WO1996010494A1 - Generateur de gaz - Google Patents

Generateur de gaz Download PDF

Info

Publication number
WO1996010494A1
WO1996010494A1 PCT/JP1995/001926 JP9501926W WO9610494A1 WO 1996010494 A1 WO1996010494 A1 WO 1996010494A1 JP 9501926 W JP9501926 W JP 9501926W WO 9610494 A1 WO9610494 A1 WO 9610494A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas generator
opening
generating agent
generator according
Prior art date
Application number
PCT/JP1995/001926
Other languages
English (en)
French (fr)
Inventor
Yuji Ito
Eishi Sato
Ryo Minoguchi
Michihisa Taguchi
Kozo Ota
Rei Hino
Original Assignee
Sensor Technology Co., Ltd.
Nippon Kayaku Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27309050&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1996010494(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sensor Technology Co., Ltd., Nippon Kayaku Kabushiki-Kaisha filed Critical Sensor Technology Co., Ltd.
Priority to DE69533403T priority Critical patent/DE69533403T2/de
Priority to EP95932221A priority patent/EP0783997B1/en
Publication of WO1996010494A1 publication Critical patent/WO1996010494A1/ja
Priority to KR1019970701882A priority patent/KR970706145A/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/20Arrangements for storing inflatable members in their non-use or deflated condition; Arrangement or mounting of air bag modules or components
    • B60R21/217Inflation fluid source retainers, e.g. reaction canisters; Connection of bags, covers, diffusers or inflation fluid sources therewith or together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/264Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
    • B60R21/2644Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/268Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R2021/26094Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow characterised by fluid flow controlling valves

