WO1997006177A1 - Procede d'elaboration de derives d'erythromycine - Google Patents

Procede d'elaboration de derives d'erythromycine Download PDF

Info

Publication number
WO1997006177A1
WO1997006177A1 PCT/JP1996/002191 JP9602191W WO9706177A1 WO 1997006177 A1 WO1997006177 A1 WO 1997006177A1 JP 9602191 W JP9602191 W JP 9602191W WO 9706177 A1 WO9706177 A1 WO 9706177A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lower alkyl
reaction
hydroxyl group
formula
Prior art date
Application number
PCT/JP1996/002191
Other languages
English (en)
French (fr)
Inventor
Yutaka Miura
Kazuhiro Oishi
Yasushige Kawasaki
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to AU66306/96A priority Critical patent/AU710368C/en
Priority to US09/011,142 priority patent/US5959088A/en
Priority to EP96925989A priority patent/EP0846697A4/en
Priority to CA002228254A priority patent/CA2228254C/en
Publication of WO1997006177A1 publication Critical patent/WO1997006177A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof

Definitions

  • the present invention relates to a method for producing an erythromycin derivative and a fumarate crystal of the erythromycin derivative obtained by the production method.
  • a compound represented by O 97/06177 was obtained, the hydroxyl group at the 12-position of this compound was alkylated, and the acetyl group at the 2'-position and the formyl group at the 4 "-position were removed.
  • R 2 represents a lower alkyl group
  • the compound is reacted with benzyloxycarbonyl chloride under basic conditions. After removing the hydroxyl group, alkylating the nitrogen atom at the 3'-position, converting it to a fumarate, then recrystallizing the crude crystal with an alcohol-based solvent and then recrystallizing with hydrous ethyl acetate.
  • R 2 represents a lower alkyl group
  • the present invention also relates to erythromycin A (formula (I)) P
  • R 2 represents a lower alkyl group
  • the compound is reacted with benzyloxycarbonyl chloride under basic conditions.
  • the formula (II) is characterized in that after removing the hydroxyl group and then alkylating the nitrogen atom at the 3′-position, a fumarate is obtained.
  • R 2 represents a lower alkyl group
  • the acetylation of the hydroxyl group at the 2′-position of erythromycin A, the formylation of the hydroxyl group at the 4 ′′ -position, and the hemi-ketalization reaction are preferably carried out in one pot.
  • the term “one-pot” refers to This means that the reaction is performed in one step without isolating and purifying the reaction product of each step.
  • the alkylation reaction of the hydroxyl group at the 12-position and the removal reaction of the acetyl group at the 2′-position and the formyl group at the 4 ′′ -position are preferably performed in one pot.
  • the acetylation of the 2'-hydroxyl group, the formylation and the hemi-ketalization reaction of the 4'-hydroxyl group of erythromycin A were performed in one pot, and the alkylation reaction of the 12-hydroxyl group and the 2 ' It is particularly preferred to carry out the reaction for removing the acetyl group and the formyl group at the 4 "position in one pot.
  • the present invention relates to erythromycin A
  • R 2 represents a lower alkyl group and Z represents a benzyloxycarbonyl group).
  • R 2 represents a lower alkyl group
  • Figure 1 shows the X-ray powder X-ray spectrum of a ⁇ -shaped crystal.
  • Figure 2 shows a powder X-ray spectrum of the C-type crystal.
  • Figure 3 shows the powder X-ray spectrum of the D-type crystal.
  • FIG. 4 shows a DSC curve in the thermal analysis of Form A crystal.
  • FIG. 5 shows a DSC curve in the thermal analysis of Form C crystal.
  • FIG. 6 shows the DSC curve in the thermal analysis of Form D crystal.
  • FIG. 7 is a view showing the residual ratio of each crystal in a heating stability test.
  • FIG. 8 is a diagram showing the residual ratio of each crystal in a humidification stability test. BEST MODE FOR CARRYING OUT THE INVENTION
  • the lower alkyl group means, for example, a linear or branched alkyl group having 1 to 6 carbon atoms, specifically, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group And n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group and the like, and preferably methyl group, ethyl group, n-propyl group and isopropyl group.
  • R i is an isopropyl group
  • a particularly preferred example of R 2 is a methyl group.
  • reaction route D An example of the production method of the present invention is shown below (reaction route D.
  • erythromycin A the compound represented by the formula (I)
  • the compound represented by the formula (m) is obtained:
  • the three-stage reaction of acetylation, formylation, and hemi-ketalization is preferably performed in one pot.
  • Examples include organic bases such as, for example, the inorganic base diamine, preferably organic bases such as pyridine, triethylamine, disopropylethylamine, pyrrolidine, piperidine, morpholine, getylamine, diisopropylamine.
  • Solvents used include acetylation, formylation, and hemi-catalyst.
  • Those which are inert in the three-step reaction of the oxidation are preferably, for example, ethyl acetate, acetone, dichloromethane, chloroform, and the like, more preferably, ethyl acetate and acetone, and most preferably, acetic acid.
  • acetylating agent examples include acetic anhydride, acetyl chloride, sodium acetate, and the like, preferably acetic anhydride and acetyl chloride, and most preferably acetic anhydride.
  • the reaction temperature is preferably about 0 ° C. to 50 ° C., more preferably about room temperature, and the reaction time is about 30 minutes to 3 hours, preferably 1 hour to 2 hours.
  • Preferred examples of the formylating agent used in the second-stage formylation reaction include, for example, formic acid-acetic anhydride and sodium formate acetyl monochloride, and more preferably, formic acid monoacetic anhydride and the like.
  • Examples of the base used include, for example, organic bases such as inorganic base pyridine, and preferably pyridine, triethylamine, diisopropylethylamine, pyrrolidine, piperidine, morpholine, getylamine, diisopropylamine. And more preferably pyridine.
  • the reaction temperature is preferably about 40 ° C to 5 ° C. 20 ° C to 0 ° C is preferred.
  • the reaction time is about 1 to 1 hour, preferably about 5 to 12 hours.
  • the third stage hemicetalization reaction is carried out under acidic conditions.
  • the acidic condition means that an acid is present in the reaction system.
  • Examples of the acid used here include organic acids, preferably carboxylic acids such as acetic acid and formic acid, and preferably acetic acid.
  • the reaction temperature is preferably from about room temperature to about 60 ° C, more preferably from 40 ° C to 50 ° C.
  • the reaction time is about 1 to 1 hour, preferably about 2 to 12 hours.
  • the resulting compound represented by the formula (II) is subjected to an oxidation reaction to oxidize the hydroxyl group at the 11-position.
  • the oxidizing agent include organic oxidizing agents such as dimethyl sulfoxide and Dess-Martin Periodinane reagent, and metal oxides such as ruthenium tetroxide.
  • organic oxidizing agents such as dimethyl sulfoxide and Dess-Martin Periodinane reagent
  • metal oxides such as ruthenium tetroxide.
  • dimethyl sulfoxide doicyclohexyl carbonyl is used.
  • dimethylsulfoxide trifluoroacetic anhydride is particularly preferred is dimethylsulfoxide trifluoroacetic anhydride.
  • the solvent used may be any solvent that is inert to the reaction, but when dimethylsulfoxide trifluoroacetic anhydride is used as the oxidizing agent, halogen-based solvents such as chloroform, dichloromethane and the like are preferable. Are preferred.
  • the reaction temperature is preferably about 160 ° C to 0 ° C, more preferably about 120 ° C to 110 ° C.
  • the reaction time is about 30 minutes to 5 hours, preferably 1 hour to 2 hours.
  • An alkylating agent is allowed to act on the obtained compound represented by the formula (IV) under basic conditions to alkylate the hydroxyl group at the 12-position.
  • the protecting groups at the 2'-position and the 4 "-position are removed.
  • the alkylation and the removal of the protecting group are preferably performed in one pot.
  • alkylating agent used in the first-stage alkylation reaction examples include, for example, alkyl halides, alkyl tosylates, and alkyl imidates. Gerare, preferably wherein c, alkyl tosylate, such as alkyl halide and the like, preferably a methyl group as the alkyl moiety.
  • alkyl tosylate such as alkyl halide and the like
  • methyl group as the alkyl moiety methylating agent
  • the base used include metal hydrides, metal hydroxides, metal alkoxides and the like, preferably metal hydrides and the like, and particularly preferably sodium hydride.
  • the solvent used may be any solvent that is inert to the reaction, but an aprotic polar solvent is preferred, and dimethylimidazolidinone, dimethylformamide, dimethylacetamide, tetrahydrofuran, acetonitrile, etc. And particularly preferably dimethylimidazolidinone and dimethylformamide.
  • the reaction temperature is preferably about 0 ° C to 60 ° C, more preferably 0 ° C to 30 ° C.
  • the reaction time is about 1 hour to 12 hours, preferably 2 hours to 8 hours.
  • the second step of removing the protective group is carried out by a usual method of removing an acetyl group or a formyl group, and is preferably removed under basic conditions.
  • the base to be used include inorganic bases such as sodium hydrogen carbonate and potassium carbonate, and more preferable is sodium hydrogen carbonate.
  • the solvent used may be any solvent that is inert to the reaction, but is preferably an alcohol-based solvent, and more preferably methanol, ethanol, or the like.
  • the reaction temperature is preferably about 40 ° C to 80 ° C, more preferably 50 ° C to 60 ° C.
  • the reaction time is about 1 hour to 12 hours, preferably 3 hours to 8 hours.
  • the base is used in an excessive amount, for example, at least 2 equivalents, preferably about 2 equivalents, in the first-stage alkylation reaction.
  • the solvent can be exchanged as necessary at each stage, such as adding the second stage reaction solvent to the first stage reaction solvent.
  • benzyloxycarbonylating agent used in the first step for example, benzyloxycarbonyl chloride is preferable.
  • the base used include inorganic bases such as sodium bicarbonate and potassium carbonate, and preferably sodium bicarbonate and the like.
  • the solvent used may be any solvent that is inert to the reaction, but is preferably an aromatic hydrocarbon solvent, and more preferably toluene.
  • the reaction temperature is preferably about 30 ° C. to 80 ° C., more preferably 45 ° C. to 70 ° C., and particularly preferably about 60 ° C.
