WO1996010124A1 - Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage - Google Patents

Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage Download PDF

Info

Publication number
WO1996010124A1
WO1996010124A1 PCT/DE1995/001263 DE9501263W WO9610124A1 WO 1996010124 A1 WO1996010124 A1 WO 1996010124A1 DE 9501263 W DE9501263 W DE 9501263W WO 9610124 A1 WO9610124 A1 WO 9610124A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas
turbine
steam generator
partial flow
Prior art date
Application number
PCT/DE1995/001263
Other languages
English (en)
French (fr)
Inventor
Hermann Brückner
Erich Schmid
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP8511259A priority Critical patent/JPH10506165A/ja
Priority to DE59502433T priority patent/DE59502433D1/de
Priority to EP95931137A priority patent/EP0783619B1/de
Publication of WO1996010124A1 publication Critical patent/WO1996010124A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler

Definitions

  • the invention relates to a method for operating a gas and steam turbine system, in which the oxygen-containing exhaust gas from the gas turbine is used to generate steam.
  • the invention is further directed to a gas and steam turbine plant operating according to this method.
  • the combined process with a downstream fossil-fired steam generator is suitable for retrofitting an existing steam turbine system with a gas turbine system.
  • the upstream gas turbine is intended to serve the purpose of increasing efficiency and performance in the sense of a so-called topping process.
  • Such a thermal power plant with a combined gas-steam process is known for example from DE-OS 14 26 443.
  • the outputs of the steam turbine and the gas turbine and of the fired steam generator are dependent on one another, so that they must be coordinated with one another when designing such a system. This applies not only to the retrofitting of an existing steam turbine plant, but also to a new plant.
  • the tuning is usually carried out in such a way that the oxygen demand of the fired steam generator can be covered by the exhaust gases from the gas turbine during nominal load operation.
  • gas turbines with only a few different output sizes, for example with 50 MW, 150 MW or 200 MW, are manufactured and offered, so that their adaptation to the output of the steam turbine and that of the steam generator is extremely difficult.
  • the gas turbine therefore delivers either too large or too small an exhaust gas quantity in the full-load range in comparison to the quantity of exhaust gas required as combustion air for the fired steam generator. If the amount of exhaust gas is too small, the system can only achieve low efficiency in the full load range, which then becomes better in the partial load range.
  • an excessive amount of exhaust gas from the gas turbine can lead to the fact that in the case of a combined process in which the excess exhaust gases from the gas turbine are passed a combustion chamber of the fired steam generator to a boiler or feed water preheater (economizer) due to the excessive heat input, undesirably gets into the evaporation. Or if the amount of exhaust gas in the partial load range is too large, the power of the gas turbine must be reduced at an early stage. However, with increasing reduction in the power of the gas turbine, the efficiency of the system decreases in the part-load range. In other words, the overall efficiency achieved is only limited in both cases. In particular when retrofitting an existing steam turbine system, an increase in output from the gas turbine must therefore be dispensed with if the The exhaust gas heat of the gas turbine cannot be fully used or an acceptable part-load behavior cannot be achieved.
  • the combination process with a downstream heat recovery steam generator is particularly suitable for retrofitting an existing gas turbine system.
  • a number of gas turbines with a corresponding number of heat recovery steam generators are usually switched to a common steam turbine. Since the steam generation in this combination process is limited to pure heat recovery, the overall efficiency of the system is also only limited.
  • the invention is therefore based on the object of specifying a method for operating a gas and steam turbine installation, in which the use of a gas turbine which can be freely selected from a large number of gas turbines of different output sizes is possible with a particularly high overall efficiency of the installation. In a gas and steam turbine plant, this is to be achieved with particularly simple means.
  • this object is achieved according to the invention in that a first partial flow of the exhaust gas from the gas turbine is used for the combustion of a fossil fuel for steam generation, and in that a second partial flow of the exhaust gas from the gas turbine is used for the heat recovery steam generator. is used. Both steam generation by combustion of the fossil fuel and waste heat generation take place in a common water-steam circuit of the steam turbine.
  • the invention is based on the consideration that by combining the pure use of waste heat and the use as combustion air, a division of these types of use of the exhaust gas from the gas turbine can be optimally coordinated with regard to the overall efficiency of the plant, regardless of its size.
