the transmission astigmatism distribution of the basic design lens.
  • the distribution is close to the surface astigmatism distribution of the basic design lens in FIG. 6 and is improved.
  • the progressive multifocal lens of Example 1 was able to be made an overall superior lens compared to the basic design lens.
  • the lens 3 of Example 2 was designed by the same lens design method as the progressive multifocal lens of Example 1, and the same lens material was used.
  • FIG. 12 is a surface average power distribution diagram of the progressive multifocal lens according to Example 2
  • FIG. 16 is a surface astigmatism distribution diagram of the progressive multifocal lens according to Example 2.
  • the progressive multifocal lens according to the second embodiment has a basic design lens similar to the first embodiment. was obtained by trial and error based on the basic design lens as in the case of the platform of Example 1.
  • FIG. 1 ⁇ is a surface average power distribution diagram of the basic design lens in Embodiment 2
  • FIG. 11 is a transmission average power distribution diagram of the basic design lens in Embodiment 2
  • FIG. 14 is a basic design lens in Embodiment 2.
  • 15 is a transmission astigmatism distribution diagram of the basic design lens in Example 2.
  • FIG. 13 is a transmission average power distribution diagram of the second embodiment
  • FIG. 17 is a transmission astigmatism distribution diagram of the second embodiment.
  • the transmission average power distribution of Example 2 is particularly superior to the transmission average power distribution of the basic design lens, especially in the near vision region.
  • the average power is increased and the distribution is close to the surface average power distribution of the basic design lens shown in Fig. 1 ⁇ which is the target, which is improved.
  • the transmission astigmatism distribution of Example 2 is particularly small when the aberration in the far vision region is small and the target is the surface irregularity of the basic design lens in FIG. It is closer to the astigmatism distribution and improved.
  • FIGS. 18 and 19 are surface astigmatism distribution diagrams of a progressive multifocal lens according to another embodiment of the present invention.
  • the same 0-design method as in the first and second embodiments is used, and the description of the common parts will be omitted.
  • the difference between the first and second embodiments is that the example shown in FIG. 18 and the example shown in FIG. 19 are both lenses having a distance dioptric power of 0.00 diopters.
  • the example shown in FIG. 25 is shown by contour lines of astigmatism for every 0.25 diopter, and the example shown in FIG. 19 is a graph showing the astigmatism for every 0.125 diopter. This is the point indicated by the contour line.
  • F, E, and N shown in FIG. 18 and FIG. 19, respectively, are those of Examples 1 and 2. It has the same arrangement as the table, and a single curve (dotted line) almost vertically in the center of the lens is the main line of sight and passes through the three points F, E, and N.
  • the part where the main gazing line is not deviated in the horizontal direction with respect to the position of F (above F) is mirror symmetrical to the left and right.
  • “Yeon side part (right side)” is “dense”
  • “ear part (left side)” is force.
  • ⁇ It is "sparse”, and the change from the main gaze to the nose is more intense than the change to the ear.
  • This feature applies not only to astigmatism but also to the horizontal and vertical components of the astigmatism in the ⁇ direction, average refractive power, and prism refractive power.
  • the value of astigmatism along a horizontal cross-sectional curve passing near power N ⁇ fixed position N is less than X diopter. If the width of the area is W (Di, X) mm, then
  • the lens in FIG. 18 has twice the addition power of the lens in FIG.
  • the width (W4) of the 0.50 diopter is the addition of the astigmatism at the addition of-+ 2.0 ° 0 diopter. It should be equal to the width (W3).
  • FIG. 20 shows a surface average power distribution diagram of the progressive power multifocal lens of Example 1 in FIG. 4 along with a surface average added refractive power along a horizontal cross-sectional curve passing below the near power measurement position N.
  • Fig. 21 is a diagram illustrating the width Wl of the region equal to or greater than DiZ2, and Fig. 21 shows the surface average power distribution diagram of the progressive power multifocal lens of Example 2 in Fig. 12 with the near power measurement position N below.
  • FIG. 11 is a diagram in which the width W2 of a region where the value of the surface average additional refractive power along the horizontal cross-sectional curve that passes is equal to or greater than Di 2 is shown.
  • the base curve is a bi-diopter and the addition is a di-dioptric progressive power multifocal lens, and it follows the horizontal cross-sectional curve passing through the area below the near power measurement position N.
  • W l in Fig. 2 ⁇ is W l (2, 00, 2.00).
  • W2 in FIG. 21 is represented by W2 (2, 00, 7.00).
  • the progressive multifocal lens according to the present invention includes:
  • a group of progressive multifocals designed based on a certain regularity so that the basic elements as a progressive multifocal lens such as the distance diopter localization g F and the near dioptric power measurement position N satisfy a common wearing purpose.
  • the surface refractive power (unit: diopter) at the distance power measuring position F is defined as a base curve (B i), and the surface refractive power difference at two points between the distance power setting position F and the near power setting position N.
  • D i unit: diopter
  • W width of the area where the value of the surface average additional refractive power is D i 2 or more along the horizontal cross-sectional curve passing below the near power setting position N
  • the present invention is a type of spectacle lens, and includes, within a lens area, an area for viewing a distance called a “distance section”, an area for viewing an intermediate distance called an “intermediate section”,
  • This relates to a progressive multifocal lens that coexists with a near-vision area called the near vision section, and especially for presbyopia, without substantially shortening the manufacturing time and cost of prescription surfaces.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Description

