WO1996027674A1 - Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung - Google Patents

Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO1996027674A1
WO1996027674A1 PCT/EP1996/001007 EP9601007W WO9627674A1 WO 1996027674 A1 WO1996027674 A1 WO 1996027674A1 EP 9601007 W EP9601007 W EP 9601007W WO 9627674 A1 WO9627674 A1 WO 9627674A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
plants
enzyme
cells
plant
Prior art date
Application number
PCT/EP1996/001007
Other languages
English (en)
French (fr)
Inventor
Jens Kossmann
Franziska Springer
Volker Büttcher
Original Assignee
Hoechst Schering Agrevo Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Schering Agrevo Gmbh filed Critical Hoechst Schering Agrevo Gmbh
Priority to AU51041/96A priority Critical patent/AU713917B2/en
Priority to JP8526617A priority patent/JPH11501213A/ja
Priority to EP96907401A priority patent/EP0813605A1/de
Priority to PL96322142A priority patent/PL322142A1/xx
Priority to US08/913,671 priority patent/US6162966A/en
Publication of WO1996027674A1 publication Critical patent/WO1996027674A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Definitions

  • the present invention relates to transgenic plants which synthesize a modified starch due to genetic engineering changes, in particular a starch which, compared to starch synthesized in wild-type plants, has modified gelatinization properties and an increased phosphate content.
  • the invention further relates to methods for producing the transgenic plants and to the modified starch which can be isolated from these plants.
  • the invention also relates to the use of DNA sequences which encode disproportionate enzymes (EC 2.4.1.25) for the production of transgenic plants which have a reduced activity of these enzymes and which synthesize a modified starch.
  • the polysaccharide starch which is one of the most important storage substances in the vegetable kingdom, is used not only in the food sector but also as a renewable raw material for the manufacture of industrial products. In order to enable the use of this raw material in as many application areas as possible, it is necessary to achieve a large variety of materials and to adapt it to the respective requirements of the industry to be processed.
  • starch is made up of a chemically uniform basic building block, glucose, starch is not a uniform raw material. It is rather a complex mixture of different molecular forms that differ in terms of their degree of branching and the occurrence of branches in the glucose chains.
  • amylose starch an essentially unbranched polymer made from ⁇ -1,4-linked Glu cosemolecules, of the amylopectin starch, which is a mixture of differently branched glucose chains, the branches being caused by the appearance of ⁇ -1,6-glycosidic linkages.
  • the molecular structure of the starch which is largely determined by the degree of branching, the amylose / amylopectin ratio, the average chain length and the presence of phosphate groups, is crucial for important functional properties of the starch or its aqueous solutions.
  • the important functional properties include solubility, retrograding behavior, film-forming properties, viscosity, color stability, gelatinization properties, i.e. Binding and adhesive properties, as well as the cold stability.
  • the starch grain size can also be important for various applications.
  • plants that synthesize a starch with modified properties can be genetically modified using driving are generated.
  • the genetic modification of potato plants has been described in several cases with the aim of changing the starch synthesized in the plants (for example WO 92/11376; WO 92/14827).
  • WO 92/11376 for example WO 92/11376
  • WO 92/14827 for example WO 92/11376
  • WO 92/14827 Although in some cases a modified starch has been successfully produced in plants, there is still a need for processes for producing a starch which is modified compared to starch synthesized in wild-type plants and which can be used with preference in special industrial processing processes.
  • the present invention is therefore based on the object of providing plants which synthesize a modified starch which, in terms of its physical and chemical properties, differs from starch synthesized naturally in the plants and is therefore more suitable for special purposes, and processes for the production thereof of such plants.
  • the present invention relates to transgenic plant cells in which the activity of a "disproportionating enzyme” (also 4- ⁇ -glucanotransferase; EC 2.4.1.25; hereinafter referred to as D-enzyme) is reduced compared to non-transformed cells, either because of the Introduction and expression of an exogenous DNA sequence or the introduction of a mutation in a gene encoding a disproportionating enzyme.
  • a "disproportionating enzyme” also 4- ⁇ -glucanotransferase; EC 2.4.1.25; hereinafter referred to as D-enzyme
  • transgenic plants which contain such cells and which have a reduced activity of the D-enzyme compared to wild-type plants, synthesize a modified starch which, in terms of its physical and chemical properties, is highly synthesized from plants which are naturally synthesized Strength differs.
  • Aqueous solutions of the starch synthesized in these plants for example, have a significantly different viscosity behavior compared to starch synthesized in wild-type plants.
  • a reduced activity of the D-enzyme compared to wild-type plants means that these plants have only 50%, preferably less than 25% and particularly preferably less than 10% of the D-enzyme activity of wild-type plants.
  • D-enzymes are defined as enzymes that catalyze the transfer of glucans from one 1,4- ⁇ -D-glucan to another 1,4- ⁇ -D-glucan or to glucose.
  • Effective glucan donors are maltooligosaccharides, soluble starch and amylopectin (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396).
  • a group of maltose is usually transferred, unless maltotetraose acts as a donor. In this case, maltotriose is transmitted.
  • Exogenous DNA sequence means that the introduced DNA sequence is either heterologous to the transformed plant cell, i.e. comes from a cell with a different genetic background, or is homologous to the transformed cell, but in this case is not located in its natural environment in the genome of the transformed cell. That is, the exogenous DNA sequence is located at a location in the genome where it does not naturally occur and is flanked by genes that are not naturally adjacent to it.
  • “Expression” means that the exogenous DNA sequence is at least transcribed in the cells. If it encodes a protein, this term also includes translation.
  • the reduction of the D-enzyme activity in the cells according to the invention can in principle be brought about in various ways.
  • the reduction of the D-enzyme activity in the transgenic cells by the In achieved the synthesis of a functional D-enzyme in the cells.
  • “Inhibition of synthesis” means that the synthesis of an endogenous D-enzyme is reduced in comparison to non-transformed cells, preferably by at least 50%, in particular by at least 75% and particularly preferably by at least 90%.
  • the reduction in synthesis can be demonstrated, for example, by detecting the enzyme in a Western blot with the aid of D-enzyme-specific antibodies.
  • D-enzyme activity can also be determined as described in Takaha et al (J. Biol. Chem. 268 (1993), 1391-1396). Detection of the D-enzyme transcripts in Northern blot is also possible.
  • “Punctual” means that the enzyme has its natural enzyme activity described above and this is about as high as in wild-type cells.
  • a reduction in the synthesis of a D enzyme in the cells according to the invention can be achieved in various ways.
  • a first possibility is to change the endogenous sequences present in the genome of the cell, which encode D-enzymes, or of their regulatory regions.
  • transposon mutagenesis can be inactivated, for example, by transposon mutagenesis, other conventional mutagenesis methods or "gene tagging", so that the synthesis of endogenous D-enzymes is largely or completely inhibited.
  • Options for changing the genomic sequences include, for example, gene disruption, insertion, deletion, recombination, addition, etc.
  • Another possibility is the transcription or translation of the genes present endogenously in the cell for disrupting D enzymes. Techniques for how this can be accomplished are known to those skilled in the art.
  • the synthesis of functional D-enzyme is reduced in the cells according to the invention by means of an antisense effect.
  • the synthesis of functional D-enzyme is reduced in the cells according to the invention by means of the expression of a ribozyme which specifically cleaves transcripts which code for D-enzyme.
  • Ribozymes which are combined with sequences which produce an antisense effect, i.e. which are complementary to D-enzyme transcripts.
  • Another way to reduce the synthesis of functional D-enzyme is to use a cosuppression effect.
  • Another way of reducing the D-enzyme activity in plant cells is to inactivate already synthesized D-enzymes.
  • the exogenous DNA sequence encodes a polypeptide that leads to a reduction in D-enzyme activity.
  • the expression of D-enzyme-specific antibodies is conceivable.
  • the exogenous DNA sequence is to be expressed in the transgenic cells, it is linked to regulatory elements which ensure transcription in plant cells.
  • regulatory elements which ensure transcription in plant cells.
  • These include, for example, promoters.
  • any promoter active in plant cells can be used for expression. Both viral and plant promoters can be used.
  • the promoter can be homologous or heterologous both with respect to the plant species used and with respect to the exogenous DNA sequence.
  • Both promoters that have a constituent are suitable Tive expression ensure, such as the 35S promoter of the Cauliflower mosaic virus (Odell et al., Nature 313 (1985) 810-812) and the promoter construct described in WO 94/01571, as well as promoters that only one lead to expression of downstream sequences determined by external influences (see, for example, WO 93/07279) or in a specific tissue of the plant (see, for example, Stockhaus et al., EMBO J. 8 (1989) 2245-2251). Preference is given to using promoters which are active in typical "sink" organs of plants. "Sink” fabrics are defined as net importers of the carbon fixed in photosynthetically active fabrics.
  • Typical sink organs include roots, flowers and storage organs.
  • promoters are also preferably used which are active in the starch-storing organs of the plants to be transformed.
  • the starch-storing organs are, for example, the seeds of various types of cereals, maize, rice and peas, and the tubers of potatoes.
  • the USP promoter from Vicia faba is known, which ensures seed-specific expression in Vicia faba and in other plant species (Fiedler et al., Plant Mol. Biol. 22 (1993), 669-679; Bäumlein et al. , Mol. Gen. Genet.
  • Promoters which are known to be active in the endosperm of maize kernels are, for example, the promoters of the zein genes (Pedersen et al., Cell 29 (1982), 1015-1026; Quattrocchio et al., Plant Mol. Biol. 15: 81-93 (1990).
  • promoters of class I patatin genes from potato which guarantee tuber-specific expression such as, for example, the B33 promoter (Rocha-Sosa et al., EMBO J. 8 (1989 ), 23-29).
  • the regulatory elements can also contain DNA sequences which ensure a further increase in transcription, for example so-called Enhancer elements.
  • Enhancer elements can be obtained from viral genes or suitable eukaryotic genes or can be produced synthetically. They can be homologous or heterologous with respect to the promoter used.
  • exogenous DNA sequence encodes a polypeptide
  • it can also be linked to sequences which are in the transcribed region and ensure a more efficient translation of the synthesized RNA into the corresponding protein, e.g. with so-called translational enhancers.
  • the regulatory elements can further comprise sequences which serve for the correct termination of the transcription and the addition of a poly-A tail to the transcript, which is assigned a function in the stabilization of the transcripts. Such elements are described in the literature and are interchangeable. Examples of such termination sequences are the 3'-untranslated regions which contain the polyadenylation signal of the nopaline synthase gene (NOS gene) or of the octopine synthase gene (Gielen et al., EMBO J.
  • any DNA sequence which encodes a D-enzyme and which has a sufficiently high homology is in principle possible for the exogenous DNA sequence which encodes it to cause an antisense effect in the cells.
  • DNA sequences from plants are preferably used. It is preferably a DNA sequence of homologous origin with respect to the plant species to be transformed. However, DNA sequences from other species can also be used as long as it is ensured that the homology to the endogenous DNA sequences of the species to be transformed is high is enough to ensure an antisense effect.
  • the homology should be higher than 80%, preferably higher than 90% and in particular higher than 95%.
  • Sequences up to a minimum length of 15 bp can be used. An inhibitory effect is not excluded even when using shorter sequences. Longer sequences of between 100 and 500 base pairs are preferably used, and sequences with a length of more than 500 base pairs are used in particular for efficient antisense inhibition. As a rule, sequences are used which are shorter than 5000 base pairs, preferably sequences which are shorter than 2500 base pairs.
  • the cells according to the invention are transgenic potato cells which are transformed with a DNA sequence from potato which codes for the D enzyme, or with parts of such a sequence, in particular the DNA sequence, which was described by Takaha et al., J Biol. Chem. 268 (1993), 1391-1396) (accessible in the GenEMBL database under the access number X68664).
  • DNA sequences which encode D-enzymes and which can be isolated from other organisms in particular from other plant species, e.g. using the already known sequences about hybridization or other standard techniques.
  • Ribozymes are catalytically active RNA molecules that are able to cleave RNA molecules at specific target sequences. With the help of genetic engineering methods it is possible to change the specificity of ribozymes. Different classes of ribozymes exist. Representatives of two different groups of ribozymes are preferably used for practical application with the aim of specifically cleaving the transcript of a particular gene. The one group is formed by ribozymes which are assigned to the type of group I intron ribozymes. The second group is formed by ribozymes, which have a so-called "hammerhead" motif as a characteristic structural feature. The specific recognition of the target RNA molecule can be modified by changing the sequences that flank this motif.
  • sequences determine, via base pairing with sequences in the target molecule, the point at which the catalytic reaction and thus the cleavage of the target molecule take place. Since the sequence requirements for efficient cleavage are extremely low, it therefore seems possible in principle to develop specific ribozymes for practically any RNA molecule.
  • the production of genetically modified plant cells whose activity of the D-enzyme is reduced can therefore also be carried out by introducing and expressing a recombinant double-stranded DNA molecule in plants, which is composed of:
  • the DNA sequences that flank the catalytic domain are formed by DNA sequences that are homologous to the sequences of endogenous D-enzyme genes.
  • the transgenic plant cells according to the invention can in principle originate from any plant species, in particular from plants which express a protein with D-enzyme activity. Both monocot and dicot plants are of interest.
  • the method is preferably applied to useful plants, in particular to plants which synthesize starch as a storage substance and form starch-storing organs, such as, for example, cereals, rice, potatoes, legumes or cassava.
  • Cereal plants are understood in particular as monocotyledonous plants belonging to the order Poales, preferably those belonging to the family of the Poaceae. Examples include the plants belonging to the genera Avena (oat), Triticum (wheat), Seeale (rye), Hordeum (barley), Oryza (rice), Panicum, Pennisetum, Setaria, Sorghum (millet), Zea (corn) etc. belong.
  • Starch-storing legumes are e.g. some species of the genus Pisum (e.g. Pisum sativum), Vicia (e.g. Vicia faba), Cicer (e.g. Cicer arietinum), Lens (e.g. Lens culinaris), Phaseolus (e.g. Phaseolus vulgaris and Phaseolus coccineus), etc.
  • cloning vectors which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells contain.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
  • Common cloning methods have been widely described in the literature (see, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual (1989), (Cold Spring Harbor, NY , Cold Spring Harbor Laboratory Press).
  • a variety of techniques are available for introducing the expression cassette into a plant host cell. These techniques include transforming plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as the transforma agents, the fusion of protoplasts, the injection, the electroporation of DNA, the introduction of DNA using the biolistic method and other possibilities.
  • the expression cassette described is preferably introduced into plant cells using plasmids, in particular plasmids, which are suitable for the transformation of plant cells and ensure the integration of the expression cassette into the plant genome.
  • plasmids When injecting and electroporation of DNA into plant cells, there are no special requirements for the plasmids used. Simple plasmids such as e.g. pUC derivatives can be used. However, if whole plants are to be regenerated from such transformed cells, the presence of a selectable marker gene is necessary.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but frequently the right and left boundary of the Ti and Ri plasmid T-DNA as the flank region, must be connected to the genes to be introduced.
  • the infection of a plant cell then leads to the incorporation of the T-DNA including the new genes into the chromosomes of the plant cells.
  • the DNA to be introduced must first be cloned into special plasmids, for example into an intermediate or a binary vector.
  • the intermediate vector can be transferred to Agrobacterium tumefaciens by means of a helper plasmid by conjugation and can then be integrated into the Ti or Ri plasmid of the Agrobacteria by means of sequences which are homologous to sequences in the T-DNA.
  • These plasmids additionally contain the vir region necessary for the transfer of the T-DNA.
  • binary vectors can multiply in both E. coli and agrobacteria.
  • telomeres have a selection marker gene and a linker or polylinker, which are framed by the right and left T-DNA border region, and can be transformed directly into the agrobacteria (Holsters et al., Mol. Gen. Genet 163 (1978), 181 -187).
  • Known binary vectors are, for example, the vector pBinAR (Höfgen and Willmitzer, Plant. Sei. 66 (1990), 221-230) or the vector pBinl9 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721), which is commercial is available (Clontech Laboratories, Inc., USA).
  • T-DNA The transfer of T-DNA, including the new genes, into plant cells has been intensively investigated and is sufficient in EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plan Be. 4 (1986), 1-46 and An et al., EMBO J. 4 (1985), 277-287.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells.
  • the plants thus obtained can then be examined for the presence of the introduced DNA.
  • EP 292 435 describes a method by means of which fertile plants can be obtained starting from a slimy, soft (friable) granular corn callus. Shillito et al.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the offspring of the originally transformed cell. It usually contains a selection marker that gives the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricin and others. mediated.
  • the individually selected marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
  • the transformed cells grow within the plant in the usual way (see also McCormick et al., Plant Cell Reports 5 (1986), 81-84).
  • the resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup.
  • the resulting hybrid individuals have the corresponding phenotypic properties.
  • Two or more generations should be grown to ensure that the phenotypic trait is stably maintained and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other characteristics have been preserved.
  • the invention also relates to plants which contain the transgenic plant cells according to the invention described above. Such plants can be regenerated, for example, by means of microbiological processes, as described in the examples, from plant cells according to the invention.
  • plant also includes parts of the plant, such as e.g. individual organs (leaves, roots, stems) etc., harvestable parts, tissues etc. Harvestable parts are e.g. Seeds, tubers, photosynthetic tissue, beets, etc.
  • the invention further relates to propagation material of the plants according to the invention, the transgenic described above Contains plant cells. These include, for example, fruits, seeds, cuttings, rhizomes, tubers, etc.
  • a modified starch is synthesized in the cells and plants according to the invention which differs in its physical and chemical properties, in particular its gelatinization properties and its phosphate content, from starch synthesized in wild-type plants.
  • the invention therefore also relates to a starch which can be obtained from the cells, plants or propagation material of these plants according to the invention which have a reduced D-enzyme activity compared to wild-type plants.
