WO1996027674A1 - Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung - Google Patents
Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung Download PDFInfo
- Publication number
- WO1996027674A1 WO1996027674A1 PCT/EP1996/001007 EP9601007W WO9627674A1 WO 1996027674 A1 WO1996027674 A1 WO 1996027674A1 EP 9601007 W EP9601007 W EP 9601007W WO 9627674 A1 WO9627674 A1 WO 9627674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- starch
- plants
- enzyme
- cells
- plant
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
Definitions
- the present invention relates to transgenic plants which synthesize a modified starch due to genetic engineering changes, in particular a starch which, compared to starch synthesized in wild-type plants, has modified gelatinization properties and an increased phosphate content.
- the invention further relates to methods for producing the transgenic plants and to the modified starch which can be isolated from these plants.
- the invention also relates to the use of DNA sequences which encode disproportionate enzymes (EC 2.4.1.25) for the production of transgenic plants which have a reduced activity of these enzymes and which synthesize a modified starch.
- the polysaccharide starch which is one of the most important storage substances in the vegetable kingdom, is used not only in the food sector but also as a renewable raw material for the manufacture of industrial products. In order to enable the use of this raw material in as many application areas as possible, it is necessary to achieve a large variety of materials and to adapt it to the respective requirements of the industry to be processed.
- starch is made up of a chemically uniform basic building block, glucose, starch is not a uniform raw material. It is rather a complex mixture of different molecular forms that differ in terms of their degree of branching and the occurrence of branches in the glucose chains.
- amylose starch an essentially unbranched polymer made from ⁇ -1,4-linked Glu cosemolecules, of the amylopectin starch, which is a mixture of differently branched glucose chains, the branches being caused by the appearance of ⁇ -1,6-glycosidic linkages.
- the molecular structure of the starch which is largely determined by the degree of branching, the amylose / amylopectin ratio, the average chain length and the presence of phosphate groups, is crucial for important functional properties of the starch or its aqueous solutions.
- the important functional properties include solubility, retrograding behavior, film-forming properties, viscosity, color stability, gelatinization properties, i.e. Binding and adhesive properties, as well as the cold stability.
- the starch grain size can also be important for various applications.
- plants that synthesize a starch with modified properties can be genetically modified using driving are generated.
- the genetic modification of potato plants has been described in several cases with the aim of changing the starch synthesized in the plants (for example WO 92/11376; WO 92/14827).
- WO 92/11376 for example WO 92/11376
- WO 92/14827 for example WO 92/11376
- WO 92/14827 Although in some cases a modified starch has been successfully produced in plants, there is still a need for processes for producing a starch which is modified compared to starch synthesized in wild-type plants and which can be used with preference in special industrial processing processes.
- the present invention is therefore based on the object of providing plants which synthesize a modified starch which, in terms of its physical and chemical properties, differs from starch synthesized naturally in the plants and is therefore more suitable for special purposes, and processes for the production thereof of such plants.
- the present invention relates to transgenic plant cells in which the activity of a "disproportionating enzyme” (also 4- ⁇ -glucanotransferase; EC 2.4.1.25; hereinafter referred to as D-enzyme) is reduced compared to non-transformed cells, either because of the Introduction and expression of an exogenous DNA sequence or the introduction of a mutation in a gene encoding a disproportionating enzyme.
- a "disproportionating enzyme” also 4- ⁇ -glucanotransferase; EC 2.4.1.25; hereinafter referred to as D-enzyme
- transgenic plants which contain such cells and which have a reduced activity of the D-enzyme compared to wild-type plants, synthesize a modified starch which, in terms of its physical and chemical properties, is highly synthesized from plants which are naturally synthesized Strength differs.
- Aqueous solutions of the starch synthesized in these plants for example, have a significantly different viscosity behavior compared to starch synthesized in wild-type plants.
- a reduced activity of the D-enzyme compared to wild-type plants means that these plants have only 50%, preferably less than 25% and particularly preferably less than 10% of the D-enzyme activity of wild-type plants.
- D-enzymes are defined as enzymes that catalyze the transfer of glucans from one 1,4- ⁇ -D-glucan to another 1,4- ⁇ -D-glucan or to glucose.
- Effective glucan donors are maltooligosaccharides, soluble starch and amylopectin (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396).
- a group of maltose is usually transferred, unless maltotetraose acts as a donor. In this case, maltotriose is transmitted.
- Exogenous DNA sequence means that the introduced DNA sequence is either heterologous to the transformed plant cell, i.e. comes from a cell with a different genetic background, or is homologous to the transformed cell, but in this case is not located in its natural environment in the genome of the transformed cell. That is, the exogenous DNA sequence is located at a location in the genome where it does not naturally occur and is flanked by genes that are not naturally adjacent to it.
- “Expression” means that the exogenous DNA sequence is at least transcribed in the cells. If it encodes a protein, this term also includes translation.
- the reduction of the D-enzyme activity in the cells according to the invention can in principle be brought about in various ways.
- the reduction of the D-enzyme activity in the transgenic cells by the In achieved the synthesis of a functional D-enzyme in the cells.
- “Inhibition of synthesis” means that the synthesis of an endogenous D-enzyme is reduced in comparison to non-transformed cells, preferably by at least 50%, in particular by at least 75% and particularly preferably by at least 90%.
- the reduction in synthesis can be demonstrated, for example, by detecting the enzyme in a Western blot with the aid of D-enzyme-specific antibodies.
- D-enzyme activity can also be determined as described in Takaha et al (J. Biol. Chem. 268 (1993), 1391-1396). Detection of the D-enzyme transcripts in Northern blot is also possible.
- “Punctual” means that the enzyme has its natural enzyme activity described above and this is about as high as in wild-type cells.
- a reduction in the synthesis of a D enzyme in the cells according to the invention can be achieved in various ways.
- a first possibility is to change the endogenous sequences present in the genome of the cell, which encode D-enzymes, or of their regulatory regions.
- transposon mutagenesis can be inactivated, for example, by transposon mutagenesis, other conventional mutagenesis methods or "gene tagging", so that the synthesis of endogenous D-enzymes is largely or completely inhibited.
- Options for changing the genomic sequences include, for example, gene disruption, insertion, deletion, recombination, addition, etc.
- Another possibility is the transcription or translation of the genes present endogenously in the cell for disrupting D enzymes. Techniques for how this can be accomplished are known to those skilled in the art.
- the synthesis of functional D-enzyme is reduced in the cells according to the invention by means of an antisense effect.
- the synthesis of functional D-enzyme is reduced in the cells according to the invention by means of the expression of a ribozyme which specifically cleaves transcripts which code for D-enzyme.
- Ribozymes which are combined with sequences which produce an antisense effect, i.e. which are complementary to D-enzyme transcripts.
- Another way to reduce the synthesis of functional D-enzyme is to use a cosuppression effect.
- Another way of reducing the D-enzyme activity in plant cells is to inactivate already synthesized D-enzymes.
- the exogenous DNA sequence encodes a polypeptide that leads to a reduction in D-enzyme activity.
- the expression of D-enzyme-specific antibodies is conceivable.
- the exogenous DNA sequence is to be expressed in the transgenic cells, it is linked to regulatory elements which ensure transcription in plant cells.
- regulatory elements which ensure transcription in plant cells.
- These include, for example, promoters.
- any promoter active in plant cells can be used for expression. Both viral and plant promoters can be used.
- the promoter can be homologous or heterologous both with respect to the plant species used and with respect to the exogenous DNA sequence.
- Both promoters that have a constituent are suitable Tive expression ensure, such as the 35S promoter of the Cauliflower mosaic virus (Odell et al., Nature 313 (1985) 810-812) and the promoter construct described in WO 94/01571, as well as promoters that only one lead to expression of downstream sequences determined by external influences (see, for example, WO 93/07279) or in a specific tissue of the plant (see, for example, Stockhaus et al., EMBO J. 8 (1989) 2245-2251). Preference is given to using promoters which are active in typical "sink" organs of plants. "Sink” fabrics are defined as net importers of the carbon fixed in photosynthetically active fabrics.
- Typical sink organs include roots, flowers and storage organs.
- promoters are also preferably used which are active in the starch-storing organs of the plants to be transformed.
- the starch-storing organs are, for example, the seeds of various types of cereals, maize, rice and peas, and the tubers of potatoes.
- the USP promoter from Vicia faba is known, which ensures seed-specific expression in Vicia faba and in other plant species (Fiedler et al., Plant Mol. Biol. 22 (1993), 669-679; Bäumlein et al. , Mol. Gen. Genet.
- Promoters which are known to be active in the endosperm of maize kernels are, for example, the promoters of the zein genes (Pedersen et al., Cell 29 (1982), 1015-1026; Quattrocchio et al., Plant Mol. Biol. 15: 81-93 (1990).
- promoters of class I patatin genes from potato which guarantee tuber-specific expression such as, for example, the B33 promoter (Rocha-Sosa et al., EMBO J. 8 (1989 ), 23-29).
- the regulatory elements can also contain DNA sequences which ensure a further increase in transcription, for example so-called Enhancer elements.
- Enhancer elements can be obtained from viral genes or suitable eukaryotic genes or can be produced synthetically. They can be homologous or heterologous with respect to the promoter used.
- exogenous DNA sequence encodes a polypeptide
- it can also be linked to sequences which are in the transcribed region and ensure a more efficient translation of the synthesized RNA into the corresponding protein, e.g. with so-called translational enhancers.
- the regulatory elements can further comprise sequences which serve for the correct termination of the transcription and the addition of a poly-A tail to the transcript, which is assigned a function in the stabilization of the transcripts. Such elements are described in the literature and are interchangeable. Examples of such termination sequences are the 3'-untranslated regions which contain the polyadenylation signal of the nopaline synthase gene (NOS gene) or of the octopine synthase gene (Gielen et al., EMBO J.
- any DNA sequence which encodes a D-enzyme and which has a sufficiently high homology is in principle possible for the exogenous DNA sequence which encodes it to cause an antisense effect in the cells.
- DNA sequences from plants are preferably used. It is preferably a DNA sequence of homologous origin with respect to the plant species to be transformed. However, DNA sequences from other species can also be used as long as it is ensured that the homology to the endogenous DNA sequences of the species to be transformed is high is enough to ensure an antisense effect.