Definitions

  • the present invention relates to a gas generator for an air bag of a vehicle, and more particularly to a gas generator for a stored gas generating agent within an appropriate predetermined range without being affected by an ambient temperature of a container (housing) of the gas generator. Open to gas generators that can be kept at zero
  • a gas generator based on sodium azide is mainly used.
  • the structure of this gas generator is such that the gas generating agent normally housed in the combustion chamber is ignited to generate room gas, and slag and mist in the gas generated at the same time are removed by a coolant and a filter.
  • the burning rate of the gas generating agent that is, the gas generating rate
  • the gas generating rate mainly depends on the shape of the gas generating agent, in order to obtain an appropriate gas generating rate, for example, in the case of a beret, its outer diameter And the thickness will be changed.
  • the working environment temperature required for the gas generator is very wide, from a low temperature of 40'C to a high temperature of + 85C, so the combustion level of the gas generating agent naturally depends on the temperature. to be influenced.
  • a gas generator that is conditioned at +25 ⁇ C will burn too slowly at temperatures as low as 140 ⁇ C and will be too fast at temperatures as high as +85 ⁇ C.
  • U.S. Patent 52569561 and Japanese Patent Application Laid-Open No. 63-141581 disclose that more than Open under high temperature to prevent it from flowing into the bag
  • a gas generator has been proposed in which an opening for releasing gas is provided to prevent the internal pressure of the bag from increasing.
  • Japanese Patent Application Laid-Open No. 2-74442 proposes a gas generator that can automatically increase the opening area of a gas outlet when the temperature of the operating environment of the gas generator is high.
  • n is as small as 0.3 to 0.4. Therefore, even at high temperatures of + 85 ° C, where P is high, there is no significant increase in the burning rate.
  • n is generally as large as 0.4 to 1.0, the combustion rate depends on the ambient temperature. The shadow W is large.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to reduce the influence of the ambient temperature on the burning rate as in non-azide gas generating agents. To provide a gas generator that can burn extremely stably even at large combustion speed without danger.
  • a gas generating agent is housed inside, and the rupturable plate and the opening where the glare rupture plate contacts in order in the direction in which gas from the gas generating agent passes in order.
  • the gas generator provided, even if the gas generating agent is a combination of a fuel containing a nitrogen-containing compound excluding inorganic azide and an oxidizing agent, the burst pressure (tensile strength) of the rupturable plate is maintained.
  • the inventors have found that by setting strictly, the burning rate of the gas generating agent can be controlled extremely stably, and the present invention has been completed.
  • the tensile strength of the rupture disc is A [kg ⁇ / cm 2 ]
  • the thickness of the rupture disc is t [cm]
  • the equivalent circle diameter of the opening where the rupture disc contacts is DC c m]
  • the relation between the thickness t of the rupture disk and the equivalent circle diameter D of the opening (diffuser) is added to the following equation (1).
  • the equivalent circle diameter is equivalent to a circle instead of a diameter, because the aperture in contact with the rupture disk may have a shape that can approximate a circle as well as a circle.
  • an ellipse or a combination of a circle and a square may be used.
  • the area equivalent diameter which is the diameter when the area is made equal to make a perfect circle, is used as the circle equivalent diameter in the above equation.
  • Equation (1) if the value of B is less than 8, the combustion speed is not sufficient or unburned substances will remain. If the value of B exceeds 40, the combustion speed is too high and the gas is too fast. The generator container may be destroyed.
  • the tensile strength of the rupturable plate is irrespective of the material of the rupture plate.
  • a Ck gf / cm a ] the thickness of the rupturable plate is t [cm]
  • the equivalent circle diameter D [cm] of the opening where the rupturable plate is in contact satisfies the expression (1).
  • the pressure can be strictly controlled to a predetermined value of 100 [bar] or less, and the non-azide gas generating agent having high pressure dependency is appropriately burned.
  • the size of the gas generator by setting the internal pressure of the gas generator to a predetermined value of, for example, 100 [bar] or less. Further, it is possible to obtain a gas generator with little change in characteristics over a wide range of ambient temperature from 140 ° C. to 180 ° C.
  • Equation (1) The relationship between the equivalent circle diameter D of the opening and the rupture plate t in contact with the opening BB and the thickness shown in Equation (1) is only required if all the openings and the rupture plates in contact with the openings are satisfied. Therefore, there is no need for one kind of D corresponding to the circle of the opening.
  • the equivalent circle diameter of the opening is large, medium and small D ,, D 3 , D e , D "D It suffices that each of 2, B satisfies equation (1). In this way, if the opening has several kinds of equivalent circle diameters, the gas pressure of the gas generator can be more reliably controlled, and even if there is some variation in the combustion speed of the gas generating agent, it can be absorbed. Variations in gas pressure in the gas generator can be reduced.
  • the equivalent circle diameter D of the opening is extremely small, the gas pressure in the gas generator will be too high, and the gas generation in the standard condition (273 * K, 1 atm) will occur. It is desirable that the area of the opening relative to the amount is 0.143 [cm a Z liter] or more. That is, if the opening area is not 0.143 [c ⁇ 3 Z liter], the control of the gas pressure by the rupturable plate becomes ineffective due to the increase of the gas pressure due to the flow path resistance at the opening W. .
  • the value of 0.143 [cm a / liter] was determined based on the combustion experiments of various non-azide gas generating agents.
  • the opening has a circle equivalent diameter of at least one and satisfies the above equation (1), and the secret area of the opening relative to the amount of gas generated under standard conditions (273 K. 1 atm) is 0.143. [cm a liter] Above this, even if the ambient temperature to which the gas generator is exposed changes from 140'C to + 85'C, the maximum pressure inside the gas generator is 100 [bar ] The following low pressure is maintained at a predetermined pressure. Then, even when a non-azide gas generating agent is used, there is a risk of delaying bag deployment at low temperatures, breakage of the bag due to pressure increase at high fi and bursting of the gas generator container. Disappears.
  • the rupture disk that satisfies equation (1) above does not matter its material S. It is selected from gold foil, gold sheet, graphite sheet, matting polymer sheet, and so on.
  • the material of the gold IS foil or gold / iron sheet includes stainless steel, aluminum alloy, magnesium, titanium, titanium alloy, copper, copper alloy, ugel-ueckel alloy, zinc, and zinc alloy.
  • Metal-based rupture plates have high tensile strength and are processed with high precision. However, there is an advantage that stable tensile strength can be obtained. Non-metal rupture plates, such as graphite sheet, have low tensile strength, so thick ones can be used, but they have the disadvantage that they are easily broken by external forces. To take advantage of these advantages, gold 15 series rupture discs and non-gold)! It can also be used by »touching the rupture disk of the system. When applying the above equation (1) when products S of different materials are used, an additive property of adding individually calculated values is satisfied.
  • Another gas generator according to the present invention that solves the above Rffi contains a gas generating agent in Uchiro, and a rupture plate and a K rupture plate in the direction in which gas from the K gas generator passes. It is a gas generator in which the opening is in contact with the opening, and it is preferable that Jiro or Ichiro of the rupturable plate is formed of a non-metallic material having a 3 ⁇ 4 point of 500 ° C. or more. »If the point is less than 500 ° C., the strength may decrease even during a short period of time when exposed to a high-temperature gas, and a predetermined burst strength may not be obtained. »When the point is 500 ° C. or more, the initial gas pressure and temperature can be sufficiently maintained.
  • a material having a modest strength such as gold II can be selected, and the pressure can be easily controlled by the thickness of the rupture plate.
  • an optimal combustion speed is obtained by reliable pressure control, and even if the temperature of the operating environment becomes high, an abnormal rise in gas pressure can be prevented without fail, and the thickness of the gas generator vessel is reduced by S. Enables miniaturization and optimization.
  • the rupturable plate is a non-gold JS material and has a possibility. If a rupturable plate with flexibility is used, it fits into the inside diameter of the opening through which gas passes, making it easy to maintain confidentiality. It is easy to perform a predetermined gas pressure control by bursting.
  • Examples of such ruptured plates made of non-gold JS materials include graphite sheets, ceramic sheets, and heat-resistant plastic sheets containing fillers. . Especially graphite Sheets having a constant thickness are easy to obtain, and have a high melting point and high flexibility, and are therefore preferable. By using such a rupture plate made of a non-gold R material, it becomes easy to produce SB with the maximum value of the internal pressure of the gas generator being within 100 [bar].
  • the mechanical strength of graphite increases with increasing temperature, and becomes about twice the temperature at 250 ° C.
  • the score is also high at 2500 ⁇ C or more.
  • Graphite or carbon products begin to oxidize in an oxygen atmosphere at around 400'C, but are exposed to high-temperature gas for a short time of less than 100 milliseconds, and do not have any adverse effects due to oxidation. Therefore, it is preferable to use graphite itself or a sheet mainly composed of graphite for the rupture disk.
  • the gas generator having such a rupture disk it is easy to obtain a predetermined combustion rate, and a non-azide comprising a combination of a fuel containing a humor-containing compound excluding an inorganic azide and an oxidizing agent is used.
  • a non-azide comprising a combination of a fuel containing a humor-containing compound excluding an inorganic azide and an oxidizing agent.
  • the combustion rate caused by such a rupture disk is not limited to non-azifying gas generating agents consisting of a combination of a fuel containing a nitrogen-containing compound excluding inorganic azides and an oxidizing agent, and other types of gas generating agents. It is also suitable for gas generators that use chemicals.
  • Examples of the nitrogen-containing compound of the non-azide gas generating agent include one or more selected from the group consisting of a tetrazole derivative, a guanidine derivative, an azodicarbonamide derivative, a hydrazine derivative, and a triazole rust conductor. There are two types J3 ⁇ 4.
  • azodicarbonamide guanidine triamino guanidine nitrate, guanidine nitrate, guanidine carbonate, tetrazole, 5-amino-tetrazole, 5, 5'-B IH—Tetrasol, 5-oxo-1,2,4-triazole, hexamethylenetetramine, dicyandiamide, biuret, hydrazine, lipohydrazide, Seric acid dihydrazide, hydrazine hydrochloride, etc. are available.
  • a compound having an NH a group or one NH- in ⁇ formula among them, obtained by reacting an organic compound which can cause organic compound or one CHO group having one CHO group in structural formulas reaction Products are mentioned as preferred examples.
  • a gas generating agent obtained by reacting a compound having one NH 2 group or one NH— in the structural formula with an organic compound having one CHO group in the structural formula is preferable from the viewpoint of handling safety. Agent.
  • the compound having one NH 2 group or one NH— in the structural formula include azodicarbonamide, guanidine, triamino guanidine nitrate, guanidine nitrate, guanidine carbonate, and tetrazole.
  • organic compound having one CH 0 group in the above structural formula examples include formaldehyde (methanal, hereinafter the formal name in parentheses), acetoaldehyde (ethanal), and probionaldehyde (propanal). ), N-butyl aldehyde (butanal), n-butyl aldehyde (pentanal), ⁇ -force bron aldehyde (hexanal). Butenes). Glyoxal, etc., and these are used alone or in combination of two or more.
  • organic compounds which can cause the one CHO group rose formaldehyde HO (CH a 0) n H.
  • Examples of the oxidizing agent to be combined with the fuel containing a nitrogen-containing compound excluding azide are nitrates, oxo-genates, and gold oxides.
  • nitrates include sodium nitrate, nitric acid rim, barium nitrate, ammonium nitrate and strontium nitrate.
  • Specific examples of the above-mentioned acid salts include chlorite clay, perchlorate, bromate, perbromate, iodate, and iodate clay.
  • specific examples of the gold JS oxide include manganese dioxide, ferric oxide, zinc dioxide, potassium dioxide, potassium manganate, and barium peroxide. Two or more kinds are mixed and used.
  • FIG. 1 is a longitudinal sectional view of one embodiment of the gas generator of the present invention
  • FIG. 2 is a characteristic diagram obtained by a 60 liter tank test
  • FIG. FIG. 4 is a cross-sectional view of the gas generator
  • FIG. 4 is ⁇ indicating a rupture state of a rupturable plate
  • FIG. 5 is a graph showing gas characteristics of the gas generator of the present invention.
  • the gas generator applied to the present invention contains a gas generating agent therein, and is provided with a rupturable plate and an opening in contact with the rupturable plate in order in the direction in which gas from the gas generating agent passes. Anything that has been done is acceptable.
  • a gas generator 1 is shown in FIG. Squeeze into the central chamber of Vessel 2
  • the gas generator 7 and the coolant 8 are stored in the combustion chamber 6 of the container 2, and the filter 10 is stored in the outermost chamber side of the container 2.
  • the operation is as follows. First, the squib 3 is ignited and the enhancer 4 is ignited. The hot gas from the enhancer enters the combustion chamber 6 through the nozzle 5.
  • the gas generating agent 7 stored in the combustion chamber is ignited to generate gas. The generated gas is cooled by the coolant 8, and the slag component is removed by the filter 10.
  • the gas in the combustion chamber 6 is released via a communication path from the opening opening 9 in the container 2 to the outside opening 12.
  • a bursting plate 11 is arranged inside the outer opening ffi 1 2 in a contact state IB, and the bursting plate 1 1 and the greedy bursting plate 1 1 come into contact with each other in the gas passing direction 1 2 Is provided. If the rupturable plate 11 is provided at the outer opening 12 which is the force outlet, it is less likely to be affected by high heat due to combustion of the gas generating agent.
  • the coolant 8 may be housed in the outermost chamber side together with the filter 10, the gas generating agent 7 may be put into a force tube, and the force tube in contact with the internal opening 9 may be a rupturable plate.
  • a rupturable plate is to be provided not only at the inner opening 9 but also at the inner opening 9 in addition to the rupturable plate 11 at the outer opening 1 2, the value of B in Equation (1) for the rupturable plate at the inner opening 9 is calculated as Smaller than the value of B in Eq. (1) for the rupture disk of. Then, although the rupturable plate of the internal opening 9 is broken first, the gas pressure in the combustion chamber 6 is reliably maintained. Of course, instead of the rupturable plate of the outer opening 12, only the rupturable plate of the inner entrance 9 may be used.
  • the coolant 8 and the filter 10 are used or not used depending on the type of the gas generating agent. Also, there are various ways of dividing the container 2 according to the ft large gas pressure. As described above, when the gas pressure is 100 [ar] or less, since the pressure resistance is not so required, the container 2 can be a simple cylinder instead of a double or triple cylinder.
  • Omm-diameter outer diffuser (diffuser) was housed in a gas generator having 90 pieces, and subjected to a 60-liter tank at room temperature of 25 ° C.
  • the maximum gas pressure in the gas generator was -61 [bar].
  • Relation (1) at this time is as follows, B [kgf / cm a] is Atsuta at 8 and 4 0 intermediate with ir of.
  • the container was housed in a gas generator having 30 tons and subjected to a 60 liter tank test at room temperature of 25 ° C.
  • t-Pmax is too fast and the gas pressure in the gas generator is high It was dangerous.
  • (1) relationship at this time is as follows, B [kgf / cm a] exceeds the 4 0.
  • the container 102 has a simple structure in which the first container 103 and the second container 104 are joined to each other with bolts 106 to form a single chamber with a single cylinder. 2nd container 1
  • the squib 108 is fixed at 7.
  • An aluminum cylinder 110 having a hole 109 is covered on the holding portion 116, and the position of the ignition agent 111 is determined.
  • the aluminum layer 110 and the igniting agent 1 1 1 1 are pressed against the bottom 1 1 2 a of the wire mesh 1 1 2.
  • Sli 114 is provided and serves as a gas outlet.
  • a rupture plate 115 of a graphite sheet is adhered to the inner side of the aperture 114 with an adhesive.
  • the shape of the opening portion 114 in the illustrated example is a circle, the shape is not limited to a circle, and may be a coffin-circle square.
  • the operation of the gas generator 1 will be sharpened.
  • a predetermined flow of water flows through the lead bin 108a to the three squibs (not shown) of the squib 108
  • the explosive in the squib 108 is ignited and the tip of the squib 108 is broken, resulting in a high temperature.
  • Gas is released at high pressure. This hot gas ignites the igniting agent in the ⁇ gun cup.
  • the high temperature gas of the igniting agent 1 1 1 1 burns the gas generating agent 1 1 3.
  • the gas generated by the combustion of the gas generating agent 113 raises the pressure inside the container 102, but until it reaches the specified pressure, it can withstand high-temperature gas due to the heat resistance of the ruptured plate 115 of the graphite sheet. To maintain the pressure. That Therefore, even if the gas generating agent 113 is a non-azide soda-based material, the pressure does not rise and the combustion does not occur gradually.
  • the gas pressure is connected to the predetermined pressure, the rupturable plate 1 15 of the aperture 114 starts to rupture, and the gas is released from the aperture 114.
  • the number of open openings 114 depends on the gas pressure, and the higher the gas pressure, the larger the number of open openings 114 becomes. Therefore, the gas pressure is kept at a predetermined value.
  • the rupturable plate in FIG. 3 is provided inside the open node on the outer periphery of the container 102.
  • a rupturable plate to the opening that forms the outlet of the gas generating gas.However, surround the combustion chamber in the vessel with a wall, put a crotch around this wall, and attach a rupturable plate to this opening. It may be provided.
  • a rupturable plate may be provided in both the opening section of the gas outlet and the opening section of the combustion chamber.
  • the size of the opening is not limited to one type, but may be of three types, large, medium, and small, and a bursting plate of a black sheet may be put on each of them. In this case, pressure control is more reliable.
  • a rupture plate made of a non-metallic material and a gold IS material may be used, such as a sheet on the inside and an aluminum foil on the outside.
  • the shape of the gas generation S used for the actual test is the same as that in Fig. 3.
  • the holes 114 have a diameter of 1.5 mm, the pitch is 3 mm in a staggered arrangement of 60 ⁇ , and the number of holes set is 320 iB.
  • a lead sheet carbon sheet VF30 manufactured by Nippon Barkaera
  • a thickness of 0.38 mm and a tensile strength of 55 kgf / cma was used as the rupturable plate 115.
  • the gas generating agent ADCA ( ⁇ zone dicarboxylic amino-de) / KNO, KC 1 O a 1 ⁇ 5 m with a mixture of ZS i rubber (by Sunda I) It is granulated to m diameter. Since this gas generating agent has a high gasification rate and a small amount of residue to be trapped, the filter was omitted. The ambient temperature of the gas generator was normal.
  • Table 6 shows the change in the opening ratio of the opening when the dose of the gas generating agent was changed in a simple range of 20 to 25 g.
  • An increase in dose means an increase in gas pressure and an increase in gas pressure.
  • the aperture ratio increases, and the increase in the fine aperture area according to the gas pressure is coupled. Visual observation of the state of the ruptured plate that did not rupture revealed that it had remained convexly swelled and deformed.
  • FIG. 5 is a characteristic diagram in a 60 liter tank test of the example of the present invention.
  • the alertness indicates an increase in the gas pressure [bar] in the gas generator vessel
  • the one-point moth indicates an increase in the pressure in the tank [Pa].
  • the degree of increase in the gas pressure inside the vessel reaches a plateau at point a, and is maintained at a gas pressure of about 50 [bar] for a certain period of time ffl, and then gradually decreases.
  • the pressure resistance level of the volume S can be reduced, and the size and the amount of ⁇ can be reduced.
  • the gas pressure can be kept low, such as 50 (bar), for a certain period of time, even if the gas generating agent has a high pressure index, the pressure becomes ffi and the burning speed becomes faster, even if the gas generating agent has a high Stable combustion can be achieved by suppressing the burning rate. For this reason, even if the gasification rate is high, it is possible to use a gas generating agent which is considered to be inappropriate due to a high pressure index, and it is possible to reduce the size of one JB of gas generation and to increase ⁇ weight.
  • the combustion speed can be maintained without danger. It can be stably burned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