  • a common test that is used to determine the viscosity properties is the so-called BrabenderTest. This test is carried out using an apparatus known for example as Viscograph E. This instrument is manufactured and sold by the company Brabender OHG Duisburg (Germany), among others. The test essentially consists of first heating starch in the presence of water to determine when the starch granules will start hydrating and swelling. This process, which is also referred to as gelatinization or gelatinization, is based on the dissolution of hydrogen bonds and is accompanied by a measurable increase in the viscosity of the starch suspension.
  • the analysis of a Brabender curve is generally aimed at determining the gelatinization temperature, the maximum viscosity when heated, the viscosity after cooking for a long time, the viscosity increase after cooling and the viscosity after cooling. These parameters are important characteristics that determine the quality a strength and determine its usability for various applications.
  • the starch which can be obtained from the plant cells according to the invention and plants with a reduced D-enzyme activity shows an increased phosphate content compared to starch from wild-type plants, in particular a phosphate content which is at least 10% higher, preferably 20% higher than the phosphate content of starch from wild-type plants.
  • modified starch is therefore understood to mean a starch which differs from wild-type starch in terms of its physical and chemical properties, in particular a starch which has gelatinization properties which are different compared to wild-type starch and their aqueous properties Solutions show a changed viscosity compared to aqueous solutions of wild-type starch.
  • the viscosity is preferably determined using a Brabender viscograph.
  • such a modified starch can have an increased phosphate content compared to wild-type starch.
  • the phosphate content of this starch is at least 10%, preferably 20% and particularly preferably 30% higher than the phosphate content of wild-type starch.
  • Such a modified starch which is the subject of the invention, preferably has the characteristic Brabender curves shown in FIGS. 3, 4 and 5.
  • the modified starch has at least one of the following characteristic values or a combination of the following values, in particular under the conditions for determining the viscosity with the aid of a Brabender viscograph mentioned in Example 4:
  • these average values can deviate by up to 10% up or down from the values mentioned, so that the characteristic values mentioned for the modified starch can assume the following values:
  • the modified starch generally has at least one of the characteristic values mentioned above, preferably a combination of several values. All values are particularly preferably in the specified ranges.
  • starch is isolated using conventional methods, e.g. described in "Handbook of Strength” (Volume I, Max Ulimann (ed.), 1974, Paul Parey Verlag, Berlin, Germany) or in Morrison and Karkalas (Methods in Plant Biochemistry, 2 (1990), 323-352; Academic Press Ltd., London).
  • starches according to the invention can be modified by processes known to the person skilled in the art and are suitable in unmodified or modified form for various uses in the food or non-food sector.
  • starch Basically, the possible uses of starch can be divided into two large areas.
  • One area comprises the hydrolysis products of starch, mainly glucose and glucan building blocks, which are obtained via enzymatic or chemical processes. They serve as the starting material for further chemical modifications and processes, such as fermentation.
  • the simplicity and cost-effective execution of a hydrolysis process can be important for reducing the costs.
  • it is essentially enzymatic using amyloglucosidase. It would be conceivable to save costs by using fewer enzymes.
  • Starch is a classic additive for many foods, in which it essentially takes on the function of binding aqueous additives or causes an increase in viscosity or increased gel formation. Important characteristics are the flow and sorption behavior, the swelling and gelatinization temperature, the viscosity and thickening performance, the solubility of the starch, the transparency and paste structure, the heat, shear and acid stability, the tendency to retrogradation, the ability to form films, the Freeze / thaw stability, digestibility and the ability to form complexes with e.g. inorganic or organic ions.
  • starch can be used as an additive for different manufacturing processes or as an additive in technical products.
  • starch When using starch as an auxiliary, the paper and cardboard industry should be mentioned here in particular.
  • the starch primarily serves for retardation (retention of solids), the setting of filler and fine particles, as a strengthening agent and for drainage.
  • the favorable properties of starch in terms of rigidity, hardness, sound, grip, gloss, smoothness, splitting resistance and surfaces are used.
  • the requirements for the starch in relation to the surface treatment are essentially a high degree of whiteness, an adapted viscosity, a high viscosity Stability, good film formation and low dust formation.
  • the solids content, an adapted viscosity, a high binding capacity and high pigment affinity play an important role.
  • rapid, even, loss-free distribution, high mechanical stability and complete restraint in the paper flow are important.
  • an adapted solids content, high viscosity and high binding capacity are also important.
  • starches A large area of use of the starches is in the adhesive industry, where the possible uses are divided into four areas: use as pure starch glue, use with starch glues prepared with special chemicals, use of starch as an additive to synthetic resins and polymer dispersions, and use of starches as an extender for synthetic adhesives.
  • 90% of the starch-based adhesives are used in the fields of corrugated cardboard, paper sacks, bags and pouches, composite materials for paper and aluminum, cardboard and rewetting glue for envelopes, stamps, etc.
  • a large area of application for the strengths as an auxiliary and additive is the area of manufacture of textiles and textile care products.
  • the following four areas of application can be distinguished within the textile industry:
  • starch as a sizing agent, ie as an auxiliary for smoothing and strengthening the Velcro behavior to protect against the tensile forces acting during weaving and to increase the abrasion resistance during Weaving
  • starch as an agent for textile finishing, especially after pre-treatments such as bleaching, dyeing, etc.
  • starch as a thickening agent in the manufacture of color pastes to prevent dye diffusion
  • starch as an additive to chaining agents for sewing threads.
  • the fourth area of application is the use of starches as an additive in building materials.
  • One example is the production of gypsum plasterboard, in which the starch mixed in the gypsum paste pastes with the water, diffuses to the surface of the gypsum board and binds the cardboard to the board there.
  • Other areas of application are admixing to plaster and mineral fibers.
  • starch products are used to delay setting.
  • starch Another market for starch is the manufacture of soil stabilization agents that are used to temporarily protect soil particles from water during artificial earth movements. Combined products made from starch and polymer emulsions are, according to current knowledge, to be equated with the previously used products in terms of their erosion and incrustation-reducing effects, but are priced significantly below these.
  • starch in crop protection agents to change the specific properties of the preparations.
  • the starch can be used to improve the wetting of crop protection agents and fertilizers, to release the active substances in a dosed manner, to convert liquid, volatile and / or malodorous substances into microcrystalline, stable, form bare substances, to mix incompatible compounds and to extend the duration of action by reducing the decomposition.
  • starch can be used as a binder for tablets or for binder dilution in capsules.
  • the starch can also serve as a tablet disintegrant, since it absorbs liquid after swallowing and swells to a point after a short time so that the active ingredient is released.
  • Medical lubricants and wound powders are based on starch for qualitative reasons.
  • starches are used, for example, as carriers for powder additives such as fragrances and salicylic acid.
  • a relatively large area of application for starch is toothpaste.
  • the starch is used as an additive to coal and briquette. Coal can be agglomerated or briquetted with a high-quality additive, which prevents the briquettes from breaking down prematurely.
  • the added starch is between 4 and 6% for charcoal and between 0.1 and 0.5% for calorized coal.
  • starches are becoming increasingly important as binders, since their addition to coal and briquette can significantly reduce the emissions of harmful substances.
  • the starch can also be used as a flocculant in ore and coal sludge processing. 2.10 Foundry auxiliary
  • Another area of application is as an additive to foundry additives.
  • Various casting processes require cores that are made from binder-mixed sands. Bentonite, which is mixed with modified starches, mostly swelling starches, is predominantly used today as a binder.
  • the purpose of the starch additive is to increase the flow resistance and to improve the binding strength.
  • the swelling starches may have other production requirements, such as dispersibility in cold water, rehydration, good miscibility in sand and high water retention.
  • the starch can be used to improve the technical and optical quality.
  • the reasons for this are the improvement of the surface gloss, the improvement of the handle and the appearance, for this reason starch is sprinkled on the sticky rubberized surfaces of rubber materials before the cold vulcanization, and the improvement of the printability of the rubber.
  • starch follow-up products in the processing process (starch is only filler, there is no direct bond between synthetic polymer and starch) or, alternatively, the incorporation of starch follow-up products in the production of polymers (starch and polymer are one firm bond).
  • starch as a pure filler is not competitive compared to other substances such as talc. It is different if the specific starch properties come into play and this significantly changes the property profile of the end products.
  • thermoplastics such as polyethylene.
  • starch and the synthetic polymer are combined by co-expression in a ratio of 1: 1 to form a 'master batch', from which various products are made with granulated polyethylene using conventional processing techniques.
  • a ratio of 1: 1 to form a 'master batch', from which various products are made with granulated polyethylene using conventional processing techniques.
  • starch in polyurethane foams.
  • starch derivatives By adapting the starch derivatives and by optimizing the process, it is possible to control the reaction between synthetic polymers and the hydroxyl groups of the starches.
  • the result is polyurethane films which, through the use of starch, have the following property profiles: a reduction in the coefficient of thermal expansion, a reduction in shrinkage behavior, an improvement in pressure / stress behavior, an increase in water vapor permeability without changing the water absorption, a reduction in flammability and tear density, no dripping of flammable parts, Halogen free and reduced aging.
  • Disadvantages that are currently still present are reduced compressive strength and reduced impact resistance.
  • Solid plastic products such as pots, plates and bowls can also be produced with a starch content of over 50%.
  • Starch / polymer blends are also to be assessed favorably, since they have a much higher biodegradability.
  • starch graft polymers Because of their extreme water-binding capacity, starch graft polymers have also become extremely important. These are products with a backbone made of starch and a side grid of a synthetic monomer grafted on according to the principle of the radical chain mechanism.
  • the starch graft polymers available today are characterized by better binding and retention properties of up to 1000 g of water per g of starch with high viscosity.
  • the areas of application for these superabsorbents have expanded considerably in recent years and are in the hygiene area with products of diapers and underlays as well as in the agricultural sector, e.g. seed pilling.
  • Ash / phosphate content, amylose / amylopectin ratio, molar mass distribution, degree of branching, grain size and shape as well as crystallinity on the other hand also the properties that result in the following characteristics: flow and sorption behavior, gelatinization temperature, viscosity, thickening performance, solubility, paste structure and transparency, heat -, shear and acid stability, tendency to retrogradation, gel formation, freeze / thaw stability, complex formation, iodine binding, film formation, adhesive strength, enzyme stability, digestibility and reactivity.
  • modified starches by means of genetic engineering interventions in a transgenic plant can on the one hand change the properties of the starch obtained from the plant in such a way that further modifications by means of chemical or physical processes no longer appear to be necessary.
  • the starches modified by genetic engineering methods can be subjected to further chemical modifications, which leads to further improvements in quality for certain of the fields of application described above leads.
  • the invention thus also relates to the use of the starch according to the invention for the production of foods or industrial products.
  • the present invention further relates to the use of DNA sequences which encode enzymes having the enzymatic activity of a D-enzyme for the genetic engineering of plants to produce plants which synthesize a starch which has been modified compared to wild-type starch,
  • the plasmids produced and used in the context of the present invention were obtained from the German Collection of Microorganisms (DSM) in Braunschweig, Federal Republic of Germany, which is recognized as an international depository. in accordance with the requirements of the Budapest Treaty for the international recognition of the deposit of microorganisms for the purpose of patenting.
  • Plasmid p35SH-anti-D (DSM 8479)
  • Plasmid pBinAR-Hyg (DSM 9505)
  • the plasmid contains the following fragments:
  • Fragment A comprises the cauliflower mosaic virus (CaMV) 35S promoter, CaMV nucleotides 6906-7437.
  • Fragment B (2909 bp) comprises a DNA fragment that is the coding region for the disproportionating enzyme
  • Potato includes (Takaha et al., J. Biol. Chem. 268
  • fragment C comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5, nucleotides 11749-11939.
  • the plasmid is approximately 12.7 kb in size and allows selection on
  • the plasmid contains the following fragments:
  • Fragment A comprises the cauliflower mosaic virus (CaMV) 35S promoter, CaMV nucleotides 6906-7437.
  • Fragment B (2909 bp) comprises a DNA fragment that encodes the coding region for the potato disproportionating enzyme (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396; nucleotides 303 to 1777 ), and is coupled in antisense orientation to the promoter.
  • fragment C comprises the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5, nucleotides 11749-11939.
  • the plasmid is approximately 12.2 kb in size and permits selection
  • Kanamycin resistance in transformed plant cells is Kanamycin resistance in transformed plant cells.
  • Fig. 3 shows a Brabender curve for an aqueous solution of
  • the blue line indicates the viscosity (measured in Brabender units).
  • the red line shows the temperature curve. Measurement conditions:
  • Brabender Viskograph E (Brabender OHG Duisburg, Germany)
  • Amount of starch used 30 g
  • Heating from 50 ° C to 96 ° C at a rate of 3 ° C per min
  • Cooling from 96 ° C to 50 ° C at a rate of 3 ° C per min.
  • FIG. 6 shows a Brabender curve for an aqueous solution of starch from wild-type plants Solanum tubero ⁇ um cv. Desiree. The curve was recorded as explained in Example 3.
  • NSEB buffer 0.25 M sodium phosphate buffer pH 7.2
  • the E. coli strain DH5 ⁇ (Bethesda Research Laboratories, Gaithersburgh, USA) was used for the binary vectors.
  • the DNA was transferred by direct transformation using the method of Höfgen & Willmitzer (Nucleic Acids Res. 16 (1988), 9877).
  • the plasmid DNA of transformed agrobacteria was isolated by the method of Birnboim & Doly (Nucleic Acids Res. 7 (1979), 1513-1523) and analyzed by gel electrophoresis after suitable restriction cleavage.
  • the leaves were then used for callus induction on MS medium with 1.6% glucose, 5 mg / l naphthylacetic acid, 0.2 mg / l benzylaminopurine, 250 mg / l claforan, 50 mg / l kanamycin or 1 mg / l Hygromycin B, and 0.80% Bacto Agar. After a week's incubation at 25 ° C.
  • the leaves were sprouted on MS medium with 1.6% glucose, 1.4 mg / l zeatin ribose, 20 mg / l naphthylacetic acid, 20 mg / l giberellic acid, 250 mg / l Claforan, 50 mg / l kanamycin or 3 mg / l hygromycin B, and 0.80% Bacto agar.
  • the membrane was prehybridized in ⁇ SEB buffer for 2 h at 68 ° C and then hybridized in ⁇ SEB buffer overnight at 68 ° C in the presence of the radioactively labeled sample.
  • the phosphate content of the starch was determined by measuring the amount of phosphate bound to the C-6 position of glucose residues. For this purpose, starch was first cleaved by acid hydrolysis and then the content of glucose-6-phosphate was determined by means of an enzyme test, as described below:
  • the resulting plasmid was named p35SH-anti-D (DSM 8479) and is shown in Fig. 1.
  • the plasmid pBIN19-AC was first prepared for the production of the plasmid p35S-anti-D.
  • a 529 bp fragment comprising the CaMV 35S promoter (nucleotides 6909-7437, Franck et al., Cell 21, 285-294) was generated from plasmid pDH51 (Pietrzak et al., Nucl. Acids Res 14, 5857-5868) using the restriction endonucleases EcoR I and Kpn I isolated.
  • This fragment was ligated into the vector pBIN19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721) cut with EcoR I and Kpn I. This resulted in the plasmid pBIN19-A.
  • a 192 bp fragment comprising the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3, 835-846; nucleotides 11749-11939) was then used as Pvu II / Hind III fragment isolated from plasmid pAGV40 (Herrera-Estrella et al., Nature 303, 209-213). After adding an Sph I linker to the Pvu II interface, the fragment was ligated into the vector pBIN19-A cut with Sph I and Hind III. The resulting plasmid was named pBIN19-AC.
  • the PCR fragment prepared as described in Example 1 was ligated into the vector pBIN19-AC cut with Kpn I and Sma I.
  • the resulting plasmid is shown in Fig. 2.
  • Agrobacteria of the species Agobacterium tumefaciens were transformed with the plasmid p35S-anti-D.
  • the plasmid was transferred into cells of potato plants of the Desiree variety using Agrobacterium-mediated transformation as described above. Whole plants were regenerated from the transformed cells. The transformed plants were grown under greenhouse conditions. The success of the genetic modification of the plants was checked by analyzing the total RNA in a Northern blot analysis with regard to the disappearance of the transcripts which code for the D enzyme.
  • RNA from leaves of transformed plants was isolated by standard methods, separated by gel electrophoresis on an agarose gel, transferred to a nylon membrane and hybridized with a radioactively labeled sample which comprises the region encoding the D enzyme from potato or a part of this region.
  • a radioactively labeled sample which comprises the region encoding the D enzyme from potato or a part of this region.
  • the band which represents the specific transcript of the D-enzyme gene is missing in the Northern blot analysis.
  • Starch was isolated from tubers of the transgenic plants using standard methods.
  • the starch isolated from the transgenic potato plants was examined for the viscosity of aqueous solutions of this starch.
  • FIGS. 3, 4, 5 and 6 show a typical Brabender curve for starch isolated from transgenic potato plants of the JDl-32 line.
  • Fig. 4 shows a typical Brabender curve for starch, which is from transgenic potato plants of the line JD1-33.
  • Figure 5 shows a typical Brabender curve for starch isolated from transgenic potato plants of the JD1-71 line.
  • the determined average values can deviate up or down by up to 10%, so that the modified starch can have the following characteristic values:
  • transgenic plants which have one more can be produced with the aid of the method according to the invention or less severe reduction in the activity of the D-enzyme and therefore synthesize a starch which differs more or less strongly from wild-type plants in terms of its gelatinization properties.
  • the phosphate content of starch from transgenic and from wild-type plants was determined as described above.
  • glucose-6-phosphate (given in nmol / mg starch) is in the following table for non-transfor mated potato plants of the Desiree variety and as an average for three lines (JDl-32; JD1-65; JD1-71) of transgenic potato plants which had been transformed with the plasmid p35S-anti-D.
  • the values show that the phosphate content of the modified starch from transgenic potato plants is increased by approximately 34% compared to starch from wild-type plants.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Es werden transgene Pflanzenzellen und Pflanzen beschrieben, die aufgrund einer verringerten Aktivität eines Disproportionierenden Enzyms (D-Enzyms) eine modifizierte Stärke synthetisieren. Ferner wird die in diesen Pflanzenzellen und Pflanzen synthetisierte Stärke beschrieben.

