WO1996023750A1 - Verfahren zur herstellung von olefin-oligomeren - Google Patents

Verfahren zur herstellung von olefin-oligomeren

Info

Publication number
WO1996023750A1
WO1996023750A1 PCT/EP1996/000233 EP9600233W WO9623750A1 WO 1996023750 A1 WO1996023750 A1 WO 1996023750A1 EP 9600233 W EP9600233 W EP 9600233W WO 9623750 A1 WO9623750 A1 WO 9623750A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin oligomers
catalyst systems
substituents
metallocene
oligomers
Prior art date
Application number
PCT/EP1996/000233
Other languages
English (en)
French (fr)
Inventor
Stefan Seelert
Hans-Joachim Müller
Bernd Lothar Marczinke
Franz Langhauser
Christoph Janiak
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP96901315A priority Critical patent/EP0807097A1/de
Publication of WO1996023750A1 publication Critical patent/WO1996023750A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Definitions

  • the present invention relates to an improved process for the preparation of olefin oligomers by oligomerization of olefins in the presence of metallocene catalyst systems.
  • the invention further relates to olefin oligomers obtainable by a process according to claims 1 to 3, and the use of the oligomers for the production of lubricants and fuel additives.
  • Olefin oligomers are valuable starting products for the production of fuel and oil additives, lubricants and plasticizers. They can also be used as macromonomers.
  • modified products such as lubricants
  • olefin oligomers have a relatively high molecular weight
  • EP-A 0 596 553 describes olefin oligomerizations with metallocene catalysts, the two cyclopentadienyl ligands of which are differently alkyl-substituted.
  • EP-A 0 540 108 describes the preparation of olefin oligomers with metallocene catalysts which are aryl-substituted.
  • Another disadvantage here is that very special, preparative complex metallocene complexes are used as catalyst components and that the productivity of the catalyst systems leaves something to be desired.
  • EP-A 0 257 696 describes the oligomerization of ⁇ -olefins with metallocene catalysts. With this method, however, only dimers are formed. The object of the present invention was therefore to improve. Providing processes for the production of olefin oligomers having a relatively high molecular weight Mw from olefins using easily accessible catalyst systems.
  • M is a titanium, zirconium or hafnium atom
  • X 1 , X 2 a formally negatively charged leaving atom or a formally negatively charged leaving group
  • linear and ring-shaped ones with 2 to 12 C atoms are generally suitable, for example ⁇ -olefins such as ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 4-methylpentene-1 or vinylcyclohexane, and also olefins with an internal double bond such as E- and Z-2-butene, E- and Z-2-pentene, E- and Z -3-witches.
  • ⁇ -olefins such as ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 4-methylpentene-1 or vinylcyclohexane
  • olefins with an internal double bond
  • Cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclonones, cyclodecene and norbornene are suitable as cycloolefins.
  • C 2 - to C - ⁇ -01efins, such as ethylene, propene, 1-butene and in particular propene, are preferably used.
  • oligomerize mixtures of different olefins having 2 to 12 carbon atoms In addition to the pure olefins, it is of course also possible to oligomerize mixtures of different olefins having 2 to 12 carbon atoms.
  • the molar ratio of the individual olefin components to one another is generally not critical if one considers that the amount of ethylene units in the cooligomers is generally 0.01 to 5 mol%, preferably 0.01 to 3 mol%, in total is particularly 0.01 to 2 mol%.
  • the metallocene component I of the catalyst system is a so-called titanocene-zirconocene and hafnocene derivative, hence complexes of titanium, zirconium and hafnium, in which the metal atom M is bonded between two substituted cyclopentadienyl groups, the remaining valences of the central atom M are saturated by easily exchangeable leaving atoms or leaving groups X.
  • Suitable metallocene complexes are those with the general formula [C 5 H ( 5 _ P ) R P ] [CsHs.MXiX 2 I, in which M is titanium, zirconium or hafnium, preferably zirconium.
  • [C 5 H 5 ] stands for the unsubstituted cyclopentadienyl ligand.
  • [C 5 H ( 5 _ P ) R p ] stands for a cyclopentadienyl ligand substituted with bulky C 3 to C 30 hydrocarbon or organosilicon radicals R.