  • the reaction time is about 2 hours to 12 hours, preferably 4 hours to 8 hours.
  • the benzyloxycarbonylating agent is required in an excess amount relative to the compound represented by the general formula (V), preferably from 9 to 15 equivalents, and more preferably from 10 to 12 equivalents.
  • the removal reaction of the benzyloxycarbonyl group in the second step is carried out by a usual deprotection method.
  • the deprotection method include catalytic hydrogenation, and preferably catalytic hydrogenation using a palladium-carbon catalyst.
  • the hydrogen source in addition to hydrogen, ammonium formate and the like can be used.
  • the catalytic hydrogenation may be performed under pressure, and the pressure under pressurization is preferably about 2 to 5 atm, more preferably 3 to 5 atm. 4 atm.
  • the solvent used may be any solvent that is inert to the reaction, but is preferably an alcohol-based solvent, and more preferably methanol, ethanol, or the like.
  • the reaction temperature is about 0 ° C. to 50 ° C., preferably about 10 ° C. to 30 ° C., and more preferably around room temperature.
  • the reaction time is about 30 minutes to 3 hours, preferably 1 hour to 2 hours.
  • the solvent used may be any solvent that is inert to the reaction, but may be an alcohol-based solvent. And more preferably, methanol and ethanol.
  • the reaction temperature is preferably about 50 ° C. to 100 ° C., and more preferably 60 ° C. to 90 ° C.
  • the reaction time is about 30 minutes to 3 hours, preferably 1 hour to 2 hours.
  • alkylating agent used in the third-stage alkylation reaction examples include, for example, an alkyl halide, an alkyl tosylate and the like, preferably an alkyl halide and the like.
  • an isopropyl group is particularly preferred as the alkyl moiety.
  • Preferred examples of the isopropylylating agent include isopropylyl iodide.
  • the base to be used includes, for example, an inorganic base in addition to an organic base such as amine.
  • Preferred examples include diisopropylethylamine, triethylamine, morpholine, piperidine, pyrrolidine, pyridine and the like, and particularly preferred. Is triethylamine.
  • the solvent used may be any solvent that is inert to the reaction, but is preferably an aprotic polar solvent, an alcoholic solvent, or the like, and more preferably dimethylimidazolidinone, dimethylformamide, or dimethylacetamide. And acetonitrile, tetrahydrofuran, methanol, ethanol and the like, and more preferably dimethylimidazolidinone, dimethylformamide and acetonitrile.
  • the reaction temperature is preferably about 50 ° C to 100 ° C, more preferably 60 ° C to 80 ° C.
  • the reaction time is about 3 to 10 hours, preferably 5 to 10 hours.
  • the conversion reaction to the fumarate in the fourth step is carried out by a usual method for forming a salt.
  • the solvent used is preferably an alcohol solvent, an ether solvent such as tetrahydrofuran, acetone, and the like, and more preferably, methanol, ethanol, isopropanol, and the like.
  • the reaction temperature is preferably from about 120 ° C to 50 ° C, and more preferably from about 15 ° C to room temperature.
  • the reaction time is about 1 to 6 hours, preferably 3 to 4 hours.
  • the obtained fumarate of the compound represented by the general formula (II) is purified if necessary. Recrystallization is preferred as a purification method.
  • the recrystallization solvent for example, an ester solvent, an alcohol solvent, an ether solvent, or a mixed solvent thereof, which may contain water, is preferably used.
  • the ratio of methanol to isopropanol is, for example, about 10:90 to 50:50, preferably about 20:80 to 30:70.
  • the ratio of the mixed solvent of ethyl acetate and water is, for example, 99.5: 0.5 to 97: 3, preferably 99: 1 to 98: 2, and more preferably 98.5: 1. It is about 5.
  • recrystallization is performed using ethyl acetate or a mixed solvent of ethyl acetate and water
  • recrystallization is performed using a mixed solvent of methanol and isopropanol described in JP-A-6-56873 (form A). Crystals of different crystal forms (C-type and D-type) were obtained. X-ray powder diffraction and thermal analysis (DSC) data of these crystals are shown in the figures ( Figures 1, 2, 3, 4, 5, and 6).
  • the molar ratio of the compound represented by the formula (VE) and the fumaric acid in the crystal (form A crystal) obtained by recrystallization with a mixed solvent of methanol and isopropanol was 2: 1.
  • the crystals obtained by recrystallization using ethyl acetate or a mixed solvent of ethyl acetate and water have a molar ratio of the compound represented by the formula (VH) to fumaric acid of 1: 1 ( (C-type crystal) and 2: 1 (D-type crystal).
  • the fumarate salt of the compound represented by the formula (VE) (for example, A-form crystal), which is roughly purified by a method such as recrystallization with a mixed solvent of methanol and isopropanol, is added to ethyl acetate.
  • Crystals obtained by recrystallization with a mixed solvent of water and water (D-type crystals) have superior stability as compared with crystals of other crystal forms, such as excellent quality as a drug or a pharmaceutical raw material. It is clear that you have
  • Erythromycin A (20.0 g, 0.027 mol 1) dissolved in acetic anhydride (3.34 g, 0.033 mol 1), pyridine (3.45 g, 0.044 mol 1) and ethyl acetate (80 ml) The mixture was stirred at room temperature for 1 hour. Thereafter, formic acid (11.29 g, 0.245 mol 1) and acetic anhydride (12.52 g, 0.123 mol 1) were added dropwise under ice cooling (0 ° C.), and the mixture was stirred for 3 hours while cooling with ice. Thereafter, the temperature was gradually returned to room temperature, and left overnight.
  • Example 3 Synthesis of Deprotected Compound (Compound (R 2 : Methyl) Represented by Formula (V)) 60% sodium hydride (1.02 g, 0.026 mol 1) was added to dimethylformamide (30 ml). Was added, and the compound (10.0 g, 0.013mo1) obtained in Example 2 was further added under ice-cooling (0 ° C), followed by stirring for 30 minutes. After dropwise addition of methyl tosylate (2.38 g, 0.013mo1), the mixture was stirred at 0 to 5 ° C for 1 hour and at 15 to 20 ° C for 1.5 hours. Methanol (60 ml) was added, and the mixture was heated at 60 ° C for 5 hours. After heating, it was left as it was for 10 minutes.
  • Example 3 To the toluene (55 ml), the compound obtained in Example 3 (5.5 g, 0.0076 mol) and solid sodium hydrogen carbonate (9.5 g, 0.113 mol) were added. Then, under stirring, benzyloxycarbonyl chloride (18.0 g, 0.106 mol) was added dropwise at 70 to 80 ° C, and the mixture was heated at the same temperature for 4 hours. The reaction mixture was left at room temperature overnight. .
  • Example 6 Fumarate Form (Formula ( ⁇ ) Synthesis of the fumarate of the compound to be prepared) To the dimethylimidazolidinone (35 ml) was added the compound obtained in Example 5 (10 g, 0.014 mol 1), isopropyl iodide (23.8 g. 0.14 mol), Triethylamine (16.95 g, 0.17mo1) was added and dissolved, heated at 70-75 ° C for 7-8 hours, and left overnight.
  • Example 7 Crude Purification of Fumarate Form (Fumarate of Compound Represented by Formula ( ⁇ ))
  • the compound (10.0 g, 0, 0123mo 1) obtained in Example 6 was dissolved in methanol (25 ml). Then, isopropanol (75 ml) was gradually added dropwise to this solution. The reaction mixture was stirred at room temperature for 1 hour, at 0 ° C for 1 hour, and at 15 ° C for 1 hour for crystallization and filtered under reduced pressure. A crude product of the title compound as white crystals (9.25 g, 92.5%) was obtained.
  • Example 8 Purification of Fumarate Form (Fumarate of Compound Represented by Formula ( ⁇ ))
  • the crude product (10 g, 0.0123 mol) obtained in Example 7 was converted to ethyl acetate (100 m 2). 1), and water (1.5 ml) was added dropwise.
  • the mixture was stirred at 110 ° C for 1 hour and at 110 ° C for 4 hours, and filtered under reduced pressure to obtain a purified crystal of the title compound as white crystals (9.04 g, 90.4%).
  • Example 9 Synthesis of Fumarate Form (Fumarate Salt of Compound Represented by Formula (VK))
  • the compound obtained in Example 3 (9.5 g, 0.013mo1) in toluene (55 ml) was solid-form.
  • Sodium bicarbonate (16.4 g, 0.195 mol) was added.
  • benzyloxycarbonyl chloride (31.1 g, 0.183 mol 1) was added dropwise, and the mixture was heated at that temperature for 4 hours, and then left overnight at room temperature.
  • Pyridine (6.94 g, 0.086 mol) was added to the reaction mixture, and the mixture was stirred for 30 minutes.
  • the crystals are obtained by recrystallizing a fumarate of the compound represented by the formula (II) from methanol-isopropanol and recrystallizing it from ethyl acetate or a mixed solvent of ethyl acetate and water. Obtained crystal (C-type crystal,
  • HP LC measurement conditions 100 ml was injected into a HPLC under the following conditions as 10 ml, and the residual ratio was determined from the peak area ratio of the sample used and the internal standard. HP LC measurement conditions
  • Fig. 7 shows the results. Under these conditions, the A-type crystal had a residual rate of about 60% at 70%, whereas the C-type and D-type crystals had about 80% remaining at 70%.
  • Example 11 Stability test of fumarate salt crystals of a compound represented by formula ( ⁇ ) under humidified conditions
  • the stability of the compound represented by the formula ( ⁇ ) under humidification conditions due to the difference in the crystal form of the fumarate crystals was tested.
  • the test was performed in the same manner as in Example 10 except that the severe test was performed in a desiccator at 80 ° C adjusted to a relative humidity of 75% with a saturated sodium chloride aqueous solution.
  • Fig. 8 shows the results. As is clear from the graph, the humidification stability of Form A and Form D crystals was much higher than that of Form C crystals.
  • the production method of the present invention comprises the following steps: (1) each reaction step required to obtain a purified final product; (2) acetylation of hydroxyl group at 2'-position of erythromycin A, formylation and hydroxylation of hydroxyl group at 4 "-position of erythromycin A in one pot
  • the number of steps can be reduced compared to the conventional production method. It can be said that this is an excellent industrial production method, such as the possibility of reduction.
  • the fumarate salt crystals of the compound represented by the formula (VH) obtained according to the present invention are superior in stability, as compared with conventionally obtained crystals, and are excellent as pharmaceuticals or pharmaceutical raw materials. Have quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