Description

Modifizierte Stärke aus Pflanzen, Pflanzen, die diese synthetisieren, sowie Verfahren zu ihrer Herstellung
Die vorliegende Erfindung betrifft transgene Pflanzen, die aufgrund gentechnischer Veränderungen eine modifizierte Stärke synthetisieren, insbesondere eine Stärke, die im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke veränderte Verkleisterungseigenschaften und einen erhöhten Phosphatgehalt besitzt. Ferner betrifft die Erfindung Verfahren zur Herstellung der transgenen Pflanzen sowie die aus diesen Pflanzen isolierbare modifizierte Stärke. Die Erfindung betrifft ebenfalls die Verwendung von DNA-Sequenzen, die Dis- proportionierende Enzyme (EC 2.4.1.25) codieren, für die Herstellung von transgenen Pflanzen, die eine verringerte Aktivität dieser Enzyme aufweisen und die eine modifizierte Stärke synthetisieren.
Das Polysaccharid Stärke, das einen der wichtigsten Speicherstoffe im Pflanzenreich darstellt, findet neben der Verwendung im Nahrungsmittelbereich auch eine breite Verwendung als nachwachsender Rohstoff für die Herstellung industrieller Produkte. Um die Anwendung dieses Rohstoffes in möglichst vielen Einsatzgebieten zu ermöglichen, ist es notwendig, eine große StoffVielfalt und eine Anpassung an die jeweiligen Anforderungen der zu verarbeitenden Industrie zu erreichen.
Obwohl Stärke aus einem chemisch einheitlichen Grundbaustein, der Glucose, aufgebaut ist, stellt Stärke keinen einheitlichen Rohstoff dar. Es handelt sich dabei eher um ein komplexes Gemisch aus unterschiedlichen Molekülformen, die sich hinsichtlich ihres Verzweigungsgrades und des Auftretens von Verzweigungen der Glucoseketten unterscheiden. Man unterscheidet insbesondere die Amylose-Stärke, ein im wesentlichen unverzweigtes Polymer aus α-1,4-verknüpften Glu cosemolekülen, von der Amylopektin-Stärke, die ein Gemisch aus unterschiedlich stark verzweigten Glucoseketten darstellt, wobei die Verzweigungen durch das Auftreten von α-1,6-glycosidischen Verknüpfungen zustande kommen.
Die molekulare Struktur der Stärke, die zu einem großen Teil durch den Verzweigungsgrad, das Amylose/Amylopektin-Verhältnis, die durchschnittliche Kettenlänge sowie das Vorhandensein von Phosphatgruppen bestimmt wird, ist ausschlaggebend für wichtige funktioneile Eigenschaften der Stärke bzw. ihrer wässrigen Lösungen. Als wichtige funktioneile Eigenschaften sind hierbei beispielsweise zu nennen die Löslichkeit, das Retrogradierungsverhalten, die Filmbildungseigenschaften, die Viskosität, die Farbstabilität, die Verkleisterungseigenschaften, d.h. Binde- und Klebeigenschaften, sowie die Kältestabilität. Auch die Stärkekorngröße kann für verschiedene Anwendungen von Bedeutung sein.
Die Anpassung der aus Pflanzen isolierbaren Stärke an bestimmte industrielle Verwendungszwecke erfolgt häufig mit Hilfe chemischer Modifikationen, die in der Regel zeit- und kostenintensiv sind. Es erscheint daher wünschenswert, Möglichkeiten zu finden, modifizierte Stärke, die in ihren Eigenschaften bereits den Anforderungen der verarbeitenden Industrie entspricht, direkt in Pflanzen zu synthetisieren und die modifizierte Stärke aus diesen Pflanzen zu isolieren.
Herkömmliche Wege zur Herstellung von Pflanzen, die eine im Vergleich zu Wildtyp-Pflanzen modifizierte Stärke synthetisieren, bestehen in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. So wurde beispielsweise bei Mais eine Mutante erzeugt, die eine Stärke mit veränderten Viskositätseigenschaften synthetisiert (US Patentschrift 5,331,108), sowie eine Maissorte ( waxy maize) durch Züchtung etabliert, deren Stärke zu nahezu 100 % aus Amylopektin besteht (Akasuka und Nelson, J. Biol. Chem. 241 (1966), 22802285).
Alternativ können Pflanzen, die eine Stärke mit veränderten Eigenschaften synthetisieren, mit Hilfe gentechnischer Ver fahren erzeugt werden. Beschrieben wurde beispielsweise in mehreren Fällen die gentechnische Veränderung von Kartoffelpflanzen, mit dem Ziel der Veränderung der in den Pflanzen synthetisierten Stärke (z.B. WO 92/11376; WO 92/14827). Obwohl bereits in einigen Fällen die Herstellung einer veränderten Stärke in Pflanzen gelang, besteht nach wie vor Bedarf an Verfahren zur Herstellung einer im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke modifizierten Stärke, die sich in speziellen industriellen Verarbeitungsprozessen bevorzugt einsetzen läßt.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, Pflanzen zur Verfügung zu stellen, die eine modifizierte Stärke synthetisieren, die sich hinsichtlich ihrer physikalischen und chemischen Eigenschaften von natürlicherweise in den Pflanzen synthetisierter Stärke unterscheidet und somit für spezielle Verwendungszwecke besser geeignet ist, sowie Verfahren zur Herstellung derartiger Pflanzen.
Diese Aufgabe wird durch die Bereitstellung der in den Patentansprüchen bezeichneten Ausführungsformen gelöst.
Somit betrifft die vorliegende Erfindung transgene Pflanzenzellen, bei denen die Aktivität eines "Disproportionierenden Enzyms" (auch 4-α-Glucanotransferase; EC 2.4.1.25; im folgenden D-Enzym genannt) verringert ist im Vergleich zu nicht-transformierten Zellen, entweder aufgrund der Einführung und Expression einer exogenen DNA-Sequenz oder der Einführung einer Mutation in einem Gen, das ein Disproportionierendes Enzym codiert.
Es wurde überraschenderweise gefunden, daß transgene Pflanzen, die derartige Zellen enthalten und die im Vergleich zu Wildtyp-Pflanzen eine verringerte Aktivität des D-Enzyms aufweisen, eine modifizierte Stärke synthetisieren, die sich hinsichtlich ihrer physikalischen und chemischen Eigenschaften stark von natürlicherweise in Pflanzen synthetisierter Stärke unterscheidet. Wäßrige Lösungen der in diesen Pflanzen synthetisierten Stärke weisen beispielsweise im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke ein deutlich verändertes Viskositätsverhalten auf . Eine verringerte Aktivität des D-Enzyms im Vergleich zu Wildtyp-Pflanzen bedeutet dabei, daß diese Pflanzen nur 50 %, vorzugsweise weniger als 25 % und besonders bevorzugt weniger als 10 % der D-Enzymaktivität von Wildtyp-Pflanzen aufweisen. D-Enzyme sind dabei definiert als Enzyme, die den Transfer von Glucanen von einem 1,4-α-D-Glucan auf ein anderes 1,4-α-D-Glucan oder auf Glucose katalysieren. Effektive Glucan-Do- natoren sind dabei Maltooligosaccharide, lösliche Stärke, sowie Amylopektin (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396). In der Regel wird eine Maltose-Gruppe übertragen, außer wenn Maltotetraose als Donor dient. In diesem Fall wird Maltotriose übertragen.
"Exogene DNA-Sequenz" bedeutet, daß die eingeführte DNA-Sequenz entweder heterolog in bezug auf die transformierte Pflanzenzelle ist, d.h. aus einer Zelle mit einem anderen genetischen Hintergrund stammt, oder homolog in bezug auf die transformierte Zelle ist, aber in diesem Fall nicht in seiner natürlichen Umgebung im Genom der transformierten Zelle lokalisiert ist. Das heißt, daß die exogene DNA-Sequenz an einem Ort im Genom lokalisiert ist, an dem sie natürlicherweise nicht vorkommt, und daß sie von Genen flankiert ist, die natürlicherweise nicht benachbart zu ihr liegen.
"Expression" bedeutet, daß die exogene DNA-Sequenz in den Zellen zumindestens transkribiert wird. Codiert sie ein Protein, so umfaßt dieser Begriff auch die Translation.
Die Verringerung der D-Enzymaktivität in den erfindungsgemäßen Zellen kann prinzipiell auf verschiedene Art und Weise bewirkt werden.
In einer bevorzugten Ausführungsform wird die Verringerung der D-Enzymaktivität in den transgenen Zellen durch die In hibierung der Synthese eines funktioneilen D-Enzyms in den Zellen erreicht.
"Inhibierung der Synthese" bedeutet dabei, daß die Synthese eines endogenen D-Enzyms im Vergleich zu nichttransformierten Zellen verringert ist, vorzugsweise um mindestens 50 %, insbesondere um mindestens 75 % und besonders bevorzugt um mindestens 90 %. Nachweisbar ist die Verringerung der Synthese beispielsweise durch Nachweis des Enzyms im Western- Blot mit Hilfe D-Enzym-spezifischer Antikörper. Die D- Enzymaktivität kann auch bestimmt werden wie in Takaha et al (J. Biol. Chem. 268 (1993), 1391-1396) beschrieben. Möglich ist ferner der Nachweis der D-Enzym-Transkripte im Northernblot.
"Punktionell" bedeutet, daß das Enzym seine natürliche oben beschriebene Enzymaktivität aufweist und diese etwa so hoch ist wie in Wildtyp-Zellen.
Eine Verringerung der Synthese eines D-Enzyms in den erfindungsgemäßen Zellen kann auf verschiedene Art und Weise erreicht werden. Eine erste Möglichkeit ist die Veränderung der endogenen, in dem Genom der Zelle vorliegenden Sequenzen, die D-Enzyme codieren, oder von deren regulatorischen Regionen.
Diese können beispielsweise durch Transposonmutagenese, andere herkömmliche Mutageneseverfahren oder "gene tagging" inaktiviert werden, so daß die Synthese endogener D-Enzyme weitgehend oder vollkommen inhibiert ist.
Möglichkeiten, die genomischen Sequenzen zu verändern umfassen beispielsweise Gendisruption, Insertion, Deletion, Rekombination, Addition etc.
Neben einer vollständigen Inaktivierung der genomischen DNA-Sequenzen, die D-Enzyme codieren, ist es auch denkbar, diese derart zu modifizieren, daß kein funktionelles D-Enzym in den Zellen mehr synthetisiert wird.
Eine weitere Möglichkeit besteht darin, die Transkription oder Translation der endogen in der Zelle vorliegenden Gene für D-Enzyme zu stören. Techniken, wie dies erreicht werden kann, sind dem Fachmann bekannt.
In einer bevorzugten Ausführungsform erfolgt die Verringerung der Synthese funktioneilen D-Enzyms in den erfindungsgemäßen Zellen mittels eines antisense-Effektes.
In einer weiteren bevorzugten Ausführungsform erfolgt die Verringerung der Synthese funktionellen D-Enzyms in den erfindungsgemäßen Zellen mittels der Expression eines Ribozyms, das spezifisch Transkripte spaltet, die D-Enzym codieren. Besonders bevorzugt sind hierbei Ribozyme, die mit Sequenzen kombiniert sind, die einen antisense-Effekt bewirken, d.h. die komplementär zu D-Enzym-Transkripten sind.
Eine weitere Möglichkeit zur Verringerung der Synthese funktioneilen D-Enzyms besteht in der Ausnutzung eines Cosuppressions-Effektes.
Eine weitere Möglichkeit der Verringerung der D-Enzymaktivität in Pflanzenzellen besteht in der Inaktivierung bereits synthetisierter D-Enzyme.
Somit codiert in einer bevorzugten Ausführungsform die exogene DNA-Sequenz ein Polypeptid, das zu einer Verringerung der D-Enzymaktivität führt. Denkbar ist hierbei beispielsweise die Expression von D-Enzym-spezifischen Antikörpern.
Soll die exogene DNA-Sequenz in den transgenen Zellen exprimiert werden, so wird sie mit regulatorischen Elementen verknüpft, die die Transkription in pflanzlichen Zellen gewährleisten. Hierzu zählen beispielsweise Promotoren. Für die Expression kommt im Prinzip jeder in pflanzlichen Zellen aktive Promotor in Frage. Es können sowohl virale als auch pflanzliche Promotoren verwendet werden. Der Promotor kann homolog oder heterolog sowohl in bezug auf die verwendete Pflanzenspezies sein als auch in bezug auf die exogene DNA-Sequenz. Geeignet sind sowohl Promotoren, die eine konstitu tive Expression gewährleisten, wie beispielsweise der 35S-Promotor des Cauliflower-Mosaik-Virus (Odell et al., Nature 313 (1985) 810-812) und das in der WO 94/01571 beschriebene Promotorkonstrukt, als auch Promotoren, die nur zu einem durch äußere Einflüsse determinierten Zeitpunkt (siehe beispielsweise WO 93/07279) oder in einem bestimmten Gewebe der Pflanze zu einer Expression nachgeschalteter Sequenzen führen (siehe z. B. Stockhaus et al., EMBO J. 8 (1989) 2245 -2251 ) . Präf erentiell werden Promotoren eingesetzt , die in typischen "sink" -Organen von Pflanzen aktiv sind. "Sink"-Gewebe sind definiert als Nettoimporteure des in photosynthetisch aktiven Geweben fixierten Kohlenstoffs. Typische sink-Organe sind z.B. Wurzeln, Blüten und Speicherorgane. In dem erfindungsgemäßen Verfahren werden ferner bevorzugt Promotoren verwendet, die in den stärkespeichernden Organen der zu transformierenden Pflanzen aktiv sind. Als stärkespeichernde Organe kommen z.B. die Samen von verschiedenen Getreidearten, Mais, Reis, und Erbse in Frage, sowie die Knollen von Kartoffeln. Bekannt ist zum Beispiel der USP-Promo- tor aus Vicia faba , der eine samenspezifische Expression in Vicia faba sowie in anderen Pflanzenarten gewährleistet (Fiedler et al., Plant Mol. Biol. 22 (1993), 669-679; Bäumlein et al., Mol. Gen. Genet. 225 (1991), 459-467), sowie der Promotor des Acyl Carrier Protein-Gens (Baerson et al., Plant Mol. Biol. 22 (1993), 255-267). Promotoren, von denen bekannt ist, daß sie im Endosperm von Maiskörnern aktiv sind, sind beispielsweise die Promotoren der Zein-Gene (Pedersen et al., Cell 29 (1982), 1015-1026; Quattrocchio et al., Plant Mol. Biol. 15 (1990), 81-93). Zur Transformation der Kartoffel können insbesondere, aber nicht ausschließlich, Promotoren der Patatingene der Klasse I aus Kartof fel verwendet werden , die eine knollenspezif ische Expression gewährleisten, wie beispielsweise der B33-Promotor (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29).
Neben dem Promotor können die regulatorischen Elemente auch DNA-Sequenzen enthalten, die eine weitere Steigerung der Transkription gewährleisten, beispielsweise sogenannte Enhancer-Elemente. Derartige Regionen können von viralen Genen oder geeigneten eukaryontischen Genen gewonnen werden oder synthetisch hergestellt werden. Sie können homolog oder heterolog in bezug auf den verwendeten Promotor sein.
Codiert die exogene DNA-Sequenz ein Polypeptid, so kann sie ferner verknüpft sein mit Sequenzen, die im transkribierten Bereich liegen und eine effizientere Translation der synthetisierten RNA in das entsprechende Protein gewährleisten, z.B. mit sogenannten Translationsenhancern.
Die regulatorischen Elemente können ferner Sequenzen umfassen, die der korrekten Beendigung der Transkription sowie der Addition eines Poly-A-Schwanzes an das Transkript dienen, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben und sind beliebig austauschbar. Beispiele für derartige Terminationssequenzen sind die 3'-nichttranslatierten Regionen, die das Polyadenylierungssig- nal des Nopalin-Synthase-Gens (NOS-Gen) oder des Octopinsyn- thase-Gens (Gielen et al., EMBO J. 8 (1989), 23-29) aus Agrobakterien umfassen, oder die 3'-nichttranslatierten Regionen der Gene der Speicherproteine aus Sojabohne, sowie die der Gene der kleinen Untereinheit der Ribulose-1,5-Bisphosphat-Carboxylase (ssRUBISCO).
Wird für die Verringerung der Synthese funktioneilen D-Enzyms eine antisense-RNA exprimiert, so kommt für die exogene DNA-Sequenz, die diese codiert prinzipiell jede beliebige DNA-Sequenz in Frage, die ein D-Enzym codiert und die eine ausreichend hohe Homologie aufweist, um in den Zellen einen antisense-Effekt zu bewirken. Bevorzugt werden DNA-Sequenzen aus Pflanzen verwendet. Es handelt sich dabei vorzugsweise um eine DNA-Sequenz homologen Ursprungs in bezug auf die zu transformierende Pflanzenspezies. Es können jedoch auch DNA-Sequenzen aus anderen Spezies verwendet werden, solange gewährleistet ist, daß die Homologie zu den endogenen DNA-Sequenzen der zu transformierenden Spezies hoch genug ist, um einen antisense-Effekt zu gewährleisten. Dabei sollte die Homologie höher als 80 %, vorzugsweise höher als 90 % und insbesondere höher als 95 % sein.
Es können Sequenzen bis zu einer Mindestlänge von 15 bp verwendet werden. Eine inhibierende Wirkung ist aber auch bei der Verwendung kürzerer Sequenzen nicht ausgeschlossen. Bevorzugt werden längere Sequenzen zwischen 100 und 500 Basenpaaren verwendet, für eine effiziente antisense- Inhibition werden insbesondere Sequenzen mit einer Länge über 500 Basenpaaren verwendet. In der Regel werden Sequenzen verwendet, die kürzer als 5000 Basenpaare sind, bevorzugt Sequenzen, die kürzer als 2500 Basenpaare sind.
In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Zellen transgene Kartoffelzellen, die mit einer DNA-Sequenz aus Kartoffel transformiert sind, die das D-Enzym codiert, oder mit Teilen einer derartigen Sequenz, insbesondere der DNA-Sequenz, die von Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396) beschrieben wird (zugänglich in der GenEMBL-Datenbank unter der Zugriffsnummer X68664).
Es ist jedoch auch möglich andere DNA-Sequenzen zu verwenden, die D-Enzyme codieren und die sich aus anderen Organismen, insbesondere aus anderen Pflanzenspezies, isolieren lassen, z.B. mit Hilfe der bereits bekannten Sequenzen über Hybridisierung oder andere Standardtechniken.
Zur Inhibierung der Synthese von D-Enzym in Zellen transge- ner Pflanzen mit Hilfe eines geeigneten Ribozyms, gibt es wiederum verschiedene Möglichkeiten.
Ribozyme sind katalytisch aktive RNA-Moleküle, die in der Lage sind, RNA-Moleküle an spezifischen Zielsequenzen zu spalten. Mit Hilfe gentechnologischer Methoden ist es möglich, die Spezifität von Ribozymen zu verändern. Es existieren verschiedene Klassen von Ribozymen. Für die praktische Anwendung mit dem Ziel, das Transkript eines bestimmten Gens gezielt zu spalten, werden bevorzugt Vertreter zweier verschiedener Gruppen von Ribozymen verwendet. Die eine Gruppe wird gebildet von Ribozymen die dem Typ der Gruppe I-Intron-Ribozymen zuzuordnen sind. Die zweite Gruppe wird von Ribozymen gebildet, die als charakteristisches Strukturmerkmal ein sogenanntes "hammerhead" -Motiv aufweisen. Die spezifische Erkennung des Ziel-RNA-Moleküls kann modifiziert werden durch Änderung der Sequenzen, die dieses Motiv flankieren. Diese Sequenzen bestimmen über Basenpaarung mit Sequenzen im Zielmolekül die Stelle, an der die katalytische Reaktion und somit die Spaltung des Zielmoleküls erfolgt. Da die Sequenzanforderungen für eine effiziente Spaltung äußerst gering sind, erscheint es daher im Prinzip möglich, spezifische Ribozyme für praktisch jedes beliebige RNA-Molekül zu entwickeln.
Die Herstellung genetisch veränderter Pflanzenzellen, deren Aktivität des D-Enzyms reduziert ist, kann daher auch erfolgen durch Einführung und Expression eines rekombinanten doppelsträngigen DNA-Moleküls in Pflanzen, das sich zusammensetzt aus:
(a) einem in Pflanzen funktionalen Promotor
(b) einer DNA-Sequenz, die eine katalytische Domäne eines Ribozyms codiert und die flankiert ist von DNA-Sequenzen, die homolog sind zu Sequenzen des Zielmoleküls, und
(c) , falls erforderlich, einem in Pflanzen funktionalen Signal für die Transkriptionstermination und Polyadenylierung eines RNA-Moleküls.
Für die unter Punkt (b) genannte Sequenz kommt z.B. die katalytische Domäne der Satelliten-DNA des SCMo-Virus (Davies et al., Virology, 177 (1990), 216-224) oder die der Satelliten-DNA des TobR-Virus (Steinecke et al., EMBO J. 11 (1992), 1525-1530; Haseloff and Gerlach, Nature 334 (1988), 585-591) in Betracht.
Die DNA- Sequenzen, die die katalytische Domäne flankieren, werden gebildet von DNA-Sequenzen, die homolog sind zu den Sequenzen endogener D-Enzym-Gene. Die erfindungsgemäßen transgenen Pflanzenzellen können prinzipiell von jeder beliebigen Pflanzenspezies stammen, insbesondere von Pflanzen, die ein Protein mit D-Enzymaktivität exprimieren. Von Interesse sind sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt wird das Verfahren auf Nutzpflanzen angewendet, insbesondere auf Pflanzen, die Stärke als Speichersubstanz synthetisieren und Stärke-speichernde Organe bilden, wie zum Beispiel Getreidearten, Reis, Kartoffeln, Leguminosen oder Maniok.
Unter Getreidepflanzen werden insbesondere monokotyle Pflanzen verstanden, die zur Ordnung Poales, bevorzugt solche, die zur Familie der Poaceae gehören. Beispiele hierfür sind die Pflanzen, die zu den Gattungen Avena (Hafer), Triticum (Weizen), Seeale (Roggen), Hordeum (Gerste), Oryza (Reis), Panicum, Pennisetum, Setaria, Sorghum (Hirse), Zea (Mais) etc. gehören. Stärkespeichernde Leguminosen sind z.B. manche Arten der Gattung Pisum (z.B. Pisum sativum), Vicia (z.B. Vicia faba), Cicer (z.B. Cicer arietinum), Lens (z.B. Lens culinaris), Phaseolus (z.B. Phaseolus vulgaris und Phaseolus coccineus), etc.
Für Herstellung von Expressionkassetten, die in den pflanzlichen Zellen zur Synthese eines Polypeptids, einer anti- sense-RNA oder eines Ribozyms etc. führen stehen eine große Anzahl von Clonierungsvektoren zur Verfügung, die ein Replikationssignal für E. coli und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-Serien, M13mp-Serien, pACYC184 usw. Gängige Clonierungsmethoden sind in der Literatur vielfach beschrieben (siehe z.B. Sambrook et al., Molecular Cloning: A Laboratory Manual (1989), (Cold Spring Harbour, NY, Cold Spring Harbour Laboratory Press).
Für die Einführung der Expressionskassette in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transforma tionsmittel, die Fusion von Protoplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.
Die Einführung der beschriebenen Expressionskassette in pflanzliche Zellen erfolgt vorzugsweise unter Verwendung von Plasmiden, insbesondere von Plasmiden, die für die Transformation von Pflanzenzellen geeignet sind und die Integration der Expressionskassette in das pflanzliche Genom gewährleisten.
Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden an sich keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Es können einfache Plasmide wie z.B. pUC-Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig.
