WO1997002214A1 - Low temperature synthesis of layered lithiated transition metal oxides - Google Patents
Low temperature synthesis of layered lithiated transition metal oxides Download PDFInfo
- Publication number
- WO1997002214A1 WO1997002214A1 PCT/US1996/010541 US9610541W WO9702214A1 WO 1997002214 A1 WO1997002214 A1 WO 1997002214A1 US 9610541 W US9610541 W US 9610541W WO 9702214 A1 WO9702214 A1 WO 9702214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lico0
- temperature
- lithium
- transition metal
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
- C01G51/42—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/20—Two-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method of making hexagonal lithiated metal oxide materials at reduced temperatures. More particularly, the invention relates to a method of synthesizing lithium cobalt oxide or lithium nickel oxide products which is economical and which yields products having good electrochemical properties . The invention also relates to a method of producing a cobalt hydroxide precursor.
- LiCo0 2 cells are of particular interest because of their ability to insert/deinsert lithium reversibly at voltages greater than 4 V, resulting in batteries that have an output voltage and an energy density three times greater than Ni-Cd cells.
- Lithium cobalt oxide adopts a hexagonal structure consisting of Co0 2 layers separated by Van der Waals gap. The octahedral sites within the Van der Waals gap are occupied by the Li ions. This results in the reversible intercalation of lithium.
- LiNi0 2 is isostructural with LiCo0 2 and is commercially viable for use in secondary lithium ion batteries.
- Lithium secondary batteries are described for instance in U.S. Patent Nos. 5,296,318 and 5,418,091 to Gozdz et al. , both of which are incorporated in their entirety herein by reference.
- Lithium metal-free "rocking chair” batteries may be viewed as comprising two lithium-ion-absorbing electrode "sponges" separated by a lithium-ion conducting electrolyte usually comprising a Li + salt dissolved in a non-aqueous solvent or mixture of such solvents .
- a lithium-ion conducting electrolyte usually comprising a Li + salt dissolved in a non-aqueous solvent or mixture of such solvents .
- Numerous such salts and solvents are known in the art as evidenced in Canadian Patent Publication No. 2,002,191, dated January 30, 1991.
- U.S. Patent No. 5,192,629 which is herein incorporated by reference in its entirety, provides a class of electrolyte compositions that are exceptionally useful for minimizing electrolyte decomposition in secondary batteries comprising strongly oxidizing positive electrode materials. These electrolytes are uniquely capable of enhancing the cycle life and improving the temperature performance of practical "rocking chair" cells. These electrolyte compositions have a range of effective stability extending up to about 5.0 V at 55°C, as well as at room temperature (about 25°C) .
- a substantial cost in the fabrication of lithium secondary batteries is the cost of electrode material resulting from the price of Co- or Ni-based precursors plus the processing cost.
- Prior methods of synthesizing LiCo0 2 include heating to temperatures of from 800°C to 900°C. Reduction of the synthesis temperature of LiCo0 2 would result in significant savings in the energy and cost in the production of these electrode materials.
- the LT LiCo0 2 phase which does not present any interest from an electrochemical point of view, transforms to the hexagonal LiCo0 2 phase at temperatures greater than 600°C.
- Such a LiCo0 2 spinel structure results most likely from the fact, as suggested by Barboux et al . , that the phase grows or nucleates from the cubic Co 3 0 spinel .
- Applicants have discovered an advantageous method of forming layered structure lithium cobalt dioxide and lithium nickel dioxide materials which employs low temperatures, i.e., not exceeding 150°C, yet provides good electrochemical properties in the materials.
- the present invention is directed to this simple and cost-efficient method of making lithiated transition metal oxides at low temperatures .
- the invention relates to a method of making an alkali metal oxide of the formula
- A is an alkali metal of group Ia
- x is a number from 0.99 to 0 (depending upon the progress of the synthesis reaction)
- M is a transition metal
- the method comprising reacting an alkali metal ion source in a basic solution with MOOH, wherein M is as defined above, in the presence of water at a temperature of from about 50°C to about 150°C and at a pressure greater than atmospheric.