明 細 謇
ガス発生器 技術分野
本発明は、 車両のエアバッグ用ガス発生器に係り、 特に、 収納された ガス発生剤の燃焼速度をガス発生器の容器 (ハウジング) 等の周囲温度 に影 »されずに適切な所定範囲内に保つことができるガス発生器に開す る 0 背景技術
従来のこの種のガス発生器において、 ガス発生剤としてアジ化ナ ト リ ゥ厶を基剤としたものが主として用いられている。 このガス発生器の構 造は、 通常燃焼室に収納したガス発生剤を著火させて室素ガスを発生さ せ、 同時に生じるスラグ及びガス中のミス トをクーラントとフィルター で取り除く という構造になっている。 ガス発生剤の燃焼速度、 即ち、 ガ ス発生速度は、 主にガス発生剤の形状に依存しているため、 適当なガス 発生速度を得る為には、 例えばべレツ 卜の場合、 その外径と厚みを変化 させることになる。
しかしながら、 ガス発生器に要求される作勖環境温度は、一 4 0 ' C の低温から + 8 5 · Cの高温迄と非常に巾広い為、 ガス発生剤の燃焼逋 度は当然ながら温度の影響を受ける。 + 2 5 · Cで性能綑整されたガス 発生器は、一 4 0 · Cの低温ではガス発生の燃焼速度が遅すぎて + 8 5 • Cの高温では速すぎることになる。
この作動環境の温度の髙低に対する対策として、 U . S . P a t e n t 5 2 6 9 5 6 1号公報や特開昭 6 3 - 1 4 1 8 5 1公報では、 必要以 上のガスがバッグに流入しない様に、 高温下では開口してバッグの外に ガスを逃す開口部を設けることにより、 バッグの内圧が高まるのを防ぐ 様にしたガス発生器が提案されている。
また特開平 2— 74442公報では、 ガス発生器の作動環境の温度が 高いとき、 ガス出口の開口面積を自動的に増大させることができるガス 発生器が提案されている。
しかしながら、 上述したパッグの外にガスを进がすガス発生器やガス 出口の開口面積を自動的に增大させるガス発生器は、 アジ化ナ ト リ ウム を基剤としたガス発生剤に対してある程度の効果が ffiめられるものの、 無機アジ化物を除く含室素化合物と酸化剤を組み合わせる非アジ化系ガ ス発生剤の場合には期待通りの効果が得られないという問趣点があった その理由は以下の通りであることが判った。 一般に火薬の燃焼速度 r [ l/s e c〕 は、 r = lZ t =k Pn で示される。 tは燃焼時間 〔s e c〕 、 kは定数、 Pは圧力 〔k g f /c m» 〕 、 nは圧力指数である o
アジ化ナ ト リウムを主成分とするガス発生剤の場合、 nは 0. 3〜0 . 4と小さい。 従って Pが高くなる + 85· Cの高温においてもさほど 燃焼速度の增加は著しくない。 しかしながら、 無 «アジ化物を除く含室 素化合物と酸化剤を組み合わせる非アジ化系ガス発生剤の埸合は、 nが 一般に 0. 4〜 1. 0と大きくなる為、 燃焼速度の周囲温度による影 W が大きい。
そのため、 バッグ外にガスを逃がすガス発生器の場合、 ガスを逃がす ために十分な開口面種がとれず、 圧力降下の程度が不足する。 ガス出口 の開口面 «を自動的に増大させるガス発生器でも、 開口面種の増大が圧 力上昇に追いつかず、 圧力降下の程度が不足したり、 開口面積が増大し すぎて燃焼速度が低下したりする。 そのため、 高温では異常な圧力增加 によるバッグの破れ、 あるいはガス発生器の容器破壊も起こり得る。 高 通対策の為に極斓に開口面積を大きくすると、 低温の場合ではバッグ展 開の運れが生じる。
従って、 非アジ化系ガス発生剤をガス発生器に使用する場合は、 最適 設計が難しいという問趣点があった。 バッグ展開の運れがあってはなら ないため、 高温時には燃烷速度が早くなってガス圧が高くなりがちであ る。 そのため、 上述したバッグ外にガスを逃がすという対策やガス出口 の開口面積を自動的に増大させるという対策を施したとしても、 ガス発 生器の容器の構造を圧力増大に耐え得る非 »に堅固なものにしなければ ならない。 その結果、 ガス発生器が重くなると共に大型化してしまう。 本発明は従来の技術の有する上記の様な問题点に趣みてなされたもの であって、 その目的とするところは、 非アジ化系ガス発生剤のように燃 焼速度の周囲温度による影響が大きい場合であっても、 危険のない燃焼 速度を保ち、 極めて安定に燃焼させることが出来るガス発生器を提供す
O —とにある。 発明の関示
上記 ¾題を解決する為説意検討の結果、 内部にガス発生剤を収納し、 該ガス発生剤からのガスが通通する方向に対して、 順に破裂板と眩破裂 板が接する開口部とが設けられているガス発生器であって、 前記ガス発 生剤が無機アジ化物を除く含窒素化合物を含む燃料と酸化剤の組み合わ せであっても、 破裂板の破裂圧力 (引っ張り強さ) を厳密に設定するこ とによって、 ガス発生剤の燃焼速度を極めて安定して制御できることを 見出して本発明を完成したものである。
具体的には、 前記破裂板の引張り強さを A 〔k g ί / c m 2 〕 、 前記 破裂板の厚みを t 〔 c m〕 、 破裂板が接する開口部の円相当径を D C c m] としたとき、 破裂板の厚み tと開口部 (ディ フューザ一) の円相当 径 Dの閲係を、 下記 ( 1) 式を «足するようにする。
t = (BXD) /A、 但し、 B= 8〜 40 · · · ( 1)
ここで、 円相当径とは、 破裂板が接する開口郎が、 円のみならず円に 近似できる形状を有するものである場合があるので直径とはせず、 円相 当 とした。 最大径部と ft小径部との比が例えば 1. 2以内と小さい場 合は、 楕円又は円と四角の合成であってもよい。 この近似円の場合には 、 上記式の円相当径としては、 面積を等しく して真円にした場合の径で ある面積径を用いる。
この ( 1) 式において、 Bの碴が 8未满の場合は燃焼速度が充分でな いか未燃烷物が残ることになり、 Bの値が 40を越える場合は燃焼速度 が速すぎてガス発生剤の容器が破壊する恐れがある。
すなわち、 無 «アジ化物を除く含室素化合物を含む燃料と酸化剤の組 み合わせである非アジ化系ガス発生剤を用いる場合、 破裂板の材質の 類を問わず、 破裂板の引張り強さを A Ck g f /c ma ] 、 前記破裂板 の厚みを t 〔c m〕 、 破裂板が接する開口部の円相当径 D 〔c m〕 が ( 1) 式を充足することによって、 破裂板の破裂圧力を 1 0 0 〔b a r〕 以下の所定値に厳密に制御でき、 圧力依存性の高い非アジ化系ガス発生 剤を適切に燃焼させる。 その轱果、 ガス発生器の内圧を例えば 1 0 0 〔 b a r] 以下の所定値とし、 ガス発生器の小型化を囪ることが可能にな る。 さらに、一40· C〜十 8 5 ' Cの広範囲の周囲温度で特性の変化 が少ないガス発生器を得ることができる。
( 1) 式に示される開口部の円相当径 Dとその開口 BBに接する破裂板 t と厚みとの関係は、 全ての開口部とその開口部に接する破裂板が充足 していればよい。 従って、 開口部の円相当 Dが一種類である必要はな い。 開口部の円相当径を大中小の D,,D3,De である場合には、 D"D 2, B の各々が ( 1) 式を充足していればよい。 このように、 開口部の 円相当径を数種類にすると、 ガス発生器のガス圧の制御がより確実とな り、 ガス発生剤の燃焼速度に多少のバラツキがあっても、 これを吸収し てガス発生器内のガス圧のバラッヰを少なくすることができる。
しかし、 開口部の円相当径 Dが極端に小さい場合には、 ガス発生器内 のガス圧が高くなりすぎるという不都合が生じるため、 標準状態 ( 2 7 3* K, 1気圧) でのガス発生量に対する開口部組面積が、 0. 1 43 〔c ma Zリ ッ トル〕 以上とすることが望ましい。 すなわち、 開口部 面積が 0. 1 43 〔c τη3 Zリ ッ トル〕 未满であると、 開口 Wでの流路 抵抗によるガス圧の增加によって、 破裂板によるガス圧の制御が有効で なくなる。 この 0. 1 43 〔c ma /リッ トル〕 という数宇は、 種々の 非アジ化系ガス発生剤の燃焼実験に基づいて求められた。
開口部の円相当径が 1種以上であって、 上記 ( 1) 式を充足し、 且つ 標準状態 ( 2 73 · K. 1気圧) でのガス発生量に対する開口部秘面積 を 0. 1 43 [cma リ ッ トル〕 以上とすると、 ガス発生器が晒され る周囲温度が一 4 0' C〜+ 85' Cと変化しても、 ガス発生器内の最 大圧力が 1 00 〔b a r〕 以下の低圧であって所定の圧力に保持される 。 すると、 非アジ化系ガス発生剤を用いる埸合であっても、 低温でのバ -jグ展開の遅れや、 高 fiでの圧力增加によるバッグの破れやガス発生器 の容器の破裂の恐れが無くなる。
前述した ( 1) 式を充足する破裂板はその材 Sを問わない。 金厲箔, 金厲シー ト, 黒鉛シー ト, 耐熟性高分子シー ト等から選ばれる。 このう ち金 IS箔又は金厲シートの材質としては、 ステンレス, アルミ ニウム合 金, マグネシウム, チタン, チタ ン合金, 鋇, 銅合金, ュッゲル. ュッ ケル合金, 亜鉛, 亜鉛合金等がある。