Je nach Einführungsmethode in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.
Die Infektion einer Pflanzenzelle führt dann zum Einbau der T-DNA einschließlich der neuen Gene in die Chromosomen der Pflanzenzellen.
Für die Transformation mit Hilfe der Agrobakterien muß die einzuführende DNA zunächst in spezielle Plasmide cloniert werden, z.B. in einen intermediären oder in einen binären Vektor. Der intermediäre Vektor kann mittels eines Helfer- plasmids durch Konjugation auf Agrobacterium tumefaciens übertragen und dann aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Diese Plasmide enthalten zusätzlich die für den Transfer der T-DNA notwendige vir-Region. Im Gegensatz zu intermediären Vektoren, die nicht in Agrobakterien replizieren, können sich binäre Vektoren sowohl in E. coli als auch in Agrobakterien vermehren. Sie besitzen ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden, und können direkt in die Agrobakterien transformiert werden (Holsters et al., Mol. Gen. Genet 163 (1978), 181-187). Bekannte binäre Vektoren sind beispielsweise der Vektor pBinAR (Höfgen und Willmitzer, Plant. Sei. 66 (1990), 221-230) oder der Vektor pBinl9 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721), der kommerziell erhältlich ist (Clontech Laboratories, Inc., USA).
Die Übertragung der T-DNA einschließlich der neuen Gene in Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plant Sei. 4 (1986), 1-46 und An et al., EMBO J. 4 (1985), 277-287 beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden.
Während die Transformation dikotyler Pflanzen über Ti-Plas- mid-Vektorsysteme mit Hilfe von Agrobacterium tumefaciens wohl etabliert ist, weisen neuere Arbeiten darauf hin, daß auch monokotyle Pflanzen der Transformation mittels Agrobacterium basierender Vektoren sehr wohl zugänglich sind (Chan et al., Plant Mol. Biol. 22 (1993), 491-506; Hiei et al., Plant J. 6 (1994), 271-282; Deng et al., Science in China 33 (1990), 28-34; Wilmink et al., Plant Cell Reports 11 (1992), 76-80; May et al., Bio/Technology 13 (1995), 486-492; Conner und Domisse, Int. J. Plant Sei. 153 (1992), 550-555; Ritchie et al., Transgenic Res. 2 (1993), 252-265).
Alternative Systeme zur Transformation von monokotylen Pflanzen sind die Transformation mittels des biolistischen Ansatzes (Wan und Lemaux, Plant Physiol. 104 (1994), 37-48; Vasil et al., Bio/Technology 11 (1993), 1553-1558; Ritala et al., Plant Mol. Biol. 24 (1994), 317-325; Spencer et al., Theor. Appl. Genet. 79 (1990), 625-631), die Protoplasten-transformation, die Elektroporation von partiell permeabilisierten Zellen, die Einbringung von DNA mittels Glasfasern. Spezifisch die Transformation von Mais wird in der Literatur verschiedentlich beschrieben (vgl. z.B. WO95/06128, EP 0 513 849; EP 0 465 875; Fromm et al., Biotechnology 8 (1990), 833-844; Gordon-Kamm et al., Plant Cell 2 (1990), 603-618; Koziel et al., Biotechnology 11 (1993), 194-200). In EP 292 435 wird ein Verfahren beschrieben, mit Hilfe dessen, ausgehend von einem schleimlosen, weichen (friable) granulösen Mais-Kallus, fertile Pflanzen erhalten werden können. Shillito et al . (Bio/Technology 7 (1989), 581) haben in diesem Zusammenhang beobachtet, daß es ferner für die Re- generierbarkeit zu fertilen Pflanzen notwendig ist, von Kal- lus -Suspensionskulturen auszugehen, aus denen eine sich teilende Protoplastenkultur, mit der Fähigkeit zu Pflanzen zu regenerieren, herstellbar ist. Nach einer in vitro Kultivierungszeit von 7 bis 8 Monaten erhalten Shillito et al. Pflanzen mit lebensfähigen Nachkommen, die jedoch Abnormalitäten in der Morphologie und der Reproduktivität aufweisen. Prioli und Söndahl (Bio/Technology 7 (1989), 589) beschreiben die Regeneration und die Gewinnung fertiler Pflanzen aus Mais-Protoplasten der Cateto Mais- Inzuchtlinie Cat 100-1. Die Autoren vermuten, daß die Protoplasten-Regeneration zu fertilen Pflanzen abhängig ist von einer Anzahl verschiedener Faktoren, wie z.B. von Genotyp, vom physiologischen Zustand der Donor- Zellen und von den Kultivierungsbedingungen. Auch die erfolgreiche Transformation anderer Getreidearten wurde bereits beschrieben, z.B. für Gerste (Wan und Lemaux, s.o.; Ritala et al., s.o.) und für Weizen (Nehra et al., Plant J. 5 (1994), 285-297).
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u.a. vermittelt. Der individuelle gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al., Plant Cell Reports 5 (1986), 81-84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften.
Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.
Gegenstand der Erfindung sind auch Pflanzen, die die oben beschriebenen transgenen erfindungsgemäßen Pflanzenzellen enthalten. Solche Pflanzen können beispielsweise mittels mikrobiologischer Verfahren, wie in den Beispielen beschrieben, aus erfindungsgemäßen Pflanzenzellen regeneriert werden. Der Begriff "Pflanze" umfaßt hierbei auch Teile der Pflanze, wie z.B. einzelne Organe (Blätter, Wurzel, Stamm) etc., erntebare Teile, Gewebe etc. Erntebare Teile sind z.B. Samen, Knollen, photosynthetisches Gewebe, Rüben usw.
Die Erfindung betrifft ferner Vermehrungsmaterial der erfindungsgemäßen Pflanzen, das oben beschriebene transgene Pflanzenzellen enthält. Dazu zählen beispielsweise Früchte, Samen, Stecklinge, Wurzelstöcke, Knollen, etc.
Aufgrund der Verringerung der Aktivität des D-Enzyms wird in den erfindungsgemäßen Zellen und Pflanzen eine modifizierte Stärke synthetisiert, die sich hinsichtlich ihrer physikalischen und chemischen Eigenschaften, insbesondere ihrer Verkleisterungseigenschaften sowie ihres Phosphatgehaltes, von in Wildtyp-Pflanzen synthetisierter Stärke unterscheidet. Gegenstand der Erfindung ist daher auch eine Stärke, die erhältlich ist aus den erfindungsgemäßen Zellen, Pflanzen oder Vermehrungsmaterial dieser Pflanzen, die im Vergleich zu Wildtyp-Pflanzen eine verringerte D-Enzym-Aktivität aufweisen.
Die Stärke, die aus den erfindungsgemäßen Pflanzenzellen und Pflanzen erhältlich ist, bei denen die Synthese des D-Enzyms inhibiert ist, zeigt Charakteristika, die stark von denen abweichen, die Stärke zeigt, die aus Wildtyp-Pflanzen isolierbar ist, z.B. veränderte Verkleisterungseigenschaften. Dies zeigt sich in einer veränderten Vikosität wäßriger Lösungen dieser Stärke im Vergleich zu wäßrigen Lösungen von Wildtyp-Stärke (siehe Fig. 3, 4, 5 und 6).
Ein gängiger Test, der verwendet wird, um die Viskositätseigenschaften zu bestimmen, ist der sogenannte BrabenderTest. Dieser Test wird durchgeführt unter der Verwendung eines Apparates, der beispielsweise als Viskograph E bekannt ist. Hergestellt und vertrieben wird dieses Instrument unter anderem von der Firma Brabender OHG Duisburg (Deutschland). Der Test besteht im wesentlichen darin, daß Stärke in Gegenwart von Wasser zunächst erhitzt wird, um zu bestimmen, wann die Hydratisierung und das Schwellen der Stärkekörner einsetzt. Dieser Vorgang, der auch als Gelatinisierung bzw. Verkleisterung bezeichnet wird, beruht auf der Auflösung von Wasserstoffbrückenbindungen und geht einher mit einer meßbaren Viskositätszunahme der Stärkesuspension. Während eine weitere Erhitzung nach der Gelatinisierung zur vollständigen Auflösung der Stärkepartikel und einer Abnahme der Viskosität führt, kommt es bei einer Abkühlung unmittelbar nach der Gelatinisierung typischerweise zu einer Viskositätszunahme (siehe Fig. 6). Das Resultat eines Brabendertests ist eine Kurve, die die Viskosität in Abhängigkeit von der Zeit angibt, wobei zunächst eine Temperaturzunahme bis über die Gelatinisierungstemperatur und anschließend eine Abkühlung erfolgt.
Die Analyse einer Brabender-Kurve zielt in der Regel ab auf die Bestimmung der Verkleisterungsstemperatur, der maximalen Viskosität bei Erhitzen, der Viskosität nach längerem Kochen, der Viskositätszunahme bei Abkühlung sowie der Viskosität nach dem Erkalten Diese Parameter sind wichtige Charakteri- stika, die die Qualität einer Stärke sowie ihre Verwendbarkeit für verschiedene Anwendungen bestimmen.
Ferner zeigt die Stärke, die aus den erfindungsgemäßen Pflanzenzellen und Pflanzen mit einer verringerten D-Enzymaktivität erhältlich ist, im Vergleich zu Stärke aus Wildtyp-Pflanzen einen erhöhten Phosphatgehalt, insbesondere einen Phosphatgehalt, der um mindestens 10 % höher, vorzugsweise um 20 % höher ist, als der Phosphatgehalt von Stärke aus Wildtyp-Pflanzen.
Unter dem Begriff "modifizierte Stärke" wird daher im Rahmen dieser Erfindung eine Stärke verstanden, die sich hinsichtlich ihrer physikalischen und chemischen Eigenschaften von Wildtyp-Stärke unterscheidet, insbesondere eine Stärke, die im Vergleich zu Wildtyp-Stärke veränderte Verkleisterungs- eigenschaften aufweist und deren wäßrige Lösungen im Vergleich zu wäßrigen Lösungen von Wildtyp-Stärke eine veränderte Viskosität zeigen. Dabei wird die Viskosität vorzugsweise mittels eines Brabender-Viskographen bestimmt. Ferner kann eine derartige modifizierte Stärke im Vergleich zu Wildtyp-Stärke einen erhöhten Phosphatgehalt aufweisen. Dabei ist der Phosphatgehalt dieser Stärke mindestens um 10 %, vorzugsweise um 20 % und besonders bevorzugt um 30 % höher als der Phosphatgehalt von Wildtyp-Stärke. Eine derartige modifizierte Stärke, die Gegenstand der Erfindung ist, weist vorzugsweise die in Fig. 3, 4 und 5 dargestellten charakteristischen Brabenderkurven auf. Die modifizierte Stärke weist insbesondere unter den in Beispiel 4 genannten Bedingungen zur Bestimmung der Viskosität mit Hilfe eines Brabender-Viskographen mindestens einen der folgende charakteristische Werte auf oder eine Kombination der folgenden Werte :
eine Verkleisterungstemperatur von 67,3 ± 0,0°C,
eine maximale Viskosität von 2823,7 + 82,0 BE
eine Viskosität zu Beginn der Haltezeit von 1517,3 ± 62,3 BE eine Viskosität zu Beginn der Kühlzeit von 641,3 ± 19,7 BE eine Viskosität nach dem Erkalten von 998,0 ± 18,3 BE .
Im Rahmen der Meßgenauigkeit, können diese Durchschnittswerte um bis zu 10 % nach oben oder unten von den genannten Werten abweichen, so daß die genannten charakteristischen Werte für die modifizierte Stärke folgende Werte annehmen können:
eine Verkleisterungstemperatur von 67,3 ± 6,7°C,
eine maximale Viskosität von 2824 ± 283 BE
eine Viskosität zu Beginn der Haltezeit von 1517 ± 152 BE eine Viskosität zu Beginn der Kühlzeit von 641 ± 65 BE eine Viskosität nach dem Erkalten von 998 ± 100 BE.
Die modifizierte Stärke weist in der Regel mindestens einen der oben genannten charakteristischen Werte auf, vorzugsweise eine Kombination mehrerer Werte. Besonders bevorzugt liegen alle Werte in den angegebenen Bereichen.
Durch Anwendung der antisense-Technologie ist es ferner möglich, Pflanzen herzustellen, bei denen die Expression von DNA-Sequenzen, die D-Enzyme codieren, in unterschiedlich starkem Maße inhibiert ist, und die daher eine unterschiedlich starke Reduktion der Aktivität des D-Enzyms aufweisen. Je nach dem Grad der Reduktion der D-Enzym-Aktivität synthetisieren derartige transgene Pflanzen Stärke, die sich hinsichtlich ihrer Verkleisterungseigenschaften und ihres Phosphatgehaltes mehr oder weniger stark von Stärke aus WildtypPflanzen unterscheidet. Generell weisen derartige modifizierte Stärken folgenden Eigenschaften im Vergleich zu Stärke aus Wildtyp-Pflanzen auf:
1. eine höhere maximale Viskosität bei Erhitzen
2. eine höhere Viskosität nach Abkühlung.
Die Isolierung der Stärke erfolgt nach herkömmlichen Methoden, wie z.B. beschrieben in "Handbuch der Stärke" (Band I, Max Ulimann (Hrsg.), 1974, Paul Parey Verlag, Berlin, Deutschland) oder in Morrison und Karkalas (Methods in Plant Biochemistry, 2 (1990), 323-352; Academic Press Ltd., London).
Die erfindungsgemäßen Stärken können nach dem Fachmann bekannten Verfahren modifiziert werden und eignen sich in unmodifizierter oder modifizierter Form für verschiedene Verwendungen im Nahrungsmittel- oder Nicht -Nahrungsmittelbereich.
Grundsätzlich läßt sich die Einsatzmöglichkeit der Stärke in zwei große Bereiche unterteilen. Der eine Bereich umfaßt die Hydrolyseprodukte der Stärke, hauptsächlich Glucose und Glucanbausteine, die über enzymatische oder chemische Verfahren erhalten werden. Sie dienen als Ausgangsstoff für weitere chemische Modifikationen und Prozesse, wie Fermentation. Für eine Reduktion der Kosten kann hierbei die Einfachheit und kostengünstige Ausführung eines Hydrolyseverfahrens von Bedeutung sein. Gegenwärtig verläuft es im wesentlichen enzymatisch unter Verwendung von Amyloglucosidase. Vorstellbar wäre eine Kosteneinsparung durch einen geringeren Einsatz von Enzymen. Eine Strukturveränderung der Stärke, z.B. Oberflächenvergrößerung des Korns, leichtere Verdaulichkeit durch geringeren Verzweigungsgrad oder eine sterische Struktur, die die Zugänglichkeit für die eingesetzten Enzyme begrenzt, könnte dies bewirken.
Der andere Bereich, in dem die Stärke wegen ihrer polymeren Struktur als sogenannte native Stärke verwendet wird, gliedert sich in zwei weitere Einsatzgebiete: 1. Nahrungsmittelindustrie
Stärke ist ein klassischer Zusatzstoff für viele Nahrungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wäßrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gelbildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Verkleisterungstemperatur, die Viskosität und Dickungsleistung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säurestabilität, die Neigung zur Retrogradation, die Fähigkeit zur Filmbildung, die Gefrier/Taustabilität, die Verdaulichkeit sowie die Fähigkeit zur Komplexbildung mit z.B. anorganischen oder organischen Ionen.
2. Nicht-Nahrungmittelindustrie
In diesem großen Bereich kann die Stärke als Hilfsstoff für unterschiedliche Herstellungsprozesse bzw. als Zusatzstoff in technischen Produkten eingesetzt. Bei der Verwendung der Stärke als Hilfsstoff ist hier insbesondere die Papier- und Pappeindustrie zu nennen. Die Stärke dient dabei in erster Linie zur Retardation (Zurückhaltung von Feststoffen), der Abbindung von Füllstoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung. Darüber hinaus werden die günstigen Eigenschaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die Glätte, die Spaltfestigkeit sowie die Oberflächen ausgenutzt.
2.1 Papier- und Pappeindustrie
Innerhalb des Papierherstellungsprozesses sind vier Anwendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühen, zu unterscheiden.
Die Anforderungen an die Stärke in bezug auf die Oberflächenbehandlung sind im wesentlichen ein hoher Weißegrad, eine angepaßte Viskosität, eine hohe Viskositäts Stabilität, eine gute Filmbildung sowie eine geringe Staubbildung. Bei der Verwendung im Strich spielt der Feststoffgehalt, eine angepaßte Viskosität, ein hohes Bindevermögen sowie eine hohe Pigmentaffinität eine wichtige Rolle. Als Zusatz zur Masse ist eine rasche, gleichmäßige, verlustfreie Verteilung, eine hohe mechanische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Feststoffgehalt, hohe Viskosität sowie ein hohes Bindevermögen von Bedeutung.
2.2 Klebstoffindustrie
Ein großer Einsatzbereich der Stärken besteht in der Klebstoffindustrie, wo man die Einsatzmöglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemikalien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymerdispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90 % der Klebstoffe auf Stärkebasis werden in den Bereichen Wellpappenherstellung, Herstellung von Papiersäcken, Beuteln und Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstellung von Kartonagen und Wiederbefeuchtungsleim für Briefumschläge, Briefmarken usw. eingesetzt.
2.3 Textil- und Textilpflegemittelindustrie
Ein großes Einsatzfeld für die Stärken als Hilfmittel und Zusatzstoff ist der Bereich Herstellung von Textilien und Textilpflegemitteln. Innerhalb der Textilindustrie sind die folgenden vier Einsatzbereiche zu unterscheiden: Der Einsatz der Stärke als Schlichtmittel, d.h. als Hilfstoff zur Glättung und Stärkung des Klettverhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Erhöhung der Abriebfestigkeit beim Weben, Stärke als Mittel zur Textilaufrüstung vor allem nach qualitätsverschlechternden Vorbehandlungen, wie Bleichen, Färben usw., Stärke als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie Stärke als Zusatz zu Ket- tungsmitteln für Nähgarne.
2.4 Baustoffindustrie
Der vierte Einsatzbereich ist die Verwendung der Stärken als Zusatz bei Baustoffen. Ein Beispiel ist die Herstellung von Gipskartonplatten, bei der die im Gipsbrei vermischte Stärke mit dem Wasser verkleistert, an die Oberfläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Beimischung zu Putz- und Mineralfasern. Bei Transportbeton werden Stärkeprodukte zur Verzögerung der Abbindung eingesetzt.
2.5 Bodenstabilisation
Ein weiterer Markt für die Stärke bietet sich bei der Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kombinationsprodukte aus der Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und verkrustungsmindernden Wirkung den bisher eingesetzten Produkten gleichzusetzen, liegen preislich aber deutlich unter diesen.
2.6 Einsatz bei Pflanzenschutz- und Düngemitteln
Ein Einsatzbereich liegt bei der Verwendung der Stärke in Pflanzenschutzmitteln zur Veränderung der spezifischen Eigenschaften der Präparate. So kann die Stärke zur Verbesserung der Benetzung von Pflanzenschutz- und Düngemitteln, zur dosierten Freigabe der Wirkstoffe, zur Umwandlung flüssiger, flüchtiger und/oder übelriechender Wirkstoffe in mikrokristalline, stabile, form bare Substanzen, zur Mischung inkompatibler Verbindungen und zur Verlängerung der Wirkdauer durch Verminderung der Zersetzung eingesetzt werden.
2.7 Pharmaka, Medizin und Kosmetikindustrie
Ein weiteres Einsatzgebiet besteht im Bereich der Pharmaka, Medizin und Kosmetikindustrie. In der pharmazeutischen Industrie kann die Stärke als Bindemittel für Tabletten oder zur Bindemittelverdünnung in Kapseln eingesetzt werden. Weiterhin kann die Stärke als Tablettensprengmittel dienen, da sie nach dem Schlucken Flüssigkeit absorbieren und nach kurzer Zeit soweit quellen, daß der Wirkstoff freigesetzt wird. Medizinische Gleit- und Wundpuder basieren aus qualitativen Gründen auf Stärke. Im Bereich der Kosmetik werden Stärken beispielsweise als Träger von Puderzusatzstoffen, wie Düften und Salicylsäure eingesetzt. Ein relativ großer Anwendungsbereich für die Stärke liegt bei Zahnpasta.
2.8 Stärkezusatz zu Kohlen und Briketts
Einen Einsatzbereich bietet die Stärke als Zusatzstoff zu Kohle und Brikett. Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert werden, wodurch ein frühzeitiges Zerfallen der Briketts verhindert wird. Der Stärkezusatz liegt bei Grillkohle zwischen 4 und 6 %, bei kalorierter Kohle zwischen 0,1 und 0,5 %. Des weiteren gewinnen Stärken als Bindemittel an Bedeutung, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermindert werden kann.
2.9 Erz- und Kohleschlammaufbereitung
Die Stärke kann ferner bei der Erz- und Kohleschlammaufbereitung als Flockungsmittel eingesetzt werden. 2.10 Gießereihilfsstoff
Ein weiterer Einsatzbereich besteht als Zusatz zu Gießereihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne benötigt, die aus Bindemittel-versetzten Sänden hergestellt werden. Als Bindemittel wird heute überwiegend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken, versetzt ist.
Zweck des Stärkezusatzes ist die Erhöhung der Fließfestigkeit sowie die Verbesserung der Bindefestigkeit. Darüber hinaus können die Quellstärken weitere produktionstechnische Anforderungen, wie im kalten Wasser dispergierbar, rehydratisierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen.
2.11 Einsatz in der Kautschukindustrie
In der Kautschukindustrie kann die Stärke zur Verbesserung der technischen und optischen Qualität eingesetzt werden. Gründe sind dabei die Verbesserung des Oberflächenglanzes, die Verbesserung des Griffs und des Aussehens, dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen gestreut, sowie die Verbesserung der Bedruckbarkeit des Kautschuks.
2.12 Herstellung von Lederersatzstoffen
Eine weitere Absatzmöglichkeit der modifizierten Stärken besteht bei der Herstellung von Lederersatzstoffen.
2.13 Stärke in synthetischen Polymeren
Auf dem Kunststoffsektor zeichnen sich folgende Einsatzgebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozess (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Polymer und Stärke) oder alternativ die Einbindung von Stärkefolgeprodukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein). Die Verwendung der Stärke als reinem Füllstoff ist verglichen mit den anderen Stoffen wie Talkum nicht wettbewerbsfähig. Anders sieht es aus, wenn die spezifischen Stärkeeigenschaften zum Tragen kommen und hierdurch das Eigenschaftsprofil der Endprodukte deutlich verändert wird. Ein Beispiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyäthylen. Hierbei werden die Stärke und das synthetische Polymer durch Koex- pression im Verhältnis von 1 : 1 zu einem 'master batch' kombiniert, aus dem mit granuliertem Polyäthylen unter Anwendung herkömmlicher Verfahrenstechniken diverse Produkte hergestellt werden. Durch die Einbindung von Stärke in Polyäthylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasserdampfdurchlässigkeit, ein verbessertes Antistatikverhalten, ein verbessertes Anti- blockverhalten sowie eine verbesserte Bedruckbarkeit mit wäßrigen Farben erreicht werden.