明細書 累進多焦点レンズ 技術分野
本発明は眼鏡レンズに係わり、 更に詳しく は老視用累進多焦点レンズに関 する。 背景技術
一般に累進多焦点レンズには 「遠用部」 と呼ばれる遠方を見る為の領域と 「中間部」 と呼ばれる中間距離を見る為の領域と 「近用部」 と呼ばれる近方 を見る為の領域が存在する。 ここで、 中間距離とは概ね 5 0 c mから 2 mま での距離を指し、 これより遠い距離を遠方、 近い距離を近方と呼ぶ場台が多 い。 しかしながら時には遠方とは無限遠方のみを意味したり、 近方とは 3 0 c m乃至 3 3 c mを指すこともあって、 確たる定義が存在していないのが実 情である。
元来、 累進多焦点レンズには、 外目からそれと判る明瞭な境界線が存在し ないのであるから、 これらの定義が確定していなく とも実際の装用上に不都 台は無い。 しかしながら、 レンズの設計や製造、 検査、 更には枠入れする際 にはレンズ上に基準となるいく つかの点が必要となる。 それらの点のうち、 現在最も一般的なものに ( 1 ) 遠用度数測定位置 F ( 2 ) 近用度数測定位置 N ( 3 ) レンズの装用者が正面視をしたときに視線の通過する位置 Eの 3つ がある。
遠用度数測定位置 Fや近用度数測定位置 Nの位置を定めることは、 I S O や J I Sで定められた規格の検証にとって必須であり、 又視線の通過する位 置 Eはレンズの枠入れをする際の垂直方向や水平方向を定める上で必須であ る。
この他にも、 例えばレンズのプリズム屈折力の刺定位置 Q等が必須である 力 <、 幾何学中心点 Gに一致させている場台が多い。 但し、 枠入れの都台であ らかじめ Fが鼻側に内寄せされているレンズにあっては Qや N , Eもまた F と同量だけ、 通常の位置から更に内寄せされているのが一般的である。 又、 累進変化の起点や終点も重要な位置ではあるがレンズ上に表示義務が無く、 実刺による特定も困難であるので、 特許の技術内容を記述する際に用いる基 準点としてはやや不適当である。 しかしながら前記 Fや Nの位置はこれら累 進変化の起点や終点か、 もしく はそれらの点からレンズメ一ター開口部の半 怪に相当する距離 (2 ~ 4 m m程度) だけ上方及び下方にずれているだけの ことが多い。
1 0 —方、 累進多焦点レンズの良否はレンズ表面の光学的状態 (例えば、 表面 非点収差の変化、 表面非点収差の铀方向の変化、 表面平均付加屈折力の変化、 プリズム屈折力の水平成分の変化、 プリズム屈折力の垂直成分の変化) が適 切か否かによって論じられてきた。 例えば、 特公昭 4 9一 3 5 9 5号公報や 特公平 5— 2 0 7 2 9号公報では、 レンズのほぼ中央の主注視線の位置に i s 「へそ状子午線」 と呼ばれる微小球面の連なりを配置し、 「へそ状子午線は 球面の連結なので非点収差が無く、 良好な視野が得られる」 としてきた。 と ころが 「球面だから非点収差が無い」 というのは文字通り表面のことであり、 レンズを透過して眼鏡装用者の眼に届くいわゆる 「透過光」 に非点収差が無 いという状態にはならない。 平均屈折力も同様であり、 「球面」 のように表
2 0 面の平均屈折力分布が一定であっても、 透過光の平均屈折力分布は一定にな りえない。 この傾向は特に近用部等のレンズ周辺部や強度遠用度数の場合に 顕著であり、 実際に眼鏡装用者の眼に届いている 「透過光」 の平均屈折力や 非点収差の分布は、 前述の 「表面」 の平均屈折力や非点収差の分布とは大き く異なっている。
2 5 そこで、 「透過光」 については、 特公昭 4 7— 2 3 9 4 3号公報や特表平
4 - 5 0 0 8 7 0号公報、 特開平 6— 1 8 8 2 3号公報で言及されている。
しかし、 前記特公昭 4 7 - 2 3 9 4 3号公報や前記特表平 4 - 5 0 0 8 7
0号公報では、 いずれも主注視線上の非点収差について述べているにすぎず, 一本の線上における非点収差を整えただけで、 眼鏡装用者に対して良好な
「広い視野」 を提供することを目的とする観点からでは、 累進多焦点レンズ はとしては不十分であった。
また、 特開平 6— 1 8 8 2 3号公報では、 第 1面 (表面) を 「累進面」 と したままで、 「透過光」 の光学的状態の分布の不都台な部分を全て第 2面 (裏面) で解決しょうとしたものであり、 その第 2面 (裏面) は 「点対称性 及び蚰対称性の無い非球面」 としての開示のみで、 計算方法についても、 具 体的開示がない。
また、 「透過光」 の光学的伏態に係わるパラメ一ターもその変化の方法に ついて、 具体的開示が無い。 特に、 無収差の累進多焦点レンズがありえない のと同様に、 透過平均屈折力と透過非点収差とを同時に改良出来るとは限ら ない。 従って結果的に両者のバランスを図らざるを得ず、 そのバランスの取 り方がそれぞれの固有の技術であって、 その方法について何等言及されてい ない。
ここで、 処方面である第 2面 (裏面) を非球面とした場合、 非球面加工で あるため、 製造の時間やコス トが增えることは明らかである。 更にこの非球 面は処方面であるために、 受注後に製造せざるを得ず、 あらかじめ製造して おく方法が取れない。 従って、 製造の時間やコス トばかりではなく、 処方値 の受注後の納期上の問題も現行の方法に比べて不利である。
本発明はかかる状況に鑑み、 処方面製造の時間やコス トを増やすことなく, 眼鏡装用者に対して実質的に良好な 「広い視野」 が得られる累進多焦点レン ズを提供することを目的としてなされたものである。 発明の開示
上述の課題を解決するために本発明にかかる累進多焦点レンズは、 遠用度数測定位置 F及び近用度数測定位置 N等の累進多焦点レンズとして の基本要素が共通の装用目的を满たすように一定の規則性に基づいて設計さ れた 1群の累進多焦点レンズに厲する累進多焦点レンズであって、 前記遠用度数刺定位匱 Fにおける表面屈折力( 単位: ジォプター〉 をべ一 スカーブ (B i ) とし、 遠用度数測定位置 Fと近用度数測定位置 Nとの 2点 における表面屈折力差を加入度 D i ( 単位: ジォプター) とし、 該近用度数 刺定位置 Nより下方を通る水平方向の断面曲線に沿っての表面平均付加屈折 力の値が D i 2以上の領域の幅を W (D i, B i ) とするとき、
前記 1群の累進多焦点レンズの中から加入度が共に Da であり、 かつ、 ベ ースカーブがそれぞれ Bi , B2 の任意の 2つの累進多焦点レンズを抽出し たときに、 BI > B2 である場台には、 W (Da , BI ) >W (Da, B 2 ) なる関係を満足することを特徴とする累進多焦点レンズを提供する。 また、 より好ましく は、 上記累進多焦点レンズにおいて、 遠用度数測定位 置 F及び近用度数測定位置 Nのすくなく とも 2点を通る一本の曲線を主注視 線とするとき、
該主注視線上の任意の点 Pの、 遠用度数測定位置 Fを基準とした水平方向 皐側への偏位置 Hは H— K * Dp /Di で表されることを特徴とする累 進多焦点レンズを提供する (但し、 Kは、 1. 0≤K≤ 5. 0 である任 意の定数、 Dp は点 Pにおける付加表面屈折力、 Di は加入度である。 ) 。
さらに好ましく は、 上記いずれかの累進多焦点レンズであって、 前記主注 視線上の任意の点 Pと交差する水平方向の断面曲線に沿っての光学的状況の 変化は、 該主注視線が遠用度数刺定位置 Fを基準として水平方向に蝙位して いない部分では点 Pを境に左右鏡面対称であり、 該主注視線が遠用度数測定 位置 Fを基準として鼻側へ偏位している部分では点 Pから鼻側に至る変化の 方が耳側に至る変化より も激しいことを特徴とする累進多焦点レンズを提供 する。
さらに好ましくは、 上記いずれかの累進多焦点レンズであって、 前記加入 度 (Di ) が 0. 75ジォプターから 3. 00ジォプターの範囲の値を有し, 前記近用度数測定位置 Nを通る水平方向の断面曲線に沿っての非点収差の値 が Xジォプ夕一以下の領域の幅を W (Di , X) mmとし、
前記 1群の累進多焦点レンズの中から同一のベースカーブを有し、 前記加 入度 (D i ) がそれぞれ D a ジォプター及び D b ジォプ夕一で表わされる任 意の 2つの累進多焦点レンズ A , Bを抽出したとき、
前記加入度 (D i ) が D a > D b である場台には、
W ( D a , X ) > W ( D b , X ♦ D b / D a )