明 細 書 エリス口マイシン誘導体の製造方法 技術分野
本発明はエリス口マイシン誘導体の製造方法およびこの製造方法により得られ るエリス口マイシン誘導体のフマル酸塩結晶に関する。
背景技術
—般式 (Π )
Figure imgf000003_0001
(式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物は、 特開平 6— 5 6 8 7 3号公報などに記載されており、 消化管運動促進 作用を有することが知られている。
これらの化合物の製造方法は、 特開平 6— 5 6 8 7 3号公報、 バイオオーガニッ ク アン ド メディ シナル ケミス トリー レターズ (B i o o r g. & M e d . C h e m. L e t t . ) 4巻、 1 1号、 1 3 4 7ページ、 1 9 9 4年な どに記載されている。
しかしながら、 これらに記載されている製造方法は、 工程数が多いこと、 精製 にカラムクロマトグラフィーを多用すること、 大量に製造する際に使用しにくい 試薬 (たとえばヨウ素など) を使用することなど、 工業的な製造方法としては実 用化しにくいものであった。 また、 本発明の方法で製造されるような医薬品ある いは医薬品原料を供給する際には、 その化合物は安定性、 均一性、 規格などの点 においてすぐれた品質を要求される。 発明の開示
本発明者らは鋭意研究を重ねた結果、 一般式 (Π )
Figure imgf000004_0001
(式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物のフマル酸塩の効率的な製造方法、 精製方法を見いだし、 さらに、 この方 法により精製されたフマル酸塩結晶が従来得られていた結晶より医薬品あるいは 医薬品原料としてすぐれた品質を有していることを見いだし、 本発明を完成した すなわち、 本発明はエリスロマイシン A (式 (I ) )
Figure imgf000004_0002
から、 一般式 (Π )
Figure imgf000005_0001
(式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法において、 エリスロマイシン Aの 2' 位の水 酸基をァセチル化、 4" 位の水酸基をホルミル化した後へミケタール化反応を行 い、 式 (Π)
Figure imgf000005_0002
で表される化合物を得、 この化合物の 11位の水酸基を酸化し、 式 (IV)
Figure imgf000005_0003
O 97/06177 で表される化合物を得、 この化合物の 1 2位の水酸基をアルキル化し、 さらに 2 ' 位のァセチル基および 4 " 位のホルミル基を除去し、 一般式 (V)
Figure imgf000006_0001
(式中、 R 2は低級アルキル基を示す) で表される化合物を得、 この化合物に塩 基性条件下、 ベンジルォキシカルボニルクロリ ドを反応させた後、 導入されたべ ンジルォキシカルボ二ル基を除去し、 次いで 3 ' 位の窒素原子をアルキル化した 後、 フマル酸塩へと変換し、 次いでこの粗結晶をアルコール系溶媒で再結晶した 後、 含水酢酸ェチルで再結晶することを特徵とする、 一般式 (Π )
Figure imgf000006_0002
(式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法に関する。
また、 本発明はエリスロマイシン A (式 (I ) ) P
O 97/06177
Figure imgf000007_0001
から、 一般式 (Π)
Figure imgf000007_0002
(式中、 は低級アルキル基を示し、 R2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法において、 エリスロマイシン Aの 2' 位の水 酸基をァセチル化、 4" 位の水酸基をホルミル化した後へミケタール化反応を行 い、 式 (m)
Figure imgf000007_0003
O 97/06177 で表される化合物を得、 この化合物の 1 1位の水酸基を酸化し、 式 (IV)
Figure imgf000008_0001
で表される化合物を得、 この化合物の 1 2位の水酸基をアルキル化し、 さらに 2 ' 位のァセチル基および 4 " 位のホルミル基を除去し、 一般式 (V)
Figure imgf000008_0002
(式中、 R 2は低級アルキル基を示す) で表される化合物を得、 この化合物に塩 基性条件下、 ベンジルォキシカルボニルクロリ ドを反応させた後、 導入されたべ ンジルォキシカルボ二ル基を除去し、 次いで 3 ' 位の窒素原子をアルキル化した 後、 フマル酸塩とすることを特徵とする、 一般式 (Π )
Figure imgf000009_0001
(式中、 は低級アルキル基を示し、 R2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法に関する。
これらの反応において、 エリスロマイシン Aの 2' 位の水酸基のァセチル化、 4" 位の水酸基のホルミル化およびへミケタール化反応はワンポッ 卜で行うこと が好ましい。 本発明において、 ワンポッ 卜で行うとは、 各段階の反応生成物を単 離精製することなく 1工程で反応を行うことを意味する。
また、 12位の水酸基のアルキル化反応、 および 2' 位のァセチル基と 4"位 のホルミル基の除去反応はワンポッ トで行うことが好ましい。
さらに、 エリスロマイシン Aの 2' 位の水酸基のァセチル化、 4" 位の水酸基 のホルミル化およびへミケタール化反応をワンポッ トで行い、 かつ、 12位の水 酸基のアルキル化反応、 および 2' 位のァセチル基と 4" 位のホルミル基の除去 反応をワンポッ 卜で行うことが特に好ましい。
また、 本発明はエリスロマイシン A
(I) O 97/06177
から、 式 (π)
Figure imgf000010_0001
で表される化合物を製造する方法において、 エリスロマイシン Aの 2 ' 位の水酸 基のァセチル化、 4 " 位の水酸基のホルミル化およびへミケタール化反応をワン ポッ 卜で行うことを特徵とする式 (m)
Figure imgf000010_0002
で表される化合物の製造方法に関する,
また、 本発明は一般式 (V)
Figure imgf000011_0001
(式中、 R2は低級アルキル基を示す) で表される化合物に、 塩基性条件下、 ベ ンジルォキシカルボニルクロリ ドを反応させ、 一般式 (VI)
Figure imgf000011_0002
(式中、 R 2は低級アルキル基を示し、 Zはべンジルォキシカルボ二ル基を示す) で表される化合物を製造する方法に関する。
また、 本発明は一般式 (Π)
(Π)
Figure imgf000011_0003
(式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物のフマル酸塩の粗結晶をアルコール系溶媒で再結晶した後、 含水酢酸ェチ ルで再結晶することを特徴とする、 一般式 (Π )
Figure imgf000012_0001
(式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物のフマル酸塩の精製方法に関する。
また、 本発明は、 式 (VD)
Figure imgf000012_0002
で表される化合物とフマル酸のモル比が 2 : 1であり、 含水酢酸ェチルで再結晶 することにより得ることができる、 式 (νπ) で表される化合物のフマル酸塩結晶 に関する。 図面の簡単な説明
図 1は Α形結晶の粉末 X線スぺク トルを示す。 図 2は C形結晶の粉末 X線スぺク トルを示す。
図 3は D形結晶の粉末 X線スぺク トルを示す。
図 4は A形結晶の熱分析における D S C曲線を示す。
図 5は C形結晶の熱分析における D S C曲線を示す。
図 6は D形結晶の熱分析における D S C曲線を示す。
図 7は各結晶の加熱安定性試験における残存率を示す図である。
図 8は各結晶の加湿安定性試験における残存率を示す図である。 発明を実施するための最良の形態
本発明において、 低級アルキル基とは、 たとえば、 炭素数 1から 6の直鎖又は 分岐鎖状のアルキル基を示し、 具体的にはたとえばメチル基、 ェチル基、 n—プ 口ピル基、 イソプロピル基、 n—ブチル基、 イソブチル基、 s e c一ブチル基、 t e r t—ブチル基、 ペンチル基、 へキシル基等があげられ、 好ましくはメチル 基、 ェチル基、 n—プロピル基、 イソプロピル基があげられる。 R iの特に好ま しい例としては、 イソプロピル基があげられ、 R 2の特に好ましい例としてはメ チル基があげられる。
本発明の製造方法の一例を以下に図示する (反応経路 D。
反応径路 1一 1
Figure imgf000014_0001
(I) (m) 酸化 1 ) アルキノ
2) 腔保 g
Figure imgf000014_0002
(IV)
Figure imgf000014_0003
(VI) (式中、 R2は低級アルキル基を示し、
ルボニル基を示す c 反応轻路 1一 2
Figure imgf000015_0001
(VI)
( m) アルキゾ ヒ
Figure imgf000015_0002
(Π)
塩の形成
(Π)のフマル酸塩
再結晶
( II )のフマル酸塩の精製 £ (式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示し、 Zはべンジ ルォキシカルボ二ル基を示す。 )
すなわち、 エリスロマイシン A (式 (I ) で表される化合物) の 2 ' 位の水酸 基を塩基の存在下、 ァセチル化した後、 4 " 位の水酸基をホルミル化しさらにへ ミケタール化反応を行い、 式 (m) で表される化合物を得る。 ここでァセチル化、 ホルミル化、 へミケタール化の 3段階の反応はワンポッ 卜で行うことが好ましい c 1段階目のァセチル化反応において、 用いられる塩基の例としては、 たとえば 無機塩基ゃァミンなどの有機塩基があげられ、 好ましくはピリジン、 トリェチル ァミン、 ジィソプロピルェチルァミン、 ピロリジン、 ピぺリジン、 モルホリン、 ジェチルァミン、 ジイソプロピルァミンなどの有機塩基があげられ、 さらに好ま しくはピリジンがあげられる。 用いられる溶媒は、 ァセチル化、 ホルミル化、 へ ミケタール化の 3段階の反応において不活性なものが好ましく、 たとえば酢酸ェ チル、 アセトン、 ジクロロメタン、 クロ口ホルムなどがあげられ、 さらに好まし くは酢酸ェチル、 アセトンがあげられ、 最も好ましいものとして酢酸ェチルがあ げられる。 ァセチル化剤としては、 たとえば無水酢酸、 塩化ァセチル、 酢酸ナト リウムなどがあげられ、 好ましくは無水酢酸、 塩化ァセチルがあげられ、 最も好 ましいものとして無水酢酸があげられる。 反応温度は 0 °Cから 5 0 °C程度が好ま しく、 さらに室温程度が好ましい。 反応時間は、 3 0分から 3時間程度であり、 好ましくは 1時間から 2時間である。