Eine andere Möglichkeit ist die Anwendung der Stärke in Polyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydro- xygruppen der Stärken gezielt zu steuern. Das Ergebnis sind Polyurethanfolien, die durch die Anwendung von Stärke folgende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeausdehnungskoeffizienten, Verringerung des Schrumpfverhaltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Wasserdampfdurchlässigkeit ohne Veränderung der Wasseraufnahme, Verringerung der Entflammbarkeit und der Aufrißdichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vorhanden sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfestigkeit.
Die Produktentwicklung beschränkt sich inzwischen nicht mehr nur auf Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen, sind mit einem Stärkegehalt von über 50 % herzustellen. Des weiteren sind Stärke/ Polymermischungen günstig zu beurteilen, da sie eine sehr viel höhere biologische Abbaubarkeit aufweisen.
Außerordentliche Bedeutung haben weiterhin auf Grund ihres extremen Wasserbindungsvermögen Stärkepfropfpolymerisate gewonnen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalkettenmechanismus aufgepfropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepfropfpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus. Die Anwendungsbereiche für diese Superabsorber haben sich in den letzten Jahren stark ausgeweitet und liegen im Hygienebereich mit Produkten Windeln und Unterlagen sowie im landwirtschaftlichen Sektor, z.B. bei Saatgutpillierungen.
Entscheidend für den Einsatz der neuen, gentechnisch veränderten Stärken sind zum einen die Struktur, Wassergehalt, Proteingehalt, Lipidgehalt, Fasergehalt,
Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmassenverteilung, Verzweigungsgrad, Korngröße und -form sowie Kristallinität, zum anderen auch die Eigenschaften, die in folgende Merkmale münden: Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Viskosität, Dickungsleistung, Löslichkeit, Kleisterstruktur und -transparenz, Hitze-, Scher- und Säurestabilität, Retrogradationsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbildung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität.
Die Erzeugung modifizierter Stärken mittels gentechnischer Eingriffe in einer transgenen Pflanze kann zum einen die Eigenschaften der aus der Pflanze gewonnenen Stärke dahingehend verändern, daß weitere Modifikationen mittels chemischer oder physikalischer Verfahren nicht mehr notwendig erscheinen. Zum anderen können die durch gentechnische Verfahren veränderte Stärken weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qualität für bestimmte der oben beschriebenen Einsatzgebiete führt. Diese chemischen Modifikationen sind grundsätzlich bekannt. Insbesondere handelt es sich dabei um Modifikationen durch
- Hitzebehandlung,
- Säurebehandlung,
- Oxidation und
- Veresterungen, welche zur Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- und Citratstärken führen. Weitere organische Säuren können ebenfalls zur Veresterung eingesetzt werden:
- Erzeugung von Stärkeethern
Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxylmethylether, N-haltige Stärkeether, P-haltige Stärkeether, S-haltige Stärkeether
- Erzeugung von vernetzten Stärken
- Erzeugung von Stärke-Pfropf-Polymerisaten
Die Erfindung betrifft somit auch die Verwendung der erfindungsgemäßen Stärke zur Herstellung von Lebensmitteln oder industriellen Produkten.
Ferner betrifft die vorliegende Erfindung die Verwendung von DNA-Sequenzen, die Enzyme mit der enzymatischen Aktivität eines D-Enzyms codieren, für die gentechnische Veränderung von Pflanzen, um Pflanzen zu erzeugen, die eine im Vergleich zu Wildtyp-Stärke veränderte Stärke synthetisieren,
Die im Rahmen der vorliegenden Erfindung hergestellten und verwendeten Plasmide wurden bei der als internationale Hinterlegungsstelle anerkannten Deutschen Sammlung von Mikroorganismen (DSM) in Braunschweig, Bundesrepublik Deutschland, entsprechend den Anforderungen des Budapester Vertrages für die internationale Anerkennung der Hinterlegung von Mikroorganismen zum Zwecke der Patentierung hinterlegt.
Am 26.08.1993 wurde bei der Deutschen Sammlung von Mikroorganismen (DSM) in Braunschweig, Deutschland, folgendes Plasmid hinterlegt (Hinterlegungsnummer):
Plasmid p35SH-anti-D (DSM 8479)
Am 10.08.1994 wurde bei der Deutschen Sammlung von Mikroorganismen (DSM) in Braunschweig, Deutschland, folgendes Plasmid hinterlegt (Hinterlegungsnummer):
Plasmid p35S-anti-D (DSM 9365)
Ferner wurde am 20.10.1994 bei der oben genannten Hinterlegungsstelle folgendes Plasmid hinterlegt (Hinterlegungsnummer):
Plasmid pBinAR-Hyg (DSM 9505)
Fig. 1 zeigt das Plasmid p35SH-anti-D (DSM 8479).
Das Plasmid enthält folgende Fragmente:
A = Fragment A (529 bp) umfaßt den 35S Promotor des Blumenkohl-Mosaik-Virus (CaMV) , Nucleotide 6906-7437 des CaMV.
B = Fragment B (2909 bp) umfaßt ein DNA-Fragment, das die codierende Region für das Disproportionierende Enzym aus
Kartoffel umfaßt (Takaha et al., J. Biol. Chem. 268
(1993), 1391-1396; Nucleotide 303 bis 1777), und in antisense-Orientierung an den Promotor gekoppelt ist.
C = Fragment C (192 bp) umfaßt das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5, Nucleotide 11749-11939.
Das Plasmid ist ca. 12,7 kb groß und erlaubt Selektion auf
Hygromycinresistenz in transformierten Pflanzenzellen. Fig. 2 zeigt das Plasmid p35S-anti-D (DSM 9365)
Das Plasmid enthält folgende Fragmente:
A = Fragment A (529 bp) umfaßt den 35S Promotor des Blumenkohl-Mosaik-Virus (CaMV), Nucleotide 6906-7437 des CaMV.
B = Fragment B (2909 bp) umfaßt ein DNA-Fragment, das die codierende Region für das Disproportionierende Enzym aus Kartoffel umfaßt (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396; Nucleotide 303 bis 1777), und in antisense-Orientierung an den Promotor gekoppelt ist.
C = Fragment C (192 bp) umfaßt das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5, Nucleotide 11749-11939.
Das Plasmid ist ca. 12,2 kb groß und erlaubt Selektion auf
Kanamycinresistenz in transformierten Pflanzenzellen.
Fig. 3 zeigt eine Brabenderkurve für eine wäßrige Lösung von
Stärke aus der transgenen Kartoffellinie JDl-32. Die Kurve wurde wie in Beispiel 3 erläutert aufgenommen.
Dabei bedeuten:
Drehm. Drehmoment
[BE] Brabender-Einheit
Temp. Temperatur
A Verkleisterungsbeginn
B Maximale Viskosität
C Start der Haltezeit
D Start der Kühlzeit
E Ende der Kühlzeit
F Ende der End-Haltezeit
Die blaue Linie gibt die Viskosität (gemessen in Brabender-Einheiten) an. Die rote Linie gibt den Temperaturverlauf an. Meßbedingungen:
Apparat: Brabender Viskograph E (Brabender OHG Duisburg, Deutschland)
Verwendete Menge Stärke: 30 g
Verwendetes Volumen Lösungsmittel: 450 ml destilliertes Wasser
Rührgeschwindigkeit: 75 Umdrehungen pro min
Erhitzen: von 50°C auf 96°C mit einer Geschwindigkeit von 3°C pro min
Halten der Temperatur: 30 min bei 96°C
Kühlen: von 96°C auf 50°C mit einer Geschwindigkeit von 3°C pro min.
Fig. 4 zeigt eine Brabenderkurve für eine wäßrige Lösung von Stärke aus der transgenen Kartoffellinie JD1-33. Die Kurve wurde wie in Beispiel 3 erläutert aufgenommen.
Die Abkürzungen sind definiert wie für Fig. 3 beschrieben. Die Meßbedingungen entsprechen den unter Fig. 3 beschriebenen.
Fig. 5 zeigt eine Brabenderkurve für eine wäßrige Lösung von Stärke aus der transgenen Kartoffellinie JD1-71. Die Kurve wurde wie in Beispiel 3 erläutert aufgenommen.
Die Abkürzungen sind definiert wie für Fig. 3 beschrieben. Die Meßbedingungen entsprechen den unter Fig. 3 beschriebenen.
Fig. 6 zeigt eine Brabenderkurve für eine wäßrige Lösung von Stärke aus Wildtyp-Pflanzen Solanum tuberoεum cv. Desiree. Die Kurve wurde wie in Beispiel 3 erläutert aufgenommen.
Die Abkürzungen sind definiert wie für Fig. 3 beschrieben. Die Meßbedingungen entsprechen den unter Fig. 3 beschriebenen. Die Beispiele erläutern die Erfindung.
Verwendete Medien und Lösungen
20 × SSC 175.3 g NaCl
88.2 g Natrium-Citrat
ad 1000 ml mit ddH2O
pH 7,0 mit 10 N NaOH
10 × MEN 200 mM MOPS
50 mM Natriumacetat
10 mM EDTA
pH 7, 0
NSEB-Puffer 0,25 M Natriumphosphatpuffer pH 7,2
7 % SDS
1 mM EDTA
1 % BSA (w/v)
Verwendete Methoden
1. Clonierungsverfahren
Für die Pflanzentransformation wurden die Genkonstruktionen in die binären Vektoren BIN19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8720) und pBinAR-Hyg (DSM 9505) cloniert.
2. Bakterienstämme
Für die binären Vektoren wurde der E. coli-Stamm DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) verwendet.
Die Transformation der Plasmide in die Kartoffelpflanzen wurde mit Hilfe des Agrobacterium tumefaciens-Stammes C58C1 pGV2260 durchgeführt (Deblaere et al., Nucl. Acids Res. 13 (1985), 4777-4788). 3. Transformation von Agrobacterium tumefaciens
Der Transfer der DNA erfolgte durch direkte Transformation nach der Methode von Höfgen&Willmitzer (Nucleic Acids Res. 16 (1988), 9877). Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim&Doly (Nucleic Acids Res. 7 (1979), 1513-1523) isoliert und nach geeigneter Restriktionsspaltung gelelektrophoretisch analysiert.
4. Transformation von Kartoffeln
Zehn kleine mit dem Skalpell verwundete Blätter einer Kartoffel-Sterilkultur (Solanum tuberosum L.cv. Desiree) wurden in 10 ml MS-Medium (Murashige&Skoog Physiol. Plant. 15 (1962), 473) mit 2 % Saccharose gelegt, welches 50 μl einer unter Selektion gewachsenen Agrobacterium tumefaciens-Übernachtkultur enthielt. Nach 3-5 minütigem, leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wurden die Blätter zur Kallusinduktion auf MS-Medium mit 1,6 % Glucose, 5 mg/l Naphthylessigsäure, 0,2 mg/l Ben- zylaminopurin, 250 mg/l Claforan, 50 mg/l Kanamycin bzw. 1 mg/l Hygromycin B, und 0,80 % Bacto Agar gelegt. Nach einwö- chiger Inkubation bei 25°C und 3000 Lux wurden die Blätter zur Sproßinduktion auf MS-Medium mit 1,6 % Glucose, 1,4 mg/l Zeatinribose, 20 mg/l Naphthylessigsäure, 20 mg/l Giberellinsäure, 250 mg/l Claforan, 50 mg/l Kanamycin bzw. 3 mg/l Hygromycin B, und 0,80 % Bacto Agar gelegt.
5. Radioaktive Markierung von DNA-Fragmenten
Die radiokative Markierung von DNA-Fragmenten wurde mit
Hilfe eines DNA-Random Primer Labelling Kits der Firma
Boehringer (Deutschland) nach den Angaben des Herstellers durchgeführt. 6. Northern Blot-Analyse
RNA wurde nach Standardprotokollen aus Blattgewebe von Pflanzen isoliert. 50 μg der RNA wurden auf einem Agarosegel aufgetrennt (1,5 % Agarose, 1 × MEN-Puffer, 16,6% Formaldehyd). Das Gel wurde nach dem Gellauf kurz in Wasser gewaschen. Die RNA wurde mit 20 × SSC mittels Kapillarblot auf eine Νylonmembran vom Typ Hybond Ν (Amersham, UK) transferiert. Die Membran wurde anschließend bei 80°C unter Vakuum für zwei Stunden gebacken.
Die Membran wurde in ΝSEB-Puffer für 2 h bei 68°C prähybridisiert und anschließend in ΝSEB-Puffer über Nacht bei 68°C in Gegenwart der radioaktiv markierten Probe hybridisiert.
7. Pflanzenhaltung
Kartoffelpflanzen wurden im Gewächshaus unter folgenden Bedingungen gehalten:
Lichtperiode 16 h bei 25000 Lux und 22 °C
Dunkelperiode 8 h bei 15°C
Luftfeuchte 60 %
8. Isolierung der Stärke aus Kartoffelpflanzen
Zur Isolierung von Stärke aus Kartoffelknollen wurden die Knollen zunächst in einer Saftpresse zerkleinert. Der resultierende Saft wurde mit geringen Mengen an Natriumsulfit und Natriumbisulfit versetzt und stehengelassen, damit sich die Stärke absetzen konnte. Nach dem Absetzen der Stärke wurde der Überstand abgenommen und die Stärke mindestens 3 mal in destilliertem Wasser gewaschen. Anschließend wurde die Stärke bei 37°C unter mehrmaligem Wenden getrocknet. 9. Bestimmung des Phosphatgehaltes von Stärke
Der Phosphatgehalt der Stärke wurde bestimmt, indem die Menge an Phosphat, das an der C-6-Position von Glucoseresten gebunden war, gemessen wurde. Hierzu wurde Stärke zunächst durch Säurehydrolyse gespalten und anschließend der Gehalt an Glucose-6 -Phosphat mittels eines Enzymtests bestimmt, wie im folgenden beschrieben:
100 mg Stärke wurden in 500 μl 0,7 N HCl 4 h bei 100°C inkubiert. Nach der Säurehydrolyse wurden 10 ml des Ansatzes in 600 μl Imidazolpuffer (100 mM Imidazol, 5 mM MgCl2, pH 6,9; 2 mM NADP+) gegeben. Die Bestimmung der Menge an Glucose-6-Phosphat in dem Ansatz erfolgte durch Umsetzung mit dem Enzym Glucose-6-Phosphat-Dehydrogenase. Dazu wurde dem Ansatz 1 U Glucose-6-Phosphat-Dehydrogenase (aus Hefe) zugesetzt und die Menge an gebildetem NADPH durch Messung der Absorption bei 340 nm bestimmt.
Beispiel 1
Konstruktion des binären Plasmids p35SH-anti-D
Unter Verwendung zweier synthetisch hergestellter Oligonucleotide mit den Sequenzen:
5'- GCCCCCGGGC TTTTAAGTTC CTTG -3' (Seq ID No . 1) und
5'- CAGGGTACCT AACATCTTAA TCATC -3' (Seq ID No . 2) als Primer für eine Polymerase-Kettenreaktion unter Verwendung von cDNA aus Knollengewebe von Solanum tuberosum wurde eine Kopie der codierenden Region des Gens, das für das D-Enzym codiert, hergestellt. Das resultierende Fragment umfaßt die Nucleotide 303 bis 1777 der in Takaha et al. (J. Biol. Chem. 268 (1993), 1391-1396) dargestellten Nucleotid- sequenz. Durch die spezifische Sequenz der für die Amplifi- kation gewählten Oligonucleotide wird am 5'-Ende des codoge- nen Stranges eine Sma I-Schnittstelle und am 3'-Ende eine Kpn I-Schnittstelle eingeführt. Das PCR-Fragment wurde mit den Restriktionsendonucleasen Sma I und Kpn I geschnitten und in den mit Sma I und Kpn I geschnittenen Vektor pBinAR- Hyg (DSM 9505) ligiert.
Das resultierende Plasmid wurde p35SH-anti-D (DSM 8479) genannt und ist in Fig. 1 dargestellt.
Beispiel 2
Konstruktion des binären Plasmids p35S-anti-D
Für die Herstellung des Plasmids p35S-anti-D wurde zunächst das Plasmid pBIN19-AC hergestellt. Zu diesem Zweck wurde ein 529 bp Fragment, das den 35S-Promotor des CaMV umfaßt (Nucleotide 6909-7437, Franck et al., Cell 21, 285-294), aus dem Plasmid pDH51 (Pietrzak et al., Nucl. Acids Res. 14, 5857-5868) mit Hilfe der Restriktionsendonucleasen EcoR I und Kpn I isoliert. Dieses Fragment wurde in den mit EcoR I und Kpn I geschnittenen Vektor pBIN19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8721) ligiert. Dabei entstand das Plasmid pBIN19-A.
Anschließend wurde ein 192 bp-Fragment, das das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3, 835-846; Nucleotide 11749-11939) umfaßt, als Pvu II/Hind III-Fragment aus dem Plasmid pAGV40 (Herrera-Estrella et al . , Nature 303, 209- 213) isoliert. Nach Addition eines Sph I -Linkers an die Pvu II -Schnittstelle wurde das Fragment in den mit Sph I und Hind III geschnittenen Vektor pBIN19-A ligiert. Das resultierende Plasmid wurde pBIN19-AC genannt.
Für die Konstruktion des Plasmids p35S-anti-D wurde das wie in Beispiel 1 beschrieben hergestellte PCR-Fragment in den mit Kpn I und Sma I geschnittenen Vektor pBIN19-AC ligiert. Das resultierende Plasmid ist in Fig. 2 dargestellt.
Beispiel 3
Herstellung transgener Kartoffelpflanzen mit einer reduzierten Aktivität des D-Enzyms und Isolierung der in den Pflanzen synthetisierten Stärke
Zur Herstellung transgener Kartoffelpflanzen, bei denen die Aktivität des D-Enzyms verringert ist im Vergleich zu Wildtyp-Pflanzen, wurden Agrobakterien der Spezies Agobacterium tumefaciens mit dem Plasmid p35S-anti-D transformiert. Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Zellen von Kartoffelpflanzen der Varietät Desiree transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert. Die transformierten Pflanzen wurden unter Gewächshausbedingungen kultiviert. Die Überprüfung des Erfolges der genetischen Veränderung der Pflanzen erfolgte durch Analyse der Gesamt -RNA in einer Northern-Blot-Analyse bezüglich des Verschwindens der Transkripte, die das D-Enzym codieren. Hierzu wurde Gesamt -RNA aus Blättern transformierter Pflanzen nach Standardmethoden isoliert, gelelektrophoretisch auf einem Agarosegel aufgetrennt, auf eine Nylonmembran transferiert und mit einer radioaktiv markierten Probe hybridisiert, die die D-Enzym aus Kartoffel codierende Region oder einen Teil dieser Region umfaßt. Bei erfolgreich transformierten Pflanzen fehlt in der Northern-Blot-Analyse die Bande, die das spezifische Transkript des D-Enzym-Gens darstellt.
Vier unabhängige Linien transgener Kartoffelpflanzen, die Linien JDl-32, JD1-33, JD1-65 und JD1-71, bei denen in der Northern-Blot-Analyse nur noch sehr geringe bis gar keine Mengen des D-Enzym-spezifischen Transkriptes nachgewiesen werden konnten, wurden näher hinsichtlich der synthetisierten Stärke untersucht.
Dazu wurde aus Knollen der transgenen Pflanzen Stärke nach Standardverfahren isoliert. Beispiel 4
Analyse der Stärke aus Kartoffelpflanzen, die mit dem Plasmid p35S-anti-D transformiert worden waren a) Bestimmung der Viskosität
Die aus den transgenen Kartoffelpflanzen isolierte Stärke wurde hinsichtlich der Viskosität wäßriger Lösungen dieser Stärke untersucht .
Zur Bestimmung der Viskosität der wäßrigen Lösungen der in transformierten Kartoffelpflanzen synthetisierten Stärke wurden jeweils 30 g Stärke in 450 ml H2O aufgenommen und für die Analyse in einem Viskograph E (Brabender OHG Duisburg (Deutschland)) verwendet. Der Betrieb des Gerätes erfolgte nach den Angaben des Herstellers. Zur Bestimmung der Viskosität der wäßrigen Lösung der Stärke wurde die Stärkesuspension zunächst von 50°C auf 96°C erhitzt mit einer Geschwindigkeit von 3°C pro min. Anschließend wurde die Temperatur für 30 min bei 96 °C gehalten. Danach wurde die Lösung von 96°C auf 50°C abgekühlt mit einer Geschwindigkeit von 3°C pro min. Während der gesamten Dauer wurde die Suspension gerührt (75 Umdrehungen pro Minute) und die Viskosität (in Brabender-Einheiten) bestimmt. Die Ergebnisse derartiger Messungen sind in Form von Kurven, in denen die Viskosität in Abhängigkeit von der Zeit dargestellt ist, in den Figuren 3, 4, 5 und 6 wiedergegeben. Fig. 3 zeigt eine typische Brabenderkurve für Stärke, die aus transgenen Kartoffelpflanzen der Linie JDl-32 isoliert wurde. Fig. 4 zeigt eine typische Brabenderkurve für Stärke, die aus transgenen Kartoffelpflanzen der Linie JD1-33. Fig. 5 zeigt eine typische Brabenderkurve für Stärke, die aus transgenen Kartoffelpflanzen der Linie JD1-71 isoliert wurde. In Fig. 6 ist dagegen eine typische Brabenderkurve für Stärke, die aus nicht-transformierten Kartoffelpflanzen der Varietät Desiree isoliert wurde, gezeigt. Aus den Kurven geht zum einen hervor, daß in allen drei transgenen Linien eine Stärke mit fast identischen Viskositätseigenschaften isoliert werden kann. Ferner ist erkennbar, daß die Stärke aus transgenen Kartoffeln Eigenschaften aufweist, die deutlich von denen der Wildtyp-Stärke abweichen. Aus den dargestellten Kurven lassen sich verschiedene charakteristische Werte ableiten.
Für Wildtyp-Pflanzen ergeben sich dabei folgende charakteristische Werte:
Figure imgf000040_0001
Anzahl der Messungen n=2
Angegeben sind die Durchschnittswerte der Viskosität bei verschiedenen Temperaturen und zu verschiedenen Zeitpunkten in Brabender-Einheiten zusammen mit den Standardabweichungen, sowie die Verkleisterungstemperatur und die Temperatur, bei der die maximale Viskosität erreicht wird.
Für Pflanzen, die mit dem Plasmid p35S-anti-D transformiert worden waren, ergeben sich dabei folgende charakteristische Werte:
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0003
Für die Stärke aus transgenen Kartoffelpflanzen, bei denen die Aktivität des D-Enzyms stark verringert ist, lassen sich unter den genannten Versuchsbedingungen somit folgende charakteristische Werte ermitteln:
eine Verkleisterungstemperatur von 67,3 ± ,0°C,
eine maximale Viskosität von 2823,7 + 82,0 BE
eine Viskosität zu Beginn der Haltezeit von 1517,3 ± 62,3 BE eine Viskosität zu Beginn der Kühlzeit von 641,3 + 19,7 BE eine Viskosität nach dem Erkalten von 998,0 ± 18,3 BE .
Unter Berücksichtigung von Meßungenauigkeiten und Schwankungen zwischen verschiedenen transgenen Linien mit unterschiedlichen D-Enzym-Aktivitäten können die ermittelten Durchschnittswerte um bis zu 10 % nach oben oder unten abweichen, so daß die modifizierte Stärke folgende charakteristischen Werte aufweisen kann:
eine Verkleisterungstemperatur von 67,3 ± 6,7°C,
eine maximale Viskosität von 2824 ± 283 BE
eine Viskosität zu Beginn der Haltezeit von 1517 ± 152 BE eine Viskosität zu Beginn der Kühlzeit von 641 ± 65 BE eine Viskosität nach dem Erkalten von 998 ± 100 BE.
Da es mit Hilfe der antisense-Technologie möglich ist, Pflanzen herzustellen, bei denen die Expression von DNA-Sequenzen, die D-Enzyme codieren, in unterschiedlich starkem Maße inhibiert ist, können mit Hilfe des erfindungsgemäßen Verfahrens transgene Pflanzen hergestellt werden, die eine mehr oder weniger starke Reduktion der Aktivität des D- Enzyms aufweisen und die daher eine Stärke synthetisieren, die sich hinsichtlich ihrer Verkleisterungseigenschaften mehr oder weniger stark von Wildtyp-Pflanzen unterscheidet. b) Bestimmung des Phosphatgehaltes
Die Bestimmung des Phosphatgehaltes von Stärke aus transgenen und aus Wildtyp-Pflanzen erfolgte wie oben beschrieben.
Der Gehalt an Glucose-6-Phosphat (angegeben in nmol/mg Stärke) ist in der folgenden Tabelle für nicht-transfor mierte Kartoffelpflanzen der Varietät Desiree sowie als Durchschnittswert für drei Linien (JDl-32; JD1-65; JD1-71) transgener Kartoffelpflanzen, die mit dem Plasmid p35S-anti-D transformiert worden waren, angegeben.
Figure imgf000043_0001
Die Werte zeigen, daß der Phosphatgehalt der modifizierten Stärke aus transgenen Kartoffelpflanzen im Vergleich zu Stärke aus Wildtyp-Pflanzen um ca. 34 % erhöht ist.
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001