(但し、 X = 1 . 0 0 ジォプ夕一であるとする。 )
の関係を満足することを特徴とする累進多焦点レンズを提供する。
さらに好ましくは、 上記いずれかの累進多焦点レンズであって、 前記主注 視線上における任意の点 Pは遠用度数刺定位置 F及び近用度数測定位置 Nを 除いて、 2つの主曲率が異なる部分を有することを特徴とする累進多焦点レ ンズを提供する。
以下、 本発明をより詳しく説明する。
—般的な累進多焦点レンズにおける 「遠用部」 「中間部」 「近用部」 の明 視しうる領域の広さの配分は、 個々の累進多焦点レンズの種類により多少の 違いはあるが 「遠用部」 が最も広くなつている。 これは日常生活において遠 方視の頻度が極めて高いことに対応させているからである。 又、 非点収差に 対する人間の眼の感度も、 遠方視が最も敏感であり、 中間視から近方視に移 るにつれ くなっていく傾向が認められる。
独自に行なった装用テス 卜の結果を見ても、 遠方視における明視域は約 0 . 5 0ジォプター以内の非点収差であることを必要とする力;'、 近方視では約 0 . 7 5乃至 1 . 0 0ジォブター以内の非点収差であれば明視しうることが判明 している。 従ってある一定の非点収差の値で各明視域の広さを単純比蛟する ことは合理的ではないと判断される。
また、 累進レンズの良否はそのレンズ全体の視野に対する光学的状態の分 布が適切か否かによって論じられるべきである。 従って本発明は論理的にも 不十分な 「レンズ表面の光学的状態」 からの憶刺や、 一木の線上における非 点収差の状態だけではなく、 実質的に眼鏡装用者の眼に届いている 「透過光」 の平均屈折力や非点収差の分布等を予知することにより、 「レンズ表面の光 学的状態」 との違いを把握し、 その違いを 「レンズ表面の光学的状態」 にフ ィ一ドバックすることによって 「透過光の光学的状態」 を改良しょうとする ものである。
この目的自体は前記特開平ら一 1 8 8 2 3号と類似している力;、 本発明は 単なる願望に留まらず具体的な改良方法を提案し、 処方面製造の時間ゃコス トを增やすことなく、 その目的を実現している。
すなわち、 先ず処方面を比較的製造し易い従来通りの球面や乱視面等の形 状のままとし、 処方面製造の時間ゃコス トを增やさないようにしなければな らない。 そこで、 第 1面 (表面) を 「累進面」 とした幾つかの種類のベース カーブを有する半製品を準備する際に、 それらの半製品を用いる遠用度数の 範囲をあらかじめ定めておき、 各々の半製品の 「累進面」 を、 対応する遠用 度数範囲に最も適した形態に整えることによって、 処方面製造の時間ゃコス トを增やすことなく、 眼鏡装用者に対して実質的に良好な 「広い視野」 を確 保できるようにしている。
一方、 各種の累進多焦点レンズの違いは、 「平均屈折力分布」 と 「非点収 差の分布」 の違いであり、 各々のレンズの使い勝手もまた、 それらの分布の 違いで変わる。 なお、 ここでいう 「平均屈折力分布」 とは、 眼鏡装用者の調 節力の不足を補うための付加屈折力の分布のことであり、 より具体的にいう と、 レンズ表面での平均屈折力分布から、 そのレンズのベースカーブ、 即ち 遠用度数測定位置 Fの表面屈折力を減じた 「表面平均屈折力分布」 のことで ある。 又、 「非点収差の分布」 とは、 レンズ表面での二つの主曲率の屈折力 差、 即ち 「表面非点収差分布」 のことである。
従来の累進多焦点レンズは、 レンズ表面上の光学的情報を分布図の形で表 現し、 それらの分布図が眼鏡装用者にとって適切か否かを論ずることによつ て評価されてきた。
ところカ^ 実際に眼鏡装用者に届くのは、 眼鏡レンズを透過 ·屈折した
「透過光」 である。 従って 「レンズ表面上の光学的情報の分布図」 がいかに 優れていても 「レンズを透過した透過光の光学的情報の分布図」 が優れてい なくては意味がない。 即ち重要なのは 「表面平均屈折力分布」 や 「表面非点 収差分布」 ではなく、 「透過平均屈折力分布」 や 「透過非点収差の分布」 で ある。 これらの 「透過光の光学的情報の分布図」 を求めるためには実測によ る方法もあるが、 レンズ設計にフィ一 ドバックすることを考えると実際的で はない。 よって本願発明においては全て計算により 「透過光の光学的情報の 分布図」 を求めた。
この計算に必要なパラメータは、 レンズ材質の屈折率の他、 眼鏡レンズの 形状や眼球ゃ視標との位置関係を決定している要因は全て必要とされる。 第 2 2図に示したように、 現実のレンズは眼鏡枠に枠入れされて眼前約 1 2 〜 1 5 程度の位置に、 5 。 〜 1 0 ° 程度の前傾状態 (第 2 2図では、 7 。 を使用) で装用されるのであり、 実際には視線がレンズの 2つの面と交わ る角度やその位置での厚み、 2つの面の屈折力、 角膜頂点からレンズまでの 距離 (第 2 2図では、 1 2 mmを使用) 、 角膜頂点から眼球回転中心までの距 離 (第 2 2図では、 1 3 を使用) 、 レンズから視標までの距離、 プリズム シニングの補正 (第 2 2図では、 1プリズムダウン) 等がある。
また、 特に透過光としての光学的情報はその眼鏡の装用者が何を見ようと しているかという 「対物距離」 にも依存している。 したがって 「対物距離」 も求める必要がある。 ここで、 「対物距離」 はその眼鏡の装用者の遠用度数 や加入度には依存しない。 即ち、 その眼鏡の装用者が見ようとする 「遠方」 とは通常 「無限遠方」 のことであり、 「近方」 とは通常の読書距離である 30cmから 33cm程度の距離である。 又、 遠方や近方以外の他の視野領域に対す る 「対物距離」 は一般的な規範は無いが、 仮にその眼鏡の装用者が掛けてい る累進多焦点レンズの表面平均度数の分布が、 その目的において正しい分布 をなしていると仮定すれば、 「対物距離」 の分布はその眼鏡の装用者が掛け ている累進多焦点レンズの加入度と表面平均付加屈折力の分布から比例配分 的に算出しうる。
「対物距離」 を求めるために、 「対物距離」 の逆数 P x (以下 「対物パヮ 一」 と呼ぶ。 単位: ジォプ夕一) を考えると、 P x は、 基本となる累進多焦 点レンズの加入度を D i (単位: ジォプター) 、 与えようとする近方距離の 逆数を P n (単位: ジォブター) 、 求めようとする位置の表面平均付加屈折 力を S D i (単位: ジォプター) と、 それぞれしたとき、
P X = P n x S D i / D i
で与えられる。
例えば、 基本となる累進多焦点レンズの加入度が 2 . 0 0ジォプター、 与 えようとする近方距離の逆数が 3 . 0 0ジォプ夕一 (33cm) 、 「対物パワー」 を求めようとする位置の該累進多焦点レンズの表面平均付加屈折力が 1 . 5 0ジォブターとすると、 「対物パワー」 P x 3 . 0 0 X 1 . 5 0 / 2 . 〇 0 = 2 . 2 5ジォプ夕一となる。 これは対物距離に換算すると約 44.4cmにな る o
これらのパラメ一夕を使って計算して求めた 「透過光の光学的情報の分布 図」 とその計算の基となった累進多焦点レンズの 「表面の光学的情報の分布 図」 と比較すると以下のことが判明した。
「透過平均付加屈折力の分布」 は 「表面平均付加屈折分布」 よりも、 近用 度数刺定位置 Nより下方の領域における、 水平方向の断面曲線に沿っての平 均付加屈折力の値が加入度 2以上の領域の幅 Wは、 遠用度数が正のときに 狭く なり、 負のときには逆に広く なる。
従って、 遠用度数が正の場台の幅 Wは、 従来より も広く設定し、 逆に遠用 度数が負の場台の幅 Wは従来より も狭く設定すれば本来の目的により近い 「透過平均付加屈折力の分布」 が得られる。
ここでの正の遠用度数に用いられる半製品 (セミフィ ニッ シュ ドレンズ) のベースカーブの値は、 負の遠用度数に用いられる半製品のベースカーブの 値よりも大きいことが一般的である。
以上の点を考慮して設計された累進多焦点レンズは、 透過平均度数分布や 透過非点収差分布が従来のものより優れており、 結果的に以下のような性質 を備えていることが判明した。
すなわち、 遠用度数測定位置 F及び近用度数測定位置 N等の累進多焦点レ ンズとしての基本要素が共通の装用目的を満たすように一定の規則性に基づ いて設計された 1群の累進多焦点レンズに属する累進多焦点レンズにおいて は、