2段階目のホルミル化反応で用いられるホルミル化剤の好ましい例としては、 たとえばギ酸ー無水酢酸、 ギ酸ナトリウム一塩化ァセチルなどがあげられ、 さら に好ましくは、 ギ酸一無水酢酸などがあげられる。 用いられる塩基の例としては、 たとえば無機塩基ゃァミンなどの有機塩基があげられ、 好ましくはピリジン、 ト リエチルァミ ン、 ジイソプロピルェチルァミ ン、 ピロリジン、 ピぺリジン、 モル ホリン、 ジェチルァミン、 ジイソプロピルァミンなどがあげられ、 さらに好まし くはピリジンがあげられる。 ただし、 ァセチル化反応から連続して反応を行う場 合には、 先に用いた塩基を利用することにより、 さらに塩基を加えることなく反 応を行うこともできる。 反応温度は一 4 0 °Cから 5 °C程度が好ましく、 さらに一 20°Cから 0°Cが好ましい。 反応時間は、 1時間から 1曰程度であり、 好ましく は 5時間から 12時間程度である。
3段階目のへミケタール化反応は、 酸性条件下行われる。 酸性条件下とは反応 系内に酸が存在することを意味する。 ここで用いる酸としては、 たとえば有機酸 などがあげられ、 好ましくは酢酸、 ギ酸などのカルボン酸があげられ、 好ましく は酢酸などがあげられる。 1段階目からの反応をワンポッ 卜で行う場合は、 先の 段階の反応で酢酸ゃギ酸が系内に存在しているので、 あらためて酸を加えること をしなくても反応は進行する。 反応温度は室温程度から 60 °C程度が好ましく、 さらに 40°Cから 50°Cが好ましい。 反応時間は、 1時間から 1曰程度であり、 好ましくは 2時間から 12時間程度である。
得られた式 (ΠΙ) で表される化合物を酸化反応に付し、 11位の水酸基を酸化 する。 酸化剤としてはたとえばジメチルスルホキシド、 De s s -Ma r t i n Pe r i od i nan e試薬などの有機酸化剤や四酸化ルテニウムなどの金属 酸化物などがあげられ、 好ましくはジメチルスルホキシドージシクロへキンルカ ルポジィミ ド、 ジメチルスルホキシドー無水トリフルォロ酢酸などがあげられ、 特に好ましいものとして、 ジメチルスルホキシドー無水トリフルォロ酢酸があげ られる。 用いられる溶媒は、 反応に不活性なものであればかまわないが、 酸化剤 としてジメチルスルホキシドー無水トリフルォロ酢酸を用いる場合には、 クロ口 ホルム、 ジクロロメタンなどのハロゲン系溶媒が好ましく、 さらに、 ジクロロメ タンなどが好ましい。 反応温度は一 60°Cから 0°C程度が好ましく、 さらに一 2 0°Cから一 10°C程度が好ましい。 反応時間は、 30分から 5時間程度であり、 好ましくは 1時間から 2時間である。
得られた式 (IV) で表される化合物に、 塩基性条件下、 アルキル化剤を作用さ せ、 12位の水酸基をアルキル化する。 次いで、 2' 位と 4" 位の保護基の除去 を行う。 ここでアルキル化、 保護基の除去反応はワンポッ 卜で行うことが好まし い。
1段階目のアルキル化反応において、 用いるアルキル化剤の例としては、 たと えば、 ハロゲン化アルキル、 アルキルトシレート、 アルキルイミデートなどがあ げられ、 好ましくはアルキルトシレート、 ハロゲン化アルキルなどがあげられる c ここで、 アルキル部分としては特にメチル基が好ましい。 メチル化剤の具体的な 例としてはヨウ化メチル、 メチルトシレートなどがあげられるが、 好ましくはメ チルトシレートがあげられる。 用いる塩基としては、 たとえば金属水素化物、 水 酸化金属、 金属アルコキシドなどがあげられ、 好ましくは、 金属水素化物などが あげられ、 特に好ましくは水素化ナトリウムである。 用いられる溶媒は、 反応に 不活性なものであればかまわないが、 非プロトン性極性溶媒などが好ましく、 さ らにジメチルイミダゾリジノン、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド、 テトラヒドロフラン、 ァセトニトリルなどが好ましく、 特にジメチルイミダゾリ ジノン、 ジメチルホルムアミ ドが好ましい。 反応温度は 0 °Cから 6 0 °C程度が好 ましく、 さらに 0 °Cから 3 0 °Cが好ましい。 反応時間は、 1時間から 1 2時間程 度であり、 好ましくは 2時間から 8時間である。
2段階目の保護基の除去反応は、 通常のァセチル基、 ホルミル基の除去反応の 方法で行われ、 塩基性条件下での除去が好ましい。 用いられる塩基としては、 た とえば、 炭酸水素ナトリウム、 炭酸カリウムなどの無機塩基があげられ、 さらに 炭酸水素ナトリウムが好ましい。 用いられる溶媒は、 反応に不活性なものであれ ばかまわないが、 アルコール系溶媒などが好ましく、 さらに、 メタノール、 エタ ノールなどが好ましい。 反応温度は 4 0 °Cから 8 0 °C程度が好ましく、 さらに 5 0 °Cから 6 0 °Cが好ましい。 反応時間は、 1時間から 1 2時間程度であり、 好ま しくは 3時間から 8時間である。
この、 アルキル化、 脱保護反応をワンポッ 卜で行う場合には、 1段階目のアル キル化反応の際、 塩基を過剰に、 たとえば 2当量以上、 好ましくは 2当量程度用 いることにより、 この塩基性を利用することで、 2段階目の反応の際にさらに塩 基を加える必要はない。 この場合、 1段階目の反応溶媒に 2段階目の反応溶媒を 加えるなど、 各段階で必要に応じ溶媒を交換することもできる。
得られた一般式 (V) で表される化合物に塩基性条件下、 過剰量のベンジルォ キシカルボニルクロリ ドを作用させ、 一般式 (VI) で表される化合物へと変換し た後、 常法により、 導入されたべンジルォキシカルボ二ル基を除去し、 一般式 (W) で表される化合物へと変換し、 さらに塩基性条件下アルキル化剤を作用さ せ、 一般式 (Π ) で表される化合物へと変換し、 この一般式 (Π ) で表される化 合物を常法によりフマル酸塩へと変換する。 これらのベンジルォキシカルボニル ィ匕、 脱べンジルォキシカルボニル化、 アルキル化、 フマル酸塩への変換の一連の 反応は、 それぞれの段階の生成物を精製することなく、 一般式 (Π ) で表される 化合物のフマル酸塩まで得ることができる。
第 1段階で用いられるベンジルォキシカルボニル化剤としては、 たとえばベン ジルォキシカルボニルクロリ ドが好ましい。 用いられる塩基としては、 たとえば 炭酸水素ナトリウム、 炭酸カリウムなどの無機塩基があげられ、 好ましくは炭酸 水素ナトリウムなどがあげられる。 用いられる溶媒は、 反応に不活性なものであ ればかまわないが、 芳香族炭化水素系溶媒などが好ましく、 さらに、 トルエンな どが好ましい。 反応温度は 3 0 °Cから 8 0 °C程度が好ましく、 さらに 4 5 °Cから 7 0 °Cが好ましく、 特に 6 0 C程度が好ましい。 反応時間は、 2時間から 1 2時 間程度であり、 好ましくは 4時間から 8時間である。 ここでべンジルォキシカル ボニル化剤は一般式 (V) で表される化合物に対し過剰量必要であり、 好ましく は 9当量から 1 5当量であり、 さらに好ましくは 1 0当量から 1 2当量である。 第 2段階のベンジルォキシカルボニル基の除去反応は、 通常の脱保護法により 行われる。 脱保護法としてはたとえば、 接触水素化などがあげられ、 好ましくは パラジウム一炭素触媒を用いる接触水素化などである。 水素源としては水素の他 ギ酸アンモニゥムなども用いることができる。 水素源として水素を用いる場合に は、 接触水素化は加圧下で行ってもよく、 加圧下の場合の圧力としては、 好まし くは 2気圧から 5気圧程度であり、 さらに好ましくは 3気圧から 4気圧である。 用いられる溶媒は、 反応に不活性なものであればかまわないが、 アルコール系溶 媒などが好ましく、 さらに、 メタノール、 エタノールなどが好ましい。 反応温度 は 0 °Cから 5 0 °C程度であり、 好ましくは 1 0 °Cから 3 0 °C程度、 さらに好まし くは室温付近である。 反応時間は、 3 0分から 3時間程度であり、 好ましくは 1 時間から 2時間である。 水素源としてギ酸アンモニゥムを用いる場合には、 用い られる溶媒は、 反応に不活性なものであればかまわないが、 アルコール系溶媒な どが好ましく、 さらに、 メタノール、 エタノールなどが好ましい。 反応温度は 5 0 °Cから 1 0 0 °C程度が好ましく、 さらに 6 0 °Cから 9 0 °Cが好ましい。 反応時 間は、 3 0分から 3時間程度であり、 好ましくは 1時間から 2時間である。
第 3段階のアルキル化反応において用いるアルキル化剤の例としては、 たとえ ば、 ハロゲン化アルキル、 アルキルトシレートなどがあげられ、 好ましくはハロ ゲン化アルキルなどがあげられる。 ここで、 アルキル部分としては特にイソプロ ピル基が好ましい。 ィソプロピル化剤の好ましい例としてはヨウ化ィソプロピル、 などがあげられる。 用いる塩基としては、 たとえばァミンなどの有機塩基のほか に無機塩基などがあげられ、 好ましい例としては、 ジイソプロピルェチルァミン、 トリェチルァミン、 モルホリン、 ピぺリジン、 ピロリジン、 ピリジンなどがあげ られ、 特に好ましくはトリエチルァミンである。 用いられる溶媒は、 反応に不活 性なものであればかまわないが、 非プロトン性極性溶媒、 アルコール系溶媒など が好ましく、 さらに好ましくはジメチルイミダゾリジノン、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド、 ァセトニトリル、 テトラヒドロフラン、 メタノール、 エタノールなどがあげられ、 さらにジメチルイミダゾリジノン、 ジメチルホルム アミ ド、 ァセトニトリルなどが好ましい。 反応温度は 5 0 °Cから 1 0 0 °C程度が 好ましく、 さらに 6 0 °Cから 8 0 °Cが好ましい。 反応時間は、 3時間から 1 0曰 程度であり、 好ましくは 5時間から 1 0時間である。
第 4段階のフマル酸塩への変換反応は通常の塩を形成する方法により行われる。 用いられる溶媒は、 アルコール系溶媒、 テトラヒドロフランなどのエーテル系溶 媒、 アセトンなどが好ましく、 さらに、 メタノール、 エタノール、 イソプロパノ ールなどが好ましい。 反応温度は一 2 0 °Cから 5 0 °C程度が好ましく、 さらに一 1 5 °Cから室温程度が好ましい。 反応時間は、 1時間から 6時間程度であり、 好 ましくは 3時間から 4時間である。
得られた一般式 (Π ) で表される化合物で表される化合物のフマル酸塩は必要 に応じ精製される。 精製法としては再結晶が好ましい。 再結晶溶媒としては、 た とえば水を含有していてもよい、 エステル系溶媒、 アルコール系溶媒、 エーテル 系溶媒や、 それらの混合溶媒等が用いられ、 好ましくは、 エタノール、 メタノー ルとイソプロパノールの混合溶媒、 酢酸ェチルと水の混合溶媒などであり、 さら に好ましくはメタノールとイソプロパノ一ルの混合溶媒、 酢酸ェチルと水の混合 溶媒などである。 ここで、 メタノールとイソプロパノールの比は、 たとえば 1 0 : 9 0から 5 0 : 5 0程度、 好ましくは 2 0 : 8 0から 3 0 : 7 0程度である。 酢酸ェチルと水の混合溶媒の比は、 たとえば 9 9. 5 : 0. 5から 9 7 : 3、 好 ましくは 9 9 : 1から 9 8 : 2、 さらに好ましくは 9 8. 5 : 1 . 5程度である。 酢酸ェチルあるいは酢酸ェチルと水の混合溶媒を用いて再結晶を行うと、 特開 平 6— 5 6 8 7 3号公報に記載されているメタノールとイソプロパノールの混合 溶媒で再結晶した場合 (A形結晶) とは異なる結晶形 (C形結晶および D形結晶) の結晶が得られた。 これらの結晶の粉末 X線回折や熱分析 (D S C ) のデータを 図に示す (図 1、 図 2、 図 3、 図 4、 図 5、 図 6 ) 。