- the invention relates to a method of making a lithium transition metal oxide of the formula
- the method comprising reacting a lithium ion source in a basic solution with MOOH, wherein M is as defined above, in the presence of water at a temperature of from about 50°C to about 150°C and at a pressure greater than atmospheric.
- the invention relates to a method of making lithium cobalt oxide of the formula
- H x Li 1 _ x Co0 2 wherein x is a number from 0.99 to 0, the method comprising reacting a lithium ion source in a basic solution with CoOOH in the presence of water at a temperature of from about 50°C to about 150°C and at a pressure greater than atmospheric.
- the invention relates to a method of making a lithium nickel oxide of the formula
- FIG. 1 shows X-ray diffraction patterns of LiCo0 2 prepared according to the present invention at varying degrees of H 2 0 saturation.
- FIG. 2 shows the X-ray diffraction patterns of the respective precursor and reaction products in the method of preparing LiCo0 2 according to the present invention.
- FIG. 3 shows the similarity of X-ray diffraction patterns of LiCo0 2 prepared according to the present invention and according to prior high temperature practice.
- FIG. 4 shows an X-ray diffraction pattern of LiNi0 2 prepared according to the present invention, along with a standard LiNi0 2 pattern.
- FIG. 5 shows the initial reversible cycling of a rechargeable battery cell comprising an electrode of LiCo0 2 prepared according to the present invention.
- FIG. 6 shows the initial reversible cycling of a rechargeable battery cell comprising an electrode of LiCo0 prepared according to prior high temperature practice.
- FIG. 7 shows extended reversible cycling of a rechargeable battery cell comprising an electrode of LiCo0 2 prepared according to the present invention.
- FIG. 8 shows extended reversible cycling of a rechargeable battery cell comprising an electrode of LiCo0 prepared according to another embodiment of the present invention.
- lithium cobalt oxide and lithium nickel oxide having desirable properties can be synthesized at temperatures well below 800-900°C. This has been accomplished through the use of an MOOH starting material in which M is a transition metal.
- H x A 1 _ 3e M0 2 wherein A is an alkali metal of group Ia, x is a number from 0.99 to 0 (depending upon the progress of the synthesis reaction), and M is a transition metal, can be synthesized by reacting an alkali metal ion source in a basic solution with MOOH, wherein M is a transition metal, in the presence of an ion exchange medium, such as water, at a pressure greater than atmospheric.
- M is selected from cobalt and nickel.
- A is an alkali metal of group Ia selected from lithium, sodium, and potassium. More preferably, the alkali metal for use in the present invention is lithium.
- the temperature of the reaction is preferably from about 50°C to about 150°C, more preferably from about 80°C to about 130°C, and most preferably from about 100°C to 130°C.
- the reaction is preferably carried out at a pH of from about 8 to about 14, preferably from about 12 to about 14. Generally, the reaction temperature may be lowered with increased pH of the composition.
- the pressure is selected to maintain the presence of water.
- the pressure of the reaction should therefore be at least greater than atmospheric.
- the pressure of the reaction is preferably from lxlO 5 Pa to about 3xl0 6 Pa, more preferably between about 2x10 Pa and about 1x10 Pa, most preferably between about 6xl0 5 Pa and about lxlO 6 Pa. It may be possible, with a high pH to run the reaction under reflux. The skilled artisan will clearly understand the relationship of temperature, pressure and pH and can readily select appropriate conditions.
- the reaction is carried out at the selected temperature and pressure to synthesize the desired alkali metal oxide.
- the reaction time is preferably from about 1 day to about 20 days, more preferably from about 2 days to about 10 days and most preferably from about 3 days to about 5 days.