前記遠用度数測定位置 Fにおける表面屈折力( 単位: ジォプ夕一) をべ一 スカーブ (B i ) とし、 遠用度数測定位置 Fと近用度数刺定位置 Nとの 2点 における表面屈折力差を加入度 D i ( 単位: ジォプ夕一) とし、 該近用度数 刺定位置 Nより下方を通る水平方向の断面曲線に沿っての表面平均付加屈折 力の値が D i 2以上の領域の幅を W (D i, B i ) とするとき、
前記 1群の累進多焦点レンズの中から加入度が共に Da であり、 かつ、 ベ ースカーブがそれぞれ B l , B 2 の任意の 2つの累進多焦点レンズを抽出し たときに、 B l > B2 である場合には、 W (Da , B l ) >W (Da , B 2 ) なる関係を満足する。
また、 本発明の累進多焦点レンズを更に使い易くするためには、 前記遠用 度数測定位置 F及び近用度数刺定位置 Nの少なく とも 2点を通る一本の曲線 を想定し、 注視するときの視線の通過頻度が最も高いという意味で主注視線 と名付け、 この主注視線上の任意の点 Pの、 遠用度数測定位置 Fの位置を基 準とした水平方向募側への偏位量 Hは
Kを 1. 0≤ K≤ 5. 0 である任意の定数、
点 Ρにおける付加表面屈折力を Dp 、
加入度を Di としたとき、
H = K ♦ Dp /O i
で表されるとして主注視線のレンズ上の位置を定めるようにすればよいこと が判明した。
主注視線に沿って付加表面屈折カを增やしてあるのは、 より近い距離の視 檫を見るためであり、 より近い距離の視標を見るということは左右眼の視線 が相互に更に鼻側に寄る (眼の輻輳作用が増える) ということであるから、 それに対応させる為には主注視線の鼻側への偏位量を增やす必要がある。 従 つて、 主注視線上の任意の点 Pの偏位量 Hは点 Pにおける付加表面屈折力 D を D i で割った値に比例する。 又、 任意の定数 Kの値に幅を持たせたのは, 偏位量 Hの位置におけるレンズの透過屈折力の水平方向成分によるプリズム 作用のため、 視線がレンズを通過する際に屈折し、 前記透過屈折力が負の場 台には Kを小さく し、 正の場台には Kを大きくすることが望ましい。 また、 透過屈折力が 0の場台には、 K = 2 . 5程度の値が望ましい。
本発明の累進多焦点レンズを更に使い易くするために、 前述した 「左右别 型設計」 の内容を次に示す技術とすることにより更に改良することが出来る。 良好な両眼視を得るためには、 視線が通過するレンズ上の非点収差やその 幸由方向、 平均度数 (球面度数 +乱視度数の 1ノ 2 ) 、 更にはレンズのプリズ ム屈折力の水平成分や垂直成分を、 左右眼で一致させることが必要となる。 こ こにおいて、 見ようとする視標がレンズ装用者の正面にある場台は前述の 主注視線の配置や表面屈折力の配分を考慮するだけで事足りる。
ところが見ようとする視標がレンズ装用者の側方に移った場台は、 片眼の視 線が耳側に移動し他眼の視線が鼻側に移動するので、 両方の視線が通過する レンズ上の光学的状況が同じになるとは限らない。
仮に、 見ようとする視標がレンズ装用者の無限遠方であれば、 正面視から 側方視に移るときに左右眼の視線のふれる角度は同じになるから、 レンズ上 の光学的状況の分布は前述の主注視線を境に水平方向に左右鏡面対称 (主注 視線の位置に鏡を置いて写した様な対称配置。 単に 「左右対称」 と しないの は、 非点収差の ΐ由方向の様に方向性のあるものをも前述の 「光学的状況」 に 含めたいからである。 ) となっていることが望ま しい。
—方、 見ようとする視標がレンズ装用者の有限距離であれば、 眼の輻輳作 用により左右眼の視線は相互に鼻側に寄っている。 この状態で正面視から側 方視に移るとき、 視標までの距離が不変ならば、 左右眼の視線のふれる角度 は同じになる。 と::ろ力;'、 ごく近方を例にとって考えればすぐに判る様に正 面視から側方視に移るとき、 視標までの距離は遠ざかるのが普通である。 そ うなれば眼の輻輳作用が弱まり、 両眼の視線は平行に近く なる。
従って、 見ようとする視標がレンズ装用者の有限距離にあれば、 正面視か ら側方視に移るときに左右眼の視線のふれる角度が異なり、 耳側に移動する 視線の方が、 鼻側に移動する視線より も大きい。 この傾向は側方視に於ける 頭部の回転 (通常は正面視から側方視に移る角度の約半分を頭部が回転し、 残りを眼球が回転する。 ) のために、 頭部と付随して回転する眼鏡レンズ上 では一層凝縮され、 顕著となる。 このため有限距離を見るために、 主注視線 が前記 Fの位置を基準として鼻側に偏位している部分では、 水平方向に左右 非対称となっていることが望ましい。
累進多焦点レンズでは主注視線から水平方向へのレンズ上の光学的状況の 分布は変化しているのが普通であるから、 左右の視線が通過するレンズ上の 光学的状況を同じにするためには、 主注視線から鼻側に至る変化の方が耳側 に至る変化よりも激しく なつていることが望ましい。
これらをまとめると、
前記主注視線上の任意の点 Pと交差する水平方向の断面曲線に沿っての非 点収差の変化、 非点収差の軸方向の変化、 平均屈折力の変化、 プリズム屈折 力の水平成分の変化、 プリズム屈折力の垂直成分の変化等の光学的状況の少 なく とも 1つは遠用度数測定位置 Fの位置を基準として水平方向に偏位して いない部分では点 Pを境に左右鏡面対称とし、 遠用度数脷定位置 Fの位置を 基準として鼻側へ偏位している部分では点 Pから鼻側に至る変化の方が耳側 に至る変化よりも激しく なつていることが望ましいということになる。
本発明の累進多焦点レンズを更に使い易くするために、 加齢と共により大 きな加入度 (D i ) の累進レンズが必要となることに鑑み、 加入度 (D i ) が大きくなった場台に生じる問題点についての対策も考慮した。
加入度 (D i ) が比較的小さい装用者は比較的若いので視生活が活発であ り、 頭部や視線を大きく動かしたときの視野 (動的視野) の安定が要求され. 逆に加入度 (D i ) が比較的大きい装用者は比較的高齢なので静かな視生活 であり、 頭部や視線をあまり大きく動かさないときの視野 (静的視野) の安 定が要求される。 従って加入度 (D i ) の値によって設計そのもの、 即ち、 累進多焦点レンズ上の非点収差やその 由方向、 平均度数 (球面度数 +乱視度 数の 1 Z 2 ) 、 更にはレンズのプリズム屈折力の水平成分や垂直成分の分布 を、 上記要求に合わせるべく変えることが望ましい。
又、 独自に行なった装用テス トの結果、 近方視における明視域の限界非点 収差量と加入度 (Di ) との相関は殆ど認められれず、 約 0. 75乃至1. 0〇ジォプター以内の非点収差であれば明視しうることが判明した。
従って、 従来のようにいかなる加入度 (Di ) の値に対しても同一の設計 であれば、 加入度 (D〖 ) が大きくなつたとき近用明視域が抉くなる傾向か ら逃れられないが、 加入度 (Di ) が大きく なる程、 近用明視域として約 1. 00ジォプター以下の非点収差の幅 Wをより広くする設計に変えれば、 上記 の傾向を緩和出来ることになる。
これらをまとめると、
例えば、 加入度 (Di ) が 0. 25ジォプ夕一から 5. 00ジォブ夕一、 少なく とも 0. 75ジォプ夕一から 3. 00ジォプターの範囲を備え、 近用 度数測定位置 Nを通る水平方向の断面曲線に沿っての非点収差の値が Xジォ プ夕ー以下の領域の幅を W (Di , X) mmとするとき、
該加入度 (Di ) がそれぞれ Da ジォプター, Db ジォプターで示され る A, Bの 2種類のレンズの関係において、
該加入度 (Di ) が Da > Db のとき、
W (Da , X) >W (Db , X · Db /Da )
(但し、 X = 1. 00 ジォプ夕一)
とすれば加入度 (Di ) が大きくなつたとき、 近用明視域が抉く なる傾向を 緩和することが出来る。 ただし、 加入度 (Di ) が大きくなつたとき、 近用 領域での非点収差を'减らすと近用側方の非点収差が増大するので、 静的視野 はより安定するが動的視野は不安定となる。 即ち、 比較的小さい加入度を有 する累進多焦点レンズに動的視野を安定させる設計を施し、 比較的大きい加 入度を有する累進多焦点レンズに上記の方法を適用すれば、 比較的大きい加 入度を有する累進多焦点レンズの静的視野が安定することとなり、 前述の要 求をも同時に満足させることになる。