  • feed water of the water-steam cycle which is under high pressure, is advantageously preheated in partial streams, the preheating of a first partial stream of the feed water being carried out by means of flue gas produced during the combustion of the fossil fuel.
  • a second partial flow of the feed water is preheated by means of the second partial flow of the exhaust gas from the gas turbine flowing through the heat recovery steam generator.
  • a third partial flow of the feed water is preheated by means of bleed steam from the steam turbine.
  • the three partial flows of the feed water are expediently preheated in several stages, the preheating of the first partial flow and the third partial flow taking place in a common second preheating stage by means of the flue gas generated during the combustion of the fossil fuel.
  • a large range of fuels can advantageously be used in the fired steam generator.
  • oil, gas, coal or special fuels such as garbage, wood or waste oil can be used as fossil fuel.
  • a cold air stream can expediently be mixed with the first partial stream of the exhaust gas from the gas turbine, which serves as combustion air.
  • the still oxygen-containing exhaust gas from the gas turbine with, for example, 15% oxygen content serves as the sole combustion air for the fossil fuels to be burned in the fired steam generator, the fired steam generator being expediently only charged with the amount of exhaust gas required for combustion.
  • a possibly provided flue gas cleaning system therefore only has to be designed for the first partial flow of the exhaust gas from the gas turbine and not for the total quantity of exhaust gas, this first partial flow of the exhaust gas serving as combustion air from the gas turbine together with that in the Combustion of the fossil fuel flue gas is cleaned.
  • the object is achieved according to the invention with a fossil-fired steam generator connected to a water-steam circuit of the steam turbine, to which a waste heat steam generator is connected in parallel on the water / steam side, both the fired steam generator via a first partial flow line and the waste heat steam generator via a second Partial flow line of the gas turbine are connected downstream on the exhaust gas side.
  • the fired steam generator is followed by a flue gas cleaning system on the flue gas side. Since the flue gas cleaning system only has to be designed for the first partial flow of the exhaust gas from the gas turbine and for the quantity of flue gas generated in the fossil-fired steam generator, there are no problems with a new system or when retrofitting an old system with regard to a necessary limitation of the size of the cleaning system due to lack of space. An undesirable reduction in steam Generator power in the case of a cleaning system to be retrofitted, which due to the space available on site is only sufficient for a limited exhaust gas volume, is therefore not necessary.
  • the fired steam generator is preceded by a series connection of two flue gas-heated high-pressure preheaters on the water / steam side.
  • the entire feed water supplied to the fired steam generator is preheated in a first high-pressure preheater or boiler economizer, while in a second high-pressure preheater or boiler part economizer connected downstream of the boiler economizer, only the first partial flow of the feed water is preheated.
  • the steam turbine process can be constructed from one or more pressure stages.
  • a two-pressure system with intermediate superheating and condensate preheating is expediently provided.
  • the waste heat steam generator comprises a condensate preheater and a medium-pressure heating surface connected upstream of this on the flue gas side with an intermediate superheater and, advantageously, high-pressure heating surfaces arranged at least partially in parallel with this on the flue gas side and parallelly connected on the water / steam side.
  • the intermediate superheater arranged in the waste heat steam generator is connected in parallel with a further intermediate superheater of the fired steam generator, which is expediently provided.
  • the advantages achieved by the invention are, in particular, that by combining a fired steam generator and a waste heat steam generator with simultaneous distribution of the exhaust gas from the gas turbine in the steam generators, partial streams supplied not only in the fired steam generator, a large fuel spectrum, eg coal, heavy oil, weak gases or special fuels such as garbage, wood or Waste oil, can be used. Rather, with a decreasing boiler output of the fired steam generator due to a fuel conversion from, for example, oil to coal or due to a conversion to a low-nitrogen oxide firing, a particularly high steam turbine output and thus a higher system efficiency due to the additional steam generator output can nevertheless be achieved the heat recovery steam generator are maintained.
  • FIG. 1 shows a circuit diagram of a combined gas and steam turbine system with the gas turbine connected downstream of both a fossil-fired steam generator and a waste heat steam generator.
  • the gas and steam turbine system 1 comprises a gas turbine system with a gas turbine 2 with a coupled air compressor 3 and a combustion chamber 4 connected upstream of the gas turbine 2 and connected to a fresh air line 5 of the air supply. poet 3 is connected.