- This reaction may be carried out at a 1 to 1 ratio of alkali metal to transition metal; however, it is preferably carried out in a stoichiometric excess of alkali metal. More preferably the reaction is carried out in a molar excess of alkali metal from about 1.05 to about 5.0, most preferably in a molar excess of about 1.5 to about 2.5.
- the reaction is further preferably carried out in a saturation of water.
- the effect of the degree of water saturation on the reaction product is shown in the LiCo0 2 X-ray diffraction patterns of FIG. 1 which were obtained in a series of syntheses where the amount of water ranged from 0 to 0.8 ml/ 0.4 grams of CoOOH.
- a substantially total saturation of the reaction composition occurred at about 0.4 ml.
- the skilled artisan can readily determine the appropriate water content necessary to carry the reaction to substantial completion, as described.
- Li can be completely removed from LiCo0 2 while maintaining a layered structured. Electrochemically synthesized Co0 2 powders are able to reintercalate lithium in a secondary battery to give the LiCo0 2 phase, a direct indication of the fully reversible Li insertion process within the LiCo0 2 phase.
- the Co0 2 phase which is made electrochemically at a voltage of 5 V is significantly unstable in a moisture- containing environment. Indeed, this phase reacts as follows:
- the resulting H x Co0 2 , or CoOOH, phase has the same layered structure as LiCo0 2 , and is known in the literature, e.g., JCPDS Powder Diffraction Files, under the name of heterogenite- (3R) .
- the heterogenite phase reported in Kondrashev and Fedorova, Doklady AKaD. Nank. , 94, 229, 1954, was prepared by boiling ⁇ -Co(0H) 2 in water.
- H x Co0 2 formed from electrochemically synthesized Co0 2 , as described in reaction (2) above, is a starting material from which lithium cobalt oxide can be produced at low temperatures.
- An exchange of the proton can be effected at low temperatures by reacting H x Co0 2 with LiOH-H 2 0 according to following reaction.
- the reaction is preferably carried out at a temperature of from about 120°C to about 130°C for a period of from about 10 hours to about 2 days.
- the reaction is more preferably carried out at a temperature of about 125°C for a period of about 24 hours.
- the material is removed and ground at intervals.
- the resulting H x Co0 2 can now be used as the precursor in reaction (3) to obtain single phase LiCo0 2 at a temperature of about 100°C according to the present invention.
- the lithiated oxide After the lithiated oxide is formed it may be rinsed in a suitable rinsing agent, for example, water, acetonitrile, an aqueous solution of tetramethyl ammonia hydroxide, or mixtures of the same. Excess LiOH is removed during the washing step. X-ray diffraction powder patterns for the ⁇ -Co(OH) 2 precursor, the CoOOH and LiCo0 2 products of reactions (4) and (3), and the washed LiCo0 2 are shown respectively at (a) -(d) in FIG. 2.
- a suitable rinsing agent for example, water, acetonitrile, an aqueous solution of tetramethyl ammonia hydroxide, or mixtures of the same. Excess LiOH is removed during the washing step. X-ray diffraction powder patterns for the ⁇ -Co(OH) 2 precursor, the CoOOH and LiCo0 2 products of reactions (4) and (3), and the washed LiCo0 2
- the lithiated material may further be heated to a temperature between 100°C and 950°C for a time sufficient to drive off interfering groups.
- Lithium cobalt oxide may also be annealed at a temperature of greater than 950°C for a period of from 1 to 5 hours to further improve the capacity of the material.
- Lithium cobalt oxide was prepared from a mixture 0.4 g of CoOOH and 0.4 g of LiOH-H 2 0 (2 times molar) with 0.4 ml of H 2 0, providing a pH of about 14.
- the mixture was sealed in a quartz ampoule (25 ml capacity) and the synthesis reaction was carried out at a temperature of 100°C, generating a calculated pressure of about 6.6xl0 5 Pa, for about 5 days.