ここで、 メタノールとイソプロパノールの混合溶媒で再結晶した場合に得られ る結晶 (A形結晶) の式 (VE) で表される化合物とフマル酸のモル比は、 2 : 1 であった。 また、 酢酸ェチルあるいは酢酸ェチルと水の混合溶媒を用いて再結晶 した場合に得られた結晶には、 式 (VH) で表される化合物とフマル酸のモル比が、 1 : 1のもの (C形結晶) と 2 : 1のもの (D形結晶) があった。
これらの結晶のうち、 特にメタノールとイソプロパノールの混合溶媒で再結晶 するなどの方法により粗精製された式 (VE) で表される化合物のフマル酸塩 (た とえば A形結晶) を、 酢酸ェチルと水の混合溶媒で再結晶することにより得られ る結晶 (D形結晶) は、 他の結晶形の結晶に比べ、 安定性の点ですぐれているな ど医薬品あるいは医薬品原料としてすぐれた品質を有していることが明かとなつ フ
この D形結晶を得るには、 酢酸ェチルと水の混合溶媒で再結晶する際に、 まず、 式 ( π) で表される化合物のフマル酸塩の粗精製物を、 室温程度で酢酸ェチルに 懸濁または溶解し、 これに水を加え、 一 1 0 °Cから一 2 0 °C程度に冷却する方法 が好ましい。 実施例 以下に実施例により本発明をさらに詳細に説明するが、 本発明はこの実施例に よりなんら制限されるものではない。 なお、 — NMRについては、 特徴的な ピークのみ示す。
実施例 1 へミケタール体 (式 (III) で表される化合物) の合成
エリスロマイシン A (20. 0 g, 0. 027mo 1 ) を無水酢酸 (3. 34 g, 0. 033mo 1) , ピリジン (3. 45 g, 0. 044mo 1 ) と酢酸ェ チル (80ml) に溶解後、 室温にて 1時間撹拌した。 その後氷冷 (0°C)下、 ギ酸 (11. 29 g, 0. 245mo 1) 、 無水酢酸 (12. 52g, 0. 12 3 mo 1) を滴下し、 氷冷のまま 3時間撹拌した。 その後徐々に室温に戻し、一 夜放置した。
4.0〜50°Cにて約 2時間加温した。 室温に戻し酢酸ェチル (120ml) に 溶解後氷水 (60m 1 X 2) にて洗浄した。 酢酸ェチル層を飽和炭酸水素ナトリ ゥム水溶液 (120ml) 、 固型炭酸水素ナトリウム (8g) にて中和した。 分 液し、 水洗し (40 ml x3)、 飽和食塩水 (40ml) で洗った後、 無水硫 酸ナトリウムにて一晩乾燥した。
濾過後減圧濃縮した。 残渣をへキサン (136ml) にて約 30分間還流後冷 却した。 酢酸ェチル (24ml) を加え撹拌下 0°Cまで冷却した。 結晶を分離後、 へキサン (20ml) にて洗浄した。 標記化合物 (15. 8 g, 74%) の白色 結晶を得た。
融点: 200— 208°C (酢酸ェチルーへキサン) .
- NMR (CDC 13) : 0. 89 (3H, t, 13-CH2CH3) , 2. 05 (3Η, s, 2' -OCOCHs) , 2. 27 (6H, s, 3' - N (CH3) 2) , 3. 36 (3H, s, 3" -OCH3) , 3. 83 (1H, s, 11-CH (OH) ) , 8. 20 (1H, s, 4" -OCHO) .
実施例 2 ォキソ体 (式 (IV) で表される化合物) の合成
実施例 1で得られた化合物 (10. 0g, 0. 013mo 1 ) 、 ジメチルスル ホキシド (2. 64 g, 0. 032 mo 1) をジクロロメタン (50ml) に 溶解した。 氷一食塩にて系内を一 20°Cまで冷却し、 無水トリフルォロ酢酸 (3. 36 g, 0. 016mo 1 ) を一 10°C以下にて滴下し、 20分間撹拌した。 更 に一 20°Cにてトリェチルァミン (3. 49 g, 0. 034mo l) を同様に一 10 °C以下にて滴下し、 20分間撹拌した。 飽和炭酸水素ナトリゥム水溶液 ( 5 0ml) を添加し、 20分間撹拌した。 水洗 (50ml x 3) 後、 無水硫酸ナト リウムにて一晚乾燥した。
ジクロロメタンを減圧濃縮後、 ァメ状の残渣にへキサン (100ml) を添加 し、 熱時撹拌溶解した。 冷却後ジクロロメタン (2. 5ml) を添加し、 室温に て 2. 5時間撹拌後、 結晶を濾取した。 2. 5%ジクロロメタン一へキサン (3 0m 1 ) にて洗浄し、 標記化合物 (6. 49 g, 65 の白色結晶を得た。 融点: 186— 188°C (ジクロロメタン一へキサン) .
JH-NMR (CDC ") : 0. 90 (3H, t, 13-CH2CH3) , 2.
04 (3H, s, 2' -OCOCHa) , 2. 26 (6H, s, 3' — N (CH3) 2) , 3. 33 (3H, s, 3" -OCH3), 4; 53 (1H, d. Γ 一 H) , 4. 84 (1H, d, 1" - H) , 4. 97 (1H, dd, 13 - H) . 8. 2 1 (1H, s, 4" -OCHO) .
13C - NMR (CDC 13) : 208. 4 (11 - 0) .
実施例 3 脱保護体 (式 (V) で表される化合物 (R2:メチル) ) の合成 ジメチルホルムァミ ド (30ml) に 60%水素化ナトリウム (1. 02 g, 0. 026mo 1) を添加し、 氷冷 (0°C) にてさらに実施例 2で得られた化合 物 (10. 0g, 0. 013mo 1) を添加し、 30分間撹拌した。 メチルトシ レート (2. 38 g, 0. 013mo 1) を滴下後、 0〜5°Cにて 1時間、 1 5〜20°Cにて 1. 5時間それぞれ撹拌した。 メタノール (60ml) を添加し、 60°Cにて 5時間加熱した。 加熱後そのまま一晚放置した。
全体を減圧濃縮後、 40°Cの温水 (150ml) に濃縮液を撹拌下滴下して析 出した結晶を分離した。 得られた結晶を再度 40°C温水 (150ml) にて 30 分間撹拌し、 同様に分離した。 50°Cにて 4時間乾燥後、 粗脱保護体 (7. 9 g, 85%) を得た。
粗脱保護体をアセトン (12. 6ml) に溶解後、 10%アンモニア水 (5. 9ml) を添加し、 晶析した。 15〜25°Cにて 1時間、 さらに一 5〜一 10 °C にて 1時間撹拌し、 分離および洗浄を行った。 50°Cにて 3時間乾燥し、 標記化 合物 (5. 5 g, 59%) の淡黄色結晶を得た。
融点: 168— 174°C (アンモニア水ーァセトン) .
•H-NMR (CDC ") : 0. 85 (3H, t, 13-CH2CH3) , 1. 68 (3H, s, 8-CH3) , 2. 28 (6H, s, 3' 一 N (CH3) 2) ,
3. 06 (3H, s, 12— OCH3), 3. 34 (3H, s, 3" -OCH3) ,
4. 37 (1H, d, 1' 一 H) , 4. 97 (1H, d, 1" 一 H) , 5. 63 (1 H, dd, 13-H) .
実施例 4 ベンジルォキシカルボニル体 (式 (VI) で表される化合物 (R2 : メチル) ) の合成
トルエン (55ml) に実施例 3で得られた化合物 (5. 5 g, 0. 0076 mo 1) と固型炭酸水素ナトリウム (9. 5 g, 0. 113mo 1 ) を添加した。 次いで、 撹拌下、 70〜80°Cにてベンジルォキシカルボニルクロリ ド (18. 0g, 0. 106mo 1) を滴下しそのままの温度で 4時間加熱した後、 反応混 合液を一夜室温放置した。
この反応混合液にピリジン (4. 02 g, 0. 05mo 1 )添加し、 30分間 撹拌した。 次いで、 飽和炭酸水素ナトリウム水溶液 (38. 5ml) を添加して 10分間撹拌した後、 酢酸ェチル (38. 5ml) を添加した。 これを撹拌し、 分液して、 得られた有機層を水洗した。 さらに、 この有機層を飽和食塩水で (3 8. 5ml)洗浄後、 無水硫酸ナトリウムで乾燥した。
全体を減圧濃縮して残渣を得た。 この残渣にァセトニトリル (27. 5 ml) を加えて溶解し、 へキサン (187m 1 X 5) にて分液洗浄した。 ァセトニトリ ル層を減圧濃縮して残渣を得た。 得られた残渣にメタノール (13. 5 ml) を添加し、 まず 15〜25°Cにて 1時間撹拌し、 さらに 0°C以下にて 1時間撹拌 した。 その後、 析出した結晶を濾取した。 この結晶を 50°Cにて 3時間乾燥し、 白色結晶の標記化合物 (4. 0 g, 54%) を得た。
融点: 122— 126°C (メタノール) , !H-NMR (CDC 13) : 0. 96 (3H, t, 13-CH2CH3) , 1. 68 (3H, s, 8-CH3) , 3. 03 - 3. 37 (3H, d, 3" -OCH3) , 3. 06 (3H, s, 12-OCH3) , 5. 03-5. 21 (4H, m, C H2CeH5x2) , 5. 63 (1H, dd, 13— H) , 7. 28-7. 34 (1 OH, m, 2* — OCOCH2C6H5, 3' -N 0 C 0 C H 2 C 6H5) .
実施例 5 脱べンジルォキシカルボニル体 (式 (VM) で表される化合物 CR2 : メチル) ) の合成
メタノール (36. 8m 1 ) に実施例 4で得られた化合物 (4. 0 g, 0. 0 04mo 1 )、 10%パラジウム一炭素 (0. 4 g)及びギ酸アンモニゥム (1. 03 g) を添加し、 1時間加熱還流した。 パラジウム一炭素を濾去後にメタノー ルを減圧留去した。 残渣を酢酸ェチル (40ml) に溶解し、 飽和炭酸水素ナト リウム水溶液 (16ml) にて洗浄して、 分液した。 得られた有機層を水洗し ( 16 m 1 X 2 ) 、 さらに飽和食塩水で (16ml)洗浄後、 無水硫酸ナトリウ ムで乾燥した。 無水硫酸ナトリウムを濾去後この有機層を減圧濃縮し、 粗脱ベン ジルォキシカルボニル体 (2. 0 g, 69%) の白色結晶を得た。
融点: 187— 190°C (へキサンにて懸濁精製)