  • a fuel or fuel gas line 6 opens into the combustion chamber 4 of the gas turbine 2.
  • the gas turbine 2 and the air compressor 3 as well as a generator 7 sit on a common shaft 8.
  • the gas and steam turbine system 1 further comprises a steam turbine system with a steam turbine 10 with a coupled generator 11 and, in a water-steam circuit 12, a condenser 13 downstream of the steam turbine 10 and a fired steam generator 14 and a waste heat steam generator 15.
  • the steam turbine 10 consists of a high-pressure part 10a and a medium-pressure part 10b and a low-pressure part 10c, which drive the generator 11 via a common shaft 16.
  • a first partial flow line 18 is connected to an inlet 14a of the fired steam generator 14 in order to supply working fluid or exhaust gas A relaxed in the gas turbine 2 to the fired steam generator 14.
  • a first partial flow t 1 of the exhaust gas A from the gas turbine 2 with an oxygen content of approx. 15%, which is conducted via the partial flow line 18, serves as combustion air during the combustion of a gaseous, liquid or solid fuel B.
  • fuel line 20 connected to an inlet 14b of the fired steam generator 14 leads into the fired steam generator 14.
  • a control flap 22 connected to the partial flow line 18 is provided for setting the first partial flow t ⁇ .
  • Partial flow t ⁇ of the exhaust gas A from the gas turbine 2 leave the fired steam generator 14 via a flue gas line 24 and after cleaning it in a cleaning system 26 in the direction of a chimney (not shown).
  • the flue gas cleaning system 26 comprises a flue gas desulfurization device and a denitrification device (DeNO x system) and a dedusting device in a manner not shown.
  • a second partial flow line 28 with a control flap 29 is connected to an inlet 15a of the waste heat steam generator 15.
  • the partial stream t2 of the relaxed exhaust gas A from the gas turbine 2 leaves the heat recovery steam generator 15 via its outlet 15b in the direction of the chimney.
  • a third partial flow line or bypass line 30 with a flap 32 is used - e.g. when starting up and shutting down the system 1 - the exhaust gas A required neither for the fired steam generator 14 nor for the waste heat steam generator 15 is led out of the gas turbine 2.
  • this bypass line 30 serves, however, to discharge the exhaust gas A from the gas turbine 2 when it is operated alone in the so-called single-cycle mode.
  • a fresh air line 34 into which a blower 36 and a steam-heated heat exchanger 38 and a flap 40 are connected, opens into the partial flow line t ⁇ _.
  • cold fresh air KL can be mixed into partial stream t 1 of exhaust gas A from gas turbine 2 via this fresh air line 34.
  • the heat recovery steam generator 15 comprises, as heating surfaces, a preheater 42, between the inlet and outlet of which a circulation pump 44 is connected.
  • the preheater 42 is connected on the input side to the output of a condensate preheater 46 which is connected on the input side to the condenser 13 via a condensate pump 48.
  • the condensate preheater 46 is heated with steam via a bleed line 50 connected to the low-pressure part 10c of the steam turbine 10.
  • the waste heat steam generator 15 further comprises, as heating surfaces, a medium-pressure preheater or economizer 62 and a medium-pressure evaporator 64 and a medium-pressure superheater 66, the output side of which is connected to a steam line 68 connected to the high-pressure part 10a of the steam turbine 10 and to a branch ⁇ superheater 70 is connected.
  • the medium-pressure heating surfaces 62, 64, 66 are connected via the reheater 70 to a steam line 72 opening into the medium-pressure part 10b of the steam turbine 10.
  • the medium-pressure heating surfaces 62, 64, 66 and the intermediate superheater 70 and the medium-pressure part 10b of the steam turbine 10 thus form a medium-pressure stage of the water-steam circuit 12.
  • the heat recovery steam generator 15 further comprises two high-pressure evaporators or economizers 74 and 75 connected in series as heating surfaces, as well as a high-pressure evaporator 76 and a high-pressure superheater 78.
  • the high-pressure superheater 78 is on the output side via a Steam line 80 is connected to the inlet of the high pressure part 10a of the steam turbine 10.