- the homology should be higher than 80%, preferably higher than 90% and in particular higher than 95%.
- Sequences up to a minimum length of 15 bp can be used. An inhibitory effect is not excluded even when using shorter sequences. Longer sequences of between 100 and 500 base pairs are preferably used, and sequences with a length of more than 500 base pairs are used in particular for efficient antisense inhibition. As a rule, sequences are used which are shorter than 5000 base pairs, preferably sequences which are shorter than 2500 base pairs.
- the cells according to the invention are transgenic potato cells which are transformed with a DNA sequence from potato which codes for the D enzyme, or with parts of such a sequence, in particular the DNA sequence, which was described by Takaha et al., J Biol. Chem. 268 (1993), 1391-1396) (accessible in the GenEMBL database under the access number X68664).
- DNA sequences which encode D-enzymes and which can be isolated from other organisms in particular from other plant species, e.g. using the already known sequences about hybridization or other standard techniques.
- Ribozymes are catalytically active RNA molecules that are able to cleave RNA molecules at specific target sequences. With the help of genetic engineering methods it is possible to change the specificity of ribozymes. Different classes of ribozymes exist. Representatives of two different groups of ribozymes are preferably used for practical application with the aim of specifically cleaving the transcript of a particular gene. The one group is formed by ribozymes which are assigned to the type of group I intron ribozymes. The second group is formed by ribozymes, which have a so-called "hammerhead" motif as a characteristic structural feature. The specific recognition of the target RNA molecule can be modified by changing the sequences that flank this motif.
- sequences determine, via base pairing with sequences in the target molecule, the point at which the catalytic reaction and thus the cleavage of the target molecule take place. Since the sequence requirements for efficient cleavage are extremely low, it therefore seems possible in principle to develop specific ribozymes for practically any RNA molecule.
- the production of genetically modified plant cells whose activity of the D-enzyme is reduced can therefore also be carried out by introducing and expressing a recombinant double-stranded DNA molecule in plants, which is composed of:
- the DNA sequences that flank the catalytic domain are formed by DNA sequences that are homologous to the sequences of endogenous D-enzyme genes.
- the transgenic plant cells according to the invention can in principle originate from any plant species, in particular from plants which express a protein with D-enzyme activity. Both monocot and dicot plants are of interest.
- the method is preferably applied to useful plants, in particular to plants which synthesize starch as a storage substance and form starch-storing organs, such as, for example, cereals, rice, potatoes, legumes or cassava.
- Cereal plants are understood in particular as monocotyledonous plants belonging to the order Poales, preferably those belonging to the family of the Poaceae. Examples include the plants belonging to the genera Avena (oat), Triticum (wheat), Seeale (rye), Hordeum (barley), Oryza (rice), Panicum, Pennisetum, Setaria, Sorghum (millet), Zea (corn) etc. belong.
- Starch-storing legumes are e.g. some species of the genus Pisum (e.g. Pisum sativum), Vicia (e.g. Vicia faba), Cicer (e.g. Cicer arietinum), Lens (e.g. Lens culinaris), Phaseolus (e.g. Phaseolus vulgaris and Phaseolus coccineus), etc.
- cloning vectors which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells contain.
- examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
- Common cloning methods have been widely described in the literature (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual (1989), (Cold Spring Harbor, NY , Cold Spring Harbor Laboratory Press).
- a variety of techniques are available for introducing the expression cassette into a plant host cell. These techniques include transforming plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as the transforma agents, the fusion of protoplasts, the injection, the electroporation of DNA, the introduction of DNA using the biolistic method and other possibilities.
- the expression cassette described is preferably introduced into plant cells using plasmids, in particular plasmids, which are suitable for the transformation of plant cells and ensure the integration of the expression cassette into the plant genome.
- plasmids When injecting and electroporation of DNA into plant cells, there are no special requirements for the plasmids used. Simple plasmids such as e.g. pUC derivatives can be used. However, if whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is necessary.
- the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but frequently the right and left boundary of the Ti and Ri plasmid T-DNA as the flank region, must be connected to the genes to be introduced.
- the infection of a plant cell then leads to the incorporation of the T-DNA including the new genes into the chromosomes of the plant cells.
- the DNA to be introduced must first be cloned into special plasmids, for example into an intermediate or a binary vector.
- the intermediate vector can be transferred to Agrobacterium tumefaciens by means of a helper plasmid by conjugation and can then be integrated into the Ti or Ri plasmid of the Agrobacteria by means of sequences which are homologous to sequences in the T-DNA.
- These plasmids additionally contain the vir region necessary for the transfer of the T-DNA.
- binary vectors can multiply in both E. coli and agrobacteria.
- telomeres have a selection marker gene and a linker or polylinker, which are framed by the right and left T-DNA border region, and can be transformed directly into the agrobacteria (Holsters et al., Mol. Gen. Genet 163 (1978), 181 -187).
- Known binary vectors are, for example, the vector pBinAR (Höfgen and Willmitzer, Plant. Sei. 66 (1990), 221-230) or the vector pBinl9 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721), which is commercial is available (Clontech Laboratories, Inc., USA).
- T-DNA The transfer of T-DNA, including the new genes, into plant cells has been intensively investigated and is sufficient in EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plan Be. 4 (1986), 1-46 and An et al., EMBO J. 4 (1985), 277-287.
- plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
- Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells.
- the plants thus obtained can then be examined for the presence of the introduced DNA.
- EP 292 435 describes a method by means of which fertile plants can be obtained starting from a slimy, soft (friable) granular corn callus. Shillito et al.
- the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the offspring of the originally transformed cell. It usually contains a selection marker that gives the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricin and others. mediated.
- the individually selected marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
- the transformed cells grow within the plant in the usual way (see also McCormick et al., Plant Cell Reports 5 (1986), 81-84).
- the resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup.
- the resulting hybrid individuals have the corresponding phenotypic properties.
- Two or more generations should be grown to ensure that the phenotypic trait is stably maintained and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other characteristics have been preserved.
- the invention also relates to plants which contain the transgenic plant cells according to the invention described above. Such plants can be regenerated, for example, by means of microbiological processes, as described in the examples, from plant cells according to the invention.
- plant also includes parts of the plant, such as e.g. individual organs (leaves, roots, stems) etc., harvestable parts, tissues etc. Harvestable parts are e.g. Seeds, tubers, photosynthetic tissue, beets, etc.
- the invention further relates to propagation material of the plants according to the invention, the transgenic described above Contains plant cells. These include, for example, fruits, seeds, cuttings, rhizomes, tubers, etc.
- a modified starch is synthesized in the cells and plants according to the invention which differs in its physical and chemical properties, in particular its gelatinization properties and its phosphate content, from starch synthesized in wild-type plants.
- the invention therefore also relates to a starch which can be obtained from the cells, plants or propagation material of these plants according to the invention which have a reduced D-enzyme activity compared to wild-type plants.
- a common test that is used to determine the viscosity properties is the so-called BrabenderTest. This test is carried out using an apparatus known for example as Viscograph E. This instrument is manufactured and sold by the company Brabender OHG Duisburg (Germany), among others. The test essentially consists of first heating starch in the presence of water to determine when the starch granules will start hydrating and swelling. This process, which is also referred to as gelatinization or gelatinization, is based on the dissolution of hydrogen bonds and is accompanied by a measurable increase in the viscosity of the starch suspension.
- the analysis of a Brabender curve is generally aimed at determining the gelatinization temperature, the maximum viscosity when heated, the viscosity after cooking for a long time, the viscosity increase after cooling and the viscosity after cooling. These parameters are important characteristics that determine the quality a strength and determine its usability for various applications.
- the starch which can be obtained from the plant cells according to the invention and plants with a reduced D-enzyme activity shows an increased phosphate content compared to starch from wild-type plants, in particular a phosphate content which is at least 10% higher, preferably 20% higher than the phosphate content of starch from wild-type plants.
- modified starch is therefore understood to mean a starch which differs from wild-type starch in terms of its physical and chemical properties, in particular a starch which has gelatinization properties which are different compared to wild-type starch and their aqueous properties Solutions show a changed viscosity compared to aqueous solutions of wild-type starch.
- the viscosity is preferably determined using a Brabender viscograph.
- such a modified starch can have an increased phosphate content compared to wild-type starch.
- the phosphate content of this starch is at least 10%, preferably 20% and particularly preferably 30% higher than the phosphate content of wild-type starch.
- Such a modified starch which is the subject of the invention, preferably has the characteristic Brabender curves shown in FIGS. 3, 4 and 5.
- the modified starch has at least one of the following characteristic values or a combination of the following values, in particular under the conditions for determining the viscosity with the aid of a Brabender viscograph mentioned in Example 4:
- these average values can deviate by up to 10% up or down from the values mentioned, so that the characteristic values mentioned for the modified starch can assume the following values:
- the modified starch generally has at least one of the characteristic values mentioned above, preferably a combination of several values. All values are particularly preferably in the specified ranges.
- starch is isolated using conventional methods, e.g. described in "Handbook of Strength” (Volume I, Max Ulimann (ed.), 1974, Paul Parey Verlag, Berlin, Germany) or in Morrison and Karkalas (Methods in Plant Biochemistry, 2 (1990), 323-352; Academic Press Ltd., London).
- starches according to the invention can be modified by processes known to the person skilled in the art and are suitable in unmodified or modified form for various uses in the food or non-food sector.
- starch Basically, the possible uses of starch can be divided into two large areas.
- One area comprises the hydrolysis products of starch, mainly glucose and glucan building blocks, which are obtained via enzymatic or chemical processes. They serve as the starting material for further chemical modifications and processes, such as fermentation.
- the simplicity and cost-effective execution of a hydrolysis process can be important for reducing the costs.
- it is essentially enzymatic using amyloglucosidase. It would be conceivable to save costs by using fewer enzymes.
- Starch is a classic additive for many foods, in which it essentially takes on the function of binding aqueous additives or causes an increase in viscosity or increased gel formation. Important characteristics are the flow and sorption behavior, the swelling and gelatinization temperature, the viscosity and thickening performance, the solubility of the starch, the transparency and paste structure, the heat, shear and acid stability, the tendency to retrogradation, the ability to form films, the Freeze / thaw stability, digestibility and the ability to form complexes with e.g. inorganic or organic ions.