^- MR (CDC ") : 0. 95 (3H, t, 13-CH2CH3) , 1. 68 (3H, s, 8-CH3) , 2. 47 (3H, s, 3' -NHCH3) , 3. 06 (3H, s, 12-OCH3) , 3. 21 (1H, dd, 2" 一 H) , 3. 33 (3H, s, 3" -OCH3) , 4. 37 (1H. d, Γ - H) , 4. 9 6 (1H, d, 1" -H) , 5. 61-5. 65 (1H, dd, 13 - H) . 実施例 6 フマレート体 (式 (νπ) で表される化合物のフマル酸塩) の合成 ジメチルイミダゾリジノン (35ml) に実施例 5で得られた化合物 (10g, 0. 014mo 1 ) 、 ヨウ化イソプロピル (23. 8 g. 0. 14mo l) 、 ト リエチルアミン (16. 95 g, 0. 17mo 1) を添加溶解し、 70— 75°C にて 7— 8時間加熱した後、一夜放置した。 酢酸ェチル (200m 1 )、 2. 5 %アンモニア水 (75ml) にて抽出洗浄した液を、 水洗し (150m 1 X 2)、 さらに飽和食塩水 (100ml) で洗浄後、 無水硫酸ナトリウムにて乾燥した。 酢酸ェチルを減圧濃縮後、 残渣をフマル酸 (0. 84 g, 0. 0073mo 1 ) とともにメタノール (25m l ) に溶解し、 撹拌下イソプロパノール (75ml ) を徐々に滴下し、 室温で 1時間、 0°Cで 1時間、 一 15°Cで 1時間それぞれ撹拌 した。 析出した結晶を減圧濾取し、 白色結晶の標記化合物 (7. 9 g, 69%) を得た。
融点: 194一 197°C (メタノール一ィソプロパノール) ,
•H-NMR (CDC 13 + DMSO - d6) : 0. 94 (3H, t, 13 - C H2CH3) , 1. 73 (3H, s, 8-CH3) , 3. 05 (3H, s, 12 - OCH3) , 3. 08 (1H, d d, 4" 一 H) , 3. 35 (3H, s, 8" ― OCH3) , 4. 43 (1H, d, Γ -H) , 4. 96 (1H, d, 1" - H) , 5. 60-5. 63 (1H, d d, 13 - H) , 6. 78 (1H, s, 1/2 (=CH-COOH) 2) .
実施例 7 フマレート体 (式 (ΥΠ) で表される化合物のフマル酸塩) の粗精製 実施例 6で得られた化合物 (10. 0 g, 0, 0123mo 1 ) をメタノール (25ml) に溶解し、 この溶液にイソプロパノール (75m l) を徐々に滴下 した。 この反応混合液を室温で 1時間、 0°Cで 1時間、 一 15°Cで 1時間それぞ れ撹拌して晶析し、 減圧瀘取した。 白色結晶の標記化合物の粗精製物 (9. 25 g, 92. 5%) を得た。
融点: 194— 197°C (メタノール一イソプロパノール) ,
iH— NMR (CDC " + DMSO - d6) : 0. 94 (3H, t, 13 - C H2CH3) , 1. 73 (3Η, s, 8-CH3) , 3. 05 (3 H, s, 12 - OCH3) , 3. 08 (1H, d d, 4" 一 H) , 3. 35 (3H, s, 8" 一 OCH3) , 4. 43 (1H, d, 1* 一 H) , 4. 96 (1H, d, 1" — H) , 5. 60-5. 63 (1H, d d, 13 - H) , 6. 78 (1H, s, 1/2 (=CH-COOH) 2) .
実施例 8 フマレート体 (式 (ΥΠ) で表される化合物のフマル酸塩) の精製 室温下、 実施例 7で得られた粗精製物 (10 g, 0. 0123mo l) を酢酸 ェチル ( 100 m 1 ) に溶解し、 水 ( 1. 5m l ) を滴下後、 室温で 1時間、 0 °Cで 1時間、 一 10°Cで 4時間それぞれ撹拌後減圧濾取し、 白色結晶の標記化合 物の精製物結晶 (9. 04 g, 90. 4%) を得た。
融点: 199〜200°C (1. 5%水一酢酸ェチル)
'H-NMR (CDC 13 + DMSO-d6) : 0. 94 (3H, t, 13 - C H2CH3) , 1. 73 (3Η, s, 8-CH3) , 3. 05 (3H, s, 12 - OCH3), 3. 08 (1H, dd, 4" - H) , 3. 35 (3H, s, 8" 一 OC旦 3) , 4. 43 (1H, d, Γ 一 H) , 4. 96 (1H, d, 1" — H) , 5. 60-5. 63 (1 H, dd, 13 - H) , 6. 78 (1H, s, 1/2 (=CH-COOH) 2) .
実施例 9 フマレート体 (式 (VK) で表される化合物のフマル酸塩) の合成 トルエン (55ml) に実施例 3で得られた化合物 (9. 5 g, 0. 013m o 1 ) と固型炭酸水素ナトリウム (16. 4 g, 0. 195mo 1 ) を添加した。 撹拌下、 70°C前後にてべンジルォキシカルボニルクロリ ド (31. 1 g, 0. 183mo 1) を滴下後そのままの温度で 4時間加熱し、 次いで一夜室温放置し た。 この反応混合液にピリジン (6. 94 g, 0. 086mo l) を添加し、 30分間撹拌した。 さらに、 これに飽和炭酸水素ナトリウム水溶液 (66. 5m 1) を添加し、 10分間撹拌後、 酢酸ェチル (66. 5ml) を添加した。 得ら れた混合液を撹拌し、 有機層を分液した。 この有機層を水洗し、 さらに飽和食塩 水 (66. 5ml ) で洗浄後無水硫酸ナトリウムで乾燥した。
全体を減圧濃縮し、 その残渣をメタノール (128ml) に溶解した。 これに 10%パラジウム一炭素 (1. 28 g) を添加し、 水素雰囲気加圧下 (3から 4 気圧) 1時間室温で撹拌した。 パラジウム一炭素を濾去後メタノールを減圧留去 した。 残渣を酢酸ェチル (120ml) に溶解し、 飽和炭酸水素ナトリゥム水溶 液 (50m 1 ) にて洗浄し、 分液した。 得られた有機層を水洗し (50ml x 2) 、 さらに飽和食塩水 (50ml) で洗浄後、 無水硫酸ナトリゥムで乾燥した。 無 水硫酸ナトリウム濾過後、 酢酸ェチルを減圧濃縮し、 オイル状の脱べンジルォキ シカルボニル体 (式 (VI) で表される化合物 (R2:メチル) ) を得た。
これを精製する事なくヨウ化イソプロピル (20. 0 g, 0. 118mo l) 、 卜リエチルァミン (13. 2 g, 0. 13 lmo 1 ) とともに、 ジメチルイミダ ゾリジノンに溶解し、 70— 75°Cにて 7— 8時間加熱後、 一夜放置した。 次い で、 これを酢酸ェチル (100m 1 ) 、 2. 5%アンモニア水 (50m l) にて 抽出洗浄後、 水洗し (50m l X 2) 、 飽和食塩水で (50m l ) 洗浄後、 無水 硫酸ナトリウムにて乾燥した。 酢酸ェチルを減圧濃縮後、 フマル酸 (0. 76 g, 0. 0066mo 1) とともにメタノール (25. 0 m 1 ) に溶解し、 撹拌下ィ ソプロパノール (75. Oml) を徐々に滴下し晶析した。 室温で 1時間、 0°C で 1時間、 一 15°Cで 1時間それぞれ撹拌し、 減圧濾取した。 乾燥後白色結晶の 標記化合物 (6. 5 g, 60. 0%) を得た。
融点: 194〜197°C (メタノール一イソプロパノール) ,
!H-NMR (CDC 13 + DMSO-de) : 0. 94 (3H, t, 13 - C H2CH3) , 1. 73 (3H, s, 8-CH3) , 3. 05 (3H, s, 12- OCH3) , 3. 08 (1H, d d, 4" -H), 3. 35 (3H, s, 8" - OCH3) , 4. 43 (1H, d, 1' 一 H) , 4. 96 (1H, d, 1" - H) , 5. 60-5. 63 (1H, dd, 13— H) , 6. 78 (1H, s, 1/2 (=CH-COOH) 2) .
実施例 10 式 (VP) で表される化合物のフマル酸塩結晶の安定性試験
式 (ΥΠ) で表される化合物のフマル酸塩結晶の結晶形の違いによる安定性の差 について試験を行った。 結晶としては式 (ΥΠ) で表される化合物のフマル酸塩を メタノール一イソプロパノールから再結晶して得られた結晶 (Α形結晶) と酢酸 ェチルまたは酢酸ェチルと水の混合溶媒から再結晶して得られた結晶 (C形結晶、
D形結晶) を用いた。
各結晶を精抨し、 80°C空気恒温槽内で苛酷試験を行った。 サンプルを経時的 に取り出し、 全量を約 lmgZm 1の濃度となるように 50%ァセトニトリルで 溶解し、 この溶液 2m 1に、 内部標準溶液 2m 1 (パラ安息香酸シクロへキシル l O Ou gを 50%ァセトニトリノレ 2m 1に溶解したもの) を加えた後、 総量を
10mlとして以下の条件の H PLCに 100 1注入し、 用いた試料と内部標 準のピーク面積比より残存率を求めた。 HP LC測定条件
使用機器: M600マルチソルベント送液システム (Wa t e r s社製) 、 49 0型多機能検出機 (Wa t e r s社製) 、 M712全自動サンプルプロセッサ (Wa t e r s社製) 、 740型データモジュール (Wa t e r s社製) 、 温度 コントロールモジュール (Wa t e r s社製) 、 カラムヒーターモジュール (W a t e r s社製)
カラム: YMC A— 212, C8 ( (株) ヮイエムシィ社製)
溶出液: 50%ァセトニトリル +P I C B— 5試薬低波長用 (Wa t e r s社 製)
流量: 1ml/分
検出波長: 205 nm
カラム温度: 40。C
内部標準:パラ安息香酸シクロへキシル
結果を図 7に示す。 A形結晶はこの条件下で 70曰で残存率が 60 %程度に低 下するのに対し、 C形結晶および D形結晶は 70曰後で 80%程度残存していた。
実施例 11 式 (νπ) で表される化合物のフマル酸塩結晶の加湿条件下での安 定性試験
式 ( π) で表される化合物のフマル酸塩結晶の結晶形の違いによる加湿条件下 での安定性の差について試験を行った。 飽和塩化ナトリウム水溶液で相対湿度 7 5%に調整した 80°Cのデシケータ中で苛酷試験を行うこと以外は実施例 10と 同様の方法により試験を行った。
結果を図 8に示す。 グラフより明らかなように A形結晶、 D形結晶の加湿安定 性は C形結晶に比べ、 非常に高いことが明らかになった。
以上の結果より、 D形結晶は、 他の結晶形の結晶に比べ安定性においてすぐれ ているということができる。 産業上の利用の可能性
本発明の製造方法は、 (1)最終生成物の精製品を得るのに必要な各反応段階 での精製を再結晶のみで行うことが可能であること、 (2 ) エリスロマイシン A の 2 ' 位の水酸基のァセチル化、 4 " 位の水酸基のホルミル化およびへミケター ル化反応をワンポッ 卜で行え、 また、 1 2位の水酸基のアルキル化反応、 および 2 ' 位のァセチル基と 4 " 位のホルミル基の除去反応をワンポッ 卜で行うことが できるなど、 従来の製造方法にくらべ、 工程数の減少が可能であること、 などェ 業的製造方法としてすぐれたものといえる。
さらに、 本発明により得られた式 (VH) で表される化合物のフマル酸塩結晶は、 従来得られていた結晶に比べ、 安定性の点ですぐれているなど医薬品あるいは医 薬品原料としてすぐれた品質を有している。