  • the medium-pressure economizer 62 and the high-pressure economizer 74, 75 are arranged within the heat recovery steam generator 15 in the region of the same exhaust gas temperature
  • the high-pressure evaporator 76 and the high-pressure superheater 78 are in the flow direction of the partial stream t2 of the exhaust gas A from the gas turbine 2 before the series connection of the medium-pressure evaporator 64 and the medium-pressure superheater 66, the intermediate superheater 70 and the high-pressure superheater 78 being arranged in the region of the same exhaust gas temperature.
  • the feed water tank 60 is connected to the fired steam generator 14 via a high-pressure pump 82 and a heat exchanger arrangement with a series connection of three preheaters 84, 86, 88.
  • the feed water tank 60 is also connected to the medium-pressure economizer 62 via a medium-pressure pump 90.
  • a partial flow line 92a is connected to a feed water line 92 leading into the fired steam generator 14, which is connected via a boiler part economizer 94 between the preheaters 86 and 88 to the feed water line 92. This is also connected to the high-pressure economizer 74 via a further partial flow line 92b.
  • the boiler part converter 94 and the preheater or boiler economizer 88 are switched into the flue gas line 24 of the fired steam generator 14.
  • the fired steam generator 14 is connected to the input of the high pressure part 10a of the steam turbine 10 via a high-pressure superheater 96, to which the steam line 80 is connected on the output side.
  • An intermediate superheater 70 arranged in parallel in the heat recovery steam generator 15 is connected on the inlet side via the steam line 68 to the outlet of the high pressure part 10a and on the outlet side to the medium pressure part 10b of the steam turbine 10.
  • the preheaters 84 and 86 are heated via steam lines 100 and 102 by means of bleed steam from the medium pressure part 10b and the high pressure part 10a of the steam turbine 10.
  • a fuel B ' is supplied to the combustion chamber 4 of the gas turbine 2 in a manner not shown in detail via the fuel line 6.
  • the fuel B ' is burned in the combustion chamber 4 with compressed fresh air L from the air compressor 3.
  • the hot combustion gas V formed during the combustion is conducted into the gas turbine 2 via a gas line 6a. There it relaxes and drives the gas turbine 2, which in turn drives the air compressor 3 and the generator 7. That from the gas turbine 2 Hot exhaust gas A is passed in the first partial flow t ⁇ _ via the partial flow line 18 as combustion air into the fired steam generator 14.
  • the second partial flow t2 of the hot exhaust gas A from the gas turbine 2 is conducted via the partial flow line 28 and through the heat recovery steam generator 15.
  • the hot flue gas R which arises from the gas turbine 2 during the combustion of the fossil fuel B while supplying the partial flow t ⁇ of the exhaust gas A serves there to generate steam and then leaves the fired steam turbine 14 via the flue gas line 24 in the direction of the flue gas cleaning device location 26, wherein it was first cooled in the boiler economizer 88 and then in the boiler part economizer 94 by heat exchange with feed water from the feed water container 60.
  • the feed water is preheated in three partial flows S] _ to S3.
  • a first partial flow S 1 of the feed water under high pressure which is adjustable by means of a valve 104 connected to the partial flow line 92 a, is passed through the boiler part economizer 94 and by means of the flue gas R and the partial flow t] _ of the exhaust gas A of the gas turbine 2 preheated.
  • the preheating of the feed water both for the fired steam generator 14 and for the waste heat steam generator 15 thus takes place in several stages.
  • a two-stage preheating of the feed water partial stream S2 takes place within the heat recovery steam generator 15 in the water / steam side interconnected high-pressure economizers 74 and 75.
  • the feed water for the fired steam generator 15 is preheated in three stages.
  • the third partial flow S3, preheated in two stages in the preheaters 84 and 86, is then preheated in the common third stage together with the partial flow S ⁇ preheated in the boiler part economizer 94 in the boiler economizer 88.
  • This multi-stage preheating of the feed water in three partial streams S 3 to S 3 enables a particularly advantageous distribution or division of the feed water between the two steam generators 14 and 15, so that undesired evaporation within their gas-heated preheaters 74, 75 and 88, respectively, 94 due to an increased heat input from the partial flows t] _ and t2 of the exhaust gas A from the gas turbine 2 and from the flue gas R is practically avoided even when a particularly powerful gas turbine 2 is used.