Claims

P a t e n t a n s p r ü c h e
1. Transgene Pflanzenzelle, dadurch gekennzeichnet, daß aufgrund der Einführung und Expression einer exogenen DNA-Sequenz oder der Einführung einer Mutation in einem Gen, das ein D-Enzym (EC.2.4.1.25) codiert, die Aktivität des D-Enzyms im Vergleich zu nicht-transformierten Zellen verringert ist, wodurch es in den Zellen zur Synthese einer modifizierten Stärke kommt.
2. Transgene Pflanzenzelle nach Anspruch 1, wobei die Verringerung der D-Enzymaktivität dadurch erfolgt, daß in den Zellen die Synthese funktionellen D-Enzyms inhibiert wird.
3. Transgene Pflanzenzelle nach Anspruch 2, wobei die Inhibierung der Synthese durch Expression einer antisense- RNA erfolgt, die komplementär zu Transkripten ist, die D-Enzyme codieren.
4. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 3, die eine Zelle einer stärkespeichernden Pflanze ist.
5. Transgene Pflanzenzelle nach Anspruch 4, wobei die stärkespeichernde Pflanze eine Kartoffelpflanze ist.
6. Transgene Pflanze enthaltend Pflanzenzellen nach einem der Ansprüche 1 bis 5.
7. Vermehrungsmaterial von Pflanzen nach Anspruch 6 enthaltend Pflanzenzellen nach einem der Ansprüche 1 bis 5.
8. Vermehrungsmaterial nach Anspruch 7, das ein Same oder eine Knolle ist.
9. Stärke erhältlich aus Zellen nach einem der Ansprüche 1 bis 5, Pflanzen nach Anspruch 6 oder Vermehrungsmaterial nach Anspruch 7 oder 8.
10. Verwendung der Stärke nach Anspruch 9, zur Herstellung von Lebensmitteln oder industriellen Produkten.
11. Verwendung von DNA-Sequenzen, die D-Enzyme codieren, für die gentechnische Veränderung von Pflanzen, um Pflanzen zu erzeugen, die eine im Vergleich zu Wildtyp-Stärke modifizierte Stärke synthetisieren.
PCT/EP1996/001007 1995-03-08 1996-03-08 Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung WO1996027674A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU51041/96A AU713917B2 (en) 1995-03-08 1996-03-08 Modified starch from plants, plants synthesizing the same, as well as process for their production
JP8526617A JPH11501213A (ja) 1995-03-08 1996-03-08 植物由来の修飾澱粉、その澱粉を合成する植物、およびその調製のプロセス
EP96907401A EP0813605A1 (de) 1995-03-08 1996-03-08 Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
PL96322142A PL322142A1 (en) 1995-03-08 1996-03-08 Modified plant starch, plants synthesising such starch and method of obtaining them
US08/913,671 US6162966A (en) 1995-03-08 1996-03-08 Modified starch from plants, plants synthesizing this starch, and processes for its preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19509695A DE19509695A1 (de) 1995-03-08 1995-03-08 Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke
DE19509695.9 1995-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/692,069 Division US6610843B1 (en) 1995-03-08 2000-10-19 Modified starch from plants, plants synthesizing the same, as well as process for their production