金厲系の破裂板は引っ張り強度が髙いため、 高精度に加工した »いも のを用いなければならないが、 安定した引っ張り強度のものが得られる という利点がある。 黒鉛'ンー トのような非金属系の破裂板は引っ張り強 度が低いため、 厚いものを用いることができるが、 外力で破れ易いとい う欠点がある。 このような利点同士を生かすため、 金 15系の破裂板と非 金)!系の破裂板とを »觸して用いることもできる。 異種の材料を積 Sし た場合の上記 ( 1 ) 式の適用においては、 個別に計算した値を加算する 加成性が成り立つ。
また、 上記 Rffiを解決する本発明における他のガス発生器は、 内郎に ガス発生剤を収納し、 Kガス発生器からのガスが通過する方向に対して 、 醸に破裂板と K破裂板が接する開口郎とが股けられているガス発生器 であって、 前記破裂板の全郎又は一郎が ¾点が 5 0 0 · C以上の非金厲 材料で形成されていることが好ましい。 »点が 5 0 0 ' C未満であると 、 高温のガスに晒される短時間の間でも ¾度が低下して、 所定の破裂強 度が得られなくなるおそれがある。 »点が 5 0 0 ' C以上であると、 初 期のガスの圧力及び温度を充分保持することができる。 非金属材料であ る場合は、 金 IIのように大きくない強度を有するものが選択でき、 破裂 板の厚みによる圧力の制御が行い易くなる。 その結果、 確実な圧力制御 による最適な燃焼速度が得られ、 作動環境の温度が高くなつても、 ガス 圧の異常上昇を確実に防止でき、 ガス発生器の容器の肉厚みを Sく して 小型化及び 6最化を可能にする。
そして、 前記破裂板が非金 JS材料であって可 *性を有しているものが 好ましい。 可攙性を有する破裂板にすると、 ガスが通過する開口部の内 径にフィ ッ ト し、 機密性を保つことも容易にでき、 一斉破裂ではなく、 携みの微妙な差によつて順次破裂となつて所定のガス圧制御が行い易い このような非金 JS材料による破裂板としては、 黒鉛シー ト、 セラ ミ ツ ク シー ト、 フィ ラ一入り耐熱ブラスチックのシ一ト等がある。 特に黒鉛 シー トは一定厚みのものが手に入り易く、 高¾点且つ可揍性を有してお り、 好ましい。 このような非金 R材料による前記破裂板を用いると、 前 記ガス発生器の内圧の最大値を 1 0 0 〔b a r〕 以内に SB製することが 容易になる。
特に、 黒鉛の极械的強度は温度上昇と共に増大し、 2 5 0 0 · Cで 温の約 2倍になる。 班点も 2 5 0 0 · C以上と高い。 黒鉛又は炭素製品 は 4 0 0 ' C前後の酸素雰囲気中で酸化が始まるものの、 高温のガスに 晒される時間は百ミ リセック以内の短時間であり、 酸化による悪影響が 生じない。 したがって、 黒鉛自体又は黒鉛を主成分とするシー トを破裂 板に用いることが好ましい。
このような破裂板を有するガス発生器によると、 所定の燃焼速度を得 ることが容易になり、 無機ァジ化物を除く含室素化合物を含む燃料と酸 化剤の組み合わせからなる非アジ化系ガス発生剤を用いるガス発生 Sに 通している。 尚、 このような破裂板による燃焼速度の睏螯は、 無機アジ 化物を除く含窒素化合物を含む燃料と酸化剤の組み合わせからなる非ァ ジ化系ガス発生剤に限らず他の種類のガス発生剤を使用するガス発生器 にも適している。
上述した非アジ化系ガス発生剤の含窒素化合物としては、 テ トラゾー ル誘導体, グァュジン誘導体. ァゾジカルボンアミ ド誘導体, ヒ ドラジ ン誘導体. ト リ アゾール銹導体からなる群から選ばれる 1種又は 2種 J¾ 上がある。
これらの具体例としては、 ァゾジカルボンアミ ド. グァュジン, ト リ アミ ノ グァ二ジンナイ ト レー ト . 硝酸グァニジン, 炭酸グァニジン, テ ト ラゾール, 5一アミ ノ テ ト ラゾール, 5、 5 ' —ビー I H—テ ト ラソ' ール, 5一ォキソ 1、 2、 4一ト リ ァゾール, へキサメチレンテ ト ラ ミ ン, ジシアンジアミ ド, ビウレッ ト, ヒ ドラジン, 力ルポヒ ドラジド, 蔡酸ジヒ ドラジド, ヒ ドラジン塩酸堪等が举げられる。
その中でも構迪式中に一 NHa 基又は一 NH—を有する化合物と、 構 造式中に一 CHO基を有する有機化合物又は一 CHO基を生じ得る有機 化合物とを反応させて得られた反応生成物が好ましい例として举げられ る。
特に、 構造式中に一 NH2 基又は一 NH—を有する化合物と、 構造式 中に一 CHO基を有する有機化合物とを反応させたガス発生剤は、 取扱 の安全性の見地から好ましいガス発生剤である。
この構造式中に一 NH2 基又は一 NH—を有する化合物の具体例とし ては、 ァゾジカルボンアミ ド, グァュジン, ト リアミ ノ グァュジンナイ ト レー ト. 硝酸グァニジン. 炭酸グァュジン. テ ト ラゾール. 5—アミ ノテ トラゾール, 5、 5 ' 一ビー I H—テ トラゾール. 5一ォキソ 1、 2、 4一ト リァゾール, へキサメチレンテ ト ラ ミ ン, ジシアンジアミ ド . ビウレッ ト, ヒ ドラジン, 力ルポヒ ドラジド, 苺酸ジヒ ドラジド, ヒ ドラジン塩酸塩, 尿素, メ ラ ミ ン等が挙げられ、 これらは一種又は二種 以上が混合して使用される。
また、 前記構造式中に一 C H 0基を有する有機化合物の具体例として は、 ホルムアルデヒ ド (メタナール、 以下括弧内は正式名) , ァセ トァ ルデヒ ド (ェタナール) 、 プロ ビオンアルデヒ ド (プ oパナール) , n 一ブチルアルデヒ ド (ブタナール) , n—ヴア レルアルデヒ ド (ペンタ ナール) , π—力ブロンアルデヒ ド (へキザナール) . ァク レイ ン ( プ nべナール) , ク n ト ンアルデヒ ド ( 2ーブテン一 1一オール) . グ リォキザール等が挙げられ、 これらは一種又は二種以上が混合して使用 される。
また、 前記一 CHO基を生じ得る有機化合物の具体例としては、 バラ ホルムアルデヒ ド HO (CHa 0) n H. ト リ才キサン (CH2 0) 3 , へキサメチレンテトラ ミ ン (C H a ) ε N 4 等が挙げられ、 これらは 一種又は二種以上が混合して使用される。
このような無 «ァジ化物を除く含窒素化合物を含む燃料に組み合わさ れる酸化剤の例としては、 硝酸塩. ォキソハ nゲン酸塩. 金厲酸化物等 が挙げられる。
そのうち硝酸塩の具体例としては、 硝酸ナトリウム, 硝酸力リゥム, 硝酸バリ ウム, 确酸アンモュゥム. 确酸ス トロンチウム等が挙げられる o
前記ォヰソハ nゲン酸塩の具体例としては、 塩素酸埴, 過塩素酸塩, 臭素酸塩, 過臭素酸堪, ヨウ素酸塩, 通ヨウ素酸埴等が挙げられる。 更に金 JS酸化物の具体例としては、 二酸化マンガン, 酸化第二鉄, 二 酸化亜鉛, ¾酸化カ リ ウム, ¾マンガン酸カ リ ウム. 過酸化バリ ウム等 が挙げられ、 これらは 1種又は 2種以上が混合し用いられる。 図面の簡単な説明
第 1図は、 本発明のガス発生器の一実施例の縦断面図であり、 第 2図 は、 6 0 リ ツ トルタンクテス トで得られる特性図であり、 第 3図は、 本 発明の他のガス発生器の断面図であり、 第 4図は、 破裂板の破裂状想を 示す Ξであり、 第 5図は、 本発明のガス発生器のガス特性を示すグラフ 図である。 発明を実施するための最良の形態
本発明に適用されるガス発生器は、 内部にガス発生剤を収納し、 該ガ ス発生剤からのガスが通通する方向に対して、 順に破裂板と该破裂板が 接する開口郎とが設けられているものであればよい。 そのようなガス発 生器 1としては第 1図に示されるものがある。 容器 2の中央室にスクイ ブ 3とユンハンサー 4が収納され、 容器 2の燃焼室 6にガス発生剤 7と クーラン ト 8が収納され、 容耨 2の最外室側にフィルター 1 0が収納さ れている。 その動作を示すと、 まずスクイブ 3が点火してェンハンサー 4を発火させる。 ェンハンサ一の高温ガスは、 ノズル 5を通って燃垸室 6に入る。 燃焼室に収納されたガス発生剤 7が着火させられガスが発生 する。 発生ガスはクーラン ト 8によって冷却され、 フィルター 1 0によ つてスラグ成分が除かれる。 燃焼室 6のガスは容器 2内の內郎開口郎 9 から外側開口部 1 2に至る通 «経路を経て放出される。
この外側開口 ffi 1 2の内側に破裂板 1 1が接触状想で配 IBされ、 ガス が通遇する方向に対して賑に破裂板 1 1と欲破裂板 1 1が接する関ロ郎 1 2が設けられる。 力'ス出口である外側開口部 1 2に破裂板 1 1を設け ると、 ガス発生剤の燃焼による高熱の影響を受けにくい。 また、 クーラ ント 8をフィルター 1 0と共に最外室側に収納し、 ガス発生剤 7を力ッ ブに入れ、 内部開口部 9に接する力ッブを破裂板となるようにしてもよ い。 外側開口部 1 2の破裂板 1 1に加えて内部開口部 9にも破裂板を股 ける場合、 内部開口部 9の破裂板に対する ( 1 ) 式の Bの値を、 外側開 口部 1 2の破裂板に対する ( 1 ) 式の Bの値より小さくする。 すると、 内部開口部 9の破裂板が先に破れるものの、 燃焼室 6のガス圧の保持が 確実になる。 もちろん、 外側開口部 1 2の破裂板に代えて、 内部関口部 9の破裂板だけとすることもできる。
また、 クーラント 8やフィルター 1 0はガス発生剤の種類によって用 いられたり、 用いられなかったする。 また、 容器 2の区分の仕方も ft大 ガス圧に応じて種々のものがある。 上述したように、 ガス圧が 1 0 0 〔 a r ) 以下の場合には、 耐圧がそれほど必要でないため、 容器 2を 2 重又は 3重の円筒にせず、 単なる円筒にすることもできる。
以下、 本発明の実施例を比較例と対比しつつ説明する。 〔実施例 1〕
5—アミノテ ト ラゾール ( 5— AT Z) 9. 4 gと、 硝酸力 リウム ( KN 08) 1 5. 7 gをプレスして ø 7mmx高さ 5mmの錠剤にした ガス発生剤の 2 5. 1 gを得た。 このガス発生剤の錠剤を、 厚さ 0. 3 8mmの黒 ¾シート (A- 5 5 k g f Z c ma ) を内側に張りつけた ø 1. 5mm径の外側開口部 (ディフューザ一) 3 6 0個を有する第 1図 の如きガス発生器に収納し、 室温 2 5' Cで 6 0リッ トルタンクテス ト に供した。 そして、 第 2図の如き特性曲線を得て、 着火に至る迄の時間 t , と、 タンク内最大圧力 Pm a xと、 この Pm a xに至る迄の時間 t - P m a Xを測定した。
具体的数値は、 , = 6. 5m s , t - Pm a x= 6 0. 4m s . P m a x = 2 3 5. 2 k p aであり、 充分なる時間一圧力性能を得た。 尚 、 ガス発生器内の最大ガス圧 == 5 8 〔 b a r〕 であった。 このときの ( 1) 式の関係はつぎの通りであり、 B 〔k g f /c ma 〕 が 8と 4 0の 中 K付近であった。
t X A 0. 0 3 8 X 5 5
Β=· -= 1 3. 9
D 0. 1 5
また、 髙温、 低温時の特性は表 1に示す通りであり、 ガス発生器の周 囲温度が + 8 5 ' C又は一 4 0 ' Cでも安定した燃焼が得られた。 また 、 ガス発生器内の最大ガス圧の差は 9 〔b a r〕 であった。
表 1
Figure imgf000013_0001
[実施例 2〕 実施例 1と同じようにして調製したガス発生剤の錠剤 2 5. 1 gを、 厚さ 0. 7 6mmの黒船シート ( A = 5 5 k g f / c m a ) を内側に張 りつけた # 3. Omm径の外側開口郎 (ディフ ーザー) 9 0個を有す るガス発生器に収納して、 室温 2 5 · Cで 6 0 リ ッ トルタ ンクに供した 。 着火時簡 1 1 = 4. 6m s , t - Pm a x = 7 6. m s , P m a x = 2 6 0. 7 k p aであり、 滴足出来る時間一圧力性能を得た。 尚、 ガ ス発生器内の最大ガス圧- 6 1 〔 b a r〕 であった。 このときの ( 1) 式の関係はつぎの通りであり、 B 〔k g f /c ma 〕 が 8と 4 0の中間 付 irであつた。
t X A 0. 0 7 6 X 5 5
B= - 1 3. 9
D 0. 3 0
また、 高温、 低温時の特性は表 2に示す通りであり、 ガス発生器の周 囲温度が + 8 5 · C又は一 4 0 · Cでも安定した燃焼が得られた。 また 、 ガス発生器内の最大ガス圧の差は 1 0 〔b a r〕 であった。
表 2
Figure imgf000014_0001
〔実施例 3〕
実施例 1と同じようにして翻製したガス発生剤の錠剤 2 5. l gを、 厚さ 5 0 #mのアルミ箔 (A= 9 0 0 k g i /c m2 ) を内側に張りつ けた 0 5 mmの外側開口部 (ディフューザ一) 2 0掘を有するガス発生 器に収納して、 室温 2 5 · Cで 6 0 リ ツ ト ルタンクに供した。 着火時間 t j = 3. 6m s , t - Pin a x= 5 1. 2m s , Pm a x = 3 1 7. 5 k p a, ガス発生器内の最大ガス圧 = 9 0. 5 [ b a r〕 あり、 滴足 な時間一圧力性能を得た。 このときの ( 1) 式の関係はつぎの通りであ り、 B 〔k g f /c m3 〕 は 8〜40の範囲内で、 8に近い値であった
X A 0. 0 05 X 9 00
B = -= 9. 0
D 0. 50
また、 高温、 低温時の特性は表 3に示す通りであり、 ガス発生器の周 囲温度が + 85' C又は一 40· Cでも安定した燃焼が得られた。 また 、 ガス発生器内の最大ガス圧の差は 1 3. 4 [ a r) であった。 表 3
Figure imgf000015_0001
〔実施例 4〕
実施例 1と同じようにして睏製したガス発生剤の錠剤 25. 1 gを、 厚さ 1 0 0 umのアルミ箔 (A= 9 00 k g f Zc ma ) を内側に張り つけ、 ø 9 mmx 2掘、 6 mmx 3個、 Φ 5mmX 3iHの外側開 口部を有するガス発生器に収納して、 室温 2 5 · Cで 6 0リ ツ トルタ ン クに供した。 着火 t t = 4. 3m s, t -Pma x= 4 9. 8ms . P m a x= 289. 5 k p a. ガス発生器内の δ大ガス圧 = 6 3. 3 〔b a r〕 あり、 滴足な時間一圧力性能を得た。 このときの ( 1) 式の関係 は各開口節に対して下記の通りであり、 0 9mm、 Φ 6 mm Φ A. 5 mmのいずれに対しても B Ck g f / c m 2 ) が 8と 4 0の中間付近で あった。
t X A 0. 0 1 9 0 0
Φ 9mm : B =■ -= 1 0
D 0. 9 x A 0. 0 1 X 9 0 0
Φ 6mm : B ==· 1 5
D 0. 6
Figure imgf000016_0001
また、 高温、 低温時の特性は表 4に示す通りであり、 ガス発生器の周 囲温度が + 8 5 ' C又は一 4 0 ' Cでも安定した燃焼が得られた。 また 、 ガス発生器内の最大ガス圧の差は 1 3. 7 Cb a r ) であった。 表 4
Figure imgf000016_0002
[実施例 5〕
実施例 1と同じようにして調製したガス発生剤の錠剤 2 5. Isを、 厚さ 4 6 mのステンレス箔 (A= 5 5 0 0 k g f /c m3 ) を内側に 張りつけ、 4 7mmの外側開口部 (ディフューザ一) 1 2個を有するガ ス発生器に収納して、 室温 2 5 · Cで 6 0 リ ッ トルタ ンクに供した。 着 火時間 t , = 5. 5m s , t -Pm a x= 4 8. 3m s , P m a x = 2 8 0. 3 k p a . ガス発生器内の最大ガス圧 = 6 3. 3 〔 b a r〕 あり 、 «I足な時閱一圧力性能を得た。 このときの ( 1 ) 式の関係はつぎの通 りであり、 B [k g f / c ma 3 が 8〜4 0の範囲内で、 4 0に近い値 であった。
t X A 0. 0046X 5500
-= 3 6. 1
D 0. 7
また、 高温、 低温時の特性は表 5に示す通りであり、 ガス発生器の周 囲温度が + 8 5 · C又は一 4 0 · Cでも安定した燃焼が得られた。 また 、 ガス発生器内の最大ガス圧の差は 1 0. 7 〔 b a r〕 であった, 表 5
Figure imgf000017_0001
〔比校例 1〕
5—アミ ノテ ト ラゾール ( 5-AT Z) 9. 4 gと确酸カ リ ウム (K O, ) 1 5. 7 gをプレスして ø 7 mmX高さ 5 mmの錠剤にしたガ ス発生剤の 2 5. 1 gを得た。 このガス発生剤の錠剤を、 厚さ 0. 3 8 mmの黒鉛シー ト (A= 5 5 k g f /c Tna ) を内側に張りつけた ø 3 . 0mm径の外側開口 (ディフューザ一) 9 0個を有するガス発生器に 収納して、 室温 2 5 ' Cで 6 0リッ トルタンクテストに供した。 着火時 fffl t 1 = 5. 8m s . t - P m a x = 3. 0 s . P τη a x = 7 2. 5 3 k p aであり、 燃焼速度が遅すぎ、 かつガス発生器内のガス圧も上昇し なかった。 尚、 ガス発生器内の最大ガス圧 = 1 5 〔b a r〕 であった。 このときの ( 1) 式の関係はつぎの通りであり、 B [k g f / c m2 ) が 8未満であった。
t XA 0. 0 3 8 X 5 5
B 6. 9 6
D 0. 3
〔比較例 2〕
比皎例 1と同じようにして睏 Sしたガス発生剤の錠剤 2 5. 1 sを、 厚さ 1. 7 6mmのグラフアイ トシート (A= 5 5 k g f / c m2 ) を 内側に張りつけ、 Φ 2. 4 mm径の外側関口 (ディフューザ一) 1 5 0 锢を有するガス発生器に収納して、 室温 2 5 · Cで 6 0 リ ツ トルタ ンク テス トに供した。 着火 t 1 = 4· 2 m s , t - P m a x = 1 8. 0 m s . Pm a x = 3 6 0. 6 k P a , ガス発生器内の最大ガス圧 = 2 6 9 〔 b a r〕 であり、 ガス発生速度が速すぎてガス圧も高く使用するには危 険であった。 このときの ( 1) 式の関係はつぎの通りであり、 B Ck g f Zc m3 〕 が 4 0を越えている。
t x A 0. 1 7 6 X 55
B = = = 4 0. 3
D 0. 2 4
〔比皎例 3〕
実施例 1と同じようにして翻製したガス発生剤の錠剤 2 5. 1 gを、 厚さ 1 3 6 #mのアルミ箔 (A= 9 8 0 k g f Zc ma ) を内側に張り つけ、 0 3 mmの外側開口部 (ディフューザ一) 4 0個を有するガス発 生器に収納して、 6 0 リ ツ トルタ ンクテス トに供した。 着火時 , =
6. 4m s , t -Pm a x = 1 9. 0m s , Pm a x= 4 2 0. 3 k P a . ガス発生器内の最大ガス圧- 2 8 1. 3 〔b a r〕 であり、 ガス発 生器としては燃暁が速すぎてガス圧も高く使用するには危険であった。 このときの ( 1) 式の関係はつぎの通りであり、 B [k { / c m2 3 が 4 0を越えている。
t X A 0. 0 1 3 6 X 9 8 0
B = = = 4 4. 4
D 0. 3 0
〔比皎例 4〕
実施例 1と同じようにして睏製したガス発生剤の錠剤 2 5. 1 gを、 厚さ 4 6 ;«mのステンレス箔 (A= 5 5 0 0 k g f / c m2 ) を内側に 張りつけ、 4 6mmの外側開口部 (ディフューザ一) 3 0倔を有するガ ス発生器に収納して、 室温 2 5· Cで 6 0 リ ッ トルタ ンクテス トに供し た。 着火時間 , = 6. l m s . t -Pm a x = 2 9. 2m s . P m a x= 3 7 0. 5 k p a , ガス発生器内の最大ガス圧 = 1 9 5. 8 C b a r〕 であり、 特に t一 Pm a xが速すぎて、 ガス発生器内のガス圧も高 く危険であった。 このときの ( 1 ) 式の関係はつぎの通りであり、 B 〔 k g f / c m a〕 が 4 0を越えている。
t X A 0 . 0 0 4 6 X 5 5 0 0
B = = = 4 2 . 2
D 0 . 6
つぎに、 本発明の他のガス発生群 1 0 1を第 3図により説明する。 容器 1 0 2は、 第 1容器 1 0 3と第 2容器 1 0 4とをボルト 1 0 6で 接合し、 一重円筒による単一室の単純な構造になっている。 第 2容器 1
0 4の中央の保持郎 1 1 6にスクイブ 1 0 8を挿入し、 かしめ節分 1 0
7でスクイブ 1 0 8を固定している。 保持部 1 1 6に孔 1 0 9を有する アルミ筒 1 1 0が被せられ、 着火剤 1 1 1の位 fi決めを行っている。 こ のアルミ简 1 1 0と着火剤 1 1 1は金網 1 1 2の底 1 1 2 aの上に押し 当てられている。 金網 1 1 2の円筒壁 1 1 2 bの内部にガス発生剤 1 1
3が詰め込まれ、 第 2容器 1 0 4で蓋されると共に押しこまれている。 また、 第 1容器 1 0 3の外周壁部 1 0 3 aに 4 0個以上の多数の開口
Sli 1 1 4が設けられ、 ガスの出口となっている。 この開口郎 1 1 4の内 側に、 黒鉛シートの破裂板 1 1 5が接着剤で張り付けられている。 図示 例の開口部 1 1 4の形状は円であるが、 円に限らず棺円ゃ四角であって もよい。
つぎに、 このガス発生器 1の作動を鋭明する。 まず、 リードビン 1 0 8 aを通じて所定の ¾流がスクイブ 1 0 8の図示されていない 3柵線に 流れると、 スクイブ 1 0 8内の火薬が発火し、 スクイブ 1 0 8先端が破 られ、 高温で高圧のガスが放出される。 この高温ガスは *火剤カップ内 の着火剤 1 1 1を着火させる。 着火剤 1 1 1の高温ガスがガス発生剤 1 1 3を燃焼させる。 ガス発生剤 1 1 3が燃焼して発生するガスで容器 1 0 2内の圧力が髙まるが、 所定圧力に達するまでは、 黒鉛シートの破裂 板 1 1 5による耐熱性でもって高温ガスに耐えて圧力保持を行う。 その ため、 ガス発生剤 1 13が非アジ化ソーダ系であっても、 圧力が上がら ず徐々にしか燃焼しないということがなくなる。 蓄積されるガス Sが多 くなると、 ガス圧が所定圧力に連し、 開口郎 1 14の破裂板 1 1 5が破 裂しはじめ、 開口部 1 14からガスが放出される。 開口する開口郎1 1 4の数はガス圧に依存し、 ガス圧が高いと開口する開口郎 1 14の数が 多くなる。 そのため、 ガス圧が所定値に保たれる。
第 3図の破裂板は容器 102の外周の開口節の内側に設けられている 。 このように、 ガス発生剤のガス圧を制御するためには、 ガスが通 ¾す る方向に対して、 願に破裂板と ¾破裂板が接する開口郎とが設けられて おればよい。 ガス発生雜のガスの出口を梅成する開口部に破裂板を取り 付けることが好ましいが、 容器内の燃焼室を壁で囲い、 この壁に開口郎 を股け、 この開口部に破裂板を設けるものであってもよい。 また、 ガス 出口の開口節と上記した燃焼室の開口郎の両方に破裂板を設けるもので あってもよい。 また、 開口部の大きさは一種類に限らず、 大中小の 3種 類の大きさとし、 それぞれに黒 シートの破裂板を股けることもできる 。 この場合には、 圧力制御はより確実となる。 さらに、 内側は黑»シ一 ト、 外側はアルミ箔というように、 非金属材料と金 IS材料を積暦した破 裂板であってもよい。
つぎに、 上述したガス発生器の圧力特性の実驗例を以下に説明する。 まず、 黒鉛シート製破裂板の破裂 の状況を説明する。 実 »に用いたガ ス発生 Sの形状は第 3図と同様のものであり、 孔 1 14は、 1. 5mm 径であり、 60· の千鳥配置でピッチは 3 mmとし、 設定孔数は 320 iBである。 また、 破裂板 1 15として厚み 0. 38 mm, 引張強度 55 k g f / c ma の黑鉛シ一ト (日本バルカェ莱製カーボンシート V F 3 0) を用いた。 またガス発生剤は、 ADCA (ァゾジカルボンアミ ド) /KNO, KC 1 Oa ZS iゴム (バイ ンダ一) の混合物で 1· 5 m m径に顆粒したものである。 このガス発生剤はガス化率が高く捕捉すベ き残滓量が少ないので、 フ ィルターを省いた状想にした。 なお、 ガス発 生器の周囲温度は常温とした。
そして、 ガス発生剤の薬量を 2 0〜 2 5 gの簡で変化させた場合の、 開口部の開口率の変化を表 6に示す。 薬量が増えるということは、 ガス 置が多くなつてガス圧が増加することを意味する。 薬量が增えると共に 、 開口率が増加しており、 ガス圧に応じた細かい開口面積の增大が連成 されている。 また、 破裂しなかった破裂板の状態を目視観察すると、 凸 状に膨出変形したまま残っていた。
表 6
Figure imgf000021_0001
(1) 開孔率 =開孔数 設定孔数 (3 2 0ケ)
(2) 開孔数 1のときの開孔面積 = ( 0 . 0 7 5 ) 2 3 . 1 4 c m 3 このことは、 第 4図に示される開口部 1 1 4の半径 2と破裂板 1 1 5の強度に基づく厚み tを適切に選定しておくと、 可摟性を有する破 裂板 1 1 5が第 4図の二点鎖繚のように略均一な凸状の膨出変形を経た 後順次破裂する。
第 5図は本発明例の 6 0リ ッ トルタンクテストにおける特性図である 。 また、 第 5 BIにおいて、 実敏はガス発生器の容器内のガス圧 〔b a r 〕 の上昇を示し、 一点蛾 «はタンク内の圧力上昇 〔P a〕 を示している 。 容器内のガス圧の上昇の程度は aの部分で頭打ちとなっており、 一定 時 fflの間、 約 5 0 〔b a r〕 のガス圧に保たれ、 その後徐々に滅圧して いる。 このように、 ガス圧を低く^!つと、 容 Sの耐圧レベルを下げるこ とができ、 容雜の小型化及び β量化が可簾になる。 また、 一定時閱、 ガ ス圧を 5 0 〔b a r〕 のように低く保つことができると、 圧力が ffiくな ると共に燃焼速度も早くなる圧力指数の高いガス発生剤であっても、 燃 焼速度を抑えて安定燃焼させることができる。 このため、 ガス化率が高 くても、 圧力指数が高くて不適切とされてきたガス発生剤も使用でき、 ガス発生 «の一 JBの小型化と β重化が可陡になる。 産集上の利用可能性
上述のように、 非ァジ化系ガス発生剤のように燃烷速度の周囲湿度に よる影響が大きいガス発生剤を収納する場合であっても、 危険のない燃 焼速度を保ち、 めて安定に燃焼させることが出来る。

Claims

睐 求 の 範 囲
1. 内部にガス発生剤を収納し、 はガス発生剤からのガスが通遇する方 向に対して、 順に破裂板とは破裂板が接する開口部とが投けられている ガス発生器であって、
前記破裂板の引張り強さを A Ck g f /cma ] 、 前記破裂板の厚み を t 〔c m〕 、 破裂板が接する開 0郎の円相当径を D (c m) としたと き、 下記の ( 1) 式を充足するように前記破裂板の厚み tと前記開口部 の円相当径 Dを設定したガス発生器。
BXD
t = 但し、 B= 8〜40 · · · ( 1)
A
2. 前記開口部が祓数個股けられ、 且つ前記 ( 1) 式における前記破裂 板の厚み t 〔c m〕 を一定に固定したとき、 B = 8〜 4 0の範囲で変化 させた前記開口部の円相当径 Dを禝数の組み合わせとした S求の範囲第 1項に記載のガス発生器。
3. 前記ガス発生器の前記ガスの発生量に対する前記開口部の ί¾面稷が 、 棲準状想 ( 2 73 · Κ. 1気圧) で 0. 1 43 〔c ma /リ ッ トル〕 以上である請求の範囲第 1項又は第 2項に記載のガス発生器。
4. 前記ガスの前記ガス発生器内の最大圧力が 1 0 0 〔b a r〕 以下で ある睛求の範囲第 1項乃至第 3¾のいずれかに記載のガス発生器。
5. 前記破裂板の材 Rが金厲箔, 金) Sシー ト, 黑鉻シー ト, 耐熱性高分 子シー トからなる群から選ばれる 1種又は 2種以上である請求の範囲第 1項乃至第 4項のいずれかに記載のガス発生器。
6. 前記金厲箔又は金 JSシー トの材 »が、 ステンレス, アルミ ニウム合 金, マグネシウム, チタ ン. チタ ン合金, 鐶, 銅合金. ュッケル. ニッ ケル合金, 亜鉛, 亜鉛合金からなる群から選ばれる 1種又は 2種以上で ある請求の範囲第 5項に記載のガス発生器。
7. 前記ガス発生剤が、 無機アジ化物を除く含室素化合物を含む燃料と 酸化剤の組み合わせである請求の範囲第 1項に記載のガス発生器。
8. 前記含 g素化合物がテ トラゾール誘導体, グァュジン誘導体. ァゾ ジカルボンァミ ド誘導体, ヒ ドラ ジン誘導体, ト リァゾール誘導体の一 種以上である »求の範囲第 7項に記載のガス発生器。
9. 前記酸化剤が、 硝酸塩, 才キソハ口ゲン酸坦, 金厲酸化物からなる 群から ¾ばれる 1種又は 2種以上である糖求の範囲第 7項に記載のガス 発生 ϋ。
1 0. 内 ffiにガス発生剤を収納し、 眩ガス発生器からのガスが通 ¾する 方向に対して、 頫に破裂板と 破裂板が接する開口郎とが投けられてい るガス発生港であって、
前記破裂板の全郎又は一部が »点が 500 * C以上の非金属材料で形 成されているガス発生器。
1 1. 前記破裂板の引張り ¾さを A [k g f /c m3 ] 、 前記破裂板の 厚みを t 〔c m〕 、 破 S板が接する開口部の円相当径を D 〔c m〕 とし たとき、 下記の ( 1) 式を充足するように前記破裂板の厚み tと前記関 口郎の円相当径 Dを設定した «求の範囲第 1 0項に記載のガス発生器。
BXD
-、 但し、 B= 8〜40 · · · ( 1)
A
1 2. 非金 JS材料による前記破裂板が可摟性を有している講求の範囲第 1 0項又は 1 1項に記載のガス発生器。
1 3. 宑金 Κ材料による前記破裂板が黒 ½自体又は黑 ίδを主成分とする シートである請求の範囲第 1 D項乃至第 1 2項のいずれかに記載のガス 発生器。
1 4. 前記ガス発生器の内圧の最大値が 1 0 0 〔b a r〕 以内である腈 求の範囲第 1 0項乃至第 1 3項のいずれかに記載のガス発生器。
PCT/JP1995/001926 1994-09-30 1995-09-25 Generateur de gaz WO1996010494A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69533403T DE69533403T2 (de) 1994-09-30 1995-09-25 Gasgenerator
EP95932221A EP0783997B1 (en) 1994-09-30 1995-09-25 Gas generator
KR1019970701882A KR970706145A (ko) 1994-09-30 1997-03-22 가스발생기(gas generator)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP6/261725 1994-09-30
JP26172594 1994-09-30
JP7/99799 1995-03-31
JP9979995 1995-03-31
JP18345395 1995-06-26
JP7/183453 1995-06-26