本発明では非点収差を透過非点収差、 平均度数を透過平均度数、 更にプリ ズム屈折力を視線のふれ角から算出される値としてとらえてもよい。 なお、 加入度の表現のみ、 特に 「付加表面屈折力」 としたのは加入度の定義に沿つ たものである。 又、 前記主注視線の説明として、 従来よく用いられている 「表面非点収差の無い線 (へそ状子午線) 」 であっても本願発明を実施する ことができる。 図面の簡単な説明
第 1図は実施例 1にかかる左眼用累進多焦点レンズ 1 (直径 7 0譲) を表 面側から見た説明図であり、 第 2図は実施例 1における基本設計レンズの表 面平均度数分布図であり、 第 3図は実施例 1における基本設計レンズの透過 平均度数分布図であり、 第 4図は実施例 1にかかる累進多焦点レンズの表面 平均度数分布図であり、 第 5図は実施例 1にかかる累進多焦点レンズの透過 平均度数分布図であり、 第 6図は実施例 1における基本設計レンズの表面非 点収差分布図であり、 第 7図は実施例 1における基本設計レンズの透過非点 収差分布図であり、 第 8図は実施例 1にかかる累進多焦点レンズの表面非点 収差分布図であり、 第 9図は実施例 1にかかる累進多焦点レンズの透過非点 収差分布図であり、 第 1 0図は実施例 2における基本設計レンズの表面平均 度数分布図であり、 第 1 1図は実施例 2における基本設計レンズの透過平均 度数分布図であり、 第 1 2図は実施例 2にかかる累進多焦点レンズの表面平 均度数分布図であり、 第 1 3図は実施例 2にかかる累進多焦点レンズの透過 平均度数分布図であり、 第 1 4図は実施例 2における基本設計レンズの表面 非点収差分布図であり、 第 1 5図は実施例 2における基本設計レンズの透過 非点収差分布図であり、 第 1 6図は実施例 2にかかる累進多焦点レンズの表 面非点収差分布図であり、 第 1 7図は実施例 2にかかる累進多焦点レンズの 透過非点収差分布図であり、 第 1 8図は本発明による他の実施例の累進多焦 点レンズの表面非点収差分布図であり、 第 1 9図は本発明による他の実施例 の累 ϋ多焦点レンズの表面非点収差分布図であり、 第 2 0図は第 4図の実施 例 1の累進多焦点レンズの表面平均度数分布図に近用度数測定位置 Νより下 方を通る水平方向の断面曲線に沿っての表面平均付加屈折力の値が D i / 2 以上の領域の幅 W i を記入した図であり、 第 2 1図は第 1 2図の実施例 2の 累進多焦点レンズの表面平均度数分布図に近用度数測定位置 Nより下方を通 る水平方向の断面曲線に沿っての表面平均付加屈折力の値が D i Z 2以上の 領域の幅 W2 を記入した図であり、 第 2 2図は眼鏡レンズと眼球との位置関 係の説明図であり、 第 2 3図は表面分布図に対する透過分布図の傾向を表に して示した図である。 発明を実施するための最良の形態
1 0 (実施例 1 )
第 1図は実施例 1にかかる左眼用累進多焦点レンズ 1 (直径 7 O mni) を表 面側から見た説明図である。
第 1図において、 この実施例の累進多焦点レンズ 1は、 レンズの幾何中心 Gの上方 8 m mの位置に遠用度数刺定位置 Fを配置し、 このレンズの幾何中 i s 心 Gの下方 1 6 m mでかつ皐側内方 2 . 5 m mの位置に近用度数刺定位置 N を配置し、 さらにレンズの幾何中心 Gの 2 m m上方の位置にレンズの装用者 が正面視をしたときに視線の通過する位置 Eを配置した例である。
なお、 本実施例においては、 遠用度数は S — 5 . 5 0ジォプター、 加入度 は A D D = + 2 . 0 0 ジォプター、 使用ベースカーブは 2ジ才プ夕一、 レン 2 0 ズ材料は、 ジエチレングリコールビスァリルカーボネー ト、 屈折率 n d = 1 .
4 9 9である。
第 4図は実施例 1にかかる累進多焦点レンズの表面平均度数分布図であり、 第 8図は実施例 1にかかる累進多焦点レンズの表面非点収差分布図である。
この様な分布を有する累進多焦点レンズは次のようにして設計したもので
2 5 ある。
すなわち、 まず、 従来の手法を用いて、 レンズ表面上の光学的情報を分布 図の形で表現し、 それらの分布が眼鏡装用者にとつて最適か否かを検討し、 その結果に基づいて、 最適な 「表面平均度数分布」 及び 「表面非点収差分布」 を有するレンズを基本設計レンズとして求める。
第 2図は実施例 1における基本設計レンズの表面平均度数分布図であり、 第 6図は実施例 1における基本設計レンズの表面非点収差分布図である。 な お、 第 2図の平均度数分布図における等高線は、 0 . 5 0ジォプ夕一毎の平 均屈折力の等高線であり、 第 6図の非点収差分布図における等高線は、 0 . 5〇ジォプター毎の非点収差の等高線である。 これらの等高線は以下説明す る各分布図に共通するものである。
次に、 こうして求めた基本設計レンズの表面平均度数分布及び表面非点収 差分布から、 基本設計レンズの 「透過平均度数分布」 及び 「透過非点収差の 分布」 を計算によって求める。 この計算は、 実際には、 上述の要因をすベて 加えたうえで、 眼鏡レンズを通して装用者の眼に入る光線のパワーや収差等 を、 3次元光線追跡でシミ ユレーショ ンすることによって行っている。
第 3図は実施例 1における基本設計レンズの透過平均度数分布図であり、 第 7図は実施例 1における基本設計レンズの透過非点収差分布図である。 第 2図の表面平均度数分布図と第 3図の透過平均度数分布図を比較すると , 透過の状態では、 特に近用部領域の平均度数が異様に增加していることがわ かる。 同様に、 第 6図の表面非点収差分布図と第 7図の透過非点収差分布図 を比較すると、 第 7図の場台が第 6図の場台に比較して特に近用部領域の収 差が増加していることがわかる。
以上の結果から、 基本設計レンズは、 表面平均度数分布及び表面非点収差 分布は優れているが、 実際に装用感を左右する透過平均度数分布及び透過非 点収差分布は、 かなり劣るものになっていることがわかる。
基本設計レンズが本来目指した最適な装用感を実際に得るためには、 透過 平均度数分布及び透過非点収差分布自体が、 基本設計レンズの表面平均度数 分布及び表面非点収差分布に可能なかぎり近くなるようにすればよい。
そこで、 本実施例においては、 遠用度数が負であることを考慮し、 W (近 用度数刺定位置 Nより下方の領域における水平方向の断面曲線に沿っての表 面平均付加屈折力の値が加入度ノ 2以上の領域の幅) を、 基本設計レンズの 幅 wより狭くする方向で改良設計を試行錯誤的に繰り返し、 各場台の透過平 均度数分布及び透過非点収差分布を計算で求めて、 その求めた中から透過平 均度数分布及び透過非点収差分布が、 基本設計レンズの表面平均度数分布及 び表面非点収差分布に最も近いものを得て実施例 1の累進多焦点レンズとし た。 なお、 この設計の繰り返しは実際にはコンピュータを用いた最適化手法 等を駆使している。
第 5図は実施例 1の透過平均度数分布図であり、 第 9図は実施例 1の透過 非点収差分布図である。 これらの図と、 第 3図及び第 7図との比較から明ら かなように、 度数分布に関しては、 基本設計レンズの透過平均度数分布に比 蛟して実施例 1の透過平均度数分布の方が、 特に近用部領域の平均度数が押 さえられ、 目標であるところの第 2図の基本設計レンズの表面平均度数分布 に近くなっていて改善されていることがわかる。
また、 非点収差分布に関しては、 基本設計レンズの透過非点収差分布に比 蛟して実施例 1の透過非点収差分布の方が、 特に近用部領域の収差が滅少し、 目標であるところの第 6図の基本設計レンズの表面非点収差分布に近くなつ ていて改善されていることがわかる。
以上の結果から、 実施例 1の累進多焦点レンズは、 基本設計レンズに比餃 して総合的に優れたレンズにすることができたことがわかる。
(実施例 2 )
実施例 2のレンズ 3も第 1図に示したように、 実施例 1の累進多焦点レン ズと同一のレンズ設計方法で設計したもので、 用いたレンズ材料も同一であ る。 実施例 1と異なる点は、 本実施例においては、 遠用度数を S + 4 . 5 0 ジォプ夕一に、 加入度を A D D = + 2 . 0 0ジォプターに、 使用ベースカー ブを 7ジォプターに、 それぞれ設定した点である。
第 1 2図は実施例 2にかかる累進多焦点レンズの表面平均度数分布図であ り、 第 1 6図は実施例 2にかかる累進多焦点レンズの表面非点収差分布図で ある。
この実施例 2の累進多焦点レンズは、 実施例 1 と同様に、 基本設計レンズ を求め、 その基本設計レンズを基準にして実施例 1の場台と同様に試行錯誤 的に求めたものである。