Publications (1)

Publication Number Publication Date
WO1996027674A1 true WO1996027674A1 (de) 1996-09-12

Family

ID=7756944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001007 WO1996027674A1 (de) 1995-03-08 1996-03-08 Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung

Country Status (9)

Country Link
US (2) US6162966A (de)
EP (1) EP0813605A1 (de)
JP (1) JPH11501213A (de)
AU (1) AU713917B2 (de)
CA (1) CA2214736A1 (de)
DE (1) DE19509695A1 (de)
HU (1) HUP9801855A3 (de)
PL (1) PL322142A1 (de)
WO (1) WO1996027674A1 (de)

Cited By (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045459A1 (en) * 1997-04-09 1998-10-15 E.I. Du Pont De Nemours And Company Plant 4-alpha-glucanotransferases
FR2779740A1 (fr) * 1998-06-16 1999-12-17 Biogemma Fr Procede d'obtention d'amidon modifie
US6825342B1 (en) 1995-05-05 2004-11-30 National Starch And Chemical Investment Holding Corporation Plant starch composition
WO2005095619A1 (en) * 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with increased activity of multiple starch phosphorylating enzymes
US7176190B2 (en) 1995-09-19 2007-02-13 Bayer Bioscience Gmbh Plants which synthesize a modified starch, process for the production thereof and modified starch
EP2039772A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039771A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039770A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102007045919A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045956A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
EP2072506A1 (de) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine oder Thiadiazolyloxyphenylamidine und deren Verwendung als Fungizide
EP2090168A1 (de) 2008-02-12 2009-08-19 Bayer CropScience AG Methode zur Verbesserung des Pflanzenwachstums
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102008041695A1 (de) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methoden zur Verbesserung des Pflanzenwachstums
EP2168434A1 (de) 2008-08-02 2010-03-31 Bayer CropScience AG Verwendung von Azolen zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
EP2198709A1 (de) 2008-12-19 2010-06-23 Bayer CropScience AG Verfahren zur Bekämpfung resistenter tierischer Schädlinge
EP2201838A1 (de) 2008-12-05 2010-06-30 Bayer CropScience AG Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften
EP2204094A1 (de) 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
WO2010083955A2 (de) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Verwendung von enaminocarbonylverbindungen zur bekämpfung von durch insekten übertragenen virosen
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
US7772463B2 (en) 2004-03-05 2010-08-10 Bayer Cropscience Ag Plants with increased activity of a starch phosphorylating enzyme
EP2218717A1 (de) 2009-02-17 2010-08-18 Bayer CropScience AG Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
EP2223602A1 (de) 2009-02-23 2010-09-01 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials genetisch modifizierter Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2239331A1 (de) 2009-04-07 2010-10-13 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2251331A1 (de) 2009-05-15 2010-11-17 Bayer CropScience AG Fungizide Pyrazolcarboxamid-Derivate
EP2255626A1 (de) 2009-05-27 2010-12-01 Bayer CropScience AG Verwendung von Succinat Dehydrogenase Inhibitoren zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
WO2011006603A2 (de) 2009-07-16 2011-01-20 Bayer Cropscience Ag Synergistische wirkstoffkombinationen mit phenyltriazolen
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (de) 2009-09-02 2011-03-09 Bayer CropScience AG Wirkstoffkombinationen
US7919682B2 (en) 2004-03-05 2011-04-05 Bayer Cropscience Ag Plants with reduced activity of a starch phosphorylating enzyme
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2343280A1 (de) 2009-12-10 2011-07-13 Bayer CropScience AG Fungizid-Chinolinderivate
WO2011089071A2 (de) 2010-01-22 2011-07-28 Bayer Cropscience Ag Akarizide und/oder insektizide wirkstoffkombinationen
WO2011107504A1 (de) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoralkyl- substituierte 2 -amidobenzimidazole und deren verwendung zur steigerung der stresstoleranz in pflanzen
EP2374791A1 (de) 2008-08-14 2011-10-12 Bayer CropScience Aktiengesellschaft Insektizide 4-Phenyl-1H-pyrazole
WO2011124554A2 (de) 2010-04-06 2011-10-13 Bayer Cropscience Ag Verwendung der 4-phenylbuttersäure und/oder ihrer salze zur steigerung der stresstoleranz in pflanzen
WO2011124553A2 (de) 2010-04-09 2011-10-13 Bayer Cropscience Ag Verwendung von derivaten der (1-cyancyclopropyl)phenylphosphinsäure, deren ester und/oder deren salze zur steigerung der toleranz in pflanzen gegenüber abiotischem stress
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2011154158A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2011154159A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012028578A1 (de) 2010-09-03 2012-03-08 Bayer Cropscience Ag Substituierte anellierte pyrimidinone und dihydropyrimidinone
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
EP2460406A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012089721A1 (de) 2010-12-30 2012-07-05 Bayer Cropscience Ag Verwendung von substituierten spirocyclischen sulfonamidocarbonsäuren, deren carbonsäureestern, deren carbonsäureamiden und deren carbonitrilen oder deren salze zur steigerung der stresstoleranz in pflanzen
EP2474542A1 (de) 2010-12-29 2012-07-11 Bayer CropScience AG Fungizide Hydroximoyl-Tetrazol-Derivate
EP2494867A1 (de) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituierte Verbindungen in Kombination mit Fungiziden
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
US8269063B2 (en) 2004-03-05 2012-09-18 Bayer Cropscience Ag Methods for identifying proteins with starch phosphorylating enzymatic activity
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2511255A1 (de) 2011-04-15 2012-10-17 Bayer CropScience AG Substituierte Prop-2-in-1-ol- und Prop-2-en-1-ol-Derivate
WO2012139890A1 (de) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituierte 5-(cyclohex-2-en-1-yl)-penta-2,4-diene und 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress
WO2012139892A1 (de) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituierte 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-diene und 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress
WO2012139891A1 (de) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituierte vinyl- und alkinyl-cyclohexenole als wirkstoffe gegen abiotischen pflanzenstress
US8299302B2 (en) 2007-03-12 2012-10-30 Bayer Cropscience Ag 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
US8334237B2 (en) 2007-03-12 2012-12-18 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
WO2013004652A1 (de) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Verwendung substituierter isochinolinone, isochinolindione, isochinolintrione und dihydroisochinolinone oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
EP2561759A1 (de) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoralkyl-substituierte 2-amidobenzimidazole und ihre Wirkung auf das Pflanzenwachstum
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
US8394991B2 (en) 2007-03-12 2013-03-12 Bayer Cropscience Ag Phenoxy substituted phenylamidine derivatives and their use as fungicides
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013041602A1 (de) 2011-09-23 2013-03-28 Bayer Intellectual Property Gmbh Verwendung 4-substituierter 1-phenyl-pyrazol-3-carbonsäurederivate als wirkstoffe gegen abiotischen pflanzenstress
WO2013050324A1 (de) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Abiotischen pflanzenstress-reduzierende kombination enthaltend 4- phenylbuttersäure (4-pba) oder eines ihrer salze (komponente (a)) und eine oder mehrere ausgewählte weitere agronomisch wirksame verbindungen (komponente(n) (b)
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
US8519003B2 (en) 2007-03-12 2013-08-27 Bayer Cropscience Ag Phenoxyphenylamidines as fungicides
WO2013124275A1 (en) 2012-02-22 2013-08-29 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape.
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
EP2662363A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Biphenyl-Carboxamide
EP2662364A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Tetrahydronaphthyl-Carboxamide
EP2662361A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662360A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Indanyl-Carboxamide
EP2662370A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Benzofuranyl-Carboxamide
EP2662362A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
WO2014037340A1 (de) 2012-09-05 2014-03-13 Bayer Cropscience Ag Verwendung substituierter 2-amidobenzimidazole, 2-amidobenzoxazole und 2-amidobenzothiazole oder deren salze als wirkstoffe gegen abiotischen pflanzenstress
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
EP2735231A1 (de) 2012-11-23 2014-05-28 Bayer CropScience AG Wirkstoffkombinationen
WO2014079957A1 (de) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selektive inhibition der ethylensignaltransduktion
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
EP2740356A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-insäure-Derivate
EP2740720A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte bicyclische- und tricyclische Pent-2-en-4-insäure -Derivate und ihre Verwendung zur Steigerung der Stresstoleranz in Pflanzen
WO2014086751A1 (de) 2012-12-05 2014-06-12 Bayer Cropscience Ag Verwendung substituierter 1-(arylethinyl)-, 1-(heteroarylethinyl)-, 1-(heterocyclylethinyl)- und 1-(cyloalkenylethinyl)-cyclohexanole als wirkstoffe gegen abiotischen pflanzenstress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015004040A1 (de) 2013-07-09 2015-01-15 Bayer Cropscience Ag Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
US9199922B2 (en) 2007-03-12 2015-12-01 Bayer Intellectual Property Gmbh Dihalophenoxyphenylamidines and use thereof as fungicides
WO2016012362A1 (de) 2014-07-22 2016-01-28 Bayer Cropscience Aktiengesellschaft Substituierte cyano-cycloalkylpenta-2,4-diene, cyano-cycloalkylpent-2-en-4-ine, cyano-heterocyclylpenta-2,4-diene und cyano-heterocyclylpent-2en-4-ine als wirkstoffe gegen abiotischen pflanzenstress
EP2997825A1 (de) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Wirkstoffkombinationen mit einem (thio)carboxamidderivat und einer fungiziden verbindung
EP3000809A1 (de) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungizide pyrazolcarboxamidderivate
WO2016096942A1 (de) 2014-12-18 2016-06-23 Bayer Cropscience Aktiengesellschaft Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
EP3332645A1 (de) 2016-12-12 2018-06-13 Bayer Cropscience AG Verwendung substituierter pyrimidindione oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
WO2018104392A1 (en) 2016-12-08 2018-06-14 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
WO2018108627A1 (de) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Verwendung substituierter indolinylmethylsulfonamide oder deren salze zur steigerung der stresstoleranz in pflanzen
DE102007045953B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045920B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistische Wirkstoffkombinationen
WO2019025153A1 (de) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Verwendung von substituierten n-sulfonyl-n'-aryldiaminoalkanen und n-sulfonyl-n'-heteroaryldiaminoalkanen oder deren salzen zur steigerung der stresstoleranz in pflanzen
WO2019060746A1 (en) 2017-09-21 2019-03-28 The Broad Institute, Inc. SYSTEMS, METHODS, AND COMPOSITIONS FOR THE TARGETED EDITING OF NUCLEIC ACIDS
WO2019233863A1 (de) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbizid wirksame bizyklische benzoylpyrazole
WO2020131862A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
US11180751B2 (en) 2015-06-18 2021-11-23 The Broad Institute, Inc. CRISPR enzymes and systems
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509695A1 (de) * 1995-03-08 1996-09-12 Inst Genbiologische Forschung Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke
DE19912009A1 (de) 1999-03-17 2000-09-28 Aventis Cropscience Gmbh Glasnudel
US20030150021A1 (en) * 1999-10-19 2003-08-07 Broglie Karen E. Maize 4-alpha-glucanotransferase
WO2002038132A2 (de) * 2000-11-09 2002-05-16 Celanese Ventures Gmbh Weichkapseln umfassend ein stärkegemisch verringerten verzweigungsgrades
WO2003062383A2 (en) * 2002-01-16 2003-07-31 Baylor College Of Medicine In vivo gene transfer
US7107703B1 (en) * 2004-04-23 2006-09-19 Yan Wang Shoe sole
CL2007003744A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende un derivado 2-piridilmetilbenzamida y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
CL2007003743A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende fenamidona y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
EP2120558B1 (de) * 2007-03-12 2016-02-10 Bayer Intellectual Property GmbH 3,4-Disubstituierte Phenoxyphenylamidin-Derivate und deren Verwendung als Fungizide
EP1969931A1 (de) * 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoalkylphenylamidine und deren Verwendung als Fungizide
US8168567B2 (en) * 2007-04-19 2012-05-01 Bayer Cropscience Ag Thiadiazolyl oxyphenyl amidines and the use thereof as a fungicide
DE102007045922A1 (de) 2007-09-26 2009-04-02 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
CA2701290A1 (en) * 2007-10-02 2009-04-16 Bayer Cropscience Ag Methods of improving plant growth
EP2381781B1 (de) 2008-12-29 2016-06-08 Bayer Intellectual Property GmbH Verfahren zur verbesserten nutzung des produktionspotentials genetisch modifizierter pflanzen
WO2010081689A2 (en) 2009-01-19 2010-07-22 Bayer Cropscience Ag Cyclic diones and their use as insecticides, acaricides and/or fungicides
UA104887C2 (uk) 2009-03-25 2014-03-25 Баєр Кропсаєнс Аг Синергічні комбінації активних речовин
AP3073A (en) 2009-03-25 2014-12-31 Bayer Cropscience Ag Active ingredient combinations with insecticidal and acaricidal properties
JP5462354B2 (ja) 2009-03-25 2014-04-02 バイエル・クロップサイエンス・アーゲー 殺虫特性及び殺ダニ特性を有する活性成分組合せ
MX2011009916A (es) 2009-03-25 2011-10-06 Bayer Cropscience Ag Combinaciones de principios activos con propiedades insecticidas y acaricidas.
WO2010108505A1 (de) 2009-03-25 2010-09-30 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
CN102458125B (zh) 2009-05-06 2015-04-29 拜尔农作物科学股份公司 环戊二酮化合物及其用作杀昆虫剂、杀螨剂和/或杀菌剂的用途
WO2010139410A2 (de) * 2009-06-02 2010-12-09 Bayer Cropscience Ag Verwendung von succinat dehydrogenase inhibitoren zur kontrolle von sclerotinia ssp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202396A (ja) * 1987-02-18 1988-08-22 Ezaki Glyco Kk N−アセチルグルコサミン、グルコサミン、マンノ−ス又はアロ−スを末端に含む少糖類の製造方法
WO1995007355A1 (en) * 1993-09-09 1995-03-16 Institut Für Genbiologische Forschung Berlin Gmbh Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4104782B4 (de) * 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
DE4330960C2 (de) * 1993-09-09 2002-06-20 Aventis Cropscience Gmbh Kombination von DNA-Sequenzen, die in Pflanzenzellen und Pflanzen die Bildung hochgradig amylosehaltiger Stärke ermöglichen, Verfahren zur Herstellung dieser Pflanzen und die daraus erhaltbare modifizierte Stärke
DE19509695A1 (de) * 1995-03-08 1996-09-12 Inst Genbiologische Forschung Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202396A (ja) * 1987-02-18 1988-08-22 Ezaki Glyco Kk N−アセチルグルコサミン、グルコサミン、マンノ−ス又はアロ−スを末端に含む少糖類の製造方法
WO1995007355A1 (en) * 1993-09-09 1995-03-16 Institut Für Genbiologische Forschung Berlin Gmbh Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8839, Derwent World Patents Index; Class D17, AN 88-275344, XP002005944 *
MUELLER-ROEBER B ET AL: "Approaches to influence starch quantity and starch quality in transgenic plants.", PLANT CELL AND ENVIRONMENT 17 (5). 1994. 601-613. ISSN: 0140-7791, XP002005943 *
TAKAHA T ET AL: "DISPROPORTIONATING ENZYME 4-ALPHA GLUCANOTRANSFERASE EC 2.4.1.25 OF POTATO PURIFICATION MOLECULAR CLONING AND POTENTIAL ROLE IN STARCH METABOLISM.", J BIOL CHEM 268 (2). 1993. 1391-1396., XP002005942 *