- starch can be used as an additive for different manufacturing processes or as an additive in technical products.
- starch When using starch as an auxiliary, the paper and cardboard industry should be mentioned here in particular.
- the starch primarily serves for retardation (retention of solids), the setting of filler and fine particles, as a strengthening agent and for drainage.
- the favorable properties of starch in terms of rigidity, hardness, sound, grip, gloss, smoothness, splitting resistance and surfaces are used.
- the requirements for the starch in relation to the surface treatment are essentially a high degree of whiteness, an adapted viscosity, a high viscosity Stability, good film formation and low dust formation.
- the solids content, an adapted viscosity, a high binding capacity and high pigment affinity play an important role.
- rapid, even, loss-free distribution, high mechanical stability and complete restraint in the paper flow are important.
- an adapted solids content, high viscosity and high binding capacity are also important.
- starches A large area of use of the starches is in the adhesive industry, where the possible uses are divided into four areas: use as pure starch glue, use with starch glues prepared with special chemicals, use of starch as an additive to synthetic resins and polymer dispersions, and use of starches as an extender for synthetic adhesives.
- 90% of the starch-based adhesives are used in the fields of corrugated cardboard, paper sacks, bags and pouches, composite materials for paper and aluminum, cardboard and rewetting glue for envelopes, stamps, etc.
- a large area of application for the strengths as an auxiliary and additive is the area of manufacture of textiles and textile care products.
- the following four areas of application can be distinguished within the textile industry:
- starch as a sizing agent, ie as an auxiliary for smoothing and strengthening the Velcro behavior to protect against the tensile forces acting during weaving and to increase the abrasion resistance during Weaving
- starch as an agent for textile finishing, especially after pre-treatments such as bleaching, dyeing, etc.
- starch as a thickening agent in the manufacture of color pastes to prevent dye diffusion
- starch as an additive to chaining agents for sewing threads.
- the fourth area of application is the use of starches as an additive in building materials.
- One example is the production of gypsum plasterboard, in which the starch mixed in the gypsum paste pastes with the water, diffuses to the surface of the gypsum board and binds the cardboard to the board there.
- Other areas of application are admixing to plaster and mineral fibers.
- starch products are used to delay setting.
- starch Another market for starch is the manufacture of soil stabilization agents that are used to temporarily protect soil particles from water during artificial earth movements. Combined products made from starch and polymer emulsions are, according to current knowledge, to be equated with the previously used products in terms of their erosion and incrustation-reducing effects, but are priced significantly below these.
- starch in crop protection agents to change the specific properties of the preparations.
- the starch can be used to improve the wetting of crop protection agents and fertilizers, to release the active substances in a dosed manner, to convert liquid, volatile and / or malodorous substances into microcrystalline, stable, form bare substances, to mix incompatible compounds and to extend the duration of action by reducing the decomposition.
- starch can be used as a binder for tablets or for binder dilution in capsules.
- the starch can also serve as a tablet disintegrant, since it absorbs liquid after swallowing and swells to a point after a short time so that the active ingredient is released.
- Medical lubricants and wound powders are based on starch for qualitative reasons.
- starches are used, for example, as carriers for powder additives such as fragrances and salicylic acid.
- a relatively large area of application for starch is toothpaste.
- the starch is used as an additive to coal and briquette. Coal can be agglomerated or briquetted with a high-quality additive, which prevents the briquettes from breaking down prematurely.
- the added starch is between 4 and 6% for charcoal and between 0.1 and 0.5% for calorized coal.
- starches are becoming increasingly important as binders, since their addition to coal and briquette can significantly reduce the emissions of harmful substances.
- the starch can also be used as a flocculant in ore and coal sludge processing. 2.10 Foundry auxiliary
- Another area of application is as an additive to foundry additives.
- Various casting processes require cores that are made from binder-mixed sands. Bentonite, which is mixed with modified starches, mostly swelling starches, is predominantly used today as a binder.
- the purpose of the starch additive is to increase the flow resistance and to improve the binding strength.
- the swelling starches may have other production requirements, such as dispersibility in cold water, rehydration, good miscibility in sand and high water retention.
- the starch can be used to improve the technical and optical quality.
- the reasons for this are the improvement of the surface gloss, the improvement of the handle and the appearance, for this reason starch is sprinkled on the sticky rubberized surfaces of rubber materials before the cold vulcanization, and the improvement of the printability of the rubber.
- starch follow-up products in the processing process (starch is only filler, there is no direct bond between synthetic polymer and starch) or, alternatively, the incorporation of starch follow-up products in the production of polymers (starch and polymer are one firm bond).
- starch as a pure filler is not competitive compared to other substances such as talc. It is different if the specific starch properties come into play and this significantly changes the property profile of the end products.
- thermoplastics such as polyethylene.
- starch and the synthetic polymer are combined by co-expression in a ratio of 1: 1 to form a 'master batch', from which various products are made with granulated polyethylene using conventional processing techniques.
- a ratio of 1: 1 to form a 'master batch', from which various products are made with granulated polyethylene using conventional processing techniques.
- starch in polyurethane foams.
- starch derivatives By adapting the starch derivatives and by optimizing the process, it is possible to control the reaction between synthetic polymers and the hydroxyl groups of the starches.
- the result is polyurethane films which, through the use of starch, have the following property profiles: a reduction in the coefficient of thermal expansion, a reduction in shrinkage behavior, an improvement in pressure / stress behavior, an increase in water vapor permeability without changing the water absorption, a reduction in flammability and tear density, no dripping of flammable parts, Halogen free and reduced aging.
- Disadvantages that are currently still present are reduced compressive strength and reduced impact resistance.
- Solid plastic products such as pots, plates and bowls can also be produced with a starch content of over 50%.
- Starch / polymer blends are also to be assessed favorably, since they have a much higher biodegradability.
- starch graft polymers Because of their extreme water-binding capacity, starch graft polymers have also become extremely important. These are products with a backbone made of starch and a side grid of a synthetic monomer grafted on according to the principle of the radical chain mechanism.
- the starch graft polymers available today are characterized by better binding and retention properties of up to 1000 g of water per g of starch with high viscosity.
- the areas of application for these superabsorbents have expanded considerably in recent years and are in the hygiene area with products of diapers and underlays as well as in the agricultural sector, e.g. seed pilling.
- Ash / phosphate content, amylose / amylopectin ratio, molar mass distribution, degree of branching, grain size and shape as well as crystallinity on the other hand also the properties that result in the following characteristics: flow and sorption behavior, gelatinization temperature, viscosity, thickening performance, solubility, paste structure and transparency, heat -, shear and acid stability, tendency to retrogradation, gel formation, freeze / thaw stability, complex formation, iodine binding, film formation, adhesive strength, enzyme stability, digestibility and reactivity.
- modified starches by means of genetic engineering interventions in a transgenic plant can on the one hand change the properties of the starch obtained from the plant in such a way that further modifications by means of chemical or physical processes no longer appear to be necessary.
- the starches modified by genetic engineering methods can be subjected to further chemical modifications, which leads to further improvements in quality for certain of the fields of application described above leads.
- the invention thus also relates to the use of the starch according to the invention for the production of foods or industrial products.
- the present invention further relates to the use of DNA sequences which encode enzymes having the enzymatic activity of a D-enzyme for the genetic engineering of plants to produce plants which synthesize a starch which has been modified compared to wild-type starch,
- the plasmids produced and used in the context of the present invention were obtained from the German Collection of Microorganisms (DSM) in Braunschweig, Federal Republic of Germany, which is recognized as an international depository. in accordance with the requirements of the Budapest Treaty for the international recognition of the deposit of microorganisms for the purpose of patenting.
- Plasmid p35SH-anti-D (DSM 8479)
- Plasmid pBinAR-Hyg (DSM 9505)
- the plasmid contains the following fragments:
- Fragment A comprises the cauliflower mosaic virus (CaMV) 35S promoter, CaMV nucleotides 6906-7437.
- Fragment B (2909 bp) comprises a DNA fragment that is the coding region for the disproportionating enzyme
- Potato includes (Takaha et al., J. Biol. Chem. 268
- fragment C comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5, nucleotides 11749-11939.
- the plasmid is approximately 12.7 kb in size and allows selection on
- the plasmid contains the following fragments:
- Fragment A comprises the cauliflower mosaic virus (CaMV) 35S promoter, CaMV nucleotides 6906-7437.
- Fragment B (2909 bp) comprises a DNA fragment that encodes the coding region for the potato disproportionating enzyme (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396; nucleotides 303 to 1777 ), and is coupled in antisense orientation to the promoter.
- fragment C comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5, nucleotides 11749-11939.
- the plasmid is approximately 12.2 kb in size and permits selection
- Kanamycin resistance in transformed plant cells is Kanamycin resistance in transformed plant cells.
- Fig. 3 shows a Brabender curve for an aqueous solution of
- the blue line indicates the viscosity (measured in Brabender units).
- the red line shows the temperature curve. Measurement conditions:
- Brabender Viskograph E (Brabender OHG Duisburg, Germany)
- Amount of starch used 30 g
- Heating from 50 ° C to 96 ° C at a rate of 3 ° C per min
- Cooling from 96 ° C to 50 ° C at a rate of 3 ° C per min.
- FIG. 6 shows a Brabender curve for an aqueous solution of starch from wild-type plants Solanum tubero ⁇ um cv. Desiree. The curve was recorded as explained in Example 3.
- NSEB buffer 0.25 M sodium phosphate buffer pH 7.2
- the E. coli strain DH5 ⁇ (Bethesda Research Laboratories, Gaithersburgh, USA) was used for the binary vectors.
- the DNA was transferred by direct transformation using the method of Höfgen & Willmitzer (Nucleic Acids Res. 16 (1988), 9877).
- the plasmid DNA of transformed agrobacteria was isolated by the method of Birnboim & Doly (Nucleic Acids Res. 7 (1979), 1513-1523) and analyzed by gel electrophoresis after suitable restriction cleavage.
- the leaves were then used for callus induction on MS medium with 1.6% glucose, 5 mg / l naphthylacetic acid, 0.2 mg / l benzylaminopurine, 250 mg / l claforan, 50 mg / l kanamycin or 1 mg / l Hygromycin B, and 0.80% Bacto Agar. After a week's incubation at 25 ° C.