  • the steam generated in the heat recovery steam generator 15 in the high pressure evaporator 76 and superheated in the high pressure superheater 78 is conducted together with the steam generated in the fired steam generator 14 and superheated in the superheater 96 into the high pressure part 10a of the steam turbine 10.
  • the steam partially expanded in the high pressure part 10a is partly overheated again in the superheater 70 arranged in the waste heat steam generator 15 and partly in the intermediate superheater 98 of the fired steam generator 14 and then fed to the medium pressure part 10b of the steam turbine 10.
  • the steam which is further released in the medium pressure part 10b is used partly for heating the feed water in the feed water tank 60 and partly for preheating the feed water partial flow S3 passed through the preheater 84, and partly directly into the low pressure part 10c of the steam turbine 10.
  • the steam released in the low-pressure part 10c is used via the bleed lines 50 to 54 for preheating condensate K fed into the feed water tank 60.
  • the steam emerging from the low-pressure part 10c is condensed in the condenser 13 and in as condensate K via the condensate pump 48 and the preheaters 46, 56 and 58 in promoted the feed water tank 60.
  • the water-steam circuit 12 that is common to the fired steam generator 14 and the waste heat steam generator 15 is thus closed.

Abstract

Beim Betrieb einer Gas- und Dampfturbinenanlage (1) wird das Abgas (A) aus der Gasturbine (2) zur Dampferzeugung genutzt. Um sowohl bei einer Neuanlage als auch bei einer Nachrüstung einer bereits bestehenden Anlage ein Gasturbinen-Modell unabhängig von dessen Leistungsgröße und unter Verminderung von Abgasverlusten frei wählen zu können, werden erfindungsgemäß ein erster Teilstrom (t1) des Abgases (A) aus der Gasturbine (2) als Verbrennungsluft für die Verbrennung eines fossilen Brennstoffs (B) verwendet, und ein zweiter Teilstrom (t2) des Abgases (A) aus der Gasturbine (2) zur Abhitzedampferzeugung genutzt. Dabei wird zur Dampferzeugung eine Kombination aus einem fossil gefeuerten Dampferzeuger (14) und einem Abhitze-Dampferzeuger (15) der Gasturbine (2) abgasseitig über je eine Teilstromleitung (18 bzw. 28) nachgeschaltet, wobei die Dampferzeugung durch Verbrennung des fossilen Brennstoffs (B) und die Abhitzedampferzeugung ein einem gemeinsamen Wasser-Dampf-Kreislauf (12) der Dampfturbine (10) erfolgt.

Description

Beschreibung
Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
Die Erfindung bezieht sich auf ein Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage, bei der das sauerstoff- haltige Abgas aus der Gasturbine zur Dampferzeugung genutzt wird. Die Erfindung richtet sich weiter auf eine nach diesem Verfahren arbeitende Gas- und Dampfturbinenanlage.
Bei der Kombination eines Dampfturbinenprozesses und eines Gasturbinenprozesses gibt es prinzipiell zwei Möglichkeiten, das Abgas aus der Gasturbine zur Dampferzeugung zu nutzen. Wie in dem Aufsatz "Kombinierte Gas-/Dampfturbinenprozeεse" in Brennstoff-Wärme-Kraft (BWK) 31 (1979), Nr. 5, Mai, be¬ schrieben, dienen bei einem möglichen Kombiprozeß mit nachge¬ schaltetem Dampferzeuger die sauerstoffreichen Abgase der Gasturbine als Verbrennungsluft für den fossil befeuerten Dampferzeuger. Bei einem anderen Kombiprozeß mit nachgeschal¬ tetem Abhitzedampferzeuger werden Gasturbinen- und Dampftur¬ binenprozeß kombiniert, indem die Abwärme der Gasturbine im Abhitzedampferzeuger verwertet wird. Ein Gas- und Dampfturbi- nenkraftwerk mit Abhitzedampferzeuger und solar beheiztem Dampferzeuger sowie mit einem einer Zusatzbrennkammer nachge¬ schalteten fossil beheizten Wärmetauscher ist aus der DE-OS 41 26 036 bekannt.