Cited By (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825342B1 (en) 1995-05-05 2004-11-30 National Starch And Chemical Investment Holding Corporation Plant starch composition
US7569744B2 (en) 1995-09-19 2009-08-04 Bayer Bioscience Gmbh Plants which synthesize a modified starch, process for the production thereof and modified starch
US7897760B2 (en) 1995-09-19 2011-03-01 Bayer Bioscience Gmbh Plants which synthesize a modified starch, process for the production thereof and modified starch
US7176190B2 (en) 1995-09-19 2007-02-13 Bayer Bioscience Gmbh Plants which synthesize a modified starch, process for the production thereof and modified starch
US8586722B2 (en) 1995-09-19 2013-11-19 Bayer Cropscience Ag Methods of using tubers having genetically modified potato plant cells
WO1998045459A1 (en) * 1997-04-09 1998-10-15 E.I. Du Pont De Nemours And Company Plant 4-alpha-glucanotransferases
FR2779740A1 (fr) * 1998-06-16 1999-12-17 Biogemma Fr Procede d'obtention d'amidon modifie
WO1999066056A1 (fr) * 1998-06-16 1999-12-23 Biogemma Procede d'obtention de polysaccharides modifies
AU772062B2 (en) * 1998-06-16 2004-04-08 Biogemma Method for obtaining modified polysaccharides
US8895804B2 (en) 2004-03-05 2014-11-25 Bayer Cropscience Ag Plants with increased activity of a starch phosphorylating enzyme
US7919682B2 (en) 2004-03-05 2011-04-05 Bayer Cropscience Ag Plants with reduced activity of a starch phosphorylating enzyme
US8269063B2 (en) 2004-03-05 2012-09-18 Bayer Cropscience Ag Methods for identifying proteins with starch phosphorylating enzymatic activity
WO2005095619A1 (en) * 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with increased activity of multiple starch phosphorylating enzymes
JP2007525987A (ja) * 2004-03-05 2007-09-13 バイエル クロップサイエンス ゲーエムベーハー 複数のデンプンリン酸化酵素の活性が増大した植物
AU2005229364B2 (en) * 2004-03-05 2011-04-07 Bayer Intellectual Property Gmbh Plants with increased activity of multiple starch phosphorylating enzymes
US7772463B2 (en) 2004-03-05 2010-08-10 Bayer Cropscience Ag Plants with increased activity of a starch phosphorylating enzyme
US8257502B2 (en) 2004-03-05 2012-09-04 Bayer Cropscience Ag Plants with reduced activity of a starch phosphorylating enzyme
US7932436B2 (en) 2004-03-05 2011-04-26 Bayer CropCcience AG Plants with increased activity of multiple starch phosphorylating enzymes
US9327285B2 (en) 2004-03-05 2016-05-03 Bayer Intellectual Property Gmbh Plants with increased activity of a starch phosphorylating enzyme
US8007592B2 (en) 2004-03-05 2011-08-30 Bayer Cropscience Ag Plants with increased activity of a starch phosphorylating enzyme
JP2013066481A (ja) * 2004-03-05 2013-04-18 Bayer Cropscience Ag 複数のデンプンリン酸化酵素の活性が増大した植物
US8748662B2 (en) 2007-03-12 2014-06-10 Bayer Cropscience Ag 4-cycloalkyl or 4-aryl substituted phenoxyphenylamidines and use thereof as fungicides
US8299302B2 (en) 2007-03-12 2012-10-30 Bayer Cropscience Ag 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides
US8394991B2 (en) 2007-03-12 2013-03-12 Bayer Cropscience Ag Phenoxy substituted phenylamidine derivatives and their use as fungicides
US8334237B2 (en) 2007-03-12 2012-12-18 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
US9199922B2 (en) 2007-03-12 2015-12-01 Bayer Intellectual Property Gmbh Dihalophenoxyphenylamidines and use thereof as fungicides
US8519003B2 (en) 2007-03-12 2013-08-27 Bayer Cropscience Ag Phenoxyphenylamidines as fungicides
US8785692B2 (en) 2007-03-12 2014-07-22 Bayer Cropscience Ag Substituted phenylamidines and the use thereof as fungicides
DE102007045920B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistische Wirkstoffkombinationen
DE102007045919B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045956A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
US8455480B2 (en) 2007-09-26 2013-06-04 Bayer Cropscience Ag Active agent combinations having insecticidal and acaricidal properties
DE102007045953B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045919A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
EP2072506A1 (de) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine oder Thiadiazolyloxyphenylamidine und deren Verwendung als Fungizide
EP2090168A1 (de) 2008-02-12 2009-08-19 Bayer CropScience AG Methode zur Verbesserung des Pflanzenwachstums
EP2168434A1 (de) 2008-08-02 2010-03-31 Bayer CropScience AG Verwendung von Azolen zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
EP2374791A1 (de) 2008-08-14 2011-10-12 Bayer CropScience Aktiengesellschaft Insektizide 4-Phenyl-1H-pyrazole
DE102008041695A1 (de) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methoden zur Verbesserung des Pflanzenwachstums
EP2201838A1 (de) 2008-12-05 2010-06-30 Bayer CropScience AG Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften
EP2198709A1 (de) 2008-12-19 2010-06-23 Bayer CropScience AG Verfahren zur Bekämpfung resistenter tierischer Schädlinge
WO2010075994A1 (en) 2008-12-29 2010-07-08 Bayer Cropscience Aktiengesellschaft Treatment of transgenic crops with mixtures of fiproles and chloronicotinyls
EP2204094A1 (de) 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2039772A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039771A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039770A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2227951A1 (de) 2009-01-23 2010-09-15 Bayer CropScience AG Verwendung von Enaminocarbonylverbindungen zur Bekämpfung von durch Insekten übertragenen Viren
WO2010083955A2 (de) 2009-01-23 2010-07-29 Bayer Cropscience Aktiengesellschaft Verwendung von enaminocarbonylverbindungen zur bekämpfung von durch insekten übertragenen virosen
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
WO2010086095A1 (en) 2009-01-29 2010-08-05 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants introduction
EP2218717A1 (de) 2009-02-17 2010-08-18 Bayer CropScience AG Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative
WO2010094666A2 (en) 2009-02-17 2010-08-26 Bayer Cropscience Ag Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
WO2010094728A1 (en) 2009-02-19 2010-08-26 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
EP2223602A1 (de) 2009-02-23 2010-09-01 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials genetisch modifizierter Pflanzen
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2239331A1 (de) 2009-04-07 2010-10-13 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2251331A1 (de) 2009-05-15 2010-11-17 Bayer CropScience AG Fungizide Pyrazolcarboxamid-Derivate
EP3000809A1 (de) 2009-05-15 2016-03-30 Bayer Intellectual Property GmbH Fungizide pyrazolcarboxamidderivate
EP2255626A1 (de) 2009-05-27 2010-12-01 Bayer CropScience AG Verwendung von Succinat Dehydrogenase Inhibitoren zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
WO2011006603A2 (de) 2009-07-16 2011-01-20 Bayer Cropscience Ag Synergistische wirkstoffkombinationen mit phenyltriazolen
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
WO2011035834A1 (en) 2009-09-02 2011-03-31 Bayer Cropscience Ag Active compound combinations
EP2292094A1 (de) 2009-09-02 2011-03-09 Bayer CropScience AG Wirkstoffkombinationen
EP2343280A1 (de) 2009-12-10 2011-07-13 Bayer CropScience AG Fungizid-Chinolinderivate
WO2011080255A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011080256A1 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011089071A2 (de) 2010-01-22 2011-07-28 Bayer Cropscience Ag Akarizide und/oder insektizide wirkstoffkombinationen
WO2011107504A1 (de) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoralkyl- substituierte 2 -amidobenzimidazole und deren verwendung zur steigerung der stresstoleranz in pflanzen
WO2011124554A2 (de) 2010-04-06 2011-10-13 Bayer Cropscience Ag Verwendung der 4-phenylbuttersäure und/oder ihrer salze zur steigerung der stresstoleranz in pflanzen
WO2011124553A2 (de) 2010-04-09 2011-10-13 Bayer Cropscience Ag Verwendung von derivaten der (1-cyancyclopropyl)phenylphosphinsäure, deren ester und/oder deren salze zur steigerung der toleranz in pflanzen gegenüber abiotischem stress
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2011134912A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
WO2011151368A2 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2011151370A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues
WO2011151369A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
WO2011154158A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2011154159A1 (en) 2010-06-09 2011-12-15 Bayer Bioscience N.V. Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
WO2012010579A2 (en) 2010-07-20 2012-01-26 Bayer Cropscience Ag Benzocycloalkenes as antifungal agents
WO2012028578A1 (de) 2010-09-03 2012-03-08 Bayer Cropscience Ag Substituierte anellierte pyrimidinone und dihydropyrimidinone
WO2012038476A1 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of active ingredients for controlling nematodes in nematode-resistant crops
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
WO2012045798A1 (en) 2010-10-07 2012-04-12 Bayer Cropscience Ag Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative
WO2012052489A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag 1-(heterocyclic carbonyl) piperidines
WO2012052490A1 (en) 2010-10-21 2012-04-26 Bayer Cropscience Ag N-benzyl heterocyclic carboxamides
WO2012059497A1 (en) 2010-11-02 2012-05-10 Bayer Cropscience Ag N-hetarylmethyl pyrazolylcarboxamides
WO2012065947A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazolecarboxamides
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
WO2012065944A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag N-aryl pyrazole(thio)carboxamides
WO2012065945A1 (en) 2010-11-15 2012-05-24 Bayer Cropscience Ag 5-halogenopyrazole(thio)carboxamides
WO2012072660A1 (en) 2010-12-01 2012-06-07 Bayer Cropscience Ag Use of fluopyram for controlling nematodes in crops and for increasing yield
WO2012072696A1 (de) 2010-12-01 2012-06-07 Bayer Cropscience Ag Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP3103338A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
EP3092900A1 (de) 2010-12-01 2016-11-16 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP2460406A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen
EP3103334A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP3103339A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
EP3103340A1 (de) 2010-12-01 2016-12-14 Bayer Intellectual Property GmbH Wirkstoffkombinationen umfassend pyridylethylbenzamide und weitere wirkstoffe
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2474542A1 (de) 2010-12-29 2012-07-11 Bayer CropScience AG Fungizide Hydroximoyl-Tetrazol-Derivate
WO2012089722A2 (de) 2010-12-30 2012-07-05 Bayer Cropscience Ag Verwendung von offenkettigen aryl-, heteroaryl- und benzylsulfonamidocarbonsäuren, -carbonsäureestern, -carbonsäureamiden und -carbonitrilen oder deren salze zur steigerung der stresstoleranz in pflanzen
WO2012089721A1 (de) 2010-12-30 2012-07-05 Bayer Cropscience Ag Verwendung von substituierten spirocyclischen sulfonamidocarbonsäuren, deren carbonsäureestern, deren carbonsäureamiden und deren carbonitrilen oder deren salze zur steigerung der stresstoleranz in pflanzen
EP2494867A1 (de) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituierte Verbindungen in Kombination mit Fungiziden
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
WO2012123434A1 (en) 2011-03-14 2012-09-20 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
WO2012139892A1 (de) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituierte 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-diene und 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress
EP2511255A1 (de) 2011-04-15 2012-10-17 Bayer CropScience AG Substituierte Prop-2-in-1-ol- und Prop-2-en-1-ol-Derivate
WO2012139890A1 (de) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituierte 5-(cyclohex-2-en-1-yl)-penta-2,4-diene und 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ine als wirkstoffe gegen abiotischen pflanzenstress
WO2012139891A1 (de) 2011-04-15 2012-10-18 Bayer Cropscience Ag Substituierte vinyl- und alkinyl-cyclohexenole als wirkstoffe gegen abiotischen pflanzenstress
EP2997825A1 (de) 2011-04-22 2016-03-23 Bayer Intellectual Property GmbH Wirkstoffkombinationen mit einem (thio)carboxamidderivat und einer fungiziden verbindung
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
WO2013004652A1 (de) 2011-07-04 2013-01-10 Bayer Intellectual Property Gmbh Verwendung substituierter isochinolinone, isochinolindione, isochinolintrione und dihydroisochinolinone oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013020985A1 (en) 2011-08-10 2013-02-14 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
WO2013026836A1 (en) 2011-08-22 2013-02-28 Bayer Intellectual Property Gmbh Fungicide hydroximoyl-tetrazole derivatives
US9670496B2 (en) 2011-08-22 2017-06-06 Bayer Cropscience N.V. Methods and means to modify a plant genome
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
US10538774B2 (en) 2011-08-22 2020-01-21 Basf Agricultural Solutions Seed, Us Llc Methods and means to modify a plant genome
EP2561759A1 (de) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoralkyl-substituierte 2-amidobenzimidazole und ihre Wirkung auf das Pflanzenwachstum
WO2013034621A1 (en) 2011-09-09 2013-03-14 Bayer Intellectual Property Gmbh Acyl-homoserine lactone derivatives for improving plant yield
WO2013037717A1 (en) 2011-09-12 2013-03-21 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives
WO2013037956A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield
WO2013037958A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of phenylpyrazolin-3-carboxylates for improving plant yield
WO2013037955A1 (en) 2011-09-16 2013-03-21 Bayer Intellectual Property Gmbh Use of acylsulfonamides for improving plant yield
WO2013041602A1 (de) 2011-09-23 2013-03-28 Bayer Intellectual Property Gmbh Verwendung 4-substituierter 1-phenyl-pyrazol-3-carbonsäurederivate als wirkstoffe gegen abiotischen pflanzenstress
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013050324A1 (de) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Abiotischen pflanzenstress-reduzierende kombination enthaltend 4- phenylbuttersäure (4-pba) oder eines ihrer salze (komponente (a)) und eine oder mehrere ausgewählte weitere agronomisch wirksame verbindungen (komponente(n) (b)
WO2013075817A1 (en) 2011-11-21 2013-05-30 Bayer Intellectual Property Gmbh Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
WO2013079566A2 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
WO2013098147A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013098146A1 (en) 2011-12-29 2013-07-04 Bayer Intellectual Property Gmbh Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
WO2013124275A1 (en) 2012-02-22 2013-08-29 Bayer Cropscience Ag Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape.
WO2013127704A1 (en) 2012-02-27 2013-09-06 Bayer Intellectual Property Gmbh Active compound combinations containing a thiazoylisoxazoline and a fungicide
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
WO2013153143A1 (en) 2012-04-12 2013-10-17 Bayer Cropscience Ag N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2013156560A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
EP2662362A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
WO2013167544A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag 5-halogenopyrazole indanyl carboxamides
EP2662363A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Biphenyl-Carboxamide
EP2662364A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Tetrahydronaphthyl-Carboxamide
EP2662361A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662360A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Indanyl-Carboxamide
EP2662370A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Benzofuranyl-Carboxamide
WO2013167545A1 (en) 2012-05-09 2013-11-14 Bayer Cropscience Ag Pyrazole indanyl carboxamides
WO2013174836A1 (en) 2012-05-22 2013-11-28 Bayer Cropscience Ag Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
WO2014037340A1 (de) 2012-09-05 2014-03-13 Bayer Cropscience Ag Verwendung substituierter 2-amidobenzimidazole, 2-amidobenzoxazole und 2-amidobenzothiazole oder deren salze als wirkstoffe gegen abiotischen pflanzenstress
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014079789A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Active compound combinations
WO2014079957A1 (de) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selektive inhibition der ethylensignaltransduktion
EP2735231A1 (de) 2012-11-23 2014-05-28 Bayer CropScience AG Wirkstoffkombinationen
WO2014082950A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal mixtures
WO2014083089A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
WO2014083033A1 (en) 2012-11-30 2014-06-05 Bayer Cropsience Ag Binary fungicidal or pesticidal mixture
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
WO2014083031A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
EP2740356A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-insäure-Derivate
EP2740720A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte bicyclische- und tricyclische Pent-2-en-4-insäure -Derivate und ihre Verwendung zur Steigerung der Stresstoleranz in Pflanzen
WO2014086751A1 (de) 2012-12-05 2014-06-12 Bayer Cropscience Ag Verwendung substituierter 1-(arylethinyl)-, 1-(heteroarylethinyl)-, 1-(heterocyclylethinyl)- und 1-(cyloalkenylethinyl)-cyclohexanole als wirkstoffe gegen abiotischen pflanzenstress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
WO2014095826A1 (en) 2012-12-18 2014-06-26 Bayer Cropscience Ag Binary fungicidal and bactericidal combinations
WO2014095677A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides
WO2014135608A1 (en) 2013-03-07 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
WO2014167008A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazolinthione derivatives
WO2014167009A1 (en) 2013-04-12 2014-10-16 Bayer Cropscience Ag Novel triazole derivatives
WO2014170345A2 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
WO2014177582A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides
WO2014206953A1 (en) 2013-06-26 2014-12-31 Bayer Cropscience Ag N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
WO2015004040A1 (de) 2013-07-09 2015-01-15 Bayer Cropscience Ag Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress
WO2015082587A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2015082586A1 (en) 2013-12-05 2015-06-11 Bayer Cropscience Ag N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
WO2016012362A1 (de) 2014-07-22 2016-01-28 Bayer Cropscience Aktiengesellschaft Substituierte cyano-cycloalkylpenta-2,4-diene, cyano-cycloalkylpent-2-en-4-ine, cyano-heterocyclylpenta-2,4-diene und cyano-heterocyclylpent-2en-4-ine als wirkstoffe gegen abiotischen pflanzenstress
WO2016096942A1 (de) 2014-12-18 2016-06-23 Bayer Cropscience Aktiengesellschaft Verwendung ausgewählter pyridoncarboxamide oder deren salzen als wirkstoffe gegen abiotischen pflanzenstress
WO2016166077A1 (en) 2015-04-13 2016-10-20 Bayer Cropscience Aktiengesellschaft N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
US11180751B2 (en) 2015-06-18 2021-11-23 The Broad Institute, Inc. CRISPR enzymes and systems
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
WO2018054832A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
WO2018104392A1 (en) 2016-12-08 2018-06-14 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
WO2018108627A1 (de) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Verwendung substituierter indolinylmethylsulfonamide oder deren salze zur steigerung der stresstoleranz in pflanzen
EP3332645A1 (de) 2016-12-12 2018-06-13 Bayer Cropscience AG Verwendung substituierter pyrimidindione oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes
WO2019025153A1 (de) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Verwendung von substituierten n-sulfonyl-n'-aryldiaminoalkanen und n-sulfonyl-n'-heteroaryldiaminoalkanen oder deren salzen zur steigerung der stresstoleranz in pflanzen
WO2019060746A1 (en) 2017-09-21 2019-03-28 The Broad Institute, Inc. SYSTEMS, METHODS, AND COMPOSITIONS FOR THE TARGETED EDITING OF NUCLEIC ACIDS
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
US11999767B2 (en) 2018-04-03 2024-06-04 The Broad Institute, Inc. Target recognition motifs and uses thereof
WO2019233863A1 (de) 2018-06-04 2019-12-12 Bayer Aktiengesellschaft Herbizid wirksame bizyklische benzoylpyrazole
WO2020131862A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof

Also Published As

Publication number Publication date
HUP9801855A2 (hu) 1998-11-30
AU713917B2 (en) 1999-12-16
EP0813605A1 (de) 1997-12-29
DE19509695A1 (de) 1996-09-12
JPH11501213A (ja) 1999-02-02
US6610843B1 (en) 2003-08-26
US6162966A (en) 2000-12-19
CA2214736A1 (en) 1996-09-12
PL322142A1 (en) 1998-01-05
AU5104196A (en) 1996-09-23
HUP9801855A3 (en) 2000-12-28

Similar Documents

Publication Publication Date Title
WO1996027674A1 (de) Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
EP0791066B1 (de) Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
DE69737507T2 (de) Neue nukleinsäuremoleküle aus mais und deren verwendung zur herstellung modifizierter stärke
EP1200615B8 (de) Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP0851934B1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
EP1078088B1 (de) Transgene pflanzen mit veränderter aktivität eines plastidären adp/atp - translokators
DE60037191T2 (de) Genetisch modifizierte pflanzenzellen und pflanzen mit einer erhöhten aktivität eines amylosucrase-proteins und eines verzweigungsenzyms
EP0874908B1 (de) Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP0900277A1 (de) Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
WO2000008175A2 (de) NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
WO2000008185A1 (de) Nukleinsäuremoleküle kodierend für beta-amylase, pflanzen, die eine modifizierte stärke synthetisieren, herstellungsverfahren und verwendungen
DE19608918A1 (de) Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Mais codieren
EP1203087A2 (de) Transgene pflanzenzellen und pflanzen mit veränderter aktivität des gbssi- und des be-proteins
EP1100937A1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
EP1707632A1 (de) Phosphorylierte waxy-Kartoffelstärke
DE19534759A1 (de) Pflanzen, die eine modifizierte Stärke synthetisieren, sowie Verfahren zu ihrer Herstellung
DE19547733A1 (de) Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zu ihrer Herstellung sowie modifizierte Stärke

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA HU JP PL SI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2214736

Country of ref document: CA

Ref country code: CA

Ref document number: 2214736

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 526617

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996907401

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996907401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08913671

Country of ref document: US

ENP Entry into the national phase

Ref country code: US

Ref document number: 1998 913671

Date of ref document: 19980203

Kind code of ref document: A

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 1996907401

Country of ref document: EP