第 1 ◦図は実施例 2における基本設計レンズの表面平均度数分布図、 第 1 1図は実施例 2における基本設計レンズの透過平均度数分布図、 第 1 4図は 実施例 2における基本設計レンズの表面非点収差分布図、 第 1 5図は実施例 2における基本設計レンズの透過非点収差分布図である。
これに対して、 第 1 3図は実施例 2の透過平均度数分布図、 第 1 7図は実 施例 2の透過非点収差分布図である。
これらの図の比較から明らかなように、 度数分布に関しては、 基本設計レ 1 0 ンズの透過平均度数分布に比較して実施例 2の透過平均度数分布の方が、 特 に近用部領域の平均度数が增加し、 目標であるところの第 1 ◦図の基本設計 レンズの表面平均度数分布に近くなっていて改善されており、 また、 非点収 差分布に関しても、 基本設計レンズの透過非点収差分布に比較して実施例 2 の透過非点収差分布の方が、 特に遠用部領域の収差が'减少し、 目標であると i s ころの第 1 4図の基本設計レンズの表面非点収差分布に近くなっていて改善 されていること力 <わかる。
(実施例 3 )
第 1 8図及び第 1 9図はそれぞれ本発明による他の実施例の累進多焦点レ ンズの表面非点収差分布図である。 これらの実施例も実施例 1 , 2と同一の 0 設計手法が用いられているので、 共通する部分の説明は省略する。
実施例 1 , 2と異なる点は、 第 1 8図に示される例及び第 1 9図に示され る例が、 ともに、 遠用度数◦. 0 0ジオプトリーのレンズである点、 第 1 8 図に示される例が、 加入度数 A D D = + 2 . 0 0ジォプターであり、 第 1 9 図に示される例が、 加入度数 A D D - + 1 . 0 0ジォプターであり、 第 1 8
2 5 図に示される例は、 0 . 2 5ジォプター毎の非点収差の等高線で示したもの であり、 第 1 9図に示される例は、 0 . 1 2 5ジォプター毎の非点収差の等 高線で示したものである点である。
第 1 8図、 第 1 9図にそれぞれに記された F, E , Nは実施例 1 , 2の場 台と同じ配置であり、 レンズのほぼ中央縱方向にある一本の曲線 (点線) は 主注視線であり、 F, E, Nの 3点を通っている。
各々に描かれた非点収差の等高線の間隔のうち、 主注視線が Fの位置を基 準として水平方向に偏位していない部分 (Fより上部) では左右鏡面対称で あり、 主注視線が Fの位置を基準として鼻側へ偏位している部分 (Fより下 部) では、 「彝側部分 (向かって右側) 」 が 「密」 、 「耳側部分 (向かって 左側) 」 力《 「疎」 であって、 主注視線から鼻側に至る変化の方が耳側に至る 変化よりも激しくなつている。 この特徴は非点収差ばかりではなく、 非点収 差の铀方向、 平均屈折力、 プリズム屈折力の水平成分と垂直成分においても 同様である。
いま、 同一ベースカーブを有し、 加入度数が D i ジォプターの累進多焦点 レンズにおいて、 近用度数脷定位置 Nを通る水平方向の断面曲線に沿っての 非点収差の値が Xジォプター以下の領域の幅を W (Di , X) mmとすると さ、
該加入度 (Di ) がそれぞれ Da ジォプター, Db ジォプターで示され る A, Bの 2種類のレンズの関係において、
該加入度 (Di ) が Da >Db のとき、
W (Da , X) > W (Db , X · Db /Da )
(但し、 X = 1. 00 ジォプター)
という関係と、 第 18図、 第 1 9図に示される累進多焦点レンズの互いの関 係とを比較検討してみる。
そうすると、 第 18図の場台の近用部の W3 は W3 =W (2. 00, 1. 00) であり、 第 1 9図の場台の近用部の W4 は W4 =W ( 1. 00, 〇. 50) と表される。
もし、 第 18図、 第 1 9図の各場台が同一の設計であるならば、 第 18図 のレンズは第 19図のレンズの 2倍の加入度であるので、 第 18図のレンズ の非点収差の分布は第 1 9図のレンズを 2枚重ねたものの非点収差分布に等 しくなるはずである。 即ち、 加入度 =+ 1. 00ジォプターにおける非点収差量 0. 50ジォプ ターの幅 (W4 ) は、 加入度 -+ 2. ◦ 0ジォプ夕一における非点収差 量 1. 00ジォプ夕一の幅 (W3 ) に等しく なるはずである。
ところ力く、 第 18図、 第 19図のレンズにおいて、 Nを通る水平方向の 2 つの矢印の幅を比較すると W3 >W4 , 即ち、 W (2. 00, 1. 00 ) > W ( 1. 00, 0. 50) となっていて上述の関係を満たしており、 加入度 が大きくなったとき、 近用明視域が狭く なる傾向を緩和する設計をしている ことが判る。
(実施例 1のレンズと実施例 2のレンズとの関係)
次に実施例 1のレンズと実施例 2のレンズとの関係を検証する。
第 20図は第 4図の実施例 1の累進多焦点レンズの表面平均度数分布図に 近用度数測定位置 Nの下方を通る水平方向の断面曲線に沿っての表面平均付 加屈折力の値が D i Z2以上の領域の幅 Wl を記人した図であり、 第 21図 は第 12図の実施例 2の累進多焦点レンズの表面平均度数分布図に近用度数 測定位置 Nの下方を通る水平方向の断面曲線に沿っての表面平均付加屈折力 の値が D iノ2以上の領域の幅 W2 を記入した図である。
これらの図において、 ベースカーブが B i ジォプター、 加入度が D i ジォ プ夕一の累進多焦点レンズであって、 近用度数測定位置 Nより下方の領域を 通る水平方向の断面曲線にそっての表面付加屈折力の値が D iノ 2以上の領 域の幅を W (D i , B i ) とするとき、 第 2〇図における Wl は Wl (2、 00, 2. 00) で表わされ、 第 21図における W2 は W2 (2、 00, 7. 00) で表わされる。 ここで、 W1 と W2 との長さを比較してみると、 各々 の位置が近用度数測定位置 Nの近傍では大差ないが、 下方の領域にいく につ れ、 W2 >W1 となっていることがわかる。
そうすると、 加入度が 2. 00であり、 ベースカーブがそれぞれ 7ジ才ブ ター, 2ジォプターの 2つの累進多焦点レンズにおいて、 ベースカーブの値 が 7. 00 > 2. 00のとき、 W2 (2、 00, 7. 00) >W1 (2、 〇
0, 2. ◦◦) なる関係を満足する累進多焦点レンズとなっていることがわ かる。
なお、 実施例 1 , 2の結果から 「表面分布図」 に対する 「透過分布図」 の 傾向は第 2 3図に表にして示したようになる。
以上詳述したように、 本発明にかかる累進多焦点レンズは、
遠用度数刺定位 g F及び近用度数測定位置 N等の累進多焦点レンズとして の基本要素が共通の装用目的を満たすように一定の規則性に基づいて設計さ れた 1群の累進多焦点レンズに厲する累進多焦点レンズであって、
前記遠用度数測定位置 Fにおける表面屈折力( 単位: ジォプター) をべ一 スカーブ (B i ) とし、 遠用度数猁定位置 Fと近用度数刺定位置 Nとの 2点 における表面屈折力差を加入度 D i ( 単位: ジォプター〉 とし、 該近用度数 刺定位置 Nより下方を通る水平方向の断面曲線に沿っての表面平均付加屈折 力の値が D i 2以上の領域の幅を W ( D i , B i ) とするとき、
前記 1群の累進多焦点レンズの中から加入度が共に D a であり、 かつ、 ベ ースカーブがそれぞれ B l , B 2 の任意の 2つの累進多焦点レンズを抽出し たときに、 B l > B 2 である場合には、 W ( D a , B 1 ) > W ( D a , Β
2 ) なる閲係を满足することを特徴としたことにより、 処方面製造の時間や コス トを增やすことなく、 眼鏡装用者に対して実質的に良好な 「広い視野」 が得られる累進多焦点レンズを得ているものである。 産業上の利用可能性
本発明は眼鏡レンズの 1種であって、 レンズの領域内に、 「遠用部」 とよ ばれる遠方を見るための領域と、 「中間部」 とよばれる中間距離を見るため の領域と、 「近用部」 とよばれる近方を見るための領域とを共存させた累進 多焦点レンズに関するもので、 特に、 老眼視用関して、 処方面の製造時間や コス トを增やすことなく実質的に 「広い視野」 が得られる累進多焦点レンズ を提供する。