Der Kombiprozeß mit nachgeschaltetem fossil gefeuerten Da pf- erzeuger bietet sich an bei der Nachrüstung einer bereits be¬ stehenden Dampfturbinenanlage mit einer Gasturbinenanlage. Die vorgeschaltete Gasturbine soll dabei dem Zweck einer Wir¬ kungsgrad- und Leistungssteigerung im Sinne eines sogenannten Topping-Prozesses dienen. Eine derartige Wärmekraftanlage mit kombiniertem Gas-Dampf-Prozeß ist z.B. aus der DE-OS 14 26 443 bekannt. Bei einem Kombiprozeß sind die Leistungen der Dampfturbine und der Gasturbine sowie des befeuerten Dampferzeugers von¬ einander abhängig, so daß sie bei einer Auslegung einer der¬ artigen Anlage aufeinander abgestimmt werden müssen. Dies gilt nicht nur bei einer Nachrüstung einer bereits bestehen¬ den Dampfturbinenanlage, sondern auch für eine Neuanlage. Die Abstimmung erfolgt dabei üblicherweise derart, daß bei Nenn¬ lastbetrieb der Sauerstoffbedarf des gefeuerten Dampferzeu¬ gers durch die Abgase der Gasturbine gedeckt werden kann. Es werden allerdings Gasturbinen mit nur wenigen unterschiedli¬ chen Leistungsgrößen, beispielsweise mit 50 MW, 150 MW oder 200 MW, hergestellt und angeboten, so daß deren Anpassung an die Leistung der Dampfturbine und die des Dampferzeugers äußerst schwierig ist. Daher liefert - bei einer vorgegebenen Anlagengröße - die Gasturbine im Vergleich zur als Verbren¬ nungsluft benötigten Abgasmenge für den gefeuerten Dampfer¬ zeuger im Vollastbereich entweder eine zu große oder eine zu kleine Abgasmenge. Bei einer zu kleinen Abgasmenge ist im Vollastbereich nur ein geringer Wirkungsgrad der Anlage zu erreichen, der dann im Teillastbereich besser wird.
Dagegen kann eine zu große Abgasmenge aus der Gasturbine dazu führen, daß im Falle eines Kombiprozesses, bei dem die über¬ schüssigen Abgase aus der Gasturbine an einer Brennkammer des gefeuerten Dampferzeugers vorbei zu einem Kessel- oder Spei¬ sewasservorwärmer (Economizer) geleitet werden, dieser durch den zu hohen Wärmeeintrag in unerwünschter Weise bereits in die Verdampfung gerät. Oder es muß bei einer zu großen Abgas¬ menge im Teillastbereich bereits zu einem frühen Zeitpunkt die Leistung der Gasturbine reduziert werden. Mit zunehmender Reduzierung der Leistung der Gasturbine nimmt allerdings der Wirkungsgrad der Anlage im Teillastbereich ab. Mit anderen Worten: In beiden Fällen ist der erzielte Gesamtwirkungsgrad nur begrenzt. Insbesondere bei der Nachrüstung einer bereits bestehenden Dampfturbinenanlage muß daher auf einen Lei¬ stungszuwachs aus der Gasturbine verzichtet werden, wenn die Abgaswärme der Gasturbine nicht vollständig genutzt oder ein akzeptables Teillastverhalten nicht erreicht werden kann.
Im Gegensatz zum Kombiprozeß mit nachgeschaltetem gefeuerten Dampferzeuger eignet sich der Kombiprozeß mit nachgeschalte¬ tem Abhitzedampferzeuger besonders zur Nachrüstung einer be¬ reits bestehenden Gasturbinenanlage. Bei einer Neuanlage wer¬ den üblicherweise eine Anzahl von Gasturbinen mit einer ent¬ sprechenden Anzahl von Abhitzedampferzeugern auf eine gemein- same Dampfturbine geschaltet. Da sich bei diesem Kombiprozeß die Dampferzeugung auf eine reine Abhitzenutzung beschränkt, ist der Gesamtwirkungsgrad der Anlage ebenfalls nur begrenzt. Darüber hinaus ist es auch bei diesem Kombiprozeß problema¬ tisch, bei einem erforderlichen oder gewünschten Austausch der Gasturbine gegen eine Gasturbine mit vergleichsweise ho¬ her Leistung ein geeignetes Gasturbinen-Modell zu finden. Denn bei einer vorgegebenen Leistung der Dampfturbine und da¬ mit vorgegebener Auslegung des Abhitzedampferzeugers wäre der Wärmeeintrag mit dem Abgas aus einer vergleichsweise großen Gasturbine in den Abhitzedampferzeuger zu groß, so daß insbe¬ sondere in innerhalb des Dampferzeugers angeordneten Vorwär¬ mern (Economizer) in unerwünschter Weise bereits eine Ver¬ dampfung stattfinden würde.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage anzugeben, bei dem bei gleichzeitig besonders hohem Gesamtwirkungsgrad der Anlage der Einsatz einer aus einer Vielzahl von Gasturbi¬ nen unterschiedlicher Leistungsgröße frei wählbaren Gastur- bine möglich ist. Dies soll bei einer Gas- und Dampfturbinen¬ anlage mit besonders einfachen Mitteln erreicht werden.