Claims

O 97/06177
請 求 の 範 囲 エリスロマイシン A (式 ( I ) )
Figure imgf000031_0001
から、 一般式 (Π)
Figure imgf000031_0002
(式中、 は低級アルキル基を示し、 R2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法において、 エリスロマイシン Aの 2' 位の水 酸基をァセチル化、 4" 位の水酸基をホルミル化した後へミケタール化反応を行 い、 式 (Π) O 97/06177
Figure imgf000032_0001
で表される化合物を得、 この化合物の 1 1位の水酸基を酸化し、 式 (IV)
Figure imgf000032_0002
で表される化合物を得、 この化合物の 1 2位の水酸基をアルキル化し、 さらに 2
' 位のァセチル基および 4 " 位のホルミル基を除去し、 一般式 (V)
Figure imgf000032_0003
(式中、 R 2は低級アルキル基を示す) で表される化合物を得、 この化合物に塩 O 97/06177
基性条件下、 ベンジ 'レオキンカルボニルクロリ ドを反応させた後、 導入されたべ ンジルォキシカルボ二ル基を除去し、 次いで 3' 位の窒素原子をアルキル化した 後、 フマル酸塩へと変換し、 次いでこの粗結晶をアルコール系溶媒で再結晶した 後、 含水酢酸ェチルで再結晶することを特徴とする、 一般式 (Π)
(Π)
Figure imgf000033_0001
(式中、 Riは低級アルキル基を示し、 R2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法。
2. エリスロマイシン Aの 2' 位の水酸基のァセチル化、 4" 位の水酸基のホ ルミル化およびへミケタール化反応をヮンポッ トで行うことを特徵とする請求項 1記載の製造方法。
3. 12位の水酸基のアルキル化反応、 および 2' 位のァセチル基と 4" 位の ホルミル基の除去反応をワンポッ トで行うことを特徴とする請求項 1記載の製造 法。
4. エリスロマイシン Aの 2' 位の水酸基のァセチル化、 4" 位の水酸基のホ ルミル化およびへミケタール化反応をワンポッ 卜で行い、 かつ、 12位の水酸基 のアルキル化反応、 および 2' 位のァセチル基と 4" 位のホルミル基の除去反応 をワンポッ トで行うことを特徴とする請求項 1記載の製造方法。 O 97/06177
5. エリスロマイシン A (式 (I) )
Figure imgf000034_0001
から、 一般式 (Π)
Figure imgf000034_0002
(式中、 は低級アルキル基を示し、 R2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法において、 エリスロマイシン Aの 2' 位の水 酸基をァセチル化、 4" 位の水酸基をホルミル化した後へミケタール化反応を行 い、 式 (Π)
O 97/06177
Figure imgf000035_0001
で表される化合物を得、 この化合物の 1 1位の水酸基を酸化し、 式 (IV)
Figure imgf000035_0002
で表される化合物を得、 この化合物の 1 2位の水酸基をアルキル化し、 さらに 2 ' 位のァセチル基および 4 " 位のホルミル基を除去し、 一般式 (V)
Figure imgf000035_0003
(式中、 R 2は低級アルキル基を示す) で表される化合物を得、 この化合物に塩 O 97/06177
基性条件下、 ベンジルォキンカルボニルクロリ ドを反応させた後、 導入されたべ ンジルォキシカルボ二ル基を除去し、 次いで 3' 位上の窒素原子をアルキル化し た後、 フマル酸塩とすることを特徴とする、 一般式 (Π)
Figure imgf000036_0001
(式中、 は低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物のフマル酸塩を製造する方法。
6. エリスロマイシン Aの 2' 位の水酸基のァセチル化、 4" 位の水酸基のホ ルミル化およびへミケタール化反応をワンポッ トで行うことを特徴とする請求項 5記載の製造方法。
7. 12位の水酸基のアルキル化反応、 および 2' 位のァセチル基と 4" 位の ホルミル基の除去反応をワンポッ 卜で行うことを特徴とする請求項 5記載の製造 方
8. エリスロマイシン Aの 2' 位の水酸基のァセチル化、 4" 位の水酸基のホ ルミル化およびへミケタール化反応をワンポッ 卜で行い、 かつ、 12位の水酸基 のアルキル化反応、 および 2' 位のァセチル基と 4" 位のホルミル基の除去反応 をワンポッ 卜で行うことを特徴とする請求項 5記載の製造方法。
9. Riがイソプロビル基であり、 R2がメチル基であることを特徴とする請求 項 1から 8何れか 1項に記載された製造方法。 O 97/06177
10. エリスロマイシン A
Figure imgf000037_0001
から、 式 (m)
Figure imgf000037_0002
で表される化合物を製造する方法において、 エリスロマイシン Aの 2' 位の水酸 基のァセチル化、 4" 位の水酸基のホルミル化およびへミケタール化反応をワン ボッ 卜で行うことを特徴とする式 (m)
Figure imgf000037_0003
で表される化合物の製造方法 c
1 1 . —般式 (V )
Figure imgf000038_0001
(式中、 R 2は低級アルキル基を示す) で表される化合物に、 塩基性条件下、 ベ ンジルォキシカルボニルクロリ ドを反応させ、 一般式 (VI)
Figure imgf000038_0002
(式中、 R 2は低級アルキル基を示し、 Zはべンジルォキシカルボ二ル基を示す) で表される化合物を製造する方法。
12. —般式 (Π)
(Π)
Figure imgf000039_0001
(式中、 R【は低級アルキル基を示し、 R2は低級アルキル基を示す) で表される 化合物のフマル酸塩の粗結晶をアルコール系溶媒で再結晶した後、 含水酢酸ェチ ルで再結晶することを特徴とする、 一般式 (H)
(Π)
Figure imgf000039_0002
(式中、 Rtは低級アルキル基を示し、 R 2は低級アルキル基を示す) で表される 化合物のフマル酸塩の精製方法。
13. R【がィソプロピル基であり、 R2がメチル基であることを特徵とする請 求項 12記載の精製方法。
4 . 式 (VE)
Figure imgf000040_0001
で表される化合物とフマル酸のモル比が 2 : ェであり、 含水酢酸ェチルで再結晶 することにより得ることができる、 式 (W) で表される化合物のフマル酸塩結晶。
PCT/JP1996/002191 1995-08-03 1996-08-05 Procede d'elaboration de derives d'erythromycine WO1997006177A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU66306/96A AU710368C (en) 1995-08-03 1996-08-05 Process for producing erythromycin derivatives
US09/011,142 US5959088A (en) 1995-08-03 1996-08-05 Process for producing erythromycin derivatives
EP96925989A EP0846697A4 (en) 1995-08-03 1996-08-05 PROCESS FOR THE PREPARATION OF ERYTHROMYCIN DERIVATIVES
CA002228254A CA2228254C (en) 1995-08-03 1996-08-05 Process for producing erythromycin derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22959895 1995-08-03
JP7/229598 1995-08-03