  • a bulky radical is generally understood to mean a substituent which is preferably but not necessarily branched to the ring atom in the ⁇ or higher position.
  • R thus stands for all bulky aliphatic and aromatic carbon-organic and silicon-organic groups with at least 3 carbon atoms, such as i-propyl, i-butyl, sec-butyl, tert-butyl, neo-pentyl , Cyclohexyl, 2, 6-dimethylphenyl, 2,6-di-tert-butylphenyl, 2,6-di-tert-butyl-4-methylphenyl, 2,4,6-trimethylphenyl, 2,4,6 -Tri-tert-butyl-phenyl, benzyl, neophyl, trimethylsilyl, triethylsilyl, triphenylsilyl, tritolylsilyl and tert-butyldimethylsilyl.
  • R is preferably tert-butyl and trimethylsilyl and in particular tert-butyl.
  • substituents on the ring may be 2 to 5 such substituents attached to the cyclopentadienyl moiety, the position of the substituents on the ring not being critical.
  • Three substituents on the ring are preferably bonded in positions 1,2,4, two substituents on the ring in 1,3 positions.
  • X 1 , X 2 of the metallocene complexes of the general formula I may be mentioned: hydrogen, halogen such as fluorine, bromine, iodine and preferably chlorine.
  • halogen such as fluorine, bromine, iodine and preferably chlorine.
  • alcoholates such as methanolate, ethanolate, n- and i-propanolate, phenolate, trifluoromethylphenolate, naphtholate, silanolate may be mentioned.
  • X 1 , X 2 are particularly aliphatic C 1 -C 10 -alkyl radicals, in particular methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neo -Pentyl, hexyl, preferably methyl, tert-butyl and neo-pentyl.
  • alicyclic C 3 to C 2 hydrocarbon radicals such as cyclopropyl, cyclobutyl, cyclopentyl and in particular cyclohexyl or C 5 to C 2 o-bicycloalkyl, such as bicyclopentyl, and in particular bicycloheptyl and bicyclooctyl.
  • substituents X 1 , x 2 with aromatic structural units are C theory to cis aryl, preferably phenyl, or naphthyl, alkyl aryl or arylalkyl, each having 1 to 10 C atoms in the alkyl radical and 6 to 20 C atoms in the aryl radical such as tolyl, benzyl.
  • metallocene complexes I are: [cyclopentadienyl (1,3-di-tert-butylcyclopentadienyl)] zirconium dichloride, [cyclopentadienyl (1,3-bis (trimethylsilyl) cyclopentadienyl)] zirconium dichloride, [cyclopentadienyl (1, 3-di-isopropylcyclopentadienyl)] zirconium dichloride.
  • the metallocene complexes of the general formula I can be prepared in a simple manner by known processes, e.g. Brauer (ed.): Handbuch der preparative inorganic chemistry, volume 2, 3rd editions, pages 1395 to 1397, Enke, Stuttgart 1978.
  • a preferred process is based on the lithium salts of the appropriately substituted cyclopentadienyls, which are reacted with the monocyclopentadienyl transition metal halides.
  • the catalyst systems according to the invention also contain activators B) which are known per se and are also called cocatalysts in the literature. In general, they alkylate the transition metal component A) of Catalyst system and / or abstract a ligand X 1 or X 2 from the transition metal component, so that ultimately a catalyst system for the oligomerization of olefinically unsaturated hydrocarbons can arise.
  • activators B which are known per se and are also called cocatalysts in the literature. In general, they alkylate the transition metal component A) of Catalyst system and / or abstract a ligand X 1 or X 2 from the transition metal component, so that ultimately a catalyst system for the oligomerization of olefinically unsaturated hydrocarbons can arise.
  • organometallic compounds of the 1st to 3rd main group or the 2nd subgroup of the periodic table are suitable for these tasks, but other acceptor compounds such as, for example, carbocation salts
  • activator compounds are aluminum organyl, boron organyle and carbocation salts.
  • Open-chain or cyclic alumoxane compounds of the general formula II or III are preferred, which can be obtained according to US Pat. No. 4,794,096 by reacting aluminum trialkyls with water.
  • R i is a C_ to C ß alkyl group, preferably methyl or ethyl group and m is an integer from 5 to 30, preferably 10 to 25.
  • the oligomeric alumoxane compounds are present as mixtures of both linear and cyclic chain molecules of different lengths, so that m is to be regarded as the mean.
  • R 2 is hydrogen, C, ⁇ to Cio-alkyl, preferably C ⁇ ⁇ to C - alkyl, especially methyl, ethyl, butyl and iso-butyl.
  • R 2 can also represent arylalkyl or alkylaryl, each having 1 to 10 carbon atoms in the alkyl radical and 6 to 20 carbon atoms in the aryl radical.
  • Aluminum alkyls A1 are furthermore suitable in which R 2 can mean fluorine, chlorine, bromine or iodine in addition to the radicals defined above, with the proviso that at least one radical R 2 is a C-organic radical or is a hydrogen atom.
  • Particularly preferred compounds are trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, diisobutyl aluminum hydride, diethyl aluminum chloride.
  • organic compounds are also very suitable as activators, for example tris-arylboron compounds, preferably tris (pentafluorophenyDbor, furthermore salts of carbonium ions, preferably triphenylmethyltetraarylborate, in particular triphenylmethyltetra (pentafluorophenyl) borate.
  • tris-arylboron compounds preferably tris (pentafluorophenyDbor, furthermore salts of carbonium ions, preferably triphenylmethyltetraarylborate, in particular triphenylmethyltetra (pentafluorophenyl) borate.
  • Al, B or C compounds mentioned are known or can be obtained in a manner known per se.
  • the activators can be used alone or as mixtures in the catalyst system.
  • the activator component B) is preferably used in a molar excess with respect to the metal complex A).
  • the molar ratio of activator B) to metal complex A) is generally 100: 1 to 10000: 1, preferably 200: 1 to 1000: 1.
  • the constituents of the catalyst systems according to the invention can be introduced into the oligomerization reactor individually or as a mixture in any order.
  • the metallocene complex is preferably mixed with at least one activator component before it enters the reactor, that is to say preactivated.
  • the oligomers according to the invention can be prepared in the conventional reactors used for the oligomerization of olefins, either batchwise or preferably continuously.
  • Suitable reactors include continuously operated stirred kettles, it also being possible to use a series of several stirred kettles connected in series.
  • the oligomerization can be carried out in the gas phase, in a suspension, in liquid monomers and in inert solvents.
  • solvents in particular liquid hydrocarbons such as benzene, ethylbenzene or toluene are used.
  • the oligomeric aluminoxane compound preferably as a solution in toluene
  • the olefin with 2 to 12 carbon atoms is added and the temperature is raised.
  • the mixture is oligomerized for 20 to 800 minutes, preferably 40 to 500 minutes.
  • the temperatures here are from 0 to 250 ° C., preferably from 20 to 200 ° C., and the work is carried out at pressures from 100 to 300,000 kPa, preferably in the range from 100 to 10,000 kPa and in particular in the range from 100 to 4000 kPa.
  • the oligomerization can therefore be carried out using the low-pressure, medium-pressure and high-pressure processes.
  • the amount of catalyst used is not critical.
  • oligomers with molecular weights Mw (weight average) of generally 100 to 20,000, preferably 100 to 10,000, in particular 100 to 8000, which have a high content of terminal vinylidene double bonds.
  • the degree of polymerization of the olefin oligomers is generally in the range from 2 to 500, preferably in the range from 2 to 300.
  • the molecular weight distribution Mw / Mn (weight average / number average), measured with the method of gel permeation chromatography (GPC) at 35 ° C. with polystyrene gel as column material and THF as solvent against the polystyrene standard of the olefin oligomers thus obtained, is in generally 2 to 3.5, preferably 2 to 3.
  • the olefin oligomers obtained in this way can be further processed with the usual chemical reactions, such as hydoformylation or hydroamination or a combination of both methods, to functionalized oligo-olefins which are suitable, for example, as lubricants or fuel or oil additives are. Because of their double bond content, the olefin oligomers obtained can also be used as macromonomers.
  • the mixture was then oligomerized for 60 minutes, the reactor was depressurized and 33.1 g of propene oligomer were isolated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Verfahren zur Herstellung von Olefin-Oligomeren durch Oligomerisierung von Olefinen in Gegenwart von Metallocenkatalysatorsystemen, wobei man Katalysatorsysteme Metallocenkomplexe der allgemeinen Formel (I) [C5H(5-p)Rp][C5H5]MX1X2, in welcher R sperrige Reste bedeutet, verwendet. Die Olefin-Oligomeren sind als Ausgangsstoffe zur Herstellung von Schmierstoffen, Kraftstoff- und Öladditiven, sowie als Makromonomere geeignet.

Description

Verfahren zur Herstellung von Olefin-Oligomeren
Beschreibung
Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Olefin-Oligomeren durch Oligomerisierung von Ole- finen in Gegenwart von Metallocenkatalysatorsystemen.
Weiterhin betrifft die Erfindung Olefin-Oligomeren erhältlich nach einem Verfahren gemäß den Ansprüchen 1 bis 3, sowie die Ver¬ wendung der Oligomeren zur Herstellung von Schmierstoffen und Kraftstoffadditiven.
Olefin-Oligomere sind wertvolle Ausgangsprodukte für die Herstel¬ lung von Kraftstoff- und Öladditiven, Schmierstoffen und Weichma¬ chern. Weiterhin können sie als Makromonomere eingesetzt werden.
Es ist im allgemeinen vorteilhaft, wenn die aus den Olefin-Oligo- meren erhältlichen modifizierten Produkte, wie zum Beispiel Schmierstoffe, ein relativ hohes Molekulargewicht haben.
Daher ist es im allgemeinen vorteilhaft, wenn die AusgangsStoffe selbst, also die Olefin-Oligomerenmischung, bereits ein relativ hohes Molekulargewicht aufweisen.
Die EP-A 0 596 553 beschreibt Olefin-Oligomerisierungen mit Metallocenkatalysatoren, deren beide Cyclopentadienyl-Liganden unterschiedlich Alkyl-substituiert sind.
Nachteilig ist, daß Oligo ere mit niedrigem Molekulargewicht er¬ halten werden, daß sehr spezielle, präparativ aufwendige Metallocenkomplexe als Katalysatorbestandteile verwendet werden und daß die Produktivität der Katalysatorsysteme zu wünschen übrig läßt.
Die EP-A 0 540 108 beschreibt die Herstellung von Olefin-Oligome¬ ren mit Metallocen-Katalysatoren die Aryl-substituiert sind.
Nachteilig ist hier ebenfalls, daß sehr spezielle, präparativ aufwendige Metallocenkomplexe als Katalysatorbestandteile verwendet werden und daß die Produktivität der Katalysatorsysteme zu wünschen übrig läßt.
Die EP-A 0 257 696 beschreibt die Oligomerisierung von α-Olefinen mit Metallocen-Katalysatoren. Es werden mit diesem Verfahren je¬ doch nur Dimere gebildet. Aufgabe der vorliegenden Erfindung war es daher, ein verbessertet. Verfahren zur Herstellung von Olefin-Oligomeren mit einem relativ hohen Molekulargewicht Mw aus Olefinen unter Verwendung leicht zuganglicher Katalysatorsysteme bereitzustellen.
Demgemäß wurde ein Verfahren zur Herstellung von Olefin-Oligome¬ ren durch Oligomerisierung von Olefinen in Gegenwart von Metallocenkatalysatorsystemen gefunden, wobei man Katalysator¬ systeme verwendet, welche als aktive Bestandteile
A) Metallocenkomplexe der allgemeinen Formel I
[C5H(5_p)Rp] [C5H5]MX1X2 I
in der die Substituenten und Indizes folgende Bedeutung ha¬ ben:
[C5H5] eine Cyclopentadienyleinheit
[C5H(5_p)Rp. eine mit sperrigen C - bis C3o-Kohlenstoff- oder Silicium-organischen Resten R substi¬ tuierte Cyclopentadienyleinheit p ein ganzzahliger Wert von 2 bis 5
M ein Titan-, Zirconium- oder Hafniumatom
X1, X2 ein formal negativ geladenes Abgangsatom oder eine formal negativ geladene Abgangs- gruppe
und
B) eine Akzeptorverbindung für die Substituenten X1, X2 der Kom¬ ponente A) als Aktivator
enthalten.
Außerdem wurden die Olefin-Oligomeren erhältlich mit dem Verfah¬ ren gemäß der Ansprüche 1 bis 3 gefunden, sowie die Verwendung der Oligomeren zur Herstellung von Schmierstoffen und Kraftstoff¬ additiven.
Von den Olefinen sind generell lineare und ringförmige mit 2 bis 12 C-Atomen geeignet, also beispielsweise α-Olefine wie Ethylen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen 1-Nonen, 1-Decen, 1-Undecen, 1-Dodecen, 4-Methylpenten-l oder Vinylcyclo- hexan, sowie Olefine mit interner Doppelbindung wie E- und Z-2-Buten, E- und Z-2-Penten, E-und Z-3-Hexen. Als Cycloolefine eignen sich gut Cyclopropen, Cyclobuten, Cyclopenten, Cyclohexen, Cyclohepten, Cycloocten, Cyclononen, Cyclodecen und Norbornen. Vorzugsweise verwendet man C2- bis C -α-01efine, wie Ethylen, Propen, 1-Buten und insbesondere Propen.
Neben den reinen Olefinen können selbstverständlich auch Gemische unterschiedlicher Olefine mit 2 bis 12 Kohlenstoffatomen oligo- merisiert werden. Das molare Verhältnis der einzelnen Olefinkom- ponenten zueinander ist im allgemeinen nicht kritisch, wenn man beachtet, daß die Menge an Ethyleneinheiten in den Cooligomeren im allgemeinen 0,01 bis 5 mol-%, bevorzugt 0,01 bis 3 mol-%, ins- besondere 0,01 bis 2 mol-% beträgt.
Bei der Metallocenkomponente I des Katalysatorsystems handelt es sich um sogenannte Titanocen- Zirkonocen- und Hafnocenderivate, mithin um Komplexe des Titans, Zirkoniums und Hafniums, bei denen das Metallatom M sandwichartig zwischen zwei substituierten Cyclopentadienyl-Gruppen gebunden ist, wobei die restlichen Valenzen des Zentralatoms M durch leicht austauschbare Abgangs- atome oder Abgangsgruppen X abgesättigt sind.
Geeignete Metallocenkomplexe sind solche mit der allgemeinen For¬ mel [C5H(5_P)RP] [CsHs.MXiX2 I, in welcher M Titan, Zirconium oder Hafnium, vorzugsweise Zirconium, bedeuten.
[C5H5] steht für den unsubstituierten Cyclopentadienyl-Liganden. [C5H(5_P)Rp] steht für einen mit sperrigen C3- bis C30- ohlenstoff- oder Siliciumorganischen Resten R substituierten Cyclopentadie¬ nyl-Liganden.
Unter einem sperrigen Rest versteht man im allgemeinen einen Sub- stituenten, welcher vorzugsweise aber nicht notwendigerweise in α- oder höherer Stellung zum Ringatom verzweigt ist.
R steht somit für alle sperrigen aliphatischen und aromatischen Kohlenstoff-Organischen und Silicium-Organischen Gruppen mit min- destens 3 Kohlenstoffatomen, wie beispielsweise i-Propyl, i.-Bu- tyl, sec.-Butyl, tert.-Butyl, neo-Pentyl, Cyclohexyl, 2, 6-Dimethylphenyl, 2,6-Di-tert.-Butylphenyl, 2,6-Di-tert.-Bu- tyl-4-Methylphenyl, 2,4,6-Trimethylphenyl, 2,4,6-Tri-tert.-Butyl- phenyl, Benzyl, Neophyl, Trimethylsilyl, Triethylsilyl, Triphe- nylsilyl, Tritolylsilyl und tert.-Butyldimethylsilyl. Vorzugs¬ weise steht R für tert.-Butyl und Trimethylsilyl und insbesondere für tert.-Butyl.
Es können 2 bis 5 derartige Substituenten an der Cyclopenta- dienyleinheit gebunden sein, wobei die Position der Substituenten am Ring nicht kritisch ist. Drei Substituenten am Ring sind vorzugsweise in den Positionen 1,2,4 gebunden, zwei Substituenten am Ring in den 1,3-Positionen.
Als leicht austauschbare Abgangsatome oder Abgangsgruppen X1, X2 der Metallocenkomplexe der allgemeinen Formel I seien genannt: Wasserstoff, Halogen wie Fluor, Brom, lod und vorzugsweise Chlor. Darüber hinaus seien genannt Alkoholate, wie Methanolat, Ethano- lat, n- und i-Propanolat, Phenolat, Trifluormethylphenolat, Naph- tholat, Silanolat.
Weiterhin empfehlen sich für X1, X2 besonders aliphatische Cι~ bis Cio-Alkyl-Reste, insbesondere Methyl, Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, Pentyl, neo-Pentyl, Hexyl, vorzugsweise Methyl, tert.-Butyl und neo-Pentyl. Desweite- ren alicyclische C3- bis Cι2-Kohlenwasserstoffreste, wie Cyclo- propyl, Cyclobutyl, Cyclopentyl und insbesondere Cyclohexyl oder C5- bis C2o-Bicycloalkyl, wie Bicyclopentyl, und insbesondere Bi- cycloheptyl und Bicyclooctyl.
Als Substituenten X1, x2 mit aromatischen Struktureinheiten seien genannt Cζ- bis Cis-Aryl, bevorzugt Phenyl, oder Naphthyl, Alkyl- aryl oder Arylalkyl, mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, wie beispielsweise Tolyl, Benzyl.
Beispiele für geeignete Metallocenkomplexe I sind: [Cyclopenta- dienyl(1,3-Di-tert.-butylcyclopentadienyl) ]zirconiumdiChlorid, [Cyclopentadienyl(1,3-Bis-(trimethylsilyl)cyclopentadienyl) ]zir- coniumdichlorid, [Cyclopentadienyl(1,3-Di-isopropylcyclopenta- dienyl) ] zirconiumdichlorid.
Die Metallocenkomplexe der allgemeinen Formel I können auf einfa¬ che Weise nach bekannten Verfahren, z.B. Brauer (Hrsg.): Handbuch der Präparativen Anorganischen Chemie, Band 2, 3.Aufläge, Seite 1395 bis 1397, Enke, Stuttgart 1978 synthetisiert werden. Ein be¬ vorzugtes Verfahren geht von den Lithiumsalzen der entsprechend substituierten Cyclopentadienyle aus, welche mit den Monocyclo- pentadienyl-Übergangsmetallhalogeniden umgesetzt werden.
Zweckmäßigerweise wird nur ein Metallocenkomplex in der Oligome- risierungsreaktion eingesetzt, es ist aber auch möglich, Mischungen verschiedener Metallocenkomplexe zu verwenden.
Neben den Metallocenkomplexen A) enthalten die erfindungsgemäßen Katalysatorsysteme noch Aktivatoren B) die an sich bekannt sind und im Schrifttum auch Cokatalysatoren genannt werden. Im allge¬ meinen alkylieren sie die Übergangsmetallkomponente A) des Katalysatorsystems und/oder abstrahieren einen Liganden X1 oder X2 von der Übergangsmetall-Komponente, so daß letztendlich ein Katalysatorsystem für die Oligomerisierung von olefinisch ungesättigten Kohlenwasserstoffen entstehen kann. Für diese Auf- gäbe sind im allgemeinen metallorganische Verbindungen der 1. bis 3. Hauptgruppe oder der 2. Nebengruppe des Periodensystems geei¬ gnet, jedoch können auch andere Akzeptorverbindungen wie bei¬ spielsweise Carbokationen-Salze eingesetzt werden.
Besonders gut geeignete Aktivatorverbindungen sind Alu inium-Or- ganyle, Bor-Organyle und Carbokationen-Salze. Bevorzugt sind offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formel II oder III, die nach US-A 4,794,096 durch Umsetzung von Aluminiumtrialkylen mit Wasser erhalten werden können.
Rl*
AI- 4-0 A1-+ Rl
Rl m II
Rl
4-o —AI H— III
I m
Rl
Hierin steht Ri für eine C_- bis Cß-Alkylgruppe, bevorzugt Methyl¬ oder Ethylgruppe und m für eine ganze Zahl von 5 bis 30, bevor¬ zugt 10 bis 25.
In der Regel liegen die oligomeren Alumoxanverbindungen als Gemi¬ sche unterschiedlich langer, sowohl linearer als auch cyclischer Kettenmoleküle vor, so daß m als Mittelwert anzusehen ist.
Als Cokatalysatoren sind im allgemeinen auch Aluminiumorganyle der allgemeinen Formel Al(R2)3 geeignet, wobei R2 Wasserstoff, Cχ~ bis Cio-Alkyl, vorzugsweise Cχ~ bis C - Alkyl, insbesondere Methyl, Ethyl, Butyl und iso-Butyl bedeutet. Darüber hinaus kann R2 auch für Arylalkyl oder Alkylaryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest stehen.
Weiterhin sind Aluminiumalkyle A1(R2>3 geeignet in denen R2 außer den oben definierten Resten noch Fluor, Chlor, Brom oder lod be¬ deuten kann, mit der Maßgabe, daß mindestens ein Rest R2 ein C-or- ganischer Rest oder ein Wasserstoffatom ist. Besonders bevorzugte Verbindungen sind Trimethylaluminium, Tri- ethylalu inium, Triisobutylaluminium, Diisobutylaluminiumhydrid, Diethylaluminiumchlorid. Außerdem sind als Aktivatoren noch Bor¬ organische Verbindungen gut geeignet, beispielsweise Tris-aryl- borverbindungen, bevorzugt Tris(pentafluorophenyDbor, weiterhin Salze von Carboniumionen,bevorzugt Triphenylmethyltetraarylborat, insbesondere Triphenylmethyltetra (pentafluorophenyl)borat.
Die genannten AI-, B- oder C-Verbindungen sind bekannt oder in an sich bekannter Weise erhältlich.
Die Aktivatoren können für sich allein oder als Mischungen im Katalysatorsystem eingesetzt werden.
Vorzugsweise setzt man die Aktivatorkomponente B) im molaren Überschuß bezüglich des Metallkomplexes A) ein.
Das Molverhältnis von Aktivator B) zu Metallkomplex A) beträgt im allgemeinen 100 : 1 bis 10000 : 1, vorzugsweise 200 : 1 bis 1000 : 1.
Die Bestandteile der erfindungsgemäßen Katalysatorsysteme können in beliebiger Reihenfolge einzeln oder als Gemisch in den Oligo- merisierungsreaktor eingebracht werden. Vorzugsweise wird der Metallocenkomplex mit mindestens einer Aktivatorkomponente vor dem Eintritt in den Reaktor gemischt, das bedeutet voraktiviert.
Die Herstellung der erfindungsgemäßen Oligomeren kann in den üb¬ lichen, für die Oligomerisation von Olefinen verwendeten Reak- toren entweder diskontinuierlich oder bevorzugt kontinuierlich durchgeführt werden. Geeignete Reaktoren sind u.a. kontinuierlich betriebene Rührkessel, wobei man gegebenenfalls auch eine Reihe von mehreren hintereinander geschalteten Rührkesseln verwenden kann.
Die Oligomerisation kann in der Gasphase, in einer Suspension, in flüssigen Monomeren und in inerten Lösungsmitteln durchgeführt werden. Bei der Oligomerisation in Lösungsmitteln werden ins¬ besondere flüssige Kohlenwasserstoffe wie Benzol, Ethylbenzol oder Toluol verwendet.
Bei einem bevorzugten erfindungsgemäßen Verfahren zur Herstellung der Olefin-Oligomeren wird zunächst die oligomere Aluminoxanver- bindung, bevorzugt als Lösung in Toluol, vorgelegt. Hierzu wird beispielsweise das Olefin mit 2 bis 12 C-Atomen zugegeben und die Temperatur wird erhöht. Nach Zugabe des Metallocenkomplexes wird 20 bis 800 Minuten, bevorzugt 40 bis 500 Minuten oligomerisiert. Die Temperaturen betragen hierbei 0 bis 250°C, bevorzugt 20 bis 200°C und man arbeitet bei Drücken von 100 bis 300000 kPa, vor¬ zugsweise im Bereich von 100 bis 10000 kPa und insbesondere im Bereich von 100 bis 4000 kPa.
Man kann die Oligomerisation also im Niederdruck-, Mitteldruck- und Hochdruckverfahren durchführen. Die Menge an eingesetztem Ka¬ talysator ist nicht kritisch.
Man erhält somit Oligomere mit Molekulargewichten Mw (Gewichts¬ mittelwert) von im allgemeinen 100 bis 20000, bevorzugt 100 bis 10000, insbesondere 100 bis 8000, die einen hohen Gehalt an end¬ ständigen Vinyliden-Doppelbindungen aufweisen.
Der Polymerisationsgrad der Olefin-Oligomeren liegt im allgemei¬ nen im Bereich von 2 bis 500, vorzugsweise im Bereich von 2 bis 300.
Die Molekulargewichtsverteilung Mw/Mn (Gewichtsmittelwert/Zahlen- mittelwert), gemessen mit der Methode der GelpermeationsChromato¬ graphie (GPC) bei 35°C mit Polystyrol-Gel als Säulenmaterial und THF als Lösungsmittel gegen Polystyrol-Standard der so erhaltenen Olefin-Oligomeren beträgt im allgemeinen 2 bis 3,5, vorzugsweise 2 bis 3.
Die so erhaltenen Olefin-Oligomere lassen sich mit den üblichen chemischen Reaktionen, wie zum Beispiel Hydoformylier ng oder Hy- droaminierung oder einer Kombination beider Methoden, zu funktio- nalisierten Oligo-Olefinen weiterverarbeiten, welche zum Beispiel als Schmierstoffe oder Kraftstoff- bzw. öladditive geeignet sind. Aufgrund ihres Doppelbindungsanteils sind die erhaltenen Olefin- Oligomere außerdem als Makromonomere verwendbar.
Beispiele
Herstellung von Olefin-Oligomeren
Beispiel 1
Propen-Oligomerisierung
In einem 1 1-Rührautoklaven wurden 240 ml einer 0,063 molaren Me- thylalumoxan-Lösung in Toluol vorgelegt, 300 g (7,1 mol) flüssi¬ ges Propen aufkondensiert und auf 50°C erwärmt. Dabei stellte sich ein Druck von 13 bar ein. Anschließend wurden 11,9 mg (0,03 mmol) [Cyclopentadienyl(1,3-Di-tert.-Butylcyclopentadienyl) ] -zirconium- dichlorid, gelöst in 10,0 ml 1,5 molarer toluolischer Methyl- aluminoxanlösung (AI : Zr = 1000 : 1) zugegeben. Dann wurde 60 Minuten lang oligomerisiert, der Reaktor entspannt und 33,1 g Propenoligomer isoliert. Die Produktivität des Katalysatorsystems betrug 12,3 kg Oligomere/g Zr x h; Mw = 2720, Mn = 1600.
Beispiel 2
Man arbeitete wie in Beispiel 1, jedoch wurde die Oligomeri¬ sierung anstatt bei 50°C jetzt bei 25°C durchgeführt. Es wurden 44,5 g Propenoligomere erhalten. Die Produktivität des Katalysatorsystems betrug 16,6 kg Oligomere/g Zr x h; Mw = 6498, Mn = 3610.
Vergleichsbeispiel V2
Man arbeitete wie in Beispiel 2, jedoch wurde ein Katalysator¬ system aus 4 mg (0,014 mmol) Bis(cyclopentadienyl)zirconium- dichlorid gelöst in 8,2 ml 1,7 molarer toluolischer Methylalumin- oxanlösung (AI : Zr = 1000 : 1) verwendet und die Oligomerisie- rungszeit betrug 67,5 h. Man erhielt 107,2 g Propenoligomere. Die Produktivität des 'Katalysatorsystems betrug jetzt 1,3 kg Oligomere/g Zr x h; Mw = 2082, Mn = 1090.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Olefin-Oligomeren durch Oligo- merisierung von Olefinen in Gegenwart von Metallocen- katalysatorsystemen, dadurch gekennzeichnet, daß man Katalysatorsysteme verwendet, welche als aktive Bestandteile
A) Metallocenkomplexe der allgemeinen Formel I
[C5H(5_p)Rp] [C5H5]MX1X2 I
in der die Substituenten und Indizes folgende Bedeutung haben:
[C5H5] eine Cyclopentadienyleinheit [C5H(5_p)Rp] eine mit sperrigen C3- bis C3o-Kohlenstoff- oder Silicium-organischen Resten R substi¬ tuierte Cyclopentadienyleinheit
p ein ganzzahliger Wert von 2 bis 5
M ein Titan-, Zirconium- oder
Hafniumatom X1, X2 ein formal negativ geladenes Abgangsatom oder eine formal negativ geladene Abgangs- gruppe
und
B) eine Akzeptorverbindung für die Substituenten X1, X2 der Komponente A) als Aktivator
enthalten.
2. Verfahren nac Anspruch 1, dadurch gekennzeichnet, daß die Katalysatorsysteme als Aktivatoren offenkettige oder cycli- sche Aluminoxanverbindungen der allgemeinen Formel II oder III enthalten Rl.
AI E- 0 AI Rl Rl m II
Rl
4-o AI III
I m
Rl
wobei Ri eine Ci- bis Cδ-Alkylgruppe bedeutet und m für eine ganze Zahl von 5 bis 30 steht.
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeich¬ net, daß die Substituenten X1, X2 Halogen, H, C_- bis Cio-Alkyl oder Ci- bis Cio-Alkoxy bedeuten.
4. Olefin-Oligomere, erhältlich nach einem Verfahren gemäß der Ansprüche 1 bis 3.
5. Verwendung der Olefin-Oligomeren zur Herstellung von Schmier¬ stoffen oder Kraftstoffadditiven.
PCT/EP1996/000233 1995-02-01 1996-01-20 Verfahren zur herstellung von olefin-oligomeren WO1996023750A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96901315A EP0807097A1 (de) 1995-02-01 1996-01-20 Verfahren zur herstellung von olefin-oligomeren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19503088 1995-02-01
DE19503088.5 1995-02-01

Publications (1)

Publication Number Publication Date
WO1996023750A1 true WO1996023750A1 (de) 1996-08-08

Family

ID=7752798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000233 WO1996023750A1 (de) 1995-02-01 1996-01-20 Verfahren zur herstellung von olefin-oligomeren

Country Status (2)

Country Link
EP (1) EP0807097A1 (de)
WO (1) WO1996023750A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540108A1 (de) * 1991-10-28 1993-05-05 Shell Internationale Researchmaatschappij B.V. Katalisatorzusammensetzung
EP0596553A2 (de) * 1992-10-23 1994-05-11 Shell Internationale Researchmaatschappij B.V. Katalytische Zusammensetzung für die Oligomerisierung und die Co-oligomerisierung von Alkene
EP0608707A1 (de) * 1993-01-28 1994-08-03 BASF Aktiengesellschaft Cooligomere aus alpha-Olefinen und geringen Mengen an Ethylen
EP0643078A2 (de) * 1993-09-13 1995-03-15 Montell Technology Company bv Verfahren zur Herstellung von Ethylenpolymeren und daraus erhaltene Produkte
WO1996000246A1 (en) * 1994-06-24 1996-01-04 Exxon Chemical Patents Inc. Polymerization process and catalyst systems useful therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540108A1 (de) * 1991-10-28 1993-05-05 Shell Internationale Researchmaatschappij B.V. Katalisatorzusammensetzung
EP0596553A2 (de) * 1992-10-23 1994-05-11 Shell Internationale Researchmaatschappij B.V. Katalytische Zusammensetzung für die Oligomerisierung und die Co-oligomerisierung von Alkene
EP0608707A1 (de) * 1993-01-28 1994-08-03 BASF Aktiengesellschaft Cooligomere aus alpha-Olefinen und geringen Mengen an Ethylen
EP0643078A2 (de) * 1993-09-13 1995-03-15 Montell Technology Company bv Verfahren zur Herstellung von Ethylenpolymeren und daraus erhaltene Produkte
WO1996000246A1 (en) * 1994-06-24 1996-01-04 Exxon Chemical Patents Inc. Polymerization process and catalyst systems useful therein

Also Published As

Publication number Publication date
EP0807097A1 (de) 1997-11-19

Similar Documents

Publication Publication Date Title
EP0687693B1 (de) Amidinato-Katalysatorsysteme zur Polymerisation von Olefinen
EP0807096A1 (de) Verfahren zur herstellung von olefin-oligomeren
EP0692499B1 (de) Polyalk-1-ene mit hohen Molmassen
EP0603232B1 (de) Verfahren zur herstellung von polypropylen unter hochdruck
DE60003936T2 (de) Katalysatorsystem unf verfahren zur polymerisierung von olefine
EP0816372B1 (de) Übergangsmetallverbindung
DE69702978T3 (de) Polymerisationsverfahren unter erhöhtem druck mit spätübergangsmetallkatalysatorsystemen
EP0781783B1 (de) Metallocenkatalysatorsysteme mit sterisch gehinderten Lewis-Basen
EP0459185A2 (de) Verfahren zur Herstellung eines Polyolefins
DE112011100520T5 (de) Katalysator zur stereoselektiven Olefinpolymerisation und Verfahren zur Herstellung von stereoselektivem Polyolefin
WO2003024902A1 (de) Verfahren zur trimerisierung von alpha-olefinen
DE4205932A1 (de) Verfahren zur herstellung von propenoligomeren
DE19516803A1 (de) Organometallverbindung
JP3280706B2 (ja) Epdm重合用触媒
EP0608707B1 (de) Cooligomere aus alpha-Olefinen und geringen Mengen an Ethylen
DE60218666T2 (de) Verfahren zur herstellung von oligomeren
EP0707010B1 (de) Metallocenverbindung
DE1795272C2 (de) Verfahren zur Homo- und Mischpolymerisation von Äthylen
EP0807097A1 (de) Verfahren zur herstellung von olefin-oligomeren
DE1745228C3 (de) Verfahren zur Polymerisation von 1-Olefinen
DE69837873T2 (de) Katalysator für die polymerisation von alpha-olefinen
DE19549352A1 (de) Übergangsmetallverbindung der Formel Ln Am MXK (M=Metall der Gruppe IIIb oder Vb) und Verfahren zur Herstellung der Verbindung sowie Verwendung der Verbindung als Katalysatorkomponente bei der Polymerisation von Olefinen
EP0421209B1 (de) Verfahren zur Herstellung eines Polyolefins
DE1906260A1 (de) Kautschukartige Polymerisate,Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von Vulkanisaten
DE1545006B2 (de) Verfahren zur polymerisation oder mischpolymerisation von olefinischen kohlenwasserstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996901315

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 875416

Date of ref document: 19970728

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996901315

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996901315

Country of ref document: EP