- FIG. 3 compares X-ray diffraction pattern (a) of the
- the lattice parameters of the example material are 2.8163 ⁇ 0.001 for the "a" value and 14.069 ⁇ 0.01 for the "c" value. These values agree with the JCPDS.
- LiNi0 2 material was formed in the same manner as in Example 1, except that NiOOH was used at a reaction temperature of about 140°C.
- the X-ray diffraction pattern for this material and a standard LiNi0 2 reference pattern are shown respectively at (a) and (b) in FIG 4.
- simple test cells were assembled using as the positive electrode a film of composition cast from a fluid dispersion comprising the finely- divided oxide compound with about 10% carbon and 5% binder polymer, such as polyvinylidene fluoride, in an organic solvent, e.g., l-methyl-2-pyrrolidinone.
- a boro-silicate glass paper separator element saturated with an electrolyte solution of 1 M LiPF 6 in a 2:1 mixture of ethylene carbonate and dimethyl carbonate was then arranged between the positive electrode element and a lithium foil negative electrode element in a Swagelock test cell which compressed the electrode and separator elements into intimate contact.
- the resulting cell was then tested in the usual manner over charge/discharge cycles in the range of about 3 V to 4.5 V.
- FIG. 6 The exemplary results of extended cycling tests of the LiCo0 2 material of Example 1 and of the same material prepared in Example 2 are shown respectively in FIGs . 7 and 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Catalysts (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DK96922495T DK0876296T3 (da) | 1995-07-05 | 1996-06-19 | Syntese ved lav temperatur af lagdelte alkalimetalholdige overgangsmetaloxider |
| DE69611696T DE69611696T2 (de) | 1995-07-05 | 1996-06-19 | Niedrigtemperatur-synthese von geschichteten alkalimetall enthaltenden übergangsmetalloxiden |
| CA002226126A CA2226126C (en) | 1995-07-05 | 1996-06-19 | Low temperature synthesis of layered lithiated transition metal oxides |
| EP96922495A EP0876296B1 (en) | 1995-07-05 | 1996-06-19 | Low temperature synthesis of layered alkali metal-containing transition metal oxides |
| JP50515897A JP3263082B2 (ja) | 1995-07-05 | 1996-06-19 | 層状のリチウム化された遷移金属酸化物の低温合成 |
| AU63351/96A AU697301B2 (en) | 1995-07-05 | 1996-06-19 | Low temperature synthesis of layered lithiated transition metal oxides |
| MXPA/A/1998/000138A MXPA98000138A (en) | 1995-07-05 | 1998-01-07 | Synthesis at low temperature of metal oxides detransition lithians, stratifies |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/498,315 US5630993A (en) | 1995-07-05 | 1995-07-05 | Low temperature synthesis of layered lithiated transition metal oxides |
| US08/498,315 | 1995-07-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1997002214A1 true WO1997002214A1 (en) | 1997-01-23 |
Family
ID=23980538
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1996/010541 Ceased WO1997002214A1 (en) | 1995-07-05 | 1996-06-19 | Low temperature synthesis of layered lithiated transition metal oxides |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US5630993A (enExample) |
| EP (1) | EP0876296B1 (enExample) |
| JP (1) | JP3263082B2 (enExample) |
| AU (1) | AU697301B2 (enExample) |
| CA (1) | CA2226126C (enExample) |
| DE (1) | DE69611696T2 (enExample) |
| DK (1) | DK0876296T3 (enExample) |
| ES (1) | ES2155612T3 (enExample) |
| WO (1) | WO1997002214A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0864539A1 (en) * | 1997-03-10 | 1998-09-16 | Toda Kogyo Corp. | Process for producing lithium-cobalt oxide |
| WO2004099082A1 (en) * | 2003-05-06 | 2004-11-18 | Inco Limited | Low temperature lithiation of cobalt, nickel and manganese containing hydroxides using a wet process |
| WO2006056610A1 (en) * | 2004-11-29 | 2006-06-01 | Shell Internationale Research Maatschappij B.V. | Catalytic process for the conversion of co (ii)hydroxide in co (iii)oxidehydroxide |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3329124B2 (ja) * | 1995-03-03 | 2002-09-30 | 松下電器産業株式会社 | 非水電解液二次電池用正極活物質の製造法 |
| DE69701063T2 (de) * | 1996-06-27 | 2000-07-13 | The Honjo Chemical Corp., Osaka | Verfahren zur Herstellung von Lithium-Mangan-Oxid mit Spinelstruktur |
| CA2216804C (en) * | 1996-09-30 | 2006-01-10 | Sharp Kabushiki Kaisha | Process of producing lithium nickel oxide and nonaqueous secondary battery using the same |
| CN1164002C (zh) * | 1996-11-08 | 2004-08-25 | 日本电池株式会社 | 锂电池 |
| DE69719677T2 (de) * | 1996-11-18 | 2003-09-18 | Japan Storage Battery Co. Ltd., Kyoto | Positivelektrode für Lithiumbatterie und Lithiumbatterie |
| JP3223858B2 (ja) * | 1996-12-24 | 2001-10-29 | 松下電器産業株式会社 | アルカリ蓄電池とその正極活物質およびその製造方法 |
| US6706443B1 (en) * | 1996-12-30 | 2004-03-16 | Horst Krampitz | Process for preparing lithium manganese oxides |
| KR100222914B1 (ko) * | 1997-01-15 | 1999-10-01 | 윤덕용 | 공침방법을 이용한 리튬 2차전지용 전극의 제조방법 |
| JP4224143B2 (ja) * | 1997-07-30 | 2009-02-12 | Agcセイミケミカル株式会社 | リチウムコバルト複合酸化物の製造方法 |
| JP2896510B1 (ja) * | 1998-03-13 | 1999-05-31 | 工業技術院長 | 水熱酸化法による層状岩塩型リチウムコバルト酸化物の製造方法 |
| US5939043A (en) * | 1998-06-26 | 1999-08-17 | Ga-Tek Inc. | Process for preparing Lix Mn2 O4 intercalation compounds |
| US6350543B2 (en) * | 1999-12-29 | 2002-02-26 | Kimberly-Clark Worldwide, Inc. | Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries |
| US6528033B1 (en) * | 2000-01-18 | 2003-03-04 | Valence Technology, Inc. | Method of making lithium-containing materials |
| JP2004335367A (ja) | 2003-05-09 | 2004-11-25 | Sanyo Electric Co Ltd | リチウム二次電池 |
| US20050142058A1 (en) * | 2003-12-30 | 2005-06-30 | Industrial Technology Research Institute | Low temperature process for preparing tricobalt tetraoxide |
| US20060073091A1 (en) * | 2004-10-01 | 2006-04-06 | Feng Zou | Process for producing lithium transition metal oxides |
| US7609146B2 (en) * | 2005-07-27 | 2009-10-27 | Lear Corporation | System and method for controlling a function using a variable sensitivity receiver |
| JP5003030B2 (ja) * | 2006-06-27 | 2012-08-15 | 株式会社Gsユアサ | 非水電解質二次電池用正極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池 |
| WO2008039808A2 (en) | 2006-09-25 | 2008-04-03 | Board Of Regents, The University Of Texas System | Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries |
| WO2011008742A1 (en) | 2009-07-14 | 2011-01-20 | Rogers Corporation | Alternative polymers for lithium ion primary and secondary batteries |