Publications (1)

Publication Number Publication Date
WO1997006177A1 true WO1997006177A1 (fr) 1997-02-20

Family

ID=16894695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002191 WO1997006177A1 (fr) 1995-08-03 1996-08-05 Procede d'elaboration de derives d'erythromycine

Country Status (12)

Country Link
US (1) US5959088A (ja)
EP (1) EP0846697A4 (ja)
KR (1) KR100354690B1 (ja)
CN (4) CN1070864C (ja)
AU (1) AU710368C (ja)
CA (1) CA2228254C (ja)
IL (1) IL119002A (ja)
MX (1) MX9800904A (ja)
RU (1) RU2266295C2 (ja)
TW (1) TW486484B (ja)
WO (1) WO1997006177A1 (ja)
ZA (1) ZA966601B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT102202B (pt) * 1998-09-10 2001-04-30 Hovione Sociedade Quimica S A Processo para a purificacao de roxitromicina
CA2420847C (en) * 2000-09-01 2008-02-05 Chugai Seiyaku Kabushiki Kaisha Process for producing erythromycin derivative
CA2425913C (en) * 2000-10-12 2008-07-15 Chugai Seiyaku Kabushiki Kaisha Erythromycin derivative having novel crystal structures and processes for their production
DE60206921T2 (de) * 2001-06-13 2006-07-20 Ube Industries, Ltd., Ube Verfahren zur herstellung von erythromycinverbindungen
US6916792B2 (en) * 2001-06-13 2005-07-12 Ube Industries, Ltd. Process for preparing erythromycin compound
TW200302830A (en) * 2002-01-11 2003-08-16 Chugai Pharmaceutical Co Ltd Anhydrate/hydrate of an erythromycin derivative and processes for preparing said anhydrate/hydrate
US7407941B2 (en) * 2003-08-26 2008-08-05 Pfizer, Inc. N-desmethyl-N-substituted-11-deoxyerythromycin compounds
US20050113319A1 (en) * 2003-08-26 2005-05-26 Christopher Carreras 11-Deoxy-6,9-ether erythromycin compounds
US7211568B2 (en) * 2003-12-18 2007-05-01 Kosan Biosciences Incorporated 9-Desoxoerythromycin compounds as prokinetic agents
US7582611B2 (en) * 2005-05-24 2009-09-01 Pfizer Inc. Motilide compounds
NZ568763A (en) * 2005-12-08 2010-04-30 Pfizer Method for demethylating the 3'-dimethylamino group of erythromycin compounds
RU2422453C2 (ru) * 2006-12-05 2011-06-27 Пфайзер Инк. Полиморфы мотилида

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849980A (ja) * 1971-10-30 1973-07-14
JPS6399092A (ja) * 1985-08-31 1988-04-30 Kitasato Inst:The エリスロマイシン誘導体およびその製造法
JPH0656873A (ja) * 1992-05-26 1994-03-01 Chugai Pharmaceut Co Ltd エリスロマイシン誘導体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056873A (ja) * 1983-09-06 1985-04-02 東京貿易株式会社 ボルト・ナットの締付方法
US5008249A (en) * 1985-08-31 1991-04-16 Kitasato Kenkyusho Therapeutic method of stimulating digestive tract contractile motion in mammals
US4672056A (en) * 1985-11-12 1987-06-09 Abbott Laboratories Erythromycin A derivatives and method of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849980A (ja) * 1971-10-30 1973-07-14
JPS6399092A (ja) * 1985-08-31 1988-04-30 Kitasato Inst:The エリスロマイシン誘導体およびその製造法
JPH0656873A (ja) * 1992-05-26 1994-03-01 Chugai Pharmaceut Co Ltd エリスロマイシン誘導体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JONES P.H. ET AL: "Chemical modifications of erythromycin antibiotics. 3. Synthesis of 4'' and 11 esters of erythromycin A and B", JOURNAL OF MEDICINAL CHEMISTRY, vol. 15, no. 6, 1972, WASHINGTON, US, pages 631 - 634, XP002178020 *
KOGA H. ET AL: "POTENT, ACID-STABLE AND ORALLY ACTIVE MACROLIDE-TYPE MOTILIN RECEPTOR AGONISTS, GM-611 AND THE DERIVATIVES", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 4, no. 11, 1994, OXFORD, GB, pages 1347 - 1352, XP001037172 *
See also references of EP0846697A4 *
TADANIER J. ET AL: "SOME CHEMICAL AND STEREOCHEMICAL MODIFICATIONS OF THE ERYTHROMYCIN LACTONE RINGS", JOURNAL OF ORGANIC CHEMISTRY, vol. 39, no. 17, 1974, EASTON, US, pages 2495 - 2501, XP000670002 *

Also Published As

Publication number Publication date
EP0846697A1 (en) 1998-06-10
MX9800904A (es) 1998-11-30
CA2228254C (en) 2003-10-28
CN1314358A (zh) 2001-09-26
AU710368C (en) 2002-11-07
IL119002A0 (en) 1996-11-14
IL119002A (en) 2000-09-28
CN1320606A (zh) 2001-11-07
CN1316429A (zh) 2001-10-10
TW486484B (en) 2002-05-11
KR100354690B1 (ko) 2003-01-24
ZA966601B (en) 1997-02-19
EP0846697A4 (en) 2002-04-17
RU2266295C2 (ru) 2005-12-20
CA2228254A1 (en) 1997-02-20
CN1141313C (zh) 2004-03-10
CN1196058A (zh) 1998-10-14
KR19990036134A (ko) 1999-05-25
AU710368B2 (en) 1999-09-16
CN1156489C (zh) 2004-07-07
US5959088A (en) 1999-09-28
AU6630696A (en) 1997-03-05
CN1070864C (zh) 2001-09-12

Similar Documents

Publication Publication Date Title
FI80708C (fi) Foerfarande foer selektiv metylation av derivat av erytromycin a.
EP0619319B1 (en) 5-0-desosaminylerythronolide derivative
WO1997006177A1 (fr) Procede d'elaboration de derives d'erythromycine
JPH08239374A (ja) 2,2−ジフルオロ−3−カルバモイルリボーススルホネート化合物およびβ−ヌクレオシドの製造方法
US6555677B2 (en) Phase transfer catalyzed glycosidation of an indolocarbazole
KR100317907B1 (ko) 신규한 중간체, 이를 이용한 마크로라이드계 항생제의제조방법
WO2009053259A1 (en) Process for the production of telithromycin
EP0245013B1 (en) Erythromycin derivatives
JPS6360031B2 (ja)
JP3258914B2 (ja) エリスロマイシン誘導体の製造方法
US4933439A (en) Tylosin derivatives and processes for producing the same
JP3978006B2 (ja) エリスロマイシン誘導体の製造方法
JP2007501268A (ja) 新規な9−デオキソ−9−ジヒドロ−9a−アザ−9a−ホモエリスロマイシンAの3−デクラジノシル9a−N−カルバモイル及び9a−N−チオカルバモイル誘導体
EP0511799A1 (en) Pharmaceutical compounds
JP2007204490A (ja) エリスロマイシン誘導体の製造方法
WO2005044832A1 (en) Process for the preparation of 1-chloro-3,5-di-o-acyl-2-deoxy-l-ribofuranoside derivatives
AU2003261708A1 (en) Process for producing indolopyrrolocarbazole derivative
WO2004007518A1 (en) Erythromycin a 9-o-pseudosaccharinyloxime derivatives and process for the preparation of clarithromycin using the same
US6504035B1 (en) 3-deoxy-desmycosin derivatives and process for their preparation
US20050159371A1 (en) Process for producing erythromycin a derivative
JP2843695B2 (ja) 10,11,12,13−テトラヒドロ−デスマイコシン誘導体、その製造法及びその医薬としての用途
JP2004217540A (ja) 没食子酸配糖体の製造方法
JPH0529038B2 (ja)
JPH07224067A (ja) 7−アルコキシまたはヒドロキシスタウロスポリン系物質の製造法
JPS59222500A (ja) マクロライド抗生物質誘導体の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196915.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BB BG BR BY CA CN CU CZ EE GE HU IL IS KE KG KR KZ LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2228254

Country of ref document: CA

Ref document number: 2228254

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996925989

Country of ref document: EP

Ref document number: PA/A/1998/000904

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1019980700802

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09011142

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996925989

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980700802

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980700802

Country of ref document: KR