Claims

請求の範囲
1. 遠用度数測定位置 F及び近用度数測定位置 N等の累進多焦点レンズと しての基本要素が共通の装用目的を満たすように一定の規則性に基づいて設 計された 1群の累進多焦点レンズに属する累進多焦点レンズであって、 前記遠用度数測定位置 Fにおける表面屈折力( 単位: ジォプター) をべ一 スカーブ (B i ) とし、 遠用度数測定位置 Fと近用度数測定位置 Nとの 2点 における表面屈折力差を加入度 D i ( 単位: ジォプ夕一〉 とし、 該近用度数 測定位置 Nより下方を通る水平方向の断面曲線に沿っての表面平均付加屈折 力の値が D iノ2以上の領域の幅を W (D i, B i ) とするとき、
前記 1群の累進多焦点レンズの中から加入度が共に Da であり、 かつ、 ベ ースカーブがそれぞれ Bl , B2 の任意の 2つの累進多焦点レンズを抽出し たときに、 Bl > B 2 である場台には、 W (Da , Bl ) >W (Da , B 2 ) なる関係を满足することを特徴とする累進多焦点レンズ。
2. 請求の範囲 1に記載の累進多焦点レンズであって、 遠用度数測定位置 F及び近用度数刺定位置 Nのすくなく とも 2点を通る一本の曲線を主注視線 とするとき、
該主注視線上の任意の点 Pの、 遠用度数測定位置 Fを基準とした水平方向彝 側への偏位量 Hは H==K · Dp / Di で表されることを特徴とする累進 多焦点レンズ。
(但し、 Kは、 1. 0≤K≤ 5. 0 である任意の定数、 Dp は点 Pにお ける付加表面屈折力、 Di は加入度である。 )
3. 請求の範囲 1又は 2に記載の累進多焦点レンズであって、 前記主注視 線上の任意の点 Pと交差する水平方向の断面曲線に沿つての光学的状況の変 化は、 該主注視線が遠用度数測定位置 Fを基準として水平方向に偏位してい ない部分では点 Pを境に左右鏡面対称であり、 該主注視線が遠用度数測定位 置 Fを基準として彝側へ偏位している部分では点 Pから鼻側に至る変化の方 が耳側に至る変化よりも激しいことを特徴とする累進多焦点レンズ。
4. 請求の範囲 1ないし 3のいずれかに記載の累進多焦点レンズであって、 前記加入度 (Di ) が◦· 75ジォプ夕一から 3. 00ジォプターの範囲の 値を有し、 前記近用度数測定位置 Nを通る水平方向の断面曲線に沿っての非 点収差の値が Xジ才プター以下の領域の幅を W (Di , X) mmとし、 前記 1群の累進多焦点レンズの中から同一のベースカーブ B iを有し、 前 記加人度 (Di ) がそれぞれ Da ジォプター及び Db ジォプターで表わされ る任意の 2つの累進多焦点レンズ A, Bを抽出したとき、
前記加入度 (Di ) が Da > Db である場合には、
W (Da , X) >W (Db , X · Db ZDa )
(但し、 X l. 00 ジォプ夕一であるとする。 )
の関係を満足することを特徴とする累進多焦点レンズ。
5. 請求の範囲項 1ないし 4のいずれかに記載の累進多焦点レンズであつ て、 前記主注視線上における任意の点 Pは遠用度数脷定位置 F及び近用度数 刺定位置 Nを除いて、 2つの主曲率が異なる部分を有することを特徴とする 累進多焦点レンズ。
PCT/JP1996/002689 1995-09-22 1996-09-19 Verre a foyer progressif a indice de gradient WO1997011401A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU70005/96A AU723308B2 (en) 1995-09-22 1996-09-19 Progressive power multi-focal lens
EP96931246A EP0872755A4 (en) 1995-09-22 1996-09-19 PROGRESSIVE MULTIFOCAL GLASS
CA002232539A CA2232539C (en) 1995-09-22 1996-09-19 Progressive power multi-focal lens
HK99100655A HK1015890A1 (en) 1995-09-22 1999-02-15 Gradient-index multifocal lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24471295A JP3196880B2 (ja) 1995-09-22 1995-09-22 累進多焦点レンズ
JP7/244712 1995-09-22

Publications (1)

Publication Number Publication Date
WO1997011401A1 true WO1997011401A1 (fr) 1997-03-27

Family

ID=17122801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002689 WO1997011401A1 (fr) 1995-09-22 1996-09-19 Verre a foyer progressif a indice de gradient

Country Status (8)

Country Link
US (1) US5708492A (ja)
EP (1) EP0872755A4 (ja)
JP (1) JP3196880B2 (ja)
KR (1) KR100393901B1 (ja)
CN (1) CN1103934C (ja)
AU (1) AU723308B2 (ja)
HK (1) HK1015890A1 (ja)
WO (1) WO1997011401A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69535835D1 (de) * 1994-10-21 2008-10-23 Carl Zeiss Vision Au Holding Verbesserter augen-korrekturlinsen-rohling
DE69737931T2 (de) * 1996-04-04 2008-04-10 Carl Zeiss Vision Australia Holdings Ltd., Lonsdale Progressive Linsen und Verfahren zu deren Entwurf und Verwendung
JP3605281B2 (ja) * 1998-03-18 2004-12-22 ペンタックス株式会社 累進多焦点レンズ
JP3881449B2 (ja) 1998-04-17 2007-02-14 ペンタックス株式会社 累進多焦点レンズの加工方法
US6222621B1 (en) * 1998-10-12 2001-04-24 Hoyo Corporation Spectacle lens evaluation method and evaluation device
EP0994375B1 (en) * 1998-10-16 2006-12-27 Essilor International Method of making a pair of multifocal progressive spectacle lenses
DE60042681D1 (de) * 1999-02-12 2009-09-17 Hoya Corp Brille und ihre herstellung
JP4067277B2 (ja) * 1999-04-13 2008-03-26 Hoya株式会社 累進屈折力眼鏡レンズ及びその設計方法
WO2001025837A1 (en) 1999-10-01 2001-04-12 Sola International Holdings Ltd Progressive lens
CA2363121C (en) * 1999-12-22 2008-12-09 Essilor International Pair of multifocal progressive spectacle lenses
DE10020914B4 (de) * 2000-04-28 2020-07-02 Carl Zeiss Vision Gmbh Verfahren zur Berechnung einer Mehrzahl Brillenlinsen einer Brillenlinsenfamilie sowie Verfahren der Fertigung einer Brillenlinse einer Brillenlinsenfamilie
JP4618656B2 (ja) 2000-05-10 2011-01-26 株式会社ニコン・エシロール 累進多焦点レンズシリーズ
DE10059023A1 (de) * 2000-11-28 2002-06-06 Rodenstock Optik G Progressives Brillenglas für große und mittlere Objektentfernungen
KR100947521B1 (ko) * 2002-05-31 2010-03-12 크로스보우즈 옵티컬 리미티드 누진 다초점 굴절력 렌즈
ES2518927T3 (es) * 2002-06-17 2014-11-05 Essilor International (Compagnie Generale D'optique) Modelado de una superficie de una lente oftálmica
JP4243335B2 (ja) * 2002-10-17 2009-03-25 セイコーオプティカルプロダクツ株式会社 累進屈折力レンズ
FR2850763B1 (fr) * 2003-02-03 2005-07-01 Essilor Int Lentille aphtalmique a addition progressive de puissance et de prisme
DE602004022582D1 (ja) 2003-11-27 2009-09-24 Hoya Corp
JP2008089618A (ja) * 2005-03-22 2008-04-17 Nikon-Essilor Co Ltd 眼鏡レンズ
CN101595420B (zh) * 2006-09-15 2011-10-19 卡尔蔡司视觉澳大利亚控股有限公司 眼科镜片元件
US7775659B2 (en) * 2007-04-13 2010-08-17 Nesty Gary W Sunglass lens
KR101194488B1 (ko) 2007-12-04 2012-10-24 호야 가부시키가이샤 한 쌍의 누진굴절력 렌즈 및 그 설계방법
FR2924824B1 (fr) * 2007-12-05 2010-03-26 Essilor Int Lentille progressive de lunettes ophtalmiques ayant une zone supplementaire de vision intermediaire
DE102008015189A1 (de) * 2008-03-20 2009-10-01 Rodenstock Gmbh Umskalierung des Sollastigmatismus für andere Additionen
JP5017545B2 (ja) * 2008-03-31 2012-09-05 東海光学株式会社 累進屈折力レンズおよびその製造方法
EP2202560A1 (en) * 2008-12-23 2010-06-30 Essilor International (Compagnie Générale D'Optique) A method for providing a spectacle ophthalmic lens by calculating or selecting a design
JP5187227B2 (ja) * 2009-02-23 2013-04-24 セイコーエプソン株式会社 眼鏡レンズの設計方法
JP5838419B2 (ja) * 2011-08-17 2016-01-06 東海光学株式会社 累進屈折力レンズの製造方法
US10048512B2 (en) * 2016-10-08 2018-08-14 eyeBrain, Medical, Inc. Low-convergence spectacles
CN107908016A (zh) * 2017-11-09 2018-04-13 上海坚旗科技有限公司 渐进多焦点镜片和渐进多焦点镜片组及视功能训练变焦装置
US20210356764A1 (en) * 2018-09-28 2021-11-18 Hoya Lens Thailand Ltd. Design system of progressive addition lens, design method of progressive addition lens, and progressive addition lens group
CN113341590B (zh) * 2021-06-18 2022-08-23 温州医科大学 区域化自由曲面消像散渐变镜及设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143245A (en) * 1978-04-06 1979-11-08 Rodenstock R Lens for spectacles
JPS5958415A (ja) * 1982-09-29 1984-04-04 Seiko Epson Corp 累進多焦点レンズ
JPH0720410A (ja) * 1993-06-29 1995-01-24 Nikon Corp 累進焦点レンズ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493595A (ja) * 1972-04-21 1974-01-12
WO1991001508A1 (de) * 1989-07-17 1991-02-07 Optische Werke G. Rodenstock Progressives brillenglas mit positiver fernteil-wirkung
JPH0520729A (ja) * 1991-07-09 1993-01-29 Nec Corp ビデオテープレコーダ
FR2683642B1 (fr) * 1991-11-12 1994-01-14 Essilor Internal Cie Gle Optique Lentille ophtalmique multifocale progressive.
DE4210008A1 (de) * 1992-03-27 1993-09-30 Zeiss Carl Fa Brillenlinse
AU688023B2 (en) * 1994-03-30 1998-03-05 Rodenstock Gmbh Set of progressive spectacle lenses
FR2726374B1 (fr) * 1994-10-28 1996-12-27 Essilor Int Lentille ophtalmique multifocale progressive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143245A (en) * 1978-04-06 1979-11-08 Rodenstock R Lens for spectacles
JPS5958415A (ja) * 1982-09-29 1984-04-04 Seiko Epson Corp 累進多焦点レンズ
JPH0720410A (ja) * 1993-06-29 1995-01-24 Nikon Corp 累進焦点レンズ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0872755A4 *

Also Published As

Publication number Publication date
KR100393901B1 (ko) 2003-11-01
KR19990063644A (ko) 1999-07-26
AU7000596A (en) 1997-04-09
US5708492A (en) 1998-01-13
HK1015890A1 (en) 1999-10-22
EP0872755A4 (en) 2006-01-18
JPH0990291A (ja) 1997-04-04
EP0872755A1 (en) 1998-10-21
AU723308B2 (en) 2000-08-24
CN1103934C (zh) 2003-03-26
CN1200814A (zh) 1998-12-02
JP3196880B2 (ja) 2001-08-06

Similar Documents

Publication Publication Date Title
WO1997011401A1 (fr) Verre a foyer progressif a indice de gradient
JP4408112B2 (ja) 両面非球面型累進屈折力レンズおよびその設計方法
JP3196877B2 (ja) 累進多焦点レンズ
JP4674346B2 (ja) プログレッシブアディション・レンズ
JP4437482B2 (ja) 両面非球面型累進屈折力レンズおよびその設計方法
WO2003100505A1 (fr) Verres optiques varifocal aspheriques sur deux cotes
JPS5942852B2 (ja) 眼鏡レンズ
JP3617004B2 (ja) 両面非球面型累進屈折力レンズ
CN101114061A (zh) 眼镜片的设计方法、眼镜片和眼镜
US9307899B2 (en) Process for determining a pair of progressive ophthalmic lenses
KR20100091254A (ko) 누진안과용렌즈
US9581831B2 (en) Optical lens, method for designing optical lens, and apparatus for manufacturing optical lens
CN106444073A (zh) 一种为佩镜者定制的眼用镜片及其制备方法
JP3690427B2 (ja) 累進多焦点レンズおよび眼鏡レンズ
JP5036946B2 (ja) わずかな拡大差を有する漸進的な眼鏡レンズ
JP3759874B2 (ja) 累進多焦点レンズ
JPS5988718A (ja) 眼の輻輳を考慮した累進焦点眼鏡レンズ
US20040095553A1 (en) Progressive spectacle lens for seeing objects at a large or average distance
JP4219148B2 (ja) 両面非球面型累進屈折力レンズ
JP4404317B2 (ja) 両面非球面型累進屈折力レンズおよびその設計方法
EP4124902A1 (en) Spectacle lens design for a progressive power lens, determining such a spectacle lens design and manufacturing a spectacle lens
WO2022118991A1 (ko) 개인 맞춤형 양면 비구면 렌즈와 그의 제조방법
JP2012083482A (ja) 累進屈折力レンズ
CA2232539C (en) Progressive power multi-focal lens
JP3226108B2 (ja) 累進焦点レンズの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96197938.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2232539

Country of ref document: CA

Ref document number: 2232539

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019980702095

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 1996931246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1996931246

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996931246

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980702095

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702095

Country of ref document: KR