- the leaves were sprouted on MS medium with 1.6% glucose, 1.4 mg / l zeatin ribose, 20 mg / l naphthylacetic acid, 20 mg / l giberellic acid, 250 mg / l Claforan, 50 mg / l kanamycin or 3 mg / l hygromycin B, and 0.80% Bacto agar.
- the membrane was prehybridized in ⁇ SEB buffer for 2 h at 68 ° C and then hybridized in ⁇ SEB buffer overnight at 68 ° C in the presence of the radioactively labeled sample.
- the phosphate content of the starch was determined by measuring the amount of phosphate bound to the C-6 position of glucose residues. For this purpose, starch was first cleaved by acid hydrolysis and then the content of glucose-6-phosphate was determined by means of an enzyme test, as described below:
- the resulting plasmid was named p35SH-anti-D (DSM 8479) and is shown in Fig. 1.
- the plasmid pBIN19-AC was first prepared for the production of the plasmid p35S-anti-D.
- a 529 bp fragment comprising the CaMV 35S promoter (nucleotides 6909-7437, Franck et al., Cell 21, 285-294) was generated from plasmid pDH51 (Pietrzak et al., Nucl. Acids Res 14, 5857-5868) using the restriction endonucleases EcoR I and Kpn I isolated.
- This fragment was ligated into the vector pBIN19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721) cut with EcoR I and Kpn I. This resulted in the plasmid pBIN19-A.
- a 192 bp fragment comprising the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3, 835-846; nucleotides 11749-11939) was then used as Pvu II / Hind III fragment isolated from plasmid pAGV40 (Herrera-Estrella et al., Nature 303, 209-213). After adding an Sph I linker to the Pvu II interface, the fragment was ligated into the vector pBIN19-A cut with Sph I and Hind III. The resulting plasmid was named pBIN19-AC.
- the PCR fragment prepared as described in Example 1 was ligated into the vector pBIN19-AC cut with Kpn I and Sma I.
- the resulting plasmid is shown in Fig. 2.
- Agrobacteria of the species Agobacterium tumefaciens were transformed with the plasmid p35S-anti-D.
- the plasmid was transferred into cells of potato plants of the Desiree variety using Agrobacterium-mediated transformation as described above. Whole plants were regenerated from the transformed cells. The transformed plants were grown under greenhouse conditions. The success of the genetic modification of the plants was checked by analyzing the total RNA in a Northern blot analysis with regard to the disappearance of the transcripts which code for the D enzyme.
- RNA from leaves of transformed plants was isolated by standard methods, separated by gel electrophoresis on an agarose gel, transferred to a nylon membrane and hybridized with a radioactively labeled sample which comprises the region encoding the D enzyme from potato or a part of this region.
- a radioactively labeled sample which comprises the region encoding the D enzyme from potato or a part of this region.
- the band which represents the specific transcript of the D-enzyme gene is missing in the Northern blot analysis.
- Starch was isolated from tubers of the transgenic plants using standard methods.
- the starch isolated from the transgenic potato plants was examined for the viscosity of aqueous solutions of this starch.
- FIGS. 3, 4, 5 and 6 show a typical Brabender curve for starch isolated from transgenic potato plants of the JDl-32 line.
- Fig. 4 shows a typical Brabender curve for starch, which is from transgenic potato plants of the line JD1-33.
- Figure 5 shows a typical Brabender curve for starch isolated from transgenic potato plants of the JD1-71 line.
- the determined average values can deviate up or down by up to 10%, so that the modified starch can have the following characteristic values:
- transgenic plants which have one more can be produced with the aid of the method according to the invention or less severe reduction in the activity of the D-enzyme and therefore synthesize a starch which differs more or less strongly from wild-type plants in terms of its gelatinization properties.
- the phosphate content of starch from transgenic and from wild-type plants was determined as described above.
- glucose-6-phosphate (given in nmol / mg starch) is in the following table for non-transfor mated potato plants of the Desiree variety and as an average for three lines (JDl-32; JD1-65; JD1-71) of transgenic potato plants which had been transformed with the plasmid p35S-anti-D.
- the values show that the phosphate content of the modified starch from transgenic potato plants is increased by approximately 34% compared to starch from wild-type plants.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU51041/96A AU713917B2 (en) | 1995-03-08 | 1996-03-08 | Modified starch from plants, plants synthesizing the same, as well as process for their production |
JP8526617A JPH11501213A (ja) | 1995-03-08 | 1996-03-08 | 植物由来の修飾澱粉、その澱粉を合成する植物、およびその調製のプロセス |
EP96907401A EP0813605A1 (de) | 1995-03-08 | 1996-03-08 | Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung |
PL96322142A PL322142A1 (en) | 1995-03-08 | 1996-03-08 | Modified plant starch, plants synthesising such starch and method of obtaining them |
US08/913,671 US6162966A (en) | 1995-03-08 | 1996-03-08 | Modified starch from plants, plants synthesizing this starch, and processes for its preparation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19509695A DE19509695A1 (de) | 1995-03-08 | 1995-03-08 | Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke |
DE19509695.9 | 1995-03-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/692,069 Division US6610843B1 (en) | 1995-03-08 | 2000-10-19 | Modified starch from plants, plants synthesizing the same, as well as process for their production |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996027674A1 true WO1996027674A1 (de) | 1996-09-12 |
Family
ID=7756944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/001007 WO1996027674A1 (de) | 1995-03-08 | 1996-03-08 | Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung |
Country Status (9)
Country | Link |
---|---|
US (2) | US6162966A (de) |
EP (1) | EP0813605A1 (de) |
JP (1) | JPH11501213A (de) |
AU (1) | AU713917B2 (de) |
CA (1) | CA2214736A1 (de) |
DE (1) | DE19509695A1 (de) |
HU (1) | HUP9801855A3 (de) |
PL (1) | PL322142A1 (de) |
WO (1) | WO1996027674A1 (de) |
Cited By (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998045459A1 (en) * | 1997-04-09 | 1998-10-15 | E.I. Du Pont De Nemours And Company | Plant 4-alpha-glucanotransferases |
FR2779740A1 (fr) * | 1998-06-16 | 1999-12-17 | Biogemma Fr | Procede d'obtention d'amidon modifie |
US6825342B1 (en) | 1995-05-05 | 2004-11-30 | National Starch And Chemical Investment Holding Corporation | Plant starch composition |
WO2005095619A1 (en) * | 2004-03-05 | 2005-10-13 | Bayer Cropscience Gmbh | Plants with increased activity of multiple starch phosphorylating enzymes |
US7176190B2 (en) | 1995-09-19 | 2007-02-13 | Bayer Bioscience Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
EP2039772A2 (de) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2039771A2 (de) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2039770A2 (de) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102007045919A1 (de) | 2007-09-26 | 2009-04-09 | Bayer Cropscience Ag | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
DE102007045956A1 (de) | 2007-09-26 | 2009-04-09 | Bayer Cropscience Ag | Wirkstoffkombination mit insektiziden und akariziden Eigenschaften |
EP2072506A1 (de) | 2007-12-21 | 2009-06-24 | Bayer CropScience AG | Thiazolyloxyphenylamidine oder Thiadiazolyloxyphenylamidine und deren Verwendung als Fungizide |
EP2090168A1 (de) | 2008-02-12 | 2009-08-19 | Bayer CropScience AG | Methode zur Verbesserung des Pflanzenwachstums |
DE102009001469A1 (de) | 2009-03-11 | 2009-09-24 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102008041695A1 (de) | 2008-08-29 | 2010-03-04 | Bayer Cropscience Ag | Methoden zur Verbesserung des Pflanzenwachstums |
EP2168434A1 (de) | 2008-08-02 | 2010-03-31 | Bayer CropScience AG | Verwendung von Azolen zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress |
EP2198709A1 (de) | 2008-12-19 | 2010-06-23 | Bayer CropScience AG | Verfahren zur Bekämpfung resistenter tierischer Schädlinge |
EP2201838A1 (de) | 2008-12-05 | 2010-06-30 | Bayer CropScience AG | Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften |
EP2204094A1 (de) | 2008-12-29 | 2010-07-07 | Bayer CropScience AG | Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen |
WO2010083955A2 (de) | 2009-01-23 | 2010-07-29 | Bayer Cropscience Aktiengesellschaft | Verwendung von enaminocarbonylverbindungen zur bekämpfung von durch insekten übertragenen virosen |
WO2010086095A1 (en) | 2009-01-29 | 2010-08-05 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants introduction |
WO2010086311A1 (en) | 2009-01-28 | 2010-08-05 | Bayer Cropscience Ag | Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives |
US7772463B2 (en) | 2004-03-05 | 2010-08-10 | Bayer Cropscience Ag | Plants with increased activity of a starch phosphorylating enzyme |
EP2218717A1 (de) | 2009-02-17 | 2010-08-18 | Bayer CropScience AG | Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative |
WO2010094728A1 (en) | 2009-02-19 | 2010-08-26 | Bayer Cropscience Ag | Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance |
WO2010094666A2 (en) | 2009-02-17 | 2010-08-26 | Bayer Cropscience Ag | Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives |
EP2223602A1 (de) | 2009-02-23 | 2010-09-01 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials genetisch modifizierter Pflanzen |
DE102009001681A1 (de) | 2009-03-20 | 2010-09-23 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2232995A1 (de) | 2009-03-25 | 2010-09-29 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102009001728A1 (de) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102009001732A1 (de) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102009001730A1 (de) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2239331A1 (de) | 2009-04-07 | 2010-10-13 | Bayer CropScience AG | Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen |
EP2251331A1 (de) | 2009-05-15 | 2010-11-17 | Bayer CropScience AG | Fungizide Pyrazolcarboxamid-Derivate |
EP2255626A1 (de) | 2009-05-27 | 2010-12-01 | Bayer CropScience AG | Verwendung von Succinat Dehydrogenase Inhibitoren zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress |
WO2011006603A2 (de) | 2009-07-16 | 2011-01-20 | Bayer Cropscience Ag | Synergistische wirkstoffkombinationen mit phenyltriazolen |
WO2011015524A2 (en) | 2009-08-03 | 2011-02-10 | Bayer Cropscience Ag | Fungicide heterocycles derivatives |
EP2292094A1 (de) | 2009-09-02 | 2011-03-09 | Bayer CropScience AG | Wirkstoffkombinationen |
US7919682B2 (en) | 2004-03-05 | 2011-04-05 | Bayer Cropscience Ag | Plants with reduced activity of a starch phosphorylating enzyme |
WO2011080254A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011080256A1 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011080255A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2343280A1 (de) | 2009-12-10 | 2011-07-13 | Bayer CropScience AG | Fungizid-Chinolinderivate |
WO2011089071A2 (de) | 2010-01-22 | 2011-07-28 | Bayer Cropscience Ag | Akarizide und/oder insektizide wirkstoffkombinationen |
WO2011107504A1 (de) | 2010-03-04 | 2011-09-09 | Bayer Cropscience Ag | Fluoralkyl- substituierte 2 -amidobenzimidazole und deren verwendung zur steigerung der stresstoleranz in pflanzen |
EP2374791A1 (de) | 2008-08-14 | 2011-10-12 | Bayer CropScience Aktiengesellschaft | Insektizide 4-Phenyl-1H-pyrazole |
WO2011124554A2 (de) | 2010-04-06 | 2011-10-13 | Bayer Cropscience Ag | Verwendung der 4-phenylbuttersäure und/oder ihrer salze zur steigerung der stresstoleranz in pflanzen |
WO2011124553A2 (de) | 2010-04-09 | 2011-10-13 | Bayer Cropscience Ag | Verwendung von derivaten der (1-cyancyclopropyl)phenylphosphinsäure, deren ester und/oder deren salze zur steigerung der toleranz in pflanzen gegenüber abiotischem stress |
WO2011134912A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011134913A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011134911A2 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011151370A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues |
WO2011151369A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues |
WO2011151368A2 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2011154158A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2011154159A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2012010579A2 (en) | 2010-07-20 | 2012-01-26 | Bayer Cropscience Ag | Benzocycloalkenes as antifungal agents |
WO2012028578A1 (de) | 2010-09-03 | 2012-03-08 | Bayer Cropscience Ag | Substituierte anellierte pyrimidinone und dihydropyrimidinone |
WO2012038476A1 (en) | 2010-09-22 | 2012-03-29 | Bayer Cropscience Ag | Use of active ingredients for controlling nematodes in nematode-resistant crops |
WO2012045798A1 (en) | 2010-10-07 | 2012-04-12 | Bayer Cropscience Ag | Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative |
WO2012052489A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | 1-(heterocyclic carbonyl) piperidines |
WO2012052490A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | N-benzyl heterocyclic carboxamides |
WO2012059497A1 (en) | 2010-11-02 | 2012-05-10 | Bayer Cropscience Ag | N-hetarylmethyl pyrazolylcarboxamides |
WO2012065945A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazole(thio)carboxamides |
WO2012065947A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazolecarboxamides |
WO2012065944A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | N-aryl pyrazole(thio)carboxamides |
EP2460406A1 (de) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen |
EP2460407A1 (de) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe |
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
WO2012089757A1 (en) | 2010-12-29 | 2012-07-05 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2012089721A1 (de) | 2010-12-30 | 2012-07-05 | Bayer Cropscience Ag | Verwendung von substituierten spirocyclischen sulfonamidocarbonsäuren, deren carbonsäureestern, deren carbonsäureamiden und deren carbonitrilen oder deren salze zur steigerung der stresstoleranz in pflanzen |
EP2474542A1 (de) | 2010-12-29 | 2012-07-11 | Bayer CropScience AG | Fungizide Hydroximoyl-Tetrazol-Derivate |
EP2494867A1 (de) | 2011-03-01 | 2012-09-05 | Bayer CropScience AG | Halogen-substituierte Verbindungen in Kombination mit Fungiziden |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
US8269063B2 (en) | 2004-03-05 | 2012-09-18 | Bayer Cropscience Ag | Methods for identifying proteins with starch phosphorylating enzymatic activity |
WO2012123434A1 (en) | 2011-03-14 | 2012-09-20 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2511255A1 (de) | 2011-04-15 | 2012-10-17 | Bayer CropScience AG | Substituierte Prop-2-in-1-ol- und Prop-2-en-1-ol-Derivate |
WO2012139890A1 (de) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituierte 5-(cyclohex-2-en-1-yl)-penta-2,4-diene und 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress |
WO2012139892A1 (de) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituierte 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-diene und 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress |
WO2012139891A1 (de) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituierte vinyl- und alkinyl-cyclohexenole als wirkstoffe gegen abiotischen pflanzenstress |
US8299302B2 (en) | 2007-03-12 | 2012-10-30 | Bayer Cropscience Ag | 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides |
WO2012168124A1 (en) | 2011-06-06 | 2012-12-13 | Bayer Cropscience Nv | Methods and means to modify a plant genome at a preselected site |
US8334237B2 (en) | 2007-03-12 | 2012-12-18 | Bayer Cropscience Ag | Substituted phenylamidines and the use thereof as fungicides |
WO2013004652A1 (de) | 2011-07-04 | 2013-01-10 | Bayer Intellectual Property Gmbh | Verwendung substituierter isochinolinone, isochinolindione, isochinolintrione und dihydroisochinolinone oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress |
WO2013020985A1 (en) | 2011-08-10 | 2013-02-14 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
EP2561759A1 (de) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoralkyl-substituierte 2-amidobenzimidazole und ihre Wirkung auf das Pflanzenwachstum |
WO2013026836A1 (en) | 2011-08-22 | 2013-02-28 | Bayer Intellectual Property Gmbh | Fungicide hydroximoyl-tetrazole derivatives |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
US8394991B2 (en) | 2007-03-12 | 2013-03-12 | Bayer Cropscience Ag | Phenoxy substituted phenylamidine derivatives and their use as fungicides |
WO2013034621A1 (en) | 2011-09-09 | 2013-03-14 | Bayer Intellectual Property Gmbh | Acyl-homoserine lactone derivatives for improving plant yield |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013041602A1 (de) | 2011-09-23 | 2013-03-28 | Bayer Intellectual Property Gmbh | Verwendung 4-substituierter 1-phenyl-pyrazol-3-carbonsäurederivate als wirkstoffe gegen abiotischen pflanzenstress |
WO2013050324A1 (de) | 2011-10-06 | 2013-04-11 | Bayer Intellectual Property Gmbh | Abiotischen pflanzenstress-reduzierende kombination enthaltend 4- phenylbuttersäure (4-pba) oder eines ihrer salze (komponente (a)) und eine oder mehrere ausgewählte weitere agronomisch wirksame verbindungen (komponente(n) (b) |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
US8519003B2 (en) | 2007-03-12 | 2013-08-27 | Bayer Cropscience Ag | Phenoxyphenylamidines as fungicides |
WO2013124275A1 (en) | 2012-02-22 | 2013-08-29 | Bayer Cropscience Ag | Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape. |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013160230A1 (en) | 2012-04-23 | 2013-10-31 | Bayer Cropscience Nv | Targeted genome engineering in plants |
EP2662363A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenpyrazol-Biphenyl-Carboxamide |
EP2662364A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol-Tetrahydronaphthyl-Carboxamide |
EP2662361A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol-Indanyl-Carboxamide |
EP2662360A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenpyrazol-Indanyl-Carboxamide |
EP2662370A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenpyrazol-Benzofuranyl-Carboxamide |
EP2662362A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol-Indanyl-Carboxamide |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
WO2014009322A1 (en) | 2012-07-11 | 2014-01-16 | Bayer Cropscience Ag | Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress |
WO2014037340A1 (de) | 2012-09-05 | 2014-03-13 | Bayer Cropscience Ag | Verwendung substituierter 2-amidobenzimidazole, 2-amidobenzoxazole und 2-amidobenzothiazole oder deren salze als wirkstoffe gegen abiotischen pflanzenstress |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
EP2735231A1 (de) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Wirkstoffkombinationen |
WO2014079957A1 (de) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Selektive inhibition der ethylensignaltransduktion |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
EP2740356A1 (de) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituierte (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-insäure-Derivate |
EP2740720A1 (de) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituierte bicyclische- und tricyclische Pent-2-en-4-insäure -Derivate und ihre Verwendung zur Steigerung der Stresstoleranz in Pflanzen |
WO2014086751A1 (de) | 2012-12-05 | 2014-06-12 | Bayer Cropscience Ag | Verwendung substituierter 1-(arylethinyl)-, 1-(heteroarylethinyl)-, 1-(heterocyclylethinyl)- und 1-(cyloalkenylethinyl)-cyclohexanole als wirkstoffe gegen abiotischen pflanzenstress |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
WO2014135608A1 (en) | 2013-03-07 | 2014-09-12 | Bayer Cropscience Ag | Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives |
WO2014161821A1 (en) | 2013-04-02 | 2014-10-09 | Bayer Cropscience Nv | Targeted genome engineering in eukaryotes |
WO2014167008A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazolinthione derivatives |
WO2014167009A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazole derivatives |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2015004040A1 (de) | 2013-07-09 | 2015-01-15 | Bayer Cropscience Ag | Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
US9199922B2 (en) | 2007-03-12 | 2015-12-01 | Bayer Intellectual Property Gmbh | Dihalophenoxyphenylamidines and use thereof as fungicides |
WO2016012362A1 (de) | 2014-07-22 | 2016-01-28 | Bayer Cropscience Aktiengesellschaft | Substituierte cyano-cycloalkylpenta-2,4-diene, cyano-cycloalkylpent-2-en-4-ine, cyano-heterocyclylpenta-2,4-diene und cyano-heterocyclylpent-2en-4-ine als wirkstoffe gegen abiotischen pflanzenstress |
EP2997825A1 (de) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen mit einem (thio)carboxamidderivat und einer fungiziden verbindung |
EP3000809A1 (de) | 2009-05-15 | 2016-03-30 | Bayer Intellectual Property GmbH | Fungizide pyrazolcarboxamidderivate |
WO2016096942A1 (de) | 2014-12-18 | 2016-06-23 | Bayer Cropscience Aktiengesellschaft | Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018054832A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives |
WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
WO2018054829A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives and their use as fungicides |
WO2018077711A2 (en) | 2016-10-26 | 2018-05-03 | Bayer Cropscience Aktiengesellschaft | Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications |
EP3332645A1 (de) | 2016-12-12 | 2018-06-13 | Bayer Cropscience AG | Verwendung substituierter pyrimidindione oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress |
WO2018104392A1 (en) | 2016-12-08 | 2018-06-14 | Bayer Cropscience Aktiengesellschaft | Use of insecticides for controlling wireworms |
WO2018108627A1 (de) | 2016-12-12 | 2018-06-21 | Bayer Cropscience Aktiengesellschaft | Verwendung substituierter indolinylmethylsulfonamide oder deren salze zur steigerung der stresstoleranz in pflanzen |
DE102007045953B4 (de) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
DE102007045920B4 (de) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Synergistische Wirkstoffkombinationen |
WO2019025153A1 (de) | 2017-07-31 | 2019-02-07 | Bayer Cropscience Aktiengesellschaft | Verwendung von substituierten n-sulfonyl-n'-aryldiaminoalkanen und n-sulfonyl-n'-heteroaryldiaminoalkanen oder deren salzen zur steigerung der stresstoleranz in pflanzen |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | SYSTEMS, METHODS, AND COMPOSITIONS FOR THE TARGETED EDITING OF NUCLEIC ACIDS |
WO2019233863A1 (de) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbizid wirksame bizyklische benzoylpyrazole |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19509695A1 (de) * | 1995-03-08 | 1996-09-12 | Inst Genbiologische Forschung | Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke |
DE19912009A1 (de) | 1999-03-17 | 2000-09-28 | Aventis Cropscience Gmbh | Glasnudel |
US20030150021A1 (en) * | 1999-10-19 | 2003-08-07 | Broglie Karen E. | Maize 4-alpha-glucanotransferase |
WO2002038132A2 (de) * | 2000-11-09 | 2002-05-16 | Celanese Ventures Gmbh | Weichkapseln umfassend ein stärkegemisch verringerten verzweigungsgrades |
WO2003062383A2 (en) * | 2002-01-16 | 2003-07-31 | Baylor College Of Medicine | In vivo gene transfer |
US7107703B1 (en) * | 2004-04-23 | 2006-09-19 | Yan Wang | Shoe sole |
CL2007003744A1 (es) * | 2006-12-22 | 2008-07-11 | Bayer Cropscience Ag | Composicion que comprende un derivado 2-piridilmetilbenzamida y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos. |
CL2007003743A1 (es) * | 2006-12-22 | 2008-07-11 | Bayer Cropscience Ag | Composicion que comprende fenamidona y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos. |
EP2120558B1 (de) * | 2007-03-12 | 2016-02-10 | Bayer Intellectual Property GmbH | 3,4-Disubstituierte Phenoxyphenylamidin-Derivate und deren Verwendung als Fungizide |
EP1969931A1 (de) * | 2007-03-12 | 2008-09-17 | Bayer CropScience Aktiengesellschaft | Fluoalkylphenylamidine und deren Verwendung als Fungizide |
US8168567B2 (en) * | 2007-04-19 | 2012-05-01 | Bayer Cropscience Ag | Thiadiazolyl oxyphenyl amidines and the use thereof as a fungicide |
DE102007045922A1 (de) | 2007-09-26 | 2009-04-02 | Bayer Cropscience Ag | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
CA2701290A1 (en) * | 2007-10-02 | 2009-04-16 | Bayer Cropscience Ag | Methods of improving plant growth |
EP2381781B1 (de) | 2008-12-29 | 2016-06-08 | Bayer Intellectual Property GmbH | Verfahren zur verbesserten nutzung des produktionspotentials genetisch modifizierter pflanzen |
WO2010081689A2 (en) | 2009-01-19 | 2010-07-22 | Bayer Cropscience Ag | Cyclic diones and their use as insecticides, acaricides and/or fungicides |
UA104887C2 (uk) | 2009-03-25 | 2014-03-25 | Баєр Кропсаєнс Аг | Синергічні комбінації активних речовин |
AP3073A (en) | 2009-03-25 | 2014-12-31 | Bayer Cropscience Ag | Active ingredient combinations with insecticidal and acaricidal properties |
JP5462354B2 (ja) | 2009-03-25 | 2014-04-02 | バイエル・クロップサイエンス・アーゲー | 殺虫特性及び殺ダニ特性を有する活性成分組合せ |
MX2011009916A (es) | 2009-03-25 | 2011-10-06 | Bayer Cropscience Ag | Combinaciones de principios activos con propiedades insecticidas y acaricidas. |
WO2010108505A1 (de) | 2009-03-25 | 2010-09-30 | Bayer Cropscience Ag | Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften |
CN102458125B (zh) | 2009-05-06 | 2015-04-29 | 拜尔农作物科学股份公司 | 环戊二酮化合物及其用作杀昆虫剂、杀螨剂和/或杀菌剂的用途 |
WO2010139410A2 (de) * | 2009-06-02 | 2010-12-09 | Bayer Cropscience Ag | Verwendung von succinat dehydrogenase inhibitoren zur kontrolle von sclerotinia ssp |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63202396A (ja) * | 1987-02-18 | 1988-08-22 | Ezaki Glyco Kk | N−アセチルグルコサミン、グルコサミン、マンノ−ス又はアロ−スを末端に含む少糖類の製造方法 |
WO1995007355A1 (en) * | 1993-09-09 | 1995-03-16 | Institut Für Genbiologische Forschung Berlin Gmbh | Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4104782B4 (de) * | 1991-02-13 | 2006-05-11 | Bayer Cropscience Gmbh | Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide |
DE4330960C2 (de) * | 1993-09-09 | 2002-06-20 | Aventis Cropscience Gmbh | Kombination von DNA-Sequenzen, die in Pflanzenzellen und Pflanzen die Bildung hochgradig amylosehaltiger Stärke ermöglichen, Verfahren zur Herstellung dieser Pflanzen und die daraus erhaltbare modifizierte Stärke |
DE19509695A1 (de) * | 1995-03-08 | 1996-09-12 | Inst Genbiologische Forschung | Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke |
-
1995
- 1995-03-08 DE DE19509695A patent/DE19509695A1/de not_active Withdrawn
-
1996
- 1996-03-08 HU HU9801855A patent/HUP9801855A3/hu unknown
- 1996-03-08 AU AU51041/96A patent/AU713917B2/en not_active Ceased
- 1996-03-08 PL PL96322142A patent/PL322142A1/xx unknown
- 1996-03-08 WO PCT/EP1996/001007 patent/WO1996027674A1/de not_active Application Discontinuation
- 1996-03-08 US US08/913,671 patent/US6162966A/en not_active Expired - Lifetime
- 1996-03-08 EP EP96907401A patent/EP0813605A1/de not_active Withdrawn
- 1996-03-08 CA CA002214736A patent/CA2214736A1/en not_active Abandoned
- 1996-03-08 JP JP8526617A patent/JPH11501213A/ja active Pending
-
2000
- 2000-10-19 US US09/692,069 patent/US6610843B1/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63202396A (ja) * | 1987-02-18 | 1988-08-22 | Ezaki Glyco Kk | N−アセチルグルコサミン、グルコサミン、マンノ−ス又はアロ−スを末端に含む少糖類の製造方法 |
WO1995007355A1 (en) * | 1993-09-09 | 1995-03-16 | Institut Für Genbiologische Forschung Berlin Gmbh | Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom |
Non-Patent Citations (3)
Title |
---|
DATABASE WPI Section Ch Week 8839, Derwent World Patents Index; Class D17, AN 88-275344, XP002005944 * |
MUELLER-ROEBER B ET AL: "Approaches to influence starch quantity and starch quality in transgenic plants.", PLANT CELL AND ENVIRONMENT 17 (5). 1994. 601-613. ISSN: 0140-7791, XP002005943 * |
TAKAHA T ET AL: "DISPROPORTIONATING ENZYME 4-ALPHA GLUCANOTRANSFERASE EC 2.4.1.25 OF POTATO PURIFICATION MOLECULAR CLONING AND POTENTIAL ROLE IN STARCH METABOLISM.", J BIOL CHEM 268 (2). 1993. 1391-1396., XP002005942 * |
Cited By (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6825342B1 (en) | 1995-05-05 | 2004-11-30 | National Starch And Chemical Investment Holding Corporation | Plant starch composition |
US7569744B2 (en) | 1995-09-19 | 2009-08-04 | Bayer Bioscience Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
US7897760B2 (en) | 1995-09-19 | 2011-03-01 | Bayer Bioscience Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
US7176190B2 (en) | 1995-09-19 | 2007-02-13 | Bayer Bioscience Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
US8586722B2 (en) | 1995-09-19 | 2013-11-19 | Bayer Cropscience Ag | Methods of using tubers having genetically modified potato plant cells |
WO1998045459A1 (en) * | 1997-04-09 | 1998-10-15 | E.I. Du Pont De Nemours And Company | Plant 4-alpha-glucanotransferases |
FR2779740A1 (fr) * | 1998-06-16 | 1999-12-17 | Biogemma Fr | Procede d'obtention d'amidon modifie |
WO1999066056A1 (fr) * | 1998-06-16 | 1999-12-23 | Biogemma | Procede d'obtention de polysaccharides modifies |
AU772062B2 (en) * | 1998-06-16 | 2004-04-08 | Biogemma | Method for obtaining modified polysaccharides |
US8895804B2 (en) | 2004-03-05 | 2014-11-25 | Bayer Cropscience Ag | Plants with increased activity of a starch phosphorylating enzyme |
US7919682B2 (en) | 2004-03-05 | 2011-04-05 | Bayer Cropscience Ag | Plants with reduced activity of a starch phosphorylating enzyme |
US8269063B2 (en) | 2004-03-05 | 2012-09-18 | Bayer Cropscience Ag | Methods for identifying proteins with starch phosphorylating enzymatic activity |
WO2005095619A1 (en) * | 2004-03-05 | 2005-10-13 | Bayer Cropscience Gmbh | Plants with increased activity of multiple starch phosphorylating enzymes |
JP2007525987A (ja) * | 2004-03-05 | 2007-09-13 | バイエル クロップサイエンス ゲーエムベーハー | 複数のデンプンリン酸化酵素の活性が増大した植物 |
AU2005229364B2 (en) * | 2004-03-05 | 2011-04-07 | Bayer Intellectual Property Gmbh | Plants with increased activity of multiple starch phosphorylating enzymes |
US7772463B2 (en) | 2004-03-05 | 2010-08-10 | Bayer Cropscience Ag | Plants with increased activity of a starch phosphorylating enzyme |
US8257502B2 (en) | 2004-03-05 | 2012-09-04 | Bayer Cropscience Ag | Plants with reduced activity of a starch phosphorylating enzyme |
US7932436B2 (en) | 2004-03-05 | 2011-04-26 | Bayer CropCcience AG | Plants with increased activity of multiple starch phosphorylating enzymes |
US9327285B2 (en) | 2004-03-05 | 2016-05-03 | Bayer Intellectual Property Gmbh | Plants with increased activity of a starch phosphorylating enzyme |
US8007592B2 (en) | 2004-03-05 | 2011-08-30 | Bayer Cropscience Ag | Plants with increased activity of a starch phosphorylating enzyme |
JP2013066481A (ja) * | 2004-03-05 | 2013-04-18 | Bayer Cropscience Ag | 複数のデンプンリン酸化酵素の活性が増大した植物 |
US8748662B2 (en) | 2007-03-12 | 2014-06-10 | Bayer Cropscience Ag | 4-cycloalkyl or 4-aryl substituted phenoxyphenylamidines and use thereof as fungicides |
US8299302B2 (en) | 2007-03-12 | 2012-10-30 | Bayer Cropscience Ag | 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides |
US8394991B2 (en) | 2007-03-12 | 2013-03-12 | Bayer Cropscience Ag | Phenoxy substituted phenylamidine derivatives and their use as fungicides |
US8334237B2 (en) | 2007-03-12 | 2012-12-18 | Bayer Cropscience Ag | Substituted phenylamidines and the use thereof as fungicides |
US9199922B2 (en) | 2007-03-12 | 2015-12-01 | Bayer Intellectual Property Gmbh | Dihalophenoxyphenylamidines and use thereof as fungicides |
US8519003B2 (en) | 2007-03-12 | 2013-08-27 | Bayer Cropscience Ag | Phenoxyphenylamidines as fungicides |
US8785692B2 (en) | 2007-03-12 | 2014-07-22 | Bayer Cropscience Ag | Substituted phenylamidines and the use thereof as fungicides |
DE102007045920B4 (de) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Synergistische Wirkstoffkombinationen |
DE102007045919B4 (de) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
DE102007045956A1 (de) | 2007-09-26 | 2009-04-09 | Bayer Cropscience Ag | Wirkstoffkombination mit insektiziden und akariziden Eigenschaften |
US8455480B2 (en) | 2007-09-26 | 2013-06-04 | Bayer Cropscience Ag | Active agent combinations having insecticidal and acaricidal properties |
DE102007045953B4 (de) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
DE102007045919A1 (de) | 2007-09-26 | 2009-04-09 | Bayer Cropscience Ag | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
EP2072506A1 (de) | 2007-12-21 | 2009-06-24 | Bayer CropScience AG | Thiazolyloxyphenylamidine oder Thiadiazolyloxyphenylamidine und deren Verwendung als Fungizide |
EP2090168A1 (de) | 2008-02-12 | 2009-08-19 | Bayer CropScience AG | Methode zur Verbesserung des Pflanzenwachstums |
EP2168434A1 (de) | 2008-08-02 | 2010-03-31 | Bayer CropScience AG | Verwendung von Azolen zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress |
EP2374791A1 (de) | 2008-08-14 | 2011-10-12 | Bayer CropScience Aktiengesellschaft | Insektizide 4-Phenyl-1H-pyrazole |
DE102008041695A1 (de) | 2008-08-29 | 2010-03-04 | Bayer Cropscience Ag | Methoden zur Verbesserung des Pflanzenwachstums |
EP2201838A1 (de) | 2008-12-05 | 2010-06-30 | Bayer CropScience AG | Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften |
EP2198709A1 (de) | 2008-12-19 | 2010-06-23 | Bayer CropScience AG | Verfahren zur Bekämpfung resistenter tierischer Schädlinge |
WO2010075994A1 (en) | 2008-12-29 | 2010-07-08 | Bayer Cropscience Aktiengesellschaft | Treatment of transgenic crops with mixtures of fiproles and chloronicotinyls |
EP2204094A1 (de) | 2008-12-29 | 2010-07-07 | Bayer CropScience AG | Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen |
EP2039772A2 (de) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2039771A2 (de) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2039770A2 (de) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2227951A1 (de) | 2009-01-23 | 2010-09-15 | Bayer CropScience AG | Verwendung von Enaminocarbonylverbindungen zur Bekämpfung von durch Insekten übertragenen Viren |
WO2010083955A2 (de) | 2009-01-23 | 2010-07-29 | Bayer Cropscience Aktiengesellschaft | Verwendung von enaminocarbonylverbindungen zur bekämpfung von durch insekten übertragenen virosen |
WO2010086311A1 (en) | 2009-01-28 | 2010-08-05 | Bayer Cropscience Ag | Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives |
WO2010086095A1 (en) | 2009-01-29 | 2010-08-05 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants introduction |
EP2218717A1 (de) | 2009-02-17 | 2010-08-18 | Bayer CropScience AG | Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative |
WO2010094666A2 (en) | 2009-02-17 | 2010-08-26 | Bayer Cropscience Ag | Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives |
WO2010094728A1 (en) | 2009-02-19 | 2010-08-26 | Bayer Cropscience Ag | Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance |
EP2223602A1 (de) | 2009-02-23 | 2010-09-01 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials genetisch modifizierter Pflanzen |
DE102009001469A1 (de) | 2009-03-11 | 2009-09-24 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102009001681A1 (de) | 2009-03-20 | 2010-09-23 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102009001730A1 (de) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102009001728A1 (de) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
DE102009001732A1 (de) | 2009-03-23 | 2010-09-30 | Bayer Cropscience Ag | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2232995A1 (de) | 2009-03-25 | 2010-09-29 | Bayer CropScience AG | Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen |
EP2239331A1 (de) | 2009-04-07 | 2010-10-13 | Bayer CropScience AG | Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen |
EP2251331A1 (de) | 2009-05-15 | 2010-11-17 | Bayer CropScience AG | Fungizide Pyrazolcarboxamid-Derivate |
EP3000809A1 (de) | 2009-05-15 | 2016-03-30 | Bayer Intellectual Property GmbH | Fungizide pyrazolcarboxamidderivate |
EP2255626A1 (de) | 2009-05-27 | 2010-12-01 | Bayer CropScience AG | Verwendung von Succinat Dehydrogenase Inhibitoren zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress |
WO2011006603A2 (de) | 2009-07-16 | 2011-01-20 | Bayer Cropscience Ag | Synergistische wirkstoffkombinationen mit phenyltriazolen |
WO2011015524A2 (en) | 2009-08-03 | 2011-02-10 | Bayer Cropscience Ag | Fungicide heterocycles derivatives |
WO2011035834A1 (en) | 2009-09-02 | 2011-03-31 | Bayer Cropscience Ag | Active compound combinations |
EP2292094A1 (de) | 2009-09-02 | 2011-03-09 | Bayer CropScience AG | Wirkstoffkombinationen |
EP2343280A1 (de) | 2009-12-10 | 2011-07-13 | Bayer CropScience AG | Fungizid-Chinolinderivate |
WO2011080255A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011080254A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011080256A1 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011089071A2 (de) | 2010-01-22 | 2011-07-28 | Bayer Cropscience Ag | Akarizide und/oder insektizide wirkstoffkombinationen |
WO2011107504A1 (de) | 2010-03-04 | 2011-09-09 | Bayer Cropscience Ag | Fluoralkyl- substituierte 2 -amidobenzimidazole und deren verwendung zur steigerung der stresstoleranz in pflanzen |
WO2011124554A2 (de) | 2010-04-06 | 2011-10-13 | Bayer Cropscience Ag | Verwendung der 4-phenylbuttersäure und/oder ihrer salze zur steigerung der stresstoleranz in pflanzen |
WO2011124553A2 (de) | 2010-04-09 | 2011-10-13 | Bayer Cropscience Ag | Verwendung von derivaten der (1-cyancyclopropyl)phenylphosphinsäure, deren ester und/oder deren salze zur steigerung der toleranz in pflanzen gegenüber abiotischem stress |
WO2011134911A2 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011134912A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011134913A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011151368A2 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2011151370A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues |
WO2011151369A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues |
WO2011154158A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2011154159A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2012010579A2 (en) | 2010-07-20 | 2012-01-26 | Bayer Cropscience Ag | Benzocycloalkenes as antifungal agents |
WO2012028578A1 (de) | 2010-09-03 | 2012-03-08 | Bayer Cropscience Ag | Substituierte anellierte pyrimidinone und dihydropyrimidinone |
WO2012038476A1 (en) | 2010-09-22 | 2012-03-29 | Bayer Cropscience Ag | Use of active ingredients for controlling nematodes in nematode-resistant crops |
WO2012038480A2 (en) | 2010-09-22 | 2012-03-29 | Bayer Cropscience Ag | Use of biological or chemical control agents for controlling insects and nematodes in resistant crops |
WO2012045798A1 (en) | 2010-10-07 | 2012-04-12 | Bayer Cropscience Ag | Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative |
WO2012052489A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | 1-(heterocyclic carbonyl) piperidines |
WO2012052490A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | N-benzyl heterocyclic carboxamides |
WO2012059497A1 (en) | 2010-11-02 | 2012-05-10 | Bayer Cropscience Ag | N-hetarylmethyl pyrazolylcarboxamides |
WO2012065947A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazolecarboxamides |
US9206137B2 (en) | 2010-11-15 | 2015-12-08 | Bayer Intellectual Property Gmbh | N-Aryl pyrazole(thio)carboxamides |
WO2012065944A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | N-aryl pyrazole(thio)carboxamides |
WO2012065945A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazole(thio)carboxamides |
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
WO2012072696A1 (de) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
EP3103338A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
EP2460407A1 (de) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe |
EP3092900A1 (de) | 2010-12-01 | 2016-11-16 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
EP2460406A1 (de) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen |
EP3103334A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
EP3103339A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
EP3103340A1 (de) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe |
WO2012089757A1 (en) | 2010-12-29 | 2012-07-05 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2474542A1 (de) | 2010-12-29 | 2012-07-11 | Bayer CropScience AG | Fungizide Hydroximoyl-Tetrazol-Derivate |
WO2012089722A2 (de) | 2010-12-30 | 2012-07-05 | Bayer Cropscience Ag | Verwendung von offenkettigen aryl-, heteroaryl- und benzylsulfonamidocarbonsäuren, -carbonsäureestern, -carbonsäureamiden und -carbonitrilen oder deren salze zur steigerung der stresstoleranz in pflanzen |
WO2012089721A1 (de) | 2010-12-30 | 2012-07-05 | Bayer Cropscience Ag | Verwendung von substituierten spirocyclischen sulfonamidocarbonsäuren, deren carbonsäureestern, deren carbonsäureamiden und deren carbonitrilen oder deren salze zur steigerung der stresstoleranz in pflanzen |
EP2494867A1 (de) | 2011-03-01 | 2012-09-05 | Bayer CropScience AG | Halogen-substituierte Verbindungen in Kombination mit Fungiziden |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
WO2012123434A1 (en) | 2011-03-14 | 2012-09-20 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2012139892A1 (de) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituierte 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-diene und 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress |
EP2511255A1 (de) | 2011-04-15 | 2012-10-17 | Bayer CropScience AG | Substituierte Prop-2-in-1-ol- und Prop-2-en-1-ol-Derivate |
WO2012139890A1 (de) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituierte 5-(cyclohex-2-en-1-yl)-penta-2,4-diene und 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress |
WO2012139891A1 (de) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituierte vinyl- und alkinyl-cyclohexenole als wirkstoffe gegen abiotischen pflanzenstress |
EP2997825A1 (de) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Wirkstoffkombinationen mit einem (thio)carboxamidderivat und einer fungiziden verbindung |
WO2012168124A1 (en) | 2011-06-06 | 2012-12-13 | Bayer Cropscience Nv | Methods and means to modify a plant genome at a preselected site |
WO2013004652A1 (de) | 2011-07-04 | 2013-01-10 | Bayer Intellectual Property Gmbh | Verwendung substituierter isochinolinone, isochinolindione, isochinolintrione und dihydroisochinolinone oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
WO2013020985A1 (en) | 2011-08-10 | 2013-02-14 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
WO2013026836A1 (en) | 2011-08-22 | 2013-02-28 | Bayer Intellectual Property Gmbh | Fungicide hydroximoyl-tetrazole derivatives |
US9670496B2 (en) | 2011-08-22 | 2017-06-06 | Bayer Cropscience N.V. | Methods and means to modify a plant genome |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
US10538774B2 (en) | 2011-08-22 | 2020-01-21 | Basf Agricultural Solutions Seed, Us Llc | Methods and means to modify a plant genome |
EP2561759A1 (de) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoralkyl-substituierte 2-amidobenzimidazole und ihre Wirkung auf das Pflanzenwachstum |
WO2013034621A1 (en) | 2011-09-09 | 2013-03-14 | Bayer Intellectual Property Gmbh | Acyl-homoserine lactone derivatives for improving plant yield |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013041602A1 (de) | 2011-09-23 | 2013-03-28 | Bayer Intellectual Property Gmbh | Verwendung 4-substituierter 1-phenyl-pyrazol-3-carbonsäurederivate als wirkstoffe gegen abiotischen pflanzenstress |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
WO2013050324A1 (de) | 2011-10-06 | 2013-04-11 | Bayer Intellectual Property Gmbh | Abiotischen pflanzenstress-reduzierende kombination enthaltend 4- phenylbuttersäure (4-pba) oder eines ihrer salze (komponente (a)) und eine oder mehrere ausgewählte weitere agronomisch wirksame verbindungen (komponente(n) (b) |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013124275A1 (en) | 2012-02-22 | 2013-08-29 | Bayer Cropscience Ag | Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape. |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013160230A1 (en) | 2012-04-23 | 2013-10-31 | Bayer Cropscience Nv | Targeted genome engineering in plants |
EP2662362A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol-Indanyl-Carboxamide |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
EP2662363A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenpyrazol-Biphenyl-Carboxamide |
EP2662364A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol-Tetrahydronaphthyl-Carboxamide |
EP2662361A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol-Indanyl-Carboxamide |
EP2662360A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenpyrazol-Indanyl-Carboxamide |
EP2662370A1 (de) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenpyrazol-Benzofuranyl-Carboxamide |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
WO2014009322A1 (en) | 2012-07-11 | 2014-01-16 | Bayer Cropscience Ag | Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress |
WO2014037340A1 (de) | 2012-09-05 | 2014-03-13 | Bayer Cropscience Ag | Verwendung substituierter 2-amidobenzimidazole, 2-amidobenzoxazole und 2-amidobenzothiazole oder deren salze als wirkstoffe gegen abiotischen pflanzenstress |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014079789A1 (en) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Active compound combinations |
WO2014079957A1 (de) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Selektive inhibition der ethylensignaltransduktion |
EP2735231A1 (de) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Wirkstoffkombinationen |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
EP2740356A1 (de) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituierte (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-insäure-Derivate |
EP2740720A1 (de) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituierte bicyclische- und tricyclische Pent-2-en-4-insäure -Derivate und ihre Verwendung zur Steigerung der Stresstoleranz in Pflanzen |
WO2014086751A1 (de) | 2012-12-05 | 2014-06-12 | Bayer Cropscience Ag | Verwendung substituierter 1-(arylethinyl)-, 1-(heteroarylethinyl)-, 1-(heterocyclylethinyl)- und 1-(cyloalkenylethinyl)-cyclohexanole als wirkstoffe gegen abiotischen pflanzenstress |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014135608A1 (en) | 2013-03-07 | 2014-09-12 | Bayer Cropscience Ag | Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives |
WO2014161821A1 (en) | 2013-04-02 | 2014-10-09 | Bayer Cropscience Nv | Targeted genome engineering in eukaryotes |
WO2014167008A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazolinthione derivatives |
WO2014167009A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazole derivatives |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2015004040A1 (de) | 2013-07-09 | 2015-01-15 | Bayer Cropscience Ag | Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2016012362A1 (de) | 2014-07-22 | 2016-01-28 | Bayer Cropscience Aktiengesellschaft | Substituierte cyano-cycloalkylpenta-2,4-diene, cyano-cycloalkylpent-2-en-4-ine, cyano-heterocyclylpenta-2,4-diene und cyano-heterocyclylpent-2en-4-ine als wirkstoffe gegen abiotischen pflanzenstress |
WO2016096942A1 (de) | 2014-12-18 | 2016-06-23 | Bayer Cropscience Aktiengesellschaft | Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018054832A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives |
WO2018054829A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives and their use as fungicides |
WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
WO2018077711A2 (en) | 2016-10-26 | 2018-05-03 | Bayer Cropscience Aktiengesellschaft | Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications |
WO2018104392A1 (en) | 2016-12-08 | 2018-06-14 | Bayer Cropscience Aktiengesellschaft | Use of insecticides for controlling wireworms |
WO2018108627A1 (de) | 2016-12-12 | 2018-06-21 | Bayer Cropscience Aktiengesellschaft | Verwendung substituierter indolinylmethylsulfonamide oder deren salze zur steigerung der stresstoleranz in pflanzen |
EP3332645A1 (de) | 2016-12-12 | 2018-06-13 | Bayer Cropscience AG | Verwendung substituierter pyrimidindione oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
WO2019025153A1 (de) | 2017-07-31 | 2019-02-07 | Bayer Cropscience Aktiengesellschaft | Verwendung von substituierten n-sulfonyl-n'-aryldiaminoalkanen und n-sulfonyl-n'-heteroaryldiaminoalkanen oder deren salzen zur steigerung der stresstoleranz in pflanzen |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | SYSTEMS, METHODS, AND COMPOSITIONS FOR THE TARGETED EDITING OF NUCLEIC ACIDS |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
US11999767B2 (en) | 2018-04-03 | 2024-06-04 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
WO2019233863A1 (de) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbizid wirksame bizyklische benzoylpyrazole |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
HUP9801855A2 (hu) | 1998-11-30 |
AU713917B2 (en) | 1999-12-16 |
EP0813605A1 (de) | 1997-12-29 |
DE19509695A1 (de) | 1996-09-12 |
JPH11501213A (ja) | 1999-02-02 |
US6610843B1 (en) | 2003-08-26 |
US6162966A (en) | 2000-12-19 |
CA2214736A1 (en) | 1996-09-12 |
PL322142A1 (en) | 1998-01-05 |
AU5104196A (en) | 1996-09-23 |
HUP9801855A3 (en) | 2000-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996027674A1 (de) | Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung | |
EP0791066B1 (de) | Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle | |
DE69737507T2 (de) | Neue nukleinsäuremoleküle aus mais und deren verwendung zur herstellung modifizierter stärke | |
EP1200615B8 (de) | Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind | |
EP0851934B1 (de) | Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke | |
EP1078088B1 (de) | Transgene pflanzen mit veränderter aktivität eines plastidären adp/atp - translokators | |
DE60037191T2 (de) | Genetisch modifizierte pflanzenzellen und pflanzen mit einer erhöhten aktivität eines amylosucrase-proteins und eines verzweigungsenzyms | |
EP0874908B1 (de) | Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind | |
EP0900277A1 (de) | Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren | |
WO2000008175A2 (de) | NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE | |
WO2000008185A1 (de) | Nukleinsäuremoleküle kodierend für beta-amylase, pflanzen, die eine modifizierte stärke synthetisieren, herstellungsverfahren und verwendungen | |
DE19608918A1 (de) | Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Mais codieren | |
EP1203087A2 (de) | Transgene pflanzenzellen und pflanzen mit veränderter aktivität des gbssi- und des be-proteins | |
EP1100937A1 (de) | Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke | |
EP1707632A1 (de) | Phosphorylierte waxy-Kartoffelstärke | |
DE19534759A1 (de) | Pflanzen, die eine modifizierte Stärke synthetisieren, sowie Verfahren zu ihrer Herstellung | |
DE19547733A1 (de) | Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA HU JP PL SI US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2214736 Country of ref document: CA Ref country code: CA Ref document number: 2214736 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1996 526617 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996907401 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1996907401 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08913671 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1998 913671 Date of ref document: 19980203 Kind code of ref document: A Format of ref document f/p: F |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996907401 Country of ref document: EP |