Bezüglich des Verfahrens wird diese Aufgabe erfindungsgemäß dadurch gelöst, daß zur Dampferzeugung ein erster Teilstrom des Abgases aus der Gasturbine für die Verbrennung eines fos¬ silen Brennstoffs verwendet wird, und daß ein zweiter Teil¬ strom des Abgases aus der Gasturbine zur Abhitzedampferzeu- gung genutzt wird. Dabei erfolgt sowohl die Dampferzeugung durch Verbrennung des fossilen Brennstoffs als auch die Ab¬ hitzedampferzeugung in einem gemeinsamen Wasser-Dampf-Kreis¬ lauf der Dampf urbine.
Die Erfindung geht dabei von der Überlegung aus, daß durch die Kombination der reinen Abhitzenutzung und der Nutzung als Verbrennungsluft eine Aufteilung dieser Nutzungsarten des Ab¬ gases aus der Gasturbine unabhängig von deren Leistungsgröße hinsichtlich des Gesamtwirkungsgrades der Anlage bestmöglich abstimmbar ist.
Die im Abgas aus der Gasturbine und im bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgas enthaltene und zur Dampferzeugung nicht mehr verwertbare Restwärme wird zweckmäßigerweise zur Speisewasservorwär ung genutzt. Dabei wird vorteilhafterweise unter hohem Druck stehendes Speise¬ wasser des Wasser-Dampf-Kreislaufs in Teilströmen vorgewärmt, wobei die Vorwärmung eines ersten Teilstroms des Speisewas- sers mittels bei der Verbrennung des fossilen Brennstoffs entstehendem Rauchgas erfolgt. Die Vorwärmung eines zweiten Teilstroms des Speisewassers erfolgt mittels des zweiten, den Abhitzedampferzeuger durchströmenden Teilstroms des Abgases aus der Gasturbine. Ein dritter Teilstrom des Speisewassers wird mittels Anzapfdampf aus der Dampfturbine vorgewärmt. Da¬ bei erfolgt die Vorwärmung der drei Teilströme des Speisewas¬ sers zweckmäßigerweise mehrstufig, wobei die Vorwärmung des ersten Teilstroms und des dritten Teilstroms in einer diesen gemeinsamen zweiten Vorwärmstufe mittels des bei der Verbren- nung des fossilen Brennstoffs entstehenden Rauchgases er¬ folgt.
In dem gefeuerten Dampferzeuger kann vorteilhafterweise ein großes BrennstoffSpektrum zum Einsatz kommen. So können bei- spielsweise als fossiler Brennstoff Öl, Gas, Kohle oder Son¬ derbrennstoffe, wie z.B. Müll, Holz oder Altöl verwendet wer¬ den. Da bei der Verwendung von z.B. Kohle als Brennstoff für den gefeuerten Dampferzeuger die Abgastemperatur hinter der Gasturbine mit etwa 500° C für eine Kohletrocknung unter Um¬ ständen zu hoch ist, kann zweckmäßigerweise dem als Verbren¬ nungsluft dienenden ersten Teilstrom des Abgases aus der Gas- turbine ein Kaltluftstrom zugemischt werden.