Publications (1)

Publication Number Publication Date
WO1996010494A1 true WO1996010494A1 (fr) 1996-04-11

Family

ID=27309050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001926 WO1996010494A1 (fr) 1994-09-30 1995-09-25 Generateur de gaz

Country Status (5)

Country Link
EP (2) EP1359065B1 (ja)
JP (1) JP2862023B2 (ja)
KR (1) KR970706145A (ja)
DE (2) DE69534424T2 (ja)
WO (1) WO1996010494A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908359A2 (en) 1997-10-08 1999-04-14 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
EP0867347A3 (en) * 1997-03-24 1999-11-10 Daicel Chemical Industries, Ltd. Gas generating pellets, gas generator and air bag apparatus
US6135496A (en) * 1997-05-09 2000-10-24 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6183006B1 (en) 1997-05-09 2001-02-06 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6196581B1 (en) 1996-04-08 2001-03-06 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
JP2001219810A (ja) * 2000-12-11 2001-08-14 Daicel Chem Ind Ltd エアバッグ用ガス発生器及びエアバッグ装置
JP2002096705A (ja) * 2000-09-22 2002-04-02 Daicel Chem Ind Ltd エアバッグ用ガス発生器
US6406060B1 (en) 1997-05-09 2002-06-18 Daicel Chemical Industries, Ltd. Gas generator for airbag and airbag system
WO2002083464A1 (fr) * 2001-04-10 2002-10-24 Nippon Kayaku Kabushiki-Kaisha Generateur de gaz
US6562161B1 (en) 1997-03-24 2003-05-13 Daicel Chemical Industries, Ltd. Gas generating compositions for air bag
WO2015163290A1 (ja) * 2014-04-25 2015-10-29 日本化薬株式会社 ガス発生器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5765866A (en) * 1997-02-19 1998-06-16 Breed Automotive Technology, Inc. Airbag inflator employing gas generating compositions containing mica
JP2963086B1 (ja) 1997-12-26 1999-10-12 ダイセル化学工業株式会社 エアバッグ用ガス発生器及びエアバッグ装置
FR2796936B1 (fr) 1999-07-30 2001-09-14 Livbag Snc Generateur pyrotechnique de gaz a double securite d'ouverture
TW469235B (en) 1999-10-04 2001-12-21 Daicel Chem Gas generator for air bag and air bag device
SE520973C2 (sv) * 2001-01-19 2003-09-16 Bofors Bepab Ab Krutmotor, krut- hybridgasgenerator samt sätt att styra brinntrycket i en krutmotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524060B1 (ja) * 1970-12-11 1977-02-01
JPH03132447A (ja) * 1989-10-19 1991-06-05 Nippon Koki Kk シートベルト巻取用動力発生装置のガス発生器
JPH0632690A (ja) * 1992-07-13 1994-02-08 Nippon Koki Kk エアバッグ用ガス発生剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2824701C2 (de) * 1978-06-06 1982-11-11 Bayern-Chemie Gesellschaft für flugchemische Antriebe mbH, 8261 Aschau Gasgenerator
US4817828A (en) 1986-10-03 1989-04-04 Trw Automotive Products Inc. Inflatable restraint system
DE3831641A1 (de) 1988-08-09 1990-02-15 Daimler Benz Ag Gasgenerator zum fuellen einer gaskissen-rueckhalteeinrichtung
US5269561A (en) 1992-07-06 1993-12-14 Morton International, Inc. Vented gas passenger side air bag inflator
JPH06344855A (ja) * 1993-06-08 1994-12-20 Takata Kk エアバッグ装置のインフレータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524060B1 (ja) * 1970-12-11 1977-02-01
JPH03132447A (ja) * 1989-10-19 1991-06-05 Nippon Koki Kk シートベルト巻取用動力発生装置のガス発生器
JPH0632690A (ja) * 1992-07-13 1994-02-08 Nippon Koki Kk エアバッグ用ガス発生剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP0783997A4 *
THE EDITORIAL COMMITTEE OF MECHANICAL DESIGN HANDBOOK, "New Mechanical Design Handbook", 20 September 1977, (Tokyo), MARUZEN K.K., pages 756-758. *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234521B1 (en) 1996-04-08 2001-05-22 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6695345B2 (en) 1996-04-08 2004-02-24 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6409214B2 (en) 1996-04-08 2002-06-25 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6196581B1 (en) 1996-04-08 2001-03-06 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
EP0867347A3 (en) * 1997-03-24 1999-11-10 Daicel Chemical Industries, Ltd. Gas generating pellets, gas generator and air bag apparatus
US6562161B1 (en) 1997-03-24 2003-05-13 Daicel Chemical Industries, Ltd. Gas generating compositions for air bag
US6183006B1 (en) 1997-05-09 2001-02-06 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6224096B1 (en) 1997-05-09 2001-05-01 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6386582B2 (en) 1997-05-09 2002-05-14 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6406060B1 (en) 1997-05-09 2002-06-18 Daicel Chemical Industries, Ltd. Gas generator for airbag and airbag system
US6135496A (en) * 1997-05-09 2000-10-24 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
US6224098B1 (en) 1997-10-08 2001-05-01 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
EP0908359A2 (en) 1997-10-08 1999-04-14 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag system
JPH11105661A (ja) * 1997-10-08 1999-04-20 Daicel Chem Ind Ltd エアバッグ用ガス発生器及びエアバッグ装置
JP2002096705A (ja) * 2000-09-22 2002-04-02 Daicel Chem Ind Ltd エアバッグ用ガス発生器
JP2001219810A (ja) * 2000-12-11 2001-08-14 Daicel Chem Ind Ltd エアバッグ用ガス発生器及びエアバッグ装置
WO2002083464A1 (fr) * 2001-04-10 2002-10-24 Nippon Kayaku Kabushiki-Kaisha Generateur de gaz
WO2015163290A1 (ja) * 2014-04-25 2015-10-29 日本化薬株式会社 ガス発生器
JPWO2015163290A1 (ja) * 2014-04-25 2017-04-13 日本化薬株式会社 ガス発生器

Also Published As

Publication number Publication date
EP0783997A4 (en) 2001-01-17
EP0783997A1 (en) 1997-07-16
DE69534424T2 (de) 2006-07-06
KR970706145A (ko) 1997-11-03
EP1359065A1 (en) 2003-11-05
DE69533403T2 (de) 2005-08-25
EP1359065B1 (en) 2005-08-31
DE69533403D1 (de) 2004-09-23
JP2862023B2 (ja) 1999-02-24
EP0783997B1 (en) 2004-08-18
DE69534424D1 (de) 2005-10-06

Similar Documents

Publication Publication Date Title
WO1996010494A1 (fr) Generateur de gaz
EP0800964B1 (en) An airbag inflator and an airbag apparatus
US6540256B2 (en) Airbag gas generator and an airbag apparatus
US5360232A (en) Filtration in hybrid inflators
US5016914A (en) Vehicle occupant restraint system
CN100445137C (zh) 气体发生器
US9463765B1 (en) Secondary chamber combustion control
US8419057B2 (en) Gas generating system
JPH0648880A (ja) ガス発生器用の多層型ガス発生ディスク
WO2005014345A1 (ja) ガス発生器
US5984351A (en) Dual stage actuation system
WO2001025059A1 (fr) Generateur de gaz pour coussins de securite gonflables et dispositif de coussin de securite gonflable
EP0749873A2 (en) Flow-through heat-enhanced hybrid inflator
WO2005014344A1 (ja) ガス発生器
WO2002083464A1 (fr) Generateur de gaz
JPH11348711A (ja) エアバッグ用ガス発生器及びエアバッグ装置
WO1996010495A1 (fr) Generateur de gaz pour coussin gonflable de securite
WO2000002749A2 (en) Heat source for airbag inflation gas generation via a dissociating material
JP2018527048A (ja) 消火器
JPH0995202A (ja) エアバッグ用ガス発生器
JP2009143793A (ja) パイロ型ガス発生器及びガス発生剤組成物の成型体
JPH1029493A (ja) エアバッグ用ガス発生器及びエアバッグ装置
JPH1059115A (ja) エアバッグ用ガス発生器
US6485588B1 (en) Autoignition material additive
US20140305330A1 (en) Gas Generating System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970701882

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995932221

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 809365

Date of ref document: 19970512

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1995932221

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970701882

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970701882

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995932221

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995932221

Country of ref document: EP