| CN109994730B (zh) * | 2017-12-29 | 2022-07-15 | 荆门市格林美新材料有限公司 | 一种层状钴酸锂正极材料的制备方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2545424A (en) * | 1946-12-02 | 1951-03-13 | Metalloy Corp | Lithium cobaltite |
| US5211933A (en) * | 1991-04-23 | 1993-05-18 | Bell Communications Research, Inc. | Method for preparation of LiCoO2 intercalation compound for use in secondary lithium batteries |
| US5264201A (en) * | 1990-07-23 | 1993-11-23 | Her Majesty The Queen In Right Of The Province Of British Columbia | Lithiated nickel dioxide and secondary cells prepared therefrom |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5192629A (en) * | 1992-04-21 | 1993-03-09 | Bell Communications Research, Inc. | High-voltage-stable electrolytes for Li1+x Mn2 O4 /carbon secondary batteries |
| US5296318A (en) * | 1993-03-05 | 1994-03-22 | Bell Communications Research, Inc. | Rechargeable lithium intercalation battery with hybrid polymeric electrolyte |
| US5418091A (en) * | 1993-03-05 | 1995-05-23 | Bell Communications Research, Inc. | Polymeric electrolytic cell separator membrane |
| JP3329124B2 (ja) * | 1995-03-03 | 2002-09-30 | 松下電器産業株式会社 | 非水電解液二次電池用正極活物質の製造法 |
-
1995
- 1995-07-05 US US08/498,315 patent/US5630993A/en not_active Expired - Fee Related
-
1996
- 1996-06-19 DE DE69611696T patent/DE69611696T2/de not_active Expired - Fee Related
- 1996-06-19 JP JP50515897A patent/JP3263082B2/ja not_active Expired - Fee Related
- 1996-06-19 CA CA002226126A patent/CA2226126C/en not_active Expired - Fee Related
- 1996-06-19 WO PCT/US1996/010541 patent/WO1997002214A1/en not_active Ceased
- 1996-06-19 AU AU63351/96A patent/AU697301B2/en not_active Ceased
- 1996-06-19 DK DK96922495T patent/DK0876296T3/da active
- 1996-06-19 EP EP96922495A patent/EP0876296B1/en not_active Expired - Lifetime
- 1996-06-19 ES ES96922495T patent/ES2155612T3/es not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2545424A (en) * | 1946-12-02 | 1951-03-13 | Metalloy Corp | Lithium cobaltite |
| US5264201A (en) * | 1990-07-23 | 1993-11-23 | Her Majesty The Queen In Right Of The Province Of British Columbia | Lithiated nickel dioxide and secondary cells prepared therefrom |
| US5211933A (en) * | 1991-04-23 | 1993-05-18 | Bell Communications Research, Inc. | Method for preparation of LiCoO2 intercalation compound for use in secondary lithium batteries |
Non-Patent Citations (2)
| Title |
|---|
| See also references of EP0876296A4 * |
| SOLID STATE IONICS 79, July 1995, TABUCHI et al., "Preparation of AFeO2 CA=LiNa) by Hydrothermal Method", p. 220-6. * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0864539A1 (en) * | 1997-03-10 | 1998-09-16 | Toda Kogyo Corp. | Process for producing lithium-cobalt oxide |
| WO2004099082A1 (en) * | 2003-05-06 | 2004-11-18 | Inco Limited | Low temperature lithiation of cobalt, nickel and manganese containing hydroxides using a wet process |
| US7033555B2 (en) | 2003-05-06 | 2006-04-25 | Inco Limited | Low temperature lithiation of mixed hydroxides |
| WO2006056610A1 (en) * | 2004-11-29 | 2006-06-01 | Shell Internationale Research Maatschappij B.V. | Catalytic process for the conversion of co (ii)hydroxide in co (iii)oxidehydroxide |
| US8062620B2 (en) | 2004-11-29 | 2011-11-22 | Shell Oil Company | Catalytic process for the conversion of Co (II)hydroxide in Co (III)oxidehydroxide |
Also Published As
| Publication number | Publication date |
|---|---|
| AU697301B2 (en) | 1998-10-01 |
| JP3263082B2 (ja) | 2002-03-04 |
| DE69611696T2 (de) | 2001-09-13 |
| EP0876296A1 (en) | 1998-11-11 |
| ES2155612T3 (es) | 2001-05-16 |
| DE69611696D1 (de) | 2001-03-01 |
| EP0876296A4 (enExample) | 1998-11-18 |
| JPH10510239A (ja) | 1998-10-06 |
| EP0876296B1 (en) | 2001-01-24 |
| CA2226126C (en) | 2000-12-05 |
| CA2226126A1 (en) | 1997-01-23 |
| AU6335196A (en) | 1997-02-05 |
| MX9800138A (es) | 1998-03-29 |
| US5630993A (en) | 1997-05-20 |
| DK0876296T3 (da) | 2001-06-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5630993A (en) | Low temperature synthesis of layered lithiated transition metal oxides | |
| AU715258B2 (en) | A method for preparing mixed amorphous vanadium oxides and their use as electrodes in rechargeable lithium cells | |
| JP4205308B2 (ja) | 電極として有用なニッケル含有化合物およびその製造方法 | |
| Guohua et al. | The spinel phases LiMyMn2− y O 4 (M= Co, Cr, Ni) as the cathode for rechargeable lithium batteries | |
| JP3550783B2 (ja) | リチウム含有遷移金属複合酸化物及びその製造方法並びにその用途 | |
| US5626635A (en) | Processes for making positive active material for lithium secondary batteries and secondary batteries therefor | |
| US6159636A (en) | Mixtures of lithium manganese oxide spinel as cathode active material | |
| EP0646546B1 (en) | METHOD OF PRODUCTION OF LiM3+O2 OR LiMn2O4 AND LiNi3+O2 AS POSITIVE POLE MATERIAL OF SECONDARY CELL | |
| JP3506397B2 (ja) | リチウム二次電池用正極材料およびその製造方法、並びにこれを用いたリチウム二次電池 | |
| JP4369645B2 (ja) | リチウム二次電池用正極活物質組成物 | |
| EP0809310B1 (en) | Lithium battery and method producing positive electrode active material therefor | |
| JPH08298115A (ja) | リチウム電池用正極活物質およびその製造法 | |
| US20020150819A1 (en) | Lithium secondary battery | |
| JP2967051B2 (ja) | 非水電解液二次電池及びその製造方法 | |
| JP3653210B2 (ja) | リチウムニ次電池用スピネル系マンガン酸化物の製造方法 | |
| JPH1032005A5 (enExample) | ||
| KR20110062293A (ko) | 급속 충방전이 가능한 리튬 이차전지용 고용량 음극소재 및 그 제조 방법 | |
| US20030047717A1 (en) | Multi-doped nickel oxide cathode material | |
| EP1073136A2 (en) | Lithium secondary battery | |
| MXPA98000138A (en) | Synthesis at low temperature of metal oxides detransition lithians, stratifies | |
| CN1189810A (zh) | 分层锂化过渡金属氧化物的低温合成方法 | |
| JP3893641B2 (ja) | オキシ水酸化ニッケルの製造方法およびその方法により製造したオキシ水酸化ニッケルを用いた電池 | |
| JP2003112924A (ja) | リチウムマンガン系複合酸化物の製造方法 | |
| JPH0773882A (ja) | 二次電池 | |
| HAO et al. | SYNTHESIS AND ELECTROCHEMICAL PERFORMANCE OF LIMN2YCOXYYO, CATHODE MATERIALS FOR LITHIUM-ION 4 SECONDARY BATTERY |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 96195267.9 Country of ref document: CN |
|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA CN JP KR MX PL SG VN |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref document number: 2226126 Country of ref document: CA Ref document number: 2226126 Country of ref document: CA Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1996922495 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1998/000138 Country of ref document: MX |
|
| WWP | Wipo information: published in national office |
Ref document number: 1996922495 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1996922495 Country of ref document: EP |