Das noch sauerstoffhaltige Abgas aus der Gasturbine mit bei¬ spielsweise 15% Sauerstoffgehalt dient als alleinige Verbren¬ nungsluft für die im gefeuerten Dampferzeuger zu verbrennen- den fossilen Brennstoffe, wobei der gefeuerte Dampferzeuger zweckmäßigerweise nur mit der zur Verbrennung erforderlichen Abgasmenge beaufschlagt wird. Eine eventuell vorgesehene Rauchgasreinigungsanlage muß daher nur für den ersten Teil¬ strom des Abgases aus der Gasturbine und nicht für die gesam- te Abgasmenge ausgelegt werden, wobei dieser als Verbren¬ nungsluft dienende erste Teilstrom des Abgases aus der Gas¬ turbine zusammen mit dem bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgas gereinigt wird.
Bezüglich der Gas- und Dampfturbinenanlage wird die genannte
Aufgabe erfindungsgemäß gelöst mit einem in einen Wasser- Dampf-Kreislauf der Dampfturbine geschalteten fossil gefeuer¬ ten Dampferzeuger, dem wasser-/dampfseitig ein Abhitzedampf¬ erzeuger parallel geschaltet ist, wobei sowohl der gefeuerte Dampferzeuger über eine erste Teilstromleitung als auch der Abhitzedampferzeuger über eine zweite Teilstromleitung der Gasturbine abgasseitig nachgeschaltet sind.
In zweckmäßiger Ausgestaltung ist dem gefeuerten Dampferzeu- ger rauchgasseitig eine Rauchgasreinigungsanlage nachgeschal¬ tet. Da die Rauchgasreinigungsanlage lediglich für den ersten Teilstrom des Abgases aus der Gasturbine und für die im fos¬ sil gefeuerten Dampferzeuger erzeugte Rauchgasmenge ausgelegt werden muß, treten weder bei einer Neuanlage noch bei einer Nachrüstung einer Altanlage Probleme hinsichtlich einer er¬ forderlichen Begrenzung der Größe der Reinigungsanlage aus Platzgründen auf. Eine unerwünschte Reduzierung der Dampfer- zeugerleistung im Falle einer nachzurüstenden Reinigungsanla¬ ge, die aufgrund der Platzverhältnisse vor Ort nur für ein begrenztes Abgasvolumen ausreichend ist, ist daher nicht er¬ forderlich.
Um die im Rauchgas aus dem gefeuerten Dampferzeuger im ersten Teilstrom des Abgases aus der Gasturbine noch enthaltene Restwärme möglichst vollständig nutzen zu können, ist dem ge¬ feuerten Dampferzeuger eine Hintereinanderschaltung aus zwei rauchgasbeheizten Hochdruck-Vorwärmern wasser-/dampfseitig vorgeschaltet. Dabei wird in einem ersten Hochdruck-Vorwärmer oder Kessel-Economizer das gesamte dem gefeuerten Dampferzeu¬ ger zugeführte Speisewasser vorgewärmt, während in einem zweiten dem Kessel-Econo izer rauchgasseitig nachgeschalteten zweiten Hochdruck-Vorwärmer oder Kessel-Teileconomizer ledig¬ lich der erste Teilstrom des Speisewassers vorgewärmt wird.
Der Dampfturbinenprozeß kann aus einer oder mehreren Druck¬ stufen aufgebaut sein. Zweckmäßigerweise ist ein Zweidruck- System mit Zwischenüberhitzung und Kondensatvorwärmung vorge¬ sehen. Dazu umfaßt der Abhitzedampferzeuger einen Kondensat- Vorwärmer und diesem abgasseitig vorgeschaltete Mitteldruck- Heizflächen mit einem Zwischenüberhitzer sowie vorteilhafter¬ weise zu diesen abgasseitig mindestens zum Teil parallel an- geordnete und wasser-/dampfseitig parallel geschaltete Hoch¬ druck-Heizflächen. Der im Abhitzedampferzeuger angeordnete Zwischenüberhitzer ist einem zweckmäßigerweise vorgesehenen weiteren Zwischenüberhitzer des gefeuerten Dampferzeugers wasser-/dampfseitig parallel geschaltet.
Die mit der Erfindung erzielten Vorteile bestehen insbeson¬ dere darin, daß durch die Kombination eines gefeuerten Dampf¬ erzeugers und eines Abhitzedampferzeugers bei gleichzeitiger Aufteilung des Abgases aus der Gasturbine in den Dