WO1996022867A1 - Vorrichtung zur durchführung der relaxation für verstreckte thermoplaste enthaltende schüttgüter und zur selektiven erweichung von thermoplasten im gemengestrom zu recyclingzwecken - Google Patents

Vorrichtung zur durchführung der relaxation für verstreckte thermoplaste enthaltende schüttgüter und zur selektiven erweichung von thermoplasten im gemengestrom zu recyclingzwecken Download PDF

Info

Publication number
WO1996022867A1
WO1996022867A1 PCT/EP1996/000293 EP9600293W WO9622867A1 WO 1996022867 A1 WO1996022867 A1 WO 1996022867A1 EP 9600293 W EP9600293 W EP 9600293W WO 9622867 A1 WO9622867 A1 WO 9622867A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
thermoplastics
heat
zone
heat radiation
Prior art date
Application number
PCT/EP1996/000293
Other languages
English (en)
French (fr)
Inventor
Urban Stricker
Martin Siebert
Klaus Stricker
Original Assignee
Urban Stricker
Martin Siebert
Klaus Stricker
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urban Stricker, Martin Siebert, Klaus Stricker filed Critical Urban Stricker
Priority to PL96321492A priority Critical patent/PL179378B1/pl
Priority to US08/894,242 priority patent/US5993052A/en
Priority to AU45391/96A priority patent/AU4539196A/en
Priority to JP52262996A priority patent/JPH10512512A/ja
Priority to BR9606801A priority patent/BR9606801A/pt
Priority to EP96901331A priority patent/EP0805742A1/de
Publication of WO1996022867A1 publication Critical patent/WO1996022867A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to the design of devices with which bulk materials containing stretched thermoplastics can be heat-treated in such a way that the stretched thermoplastic passes through the area of their relaxation (thermal recovery, shrinkage) during the treatment.
  • the relaxation of stretched thermoplastics can advantageously be used in the preparation of stretched thermoplastics for recycling, for example to increase the bulk density or for embrittlement.
  • the apparatus can also be used to heat-treat batches containing various plastics in which a certain type of thermoplastic in the batch is to be selectively softened and the batch is then to be transferred to subsequent devices in the softened and warm state.
  • thermoplastics of their type are selectively relaxed within a batch flow, whereby selective selective changes in physical properties are brought about, which, on the one hand then enable automatic sorting.
  • Methods are known from WO 94/00241 and WO 93/17852, in which certain types of thermoplastic are selectively softened in a batch flow containing various plastics and these are then sorted automatically in further process steps on the basis of the physical property changes caused.
  • a device in which previously shredded PS foams are used as particles Vibration promotion can be transported individually.
  • Infrared heat emitters attached above the conveyor line temper the material to be conveyed, whereby it is transferred into the area of its relaxation and shrinked in the process.
  • the surface of the vibration conveyor is cooled in order to avoid overheating of the surface by the IR radiation, which would lead to melting of the conveyed material particles and sticking of the melted particles to the surface and thus to a process interruption.
  • the process duration is determined in addition to the size of the particles to be treated, the distance of the IR radiation elements from the conveying surface, the installed cooling capacity and the resulting conveying speed.
  • the object of the present invention is to enable selective relaxation or selective softening of thermoplastics which are also present in a mixture with other types of plastic by machine technology in continuous operation in such a way that targeted and rapid temperature control of plastic parts can take place in temperature ranges which are to be kept as precisely as possible.
  • the object is achieved according to the invention in that the principle of conveying with screws is used for transporting the pourable batch flow and the heat input for tempering the conveyed material is advantageously effected by heat radiation during transport in the screw or screw tube conveyor.
  • the material is generally circulated at least in the area of contact of the material to be conveyed with the shear-effective flank of the screw.
  • This circulation effect is particularly pronounced in screw tube conveyors, since the trough wall is also moved here.
  • the circulation supports uniform temperature control of the material being conveyed.
  • the conveying behavior of screws has a particularly positive effect, since due to the change in density, particles that have already relaxed preferentially push downward and the particles still to be relaxed thus reach the area of direct IR radiation.
  • process steps preceding or following the actual temperature control process can also be carried out mechanically connected in one unit.
  • the most exact possible uniform loading of the temperature control section should be aimed at in all temperature control processes.
  • this is made possible, for example, by the provision of a cellular wheel sluice (cf. GB-A-1 313 203).
  • a metering zone which can be implemented professionally, other screw zones which are advantageous for the tasks are described in the further course of the description.
  • Figures la to le show different cross-sectional arrangements of the infrared emitters (IR emitters) in relation to the screw.
  • the screw is designed as a full screw in the figures as an example.
  • Other screw shapes such as Screw conveyor, paddle screw or the like, which also sometimes have the advantage that the IR radiation to the material being conveyed is less covered, can also be carried out.
  • a trough screw is shown in FIG.
  • the flat IR emitters in curved design 5 are attached at an angle between the upper part of the trough screw 3 and the cover 4, which is generally removable.
  • the walls of the screw trough and the screw itself are expediently coated in an IR-reflective manner or made of IR-reflective material such as aluminum in order to increase the proportion of IR radiation effective in the material within the material bed.
  • rod-shaped elements 6 are used as IR emitters same place as in Figure la attached.
  • rod-shaped IR radiators 6 can be attached, for example, inside the worm shaft of the worm 2, provided that the shaft is hollow and corresponding openings are made for the outlet of the IR radiation so that the material to be conveyed through the IR Radiation is applied.
  • Reflector 7 attached to optimally focus the radiation on the material to be conveyed and to keep the screw shaft as far as possible out of the direct radiation area.
  • a tubular casing 9 is implemented as the worm housing.
  • Windows made of, for example, IR-permeable quartz glass are inserted into the jacket, behind which IR radiators 8 are mounted.
  • a cooling medium which is also IR-permeable (for example air) can flow through the windows in order to prevent the windows from overheating.
  • the windows can be installed both above and below the level of the material to be conveyed.
  • Figure le shows a meshing twin screw 10 as a conveyor element.
  • the IR emitters 6 are attached here under the cover of the trough screw.
  • a heating winding 11 is shown in FIG. 1f as a supplementary element for tempering the conveyed material.
  • the heating coil can be heated, for example, electrically or by steam, oil, water or other heat-carrying media.
  • the heating winding 11 can cover parts of the screw housing 1 or the tubular casing 9, as shown in FIG. 1d.
  • the thermal energy for the heating winding 11 can, for example, also be partially obtained by using waste heat from cooling areas of further process steps. Coupling heat with other, spatially adjacent systems can also be useful.
  • a temperature control section based on conveyors with screws can be coupled on the input side to a so-called feed and metering zone of the same screw.
  • the material is fed via a funnel to a screw initially designed as a full screw.
  • the feed zone is designed in such a way that exactly the amount of material that is desired as the degree of filling in the further course of the screw, in the so-called tempering zone, is taken up.
  • the aisle volume is expanded so that the desired degree of filling is obtained at the beginning of the temperature zone.
  • This possible embodiment of the invention shown in FIG. 2 is shown by way of example on a screw conveyor.
  • a screw tube conveyor can also be used, the material task being carried out axially. The material which has already been comminuted is to be filled into the material feed 20.
  • Shredding can also take place immediately after the material feed 20 and before the feed zone in a slow-running shredder with a downstream buffer space. From there it reaches the feed zone of the worm mounted on the drive shaft 22.
  • the drive shaft 22 drives the screw with three different functional zones at the same speed. Due to the different screw designs and pitches 23, 24, 25 in the individual zones, depending on the area in which the material is located, different conveying speeds are achieved and various tasks are thus performed.
  • tempering zone 25 which here is kenband was chosen as the design of the screw in order to be able to expose the material to the IR radiation largely without shielding by screw parts and to keep the exposure of the conveying elements to radiant heat due to the smaller area of the conveying elements as low as possible is a carrier for the installation 27 of the Infrared radiator 28 is attached.
  • the carrier 27 can only be supported on one side in the fixed bearing 33, but, depending on the length and design, can also be supported on both sides, as shown here by way of example, with a bearing 32 running on the shaft 22 or can be supported several times.
  • the height of the carrier 27 above the material or the respective lowest point of the screw jacket tube 26 is provided to be adjustable in order to enable the intensity of the IR radiation of the radiation emitted from the IR emitters 28 to be matched to the respective material. This adjustment to the material to be treated can be made once when the device is started up or alternatively continuously attached via a non-contact temperature sensor 34, for example outside the screw jacket tube 26, and measured via a window or, for example, attached to the carrier 27, which measures the temperature of the material.
  • the measurement signal can be used, for example, to influence the height of the carrier or another control variable (such as lamp temperature, number of lamps switched on, etc.) that can be used to regulate the IR radiation intensity effective in the material, so that the temperature control corresponds to the target specifications.
  • the supply lines for the installations on the carrier are routed from the carrier to the machine frame, for example, by a fixed or flexible guide.
  • the material to be treated is transported through the tempering zone 25 and passes through the treatment, shown schematically as partially treated material with foreign substance 29 and largely treated material with foreign substance 30.
  • the material can be transferred to the next process step via an outlet chute 31.
  • a variation of the screw belt 35 can consist in that the belt consists of hollow material through which a heat-carrying medium is circulated, for example, in order to keep the screw at a stable temperature and to heat or cool the material to be treated as an additional effect.
  • the same possibility applies to the screw parts in the metering area 24 and in the feed area 23.
  • FIG. 2 with a closed screw jacket tube 26 also advantageously allows any emissions (dusts, odors) to be extracted with the heated air during the treatment via, for example, the material feed 20 and retained in downstream filters or as shown, for example, in FIG Screw inlet area suctioned 36 and fed to a conveyor and filter unit 37.
  • the air can be optimally filtered and discharged into the open 39 or largely used again for tempering the material in the tempering zone 25 via an air circuit and thus contribute to an economical use of energy.
  • the heat which is also transported during the extraction can advantageously be used in the feed area 20 and in the feed zone 23 and metering zone 24 for preheating the material.

Abstract

Die Erfindung betrifft Vorrichtungen zur gezielten Temperierung von Kunststoffen im Gemengestrom zur Durchführung einer Relaxation oder einer Erweichung. Erfindungsgemäß sind die Vorrichtungen als Schneckenförderer mit Wärmestrahlungsquellen zum Eintrag der Wärmeenergie ausgeführt.

Description

Vorrichtung zur Durchführung der Relaxation für vers reckte Thermoplaste enthaltende Schüttgüter und zur selektiven Erweichung von Thermoplasten im Gemengestrom zu Recycling¬ zwecken
Die Erfindung betrifft die AusgestaltungvonVorrichtungenmit denen verstreckte Thermoplaste enthaltende Schüttgüter so wärmebehandelt werden können, daß die ves reckten Thermopla¬ sten während der Behandlung den Bereich ihrer Relaxation (Thermorückverformung, Schrumpfung) durchlaufen. Die Relaxa¬ tion von verstreckten Thermoplasten kann in der Aufbereitung vonverstrecktenThermoplasten zum Recyclingvorteilhaft bspw. zur Erhöhung des Schüttgewichtes oder zur Versprödung genutzt werden.
Gleichzeitig können mit den Vorrichtungen auch solche ver¬ schiedene Kunststoffe enthaltende Gemenge wärmebehandelt werden, bei denen eine bestimmte Thermoplastsorte im Gemenge selektiv erweicht werden soll und das Gemenge anschließend im erweichten und warmen Zustand an Nachfolgeeinrichtungen übergeben werden soll.
Aus der WO 93/14915 und der DE 42 20 665 sind Verfahren bekannt, bei demdie Relaxationvon verstreckten Thermoplasten zu Recyclingzwecken so durchgeführt wird, daß innerhalb eines Gemengestromes bestimmte Thermoplaste ihrer Sorte entsprechend selektivrelaxiertwerden, wodurch gezielte selektive physika¬ lische Eigenschaftsänderungen hervorgerufen werden, die eine anschließende automatische Sortierung ermöglichen. Aus der WO 94/00241 und der WO 93/17852 sind Verfahren bekannt, bei denen bestimmte Thermoplastsorten in einem verschiedene Kunststoffe enthaltendem Gemengestrom selektiv erweicht werden und diese anschließend aufgrund der hervorgerufenen physikalischen Eigenschaftsänderungen in weiteren Verfahrensschritten automa- tisch sortiert werden.
Aus der GB-A-1 313 203 ist eine Vorrichtung bekannt, bei der zuvor zerkleinerte PS-Schaumstoffe als Partikel mittels Vibrationsförderung vereinzelt transportiert werden. Über der Förderstrecke angebrachte Infrarot-Wärmestrahler temperieren das Fördergut, wobei dieses in den Bereich seiner Relaxation überführt und dabei geschrumpft wird. Die Oberfläche der Vibrations-Fördereinrichtung wird gekühlt, um eine Überhitzung der Oberfläche durch die IR-Strahlung zu vermeiden, die zu einem Aufschmelzen der Fördergut-Partikel und einem Verkleben der aufgeschmolzenen Partikel mit der Oberfläche und somit zu einer Prozeßunterbrechung führen würde. Bei dieser Vorgehens- weise wird die Prozeßdauer neben der Größe der zu behandelnden Partikel durch den Abstand der IR-Strahlungselemente von der Förderoberfläche, durch die installierte Kühlleistung und durch die daraus resultierende Fördergeschwindigkeit bestimmt. DieVerhältnisse führen entweder zu langen Behandlungsstrecken oder zu einer schlechten Wärmenutzung durch eine hohe zu installierende Kühlleistung. Aufgrund der spezifischen Eigen¬ heiten bei einer Vibrations- bzw. Eigenfrequenzförderung im Zusammenwirken mit den realisierbaren Baugrößen der Anlagen ist man hinsichtlich der Förderleistung eingeschränkt. Ein weiterer Nachteil besteht bei dieser Vorgehensweise darin, daß die zu behandelnden Partikel mit ihrer Unterseite auf der Förderfläche verbleiben und diese Bereiche nicht einer direk¬ ten Bestrahlung durch die IR-Strahlung ausgesetzt werden. Dies führt entweder zu teilweise nicht vollständig relaxierten Partikeln oder zu einer Prozeßverlängerung.
Aus der US-A-3 883 624 ist ein Verfahren bekannt, in dem Polystyrol-Schaumstoff nach einer eingangsseitigen Zerkleine¬ rung auf einem metallischen Förderband durch eine thermische Behandlung geführt wird, wobei der Schaumstoff schrumpft und partiell in einer Schicht zusammenschmilzt, nach dem Abkühlen versprödet und anschließend zu plastifizierfähigen Partikeln nachzerkleinertwird. Aufgrund des Anschmelzens des Polystyro- les ist dieses Verfahren ungeeignet, eine selektive Wärmebe- handlung von Partikeln in einem andere Kunststoffe enthalten¬ den Gemengestrom herbeizuführen. Alle in der Recyclingpraxis auftretenden Fremdstoffe beeinträchtigen das Verfahrensergeb- nis .
Es sind vielfältige technische Variationen zu Förderern mit Schnecken bekannt, die Aufgaben zur Wärmebehandlung lösen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine selektive Relaxation beziehungsweise eine selektive Erweichung von auch im Gemenge mit anderen Kunststoffsorten vorliegenden Thermoplasten maschinentechnisch im kontinuierlichen Betrieb so zu ermöglichen, daß eine gezielte und schnelle Temperierung von Kunststoffteilen in möglichst exakt einzuhaltenden Tempe¬ raturbereichen erfolgen kann.
Die gestellteAufgabe wird erfindungsgemäß dadurch gelöst, daß zum Transport des schüttfähigen GemengeStromes das Prinzip der Förderung mit Schnecken genutzt wird und der Wärmeeintrag zur Temperierung des Fördergutes vorteilhaft durch Wärmestrahlung während des Transportes im Schnecken- oder Schneckenrohrförde- rer erfolgt.
Anwendungsspezifische Vorteile des Schneckenförderers sind: Dadurch, daß die Förderung auf Schub beruht, erfolgt im allgemeinen Fall zumindest im Bereich des Kontaktes des Fördergutes mit der schubwirksamen Schneckenflanke eine Umwälzung des Materials. Dieser Umwälzungseffekt ist bei Schneckenrohrförderern besonders ausgeprägt, da hier zusätzlich die Trogwand bewegt ist. Durch die Umwälzung wird eine gleichmäßige Temperierung des Fördergutes unterstützt. Insbesondere im Anwendungsfall der Relaxa- tion wirkt sich das Förderverhalten von Schnecken beson¬ ders positiv aus, da aufgrund der Dichteveränderung bereits relaxierte Partikel bevorzugt nach unten drängen und somit die noch zu relaxierenden Partikel nach oben in den Bereich der direkten IR-Bestrahlung gelangen. - Durch eine zonenartige konstruktive Auslegung entspre¬ chender Schneckenförderer können auch dem eigentlichen Temperierprozeß vor- oder nachgeschaltete Prozeßschritte maschinentechnisch in einer Einheit verbunden werden. So ist z.B. eine möglichst exakte gleichmäßige Beschickung der Temperierstrecke bei allen Temperierverfahren anzu¬ streben. Beim Konzept der Vibrationsförderung wird dies beispielsweise durch die Vorschaltung einer Zellrad¬ schleuse (vgl. GB-A-1 313 203) ermöglicht. Neben einer fachmännisch zu realisierenden Dosierzone werden im weiteren Verlauf der Beschreibung noch andere für die Aufgaben vorteilhafte Schneckenzonen beschrieben.
Die Erfindung wird in schematischen Zeichnungen in verschiede¬ nen Ausführungsmöglichkeiten gezeigt, wobei aus den Zeichnun¬ genweitere vorteilhafte Einzelheiten der Erfindung entnehmbar sind und die gezeigten Einzellösungen für Funktionen und einzelne erfindungsgemäße Lösungen in vorteilhaften Kombina¬ tionen zur Erzielung eines hohen Gesamtwirkungsgrades ausführ¬ bar sind.
Es zeigen Figur la bis le im Querschnitt verschiedene Anord- nungsmöglichkeiten der Infrarotstrahler (IR-Strahler) in bezug auf die Schnecke. Die Schnecke ist in den Figuren beispielhaft als Vollschnecke ausgeführt. Andere Schneckenformen wie z.B. Schneckenband, Paddelschnecke oder ähnliche, die teilweise auch noch den Vorteil mit sich bringen, daß die IR-Strahlung zum Fördergut weniger abgedeckt wird, sind auch ausführbar.
In Figur la ist eine Trogschnecke dargestellt. Die flächenhaf¬ ten IR-Strahler in gebogener Ausführung 5 sind im Winkel zwischen dem oberen Teil der Trogschnecke 3 und der in der Regel abnehmbaren Abdeckung 4 angebracht. Die Wände des Schneckentroges und die Schnecke selber wird zweckmäßigerweise IR-reflektierend beschichtet oder aus IR-reflektierendem Material wie zum Beispiel Aluminium hergestellt, um den Anteil an im Material wirksamer IR-Strahlung innerhalb der Material- schüttung zu erhöhen.
In Figur lb sind als IR-Strahler stabförmige Elemente 6 an gleicher Stelle wie in Figur la angebracht. In dieser Figur wird auch gezeigt, daß stabförmige IR-Strahler 6 zum Beispiel im Inneren der Schneckenwelle der Schnecke 2 angebracht werden können, sofern die Welle hohl ist und entsprechende Öffnungen zum Auslaß der IR-Strahlung angebracht werden, damit das Fördergut durch die IR-Strahlung beaufschlagt wird.
In Figur lc werden die IR-Strahler 6 im Brennpunkt eines
Reflektors 7 angebracht, um die Abstrahlung optimal auf das Fördergut zu fokussieren und die Schneckenwelle soweit als möglich, aus dem direkten Strahlungsbereich herauszuhalten.
In Figur ld wird als Schneckengehäuse ein Rohrmantel 9 ausge¬ führt. In den Mantel werden Fenster zum Beispiel aus IR- durchlässigem Quarzglas eingesetzt, hinter denen IR-Strahler 8 montiert werden. Die Fenster können bei doppelwandiger Ausführung von einem Kühlmedium durchströmt werden, welches auch IR-durchlässig ist (zum Beispiel Luft), um ein über¬ mäßiges Aufheizen der Fenster zu verhindern. Die Fenster können sowohl oberhalb als auch unterhalb des Füllstandes des Fördergutes angebracht werden.
Figur le zeigt eine kämmende Doppelschnecke 10 als Förder¬ element. Die IR-Strahler 6 sind hier unter der Abdeckung der Trogschnecke angebracht.
In Figur lf wird eine Heizwicklung 11 als ergänzendes Element zur Temperierung des Fördergutes gezeigt. Die Heizwicklung kann zum Beispiel elektrisch oder durch Dampf, Öl, Wasser oder andere wärmetragende Medien beheizt werden. Die Heizwicklung 11 kann Teile des Schneckengehäuses 1 oder auch den Rohrmantel 9, wie in Figur ld gezeigt, bedecken. Die Wärmeenergie für die Heizwicklung 11 kann zum Beispiel auch teilweise durch Nutzung von Abwärme aus Abkühlbereichen weiterer Verfahrensschritte gewonnen werden. Eine Wärmekopplung mit anderen, räumlich benachbarten Anlagen kann ebenso sinnvoll sein. Erfindungsgemäß kann eine auf Förderern mit Schnecken basie¬ rende Temperierstrecke eingangsseitig mit einer sogenannten Einzugs- und Dosierzone der gleichen Schnecke gekoppelt werden. Aus einem einfachen Bevorratungsbehältnis (Silo oder ähnliches) wird das Material über einen Trichter einer zu¬ nächst als Vollschnecke ausgeführten Schnecke zugeführt. Die Einzugszone wird hinsichtlich des Gangvσlumens so ausgeführt, daß exakt die Materialmenge aufgenommen wird, die im weiteren Verlauf der Schnecke, in der sogenannten Temperierzone als Füllgrad erwünscht ist. In der sich der Einzugszone anschlie¬ ßenden Dosierzone wird das Gangvolumen so erweitert, daß sich zu Beginn der Temperierzone der gewünschte Füllgrad ergibt. Diese in Figur 2 gezeigte Ausführungsmöglichkeit der Erfindung wird beispielhaft an einem Schneckenförderer dargestellt. Ein Schneckenrohrförderer ist ebenso einsetzbar, wobei die Materi¬ alaufgabe dabei axial erfolgt. Das zu behandelnde bereits zerkleinerte Material wird in die Materialaufgabe 20 einge¬ füllt. Eine Zerkleinerung kann auch unmittelbar nach der Materialaufgabe 20 und vor der Einzugszone in einem langsam laufenden Zerkleinerer mit einem nachgeschalteten Pufferraum stattfinden. Von dort gelangt es in die Einzugszone der auf der Antriebswelle 22 angebrachten Schnecke. Die Antriebswelle 22 treibt im vorliegenden Beispiel die Schnecke mit drei unterschiedlichen Funktionszonen mit derselben Drehzahl an. Durch die verschiedenen Schneckenausführungen und Steigungen 23, 24, 25 in den einzelnen Zonen werden je nach Bereich, in dem sich das Material befindet, verschiedene Fördergeschwin¬ digkeiten erreicht und damit verschiedene Aufgaben erfüllt. Aus der Einzugszone 23 gelangt das Material in die Dosierzone 24, in der durch entsprechende Ausführung der Schnecke be¬ züglich Steigung und Geometrie und Drehzahl der Antriebswelle 22 sichergestellt wird, daß nur nach oben streng begrenzte Mengen Material in die Temperierzone 25 gelangen und der Füllungsgrad so eingestellt wird, daß der unten beschriebene Träger für Installation 27 in jedem Fall frei von Material gehalten wird. Dies wird bei Φ=0,02-0,15 mit hoher Sicherheit erreicht. In der Temperierzone 25, die hier mit einem Schnek- kenband als Ausführung der Schnecke gewählt wurde, um das Material weitgehend ohne Abschirmung durch Schneckenteile der IR-Strahlung aussetzen zu können und um die Beaufschlagung der Förderelemente durch Strahlungswärme aufgrund der kleineren Fläche der Förderelemente möglichst gering zu halten, ist ein Träger für die Installation 27 der Infrarotstrahler 28 ange¬ bracht. Der Träger 27 kann, wie hier angedeutet, nur einseitig im Festlager 33 gelagert werden, aber auch, je nach Länge und Ausführung beidseitig wie hier auch beispielhaft mit einem auf der Welle 22 mitlaufendem Lager 32 gezeigt oder auch mehrfach gelagert werden. Die Höhe des Trägers 27 über dem Material bzw. dem jeweiligen tiefsten Punkt des Schneckenmantelrohres 26 wird verstellbar vorgesehen, um die Intensitätsabstimmung der IR-Strahlung der aus den IR-Strahlern 28 emittierten Strahlung auf das jeweilige Material zu ermöglichen. Diese Einstellung auf das zu behandelnde Material kann einmalig bei der Inbetriebnahme der Vorrichtung erfolgen oder alternativ kontinuierlich über einen berührungslos messenden Temperatur¬ sensor 34 beispielsweise außerhalb des Schneckenmantelrohrs 26 angebracht und über ein Fenster messend oder auch bei¬ spielsweise am Träger 27 angebracht, der die Temperatur des Materials mißt. Mit dem Meßsignal kann beispielsweise die Höhe des Trägers oder eine andere, zur Regelung der im Material wirksamen IR-Strahlungsintensität nutzbare Stellgröße (wie Strahlertemperatur, Anzahl der eingeschalteten Strahler usw. ) so beeinflußt werden, daß die Temperierung den Sollvorgaben entspricht. Die Versorgungsleitungen für die Installationen auf dem Träger werden zum Beispiel durch eine feste oder flexible Führung vom Träger zum Maschinengestell geführt.
Das zu behandelnde Material wird durch die Temperierzone 25 transportiert und durchläuft dabei die Behandlung, schematisch als teilweise behandeltes Material mit Fremdstoff 29 und weitgehendbehandeltes Materialmit Fremdstoff 30 dargestellt. Über eine Auslaßrutsche 31 kann zum Beispiel das Material in den nächsten Verfahrensschritt übergeben werden. Eine Varia¬ tion des Schneckenbandes 35 kann darin bestehen, daß das Band aus Hohlmaterial besteht, durch das ein wärmetragendes Medium zum Beispiel im Kreislauf geführt wird, um die Schnecke selber stabil zu temperieren und um als zusätzlichem Effekt das zu behandelnde Material mit zu erwärmen oder auch gegebenenfalls zu kühlen. Für die Schneckenteile im Dosierbereich 24 und im Einzugsbereich 23 gilt die gleiche Möglichkeit.
Die Darstellung der Figur 2 mit einem geschlossenen Schnecken¬ mantelrohr 26 ermöglicht auch vorteilhaft eventuell entstehen- de Emissionen (Stäube, Gerüche) mit der erwärmten Luft bei der Behandlung über zum Beispiel die Materialaufgabe 20 abzusaugen und in nachgeschalteten Filtern zurückzuhalten oder aber wie beispielsweise gezeigt im Schneckeneingangsbereich abgesaugt 36 und einer Förder- und Filtereinheit 37 zugeführt werden. Die Luft kann dabei optimal gefiltert ins Freie 39 abgegeben oder über eine Luftkreislaufführung weitgehend wieder zur Temperierung des Materials in der Temperierzone 25 genutzt werden und somit zu einem sparsamen Energieeinsatz beitragen. Dabei kann vorteilhaft die bei der Absaugung mittransportierte Wärme im Aufgabebereich 20 sowie in der Einzugs- 23 und Dosierzone 24 zur Vorwärmung des Materials genutzt werden.
Für bestimmte Anwendungsfälle und zur Vorbereitung der Sor¬ tieraufgaben aus dem in der WO 93/14915 und der DE 42 20 665 beschriebenen Verfahren (beispielsweise zur Relaxation und Sortierung von Schaumstoffen) können entsprechende Vorrichtun¬ gen erfindungsgemäß ausgangsseitig mit einer zusätzlichen Abkühlzone, optional auf gleicher Ebene im gleichen Förder¬ element, gekoppelt werden. Liste der Bezugszeichen in Figur 1 und Figur 2
1 Schneckengehäuse, unterer Teil
2 Schnecke 3 Schneckengehäuse, oberer Teil der Trogschnecke
4 Abdeckung der Trogschnecke
5 Infrarotstrahler, gekrümmte Ausführung
6 Infrarotstrahler, stabförmige Ausführung
7 Reflektoren 8 Infrarotstrahler, flache oder nur leicht gekrümmte Ausführung
9 Schneckengehäuse, Ausführung als Rohrmantel
10 kämmende DoppelSchnecke
11 Heizwicklung
20 Materialaufgabe
21 aufgegebenes Material
22 Antriebswelle der Schnecke
23 Einzugszone 24 Dosierzone
25 Temperierzone
26 Schneckenmantelrohr
27 Träger für Installationen
28 Infrarotstrahler 29 teilweise behandeltes Material mit Fremdstoff
30 weitgehend behandeltes Material mit Fremdstoff
31 Auslaßrutsche
32 auf Welle (22) mitlaufendes Lager, Lagerhöhe einstellbar
33 Festlager, Lagerhöhe einstellbar 34 berührungslos messender Temperatursensor
35 Schneckenband
36 Abluftabsaugung
37 Förder- und Filtereinheit
38 Luftkreislaufführung 39 Abluft ins Freie

Claims

Patentansprüche
1. Vorrichtung zur Wärmebehandlung von kunststoffhaltigen Schüttgütern in Schneckenförderern, d a d u r c h g e k e n n z e i c h n e t , daß der Wärmeeintrag durch Wärmestrahlungsquellen, wie Infrarot oder Hochfrequenzstrahler erfolgt, die so angeordnet sind, daß die Wärmestrahlung überwiegend direkt auf das Fördergut im förderwirksamen Bereich der Schneckenförderer wirkt.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Wärmestrahlungsquellen außerhalb des Umlauf¬ durchmessers der Schneckenelemente angebracht sind (Figur la bis lf) .
3. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Wärmestrahlungsquellen in einer strahlungsdurch¬ lässig ausgeführten Schneckenwelle angebracht sind (Figur lb) .
4. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Wärmestrahlungsquellen bei Schneckenförderern nach dem Prinzip von Bandschnecken oder bei Schnecken- rohrförderern im zentralen Bereich des Umlaufdurchmes- sers angebracht sind.
5. Vorrichtung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die Wärmestrahler an einem Träger für Installationen (27) angebracht sind und daß dieser Träger für Instal¬ lationen in seiner Höhe variabel einstellbar ist. Vorrichtung nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß die Schnecke fachmännisch so ausgestaltet ist, daß sich verschiedene Wirkzonen wie eine Einzugszone (23), und/oder eine Dosierzone (24) vor der Temperierzone (25) ergeben.
PCT/EP1996/000293 1995-01-26 1996-01-25 Vorrichtung zur durchführung der relaxation für verstreckte thermoplaste enthaltende schüttgüter und zur selektiven erweichung von thermoplasten im gemengestrom zu recyclingzwecken WO1996022867A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL96321492A PL179378B1 (pl) 1995-01-26 1996-01-25 Urzadzenie do obróbki cieplnej materialów sypkich, zawierajacych tworzywa sztuczne PL PL PL
US08/894,242 US5993052A (en) 1995-01-26 1996-01-25 Device for the relaxation of bulk articles containing drawn thermoplastics and for the selective softening of thermoplastics in a mixture flow for recycling
AU45391/96A AU4539196A (en) 1995-01-26 1996-01-25 Devices for the relaxation of bulk articles containing drawn thermoplastics and for the selective softening of thermoplastics in a mixture flow for recycling
JP52262996A JPH10512512A (ja) 1995-01-26 1996-01-25 プラスチックを含むばら材を熱処理するための装置
BR9606801A BR9606801A (pt) 1995-01-26 1996-01-25 Dispositivo para a realização da relaxação para artigos vertidos contendo termoplásticos estirados e para o amaciamento seletivo de termoplásticos em corrente de mistura para finalidades de reciclagem
EP96901331A EP0805742A1 (de) 1995-01-26 1996-01-25 Vorrichtung zur durchführung der relaxation für verstreckte thermoplaste enthaltende schüttgüter und zur selektiven erweichung von thermoplasten im gemengestrom zu recyclingzwecken

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19502352A DE19502352C2 (de) 1995-01-26 1995-01-26 Vorrichtung zur Wärmebehandlung von kunststoffhaltigen Schüttgütern
DE19502352.8 1995-01-26

Publications (1)

Publication Number Publication Date
WO1996022867A1 true WO1996022867A1 (de) 1996-08-01

Family

ID=7752347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000293 WO1996022867A1 (de) 1995-01-26 1996-01-25 Vorrichtung zur durchführung der relaxation für verstreckte thermoplaste enthaltende schüttgüter und zur selektiven erweichung von thermoplasten im gemengestrom zu recyclingzwecken

Country Status (13)

Country Link
US (1) US5993052A (de)
EP (1) EP0805742A1 (de)
JP (1) JPH10512512A (de)
KR (1) KR100418298B1 (de)
CN (1) CN1077008C (de)
AU (1) AU4539196A (de)
BR (1) BR9606801A (de)
CA (1) CA2211635A1 (de)
CZ (1) CZ295331B6 (de)
DE (2) DE19502352C2 (de)
HU (1) HUP9800705A3 (de)
PL (1) PL179378B1 (de)
WO (1) WO1996022867A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260137A1 (de) * 2002-12-20 2004-07-01 Schroeter, Johannes, Dr. Verfahren zur plastischen Verformung von Polymeren
WO2004083289A1 (en) * 2003-03-13 2004-09-30 Poly-Melt Technologies, Ltd. (Bvi) Recycling and reduction of plastics and non-plastics material
DE102008001851A1 (de) 2008-05-19 2009-11-26 Evonik Degussa Gmbh Verfahren zur Phasenumwandlung von Stoffen
CN102032768A (zh) * 2010-12-23 2011-04-27 南京赛旺科技发展有限公司 螺杆干燥设备

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163091A1 (de) * 2001-12-20 2003-07-10 Alfred Linden Stoffliche Wiederverwendung thermoplastischen Schaums
DE10202368A1 (de) * 2001-12-20 2003-10-02 Alfred Linden Stoffliche Wiederverwertung thermoplastischen Schaums
AT413511B (de) * 2003-06-05 2006-03-15 Bacher Helmut Vorrichtung zur aufbereitung von kunststoffmaterial zu recyclingzwecken
AT413512B (de) * 2003-06-05 2006-03-15 Helmut Bacher Vorrichtung zur aufbereitung von kunststoffmaterial zu recyclingzwecken
KR100748538B1 (ko) 2005-11-30 2007-08-13 엘지전자 주식회사 동기 릴럭턴스 모터 및 이를 구비한 압축기
US20070259070A1 (en) * 2006-05-03 2007-11-08 Joo Song Infra-red curing processes for confectionery coatings
DE102009004998A1 (de) 2008-10-10 2010-04-15 Alfons Tschritter Gmbh Heizvorrichtung und Verfahren zur Erwärmung von Schüttgut
DE102008054396A1 (de) 2008-12-08 2010-06-17 Kreyenborg Plant Technology Gmbh & Co. Kg Wärmebehandlungsvorrichtung für Schüttgüter
CN103406268B (zh) * 2013-08-29 2016-03-23 张家港市联达机械有限公司 一种塑料薄膜草木分离机
DE102018215527B4 (de) * 2018-09-12 2020-12-17 Thyssenkrupp Ag Recyclingverfahren von Metall-Kunststoff-Strukturen und Produkt hergestellt mit einem Recyclingverfahren
CN110239015A (zh) * 2019-06-29 2019-09-17 山东通佳机械有限公司 一种co2震动发泡xps板材成型装置
CN112460923A (zh) * 2020-12-11 2021-03-09 江苏贝尔机械有限公司 一种连续式ddgs干燥设备
DE102021123837A1 (de) 2021-09-15 2023-03-16 Kreyenborg Gmbh & Co. Kg Verfahren zur Entfernung anhaftender oder immigrierter, olfaktorischer Stoffe bei thermoplastischen Kunststoffpartikeln und Aufbereitungsvorrichtung dafür
CN113733386B (zh) * 2021-10-18 2022-09-16 青岛科技大学 一种能够快速检测加工过程中胶料温度的激光测温方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2337734A1 (fr) * 1976-01-06 1977-08-05 Goodyear Tire & Rubber Procede de devulcanisation du caoutchouc par micro-ondes et produits obtenus
DE2932446A1 (de) * 1979-08-10 1981-02-26 Troester Maschf Paul Vorrichtung zur behandlung eines extrudates mit uhf-energie
EP0154333A2 (de) * 1984-03-08 1985-09-11 Ingenieurbüro S. Ficker Verfahrenstechnik Verfahren und Vorrichtung zur kontinuierlichen trockenen und drucklosen Regenerierung von Altgummi
EP0469466A2 (de) * 1990-07-28 1992-02-05 Krauss-Maffei Aktiengesellschaft Einrichtung zum Plastifizieren von thermoplastischen Kunststoffen
CH680948A5 (en) * 1991-01-21 1992-12-15 List Ag Removing solvents and volatiles from varnish and paint muds etc. - where drying involves oxygen@ treating in a dryer to produce flowable solid crumb prod.
JPH067762A (ja) * 1992-06-25 1994-01-18 Maeyama:Kk 合成樹脂成形体の処理装置及び方法
EP0595189A1 (de) * 1992-10-29 1994-05-04 FRIEDRICH THEYSOHN GmbH Verfahren zum Plastifizieren von Kunststoff
JPH06210633A (ja) * 1993-01-20 1994-08-02 Micro Denshi Kk 廃棄加硫ゴムの再生装置
JPH07157776A (ja) * 1993-12-08 1995-06-20 Mitsubishi Heavy Ind Ltd 塩化ビニル含有プラスチック廃棄物の前処理方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231387A (en) * 1960-09-14 1966-01-25 Gen Mills Inc Method and apparatus for continuous puffing
DE1217598B (de) * 1964-05-13 1966-05-26 Bayer Ag Schneckenstrangpresse
FR1583837A (de) * 1968-04-30 1969-12-05
DE1906278A1 (de) * 1969-02-08 1970-11-12 Albert Ag Chem Werke Schneckenvorrichtung mit Infrarotbeheizung
US3607999A (en) * 1969-06-19 1971-09-21 Dow Chemical Co Foam scrap recovery and apparatus
US3883624A (en) * 1971-11-18 1975-05-13 Grandview Ind Limited Recovery and utilization of scrap in production of foamed thermoplastic polymeric products
GB1458312A (en) * 1973-04-02 1976-12-15 Simon V Dehydration of manure
NL7400221A (nl) * 1974-01-08 1975-07-10 Trouw & Co Nv Werkwijze en inrichting voor de vervaardiging en geexpandeerd droogvoer of voedingsmiddel iwitrijke grondstoffen en eventueel zetmeel- grondstoffen.
LU69549A1 (de) * 1974-03-04 1976-02-04
US4265922A (en) * 1979-01-31 1981-05-05 General Mills, Inc. Induction heating method for processing food material
US4309114A (en) * 1980-02-11 1982-01-05 Scientific Process & Research, Inc. Method for attaining maximum production effectiveness in a plasticating extruder
US4658891A (en) * 1984-01-05 1987-04-21 Willow Technology, Inc. Method and apparatus for thermally processing viscous, shear sensitive materials
JPH0675148B2 (ja) * 1985-07-09 1994-09-21 キヤノン株式会社 電動カメラ
US4671757A (en) * 1985-06-06 1987-06-09 Beta Raven, Inc. Microwave heating in a pellet mill
US5114648A (en) * 1991-03-28 1992-05-19 Kuc Sr John Method of producing products from rubber compositions
US5513807A (en) * 1992-01-27 1996-05-07 Rosa Emilia Fleischhauer Method of and apparatus for collecting and treating refuse containing stretched plastics
DE4220665C2 (de) * 1992-06-24 1995-05-18 Urban Dipl Ing Stricker Verfahren zur Gewinnung von thermoplastischen Schaumstoffanteilen aus einem Kunststoffabfälle enthaltenden Gemenge
DE4207398C1 (de) * 1992-03-09 1993-09-16 Urban Dipl.-Ing. 1000 Berlin De Stricker
JPH05308170A (ja) * 1992-04-30 1993-11-19 Nec Corp エキシマレーザガスの精製法
DE4220666C2 (de) * 1992-06-24 1995-02-09 Urban Dipl Ing Stricker Vorrichtung zur Sortierung von Thermoplasten aus einem Gemengestrom
DE9316760U1 (de) * 1993-11-03 1994-01-05 Hessabi Iradj Kunststoffrecyclingvorrichtung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2337734A1 (fr) * 1976-01-06 1977-08-05 Goodyear Tire & Rubber Procede de devulcanisation du caoutchouc par micro-ondes et produits obtenus
DE2932446A1 (de) * 1979-08-10 1981-02-26 Troester Maschf Paul Vorrichtung zur behandlung eines extrudates mit uhf-energie
EP0154333A2 (de) * 1984-03-08 1985-09-11 Ingenieurbüro S. Ficker Verfahrenstechnik Verfahren und Vorrichtung zur kontinuierlichen trockenen und drucklosen Regenerierung von Altgummi
EP0469466A2 (de) * 1990-07-28 1992-02-05 Krauss-Maffei Aktiengesellschaft Einrichtung zum Plastifizieren von thermoplastischen Kunststoffen
CH680948A5 (en) * 1991-01-21 1992-12-15 List Ag Removing solvents and volatiles from varnish and paint muds etc. - where drying involves oxygen@ treating in a dryer to produce flowable solid crumb prod.
JPH067762A (ja) * 1992-06-25 1994-01-18 Maeyama:Kk 合成樹脂成形体の処理装置及び方法
EP0595189A1 (de) * 1992-10-29 1994-05-04 FRIEDRICH THEYSOHN GmbH Verfahren zum Plastifizieren von Kunststoff
JPH06210633A (ja) * 1993-01-20 1994-08-02 Micro Denshi Kk 廃棄加硫ゴムの再生装置
JPH07157776A (ja) * 1993-12-08 1995-06-20 Mitsubishi Heavy Ind Ltd 塩化ビニル含有プラスチック廃棄物の前処理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9435, Derwent World Patents Index; Class A, AN 94-282897 (35), XP002002285 *
DATABASE WPI Week 9533, Derwent World Patents Index; AN 95-252522 (33), XP002002286 *
PATENT ABSTRACTS OF JAPAN vol. 18, no. 209 (C - 1190) 13 April 1994 (1994-04-13) *
PATENT ABSTRACTS OF JAPAN vol. 18, no. 572 (M - 1696) 2 November 1994 (1994-11-02) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260137A1 (de) * 2002-12-20 2004-07-01 Schroeter, Johannes, Dr. Verfahren zur plastischen Verformung von Polymeren
DE10260137B4 (de) * 2002-12-20 2004-11-18 Schroeter, Johannes, Dr. Verfahren zur plastischen Verformung von Polymeren
US7901612B2 (en) 2002-12-20 2011-03-08 Johannes Schroeter Method for plastic deformation of polymers by electromagnetic radiation
WO2004083289A1 (en) * 2003-03-13 2004-09-30 Poly-Melt Technologies, Ltd. (Bvi) Recycling and reduction of plastics and non-plastics material
US7799835B2 (en) 2003-03-13 2010-09-21 Next-Tec, Ltd. Recycling and reduction of plastics and non-plastics material
DE102008001851A1 (de) 2008-05-19 2009-11-26 Evonik Degussa Gmbh Verfahren zur Phasenumwandlung von Stoffen
CN102032768A (zh) * 2010-12-23 2011-04-27 南京赛旺科技发展有限公司 螺杆干燥设备

Also Published As

Publication number Publication date
HUP9800705A3 (en) 1999-08-30
CN1179126A (zh) 1998-04-15
CZ238797A3 (cs) 1998-02-18
KR100418298B1 (ko) 2005-08-05
JPH10512512A (ja) 1998-12-02
CN1077008C (zh) 2002-01-02
KR19980701701A (ko) 1998-06-25
US5993052A (en) 1999-11-30
AU4539196A (en) 1996-08-14
BR9606801A (pt) 1997-12-30
CZ295331B6 (cs) 2005-07-13
CA2211635A1 (en) 1996-08-01
HUP9800705A2 (hu) 1998-07-28
DE19613125C1 (de) 1997-04-10
DE19502352A1 (de) 1996-08-08
DE19502352C2 (de) 1997-03-27
PL321492A1 (en) 1997-12-08
MX9705616A (es) 1998-07-31
EP0805742A1 (de) 1997-11-12
PL179378B1 (pl) 2000-08-31

Similar Documents

Publication Publication Date Title
WO1996022867A1 (de) Vorrichtung zur durchführung der relaxation für verstreckte thermoplaste enthaltende schüttgüter und zur selektiven erweichung von thermoplasten im gemengestrom zu recyclingzwecken
EP0891526A1 (de) Vorrichtungen zur wärmebehandlung von schüttgütern in schnecken-förderern und verfahren zum trocknen von schüttgut
EP2100712B1 (de) Vorrichtung und Verfahren zum Erwärmen von Vorformlingen
EP0441994B1 (de) Verfahren und Vorrichtungen zur wenigstens teilweisen biologischen Umwandlung organischer Stoffe in Biomasse
EP1924414B1 (de) Verfahren und vorrichtung zum kristallisieren von zum verkleben neigenden kunststoffgranulaten, insbesondere pet- und pu-granulaten
EP1441885A1 (de) Verfahren und vorrichtung zur erhöhung der grenzviskosität von polyester
DD297334A5 (de) Vorrichtung zum behandeln von medizinischen sonderabfaellen
DE3323846A1 (de) Verfahren und vorrichtung zum wiederverdichten von thermoplastharzschaumabfaellen
CH425185A (de) Verfahren zum kontinuierlichen Herstellen eines granulatförmigen Schmelzproduktes aus thermoplastischen Kunststoffolien bzw. -abfällen und Einrichtungen zur Durchführung des Verfahrens
EP0500561B1 (de) Verfahren und vorrichtung zum mischen und thermischen behandeln von feststoffpartikeln
DE102005043526A1 (de) Verfahren und Vorrichtung zum Behandeln von Kunststoffmaterial und Einrichtung zum Fördern und gleichzeitigen Heizen von Material, insbesondere Kunststoffteilen
DE2837435B2 (de) Verfahren und Vorrichtung zum Aufbereiten von PVC-Pulver
EP2447033B1 (de) Verfahren und Vorrichtung zum Herstellen von Kunststoffbehältern und/oder Kunststoffvorformlingen
EP1905317A1 (de) Verfahren und Vorrichtung zum Erwärmen und Aushärten von Filterstäben
DE2946904B1 (de) Von außen beheiz- oder kühlbares, drehbares Wärmetauscherrohr zum Wärmebehandeln von pulvrigem bis körnigem, rieselfähigem, ggf. angeschlämmtem Gut
DE3831270C2 (de) Verfahren und Vorrichtung zum Trocknen und Klassifizieren von Schüttgut
EP0660059B1 (de) Vorrichtung zum Trocknen von Schüttgut
DE3005205A1 (de) Austragvorrichtung fuer eine pyrolyseanlage
DE202021102131U1 (de) Vorrichtung zum Trocknen von Material, insbesondere Biomasse, beispielsweise Klärschlamm
EP1008435B1 (de) Verfahren und Anlage zur Herstellung von faserverstärkten Kunststoffmassen
DE4333876C2 (de) Verfahren für Altteile bzw. Abfälle aus Kunststoff, insbesondere aus aufgeschäumtem Kunststoff
DE2922041A1 (de) Reaktor fuer die pyrolyse von abfallstoffen
DE2634874B2 (de) Sterilisieren oder Verkleistern stranggepresster Körner, Granulate und feinkörniger Produkte aus vegetabilischen und tierischen Rohstoffen und Vorrichtung dafür
DE102021123837A1 (de) Verfahren zur Entfernung anhaftender oder immigrierter, olfaktorischer Stoffe bei thermoplastischen Kunststoffpartikeln und Aufbereitungsvorrichtung dafür
DE2840478A1 (de) Schnecke, insbesondere fuer die spritzeinheit einer spritzgiessmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96192672.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR CA CN CZ FI HU JP KP KR MX NO NZ PL RO SG SI SK US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/005616

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1996 522629

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996901331

Country of ref document: EP

Ref document number: PV1997-2387

Country of ref document: CZ

Ref document number: 08894242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970705097

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2211635

Country of ref document: CA

Ref document number: 2211635

Country of ref document: CA

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1996901331

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1997-2387

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019970705097

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996901331

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970705097

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV1997-2387

Country of ref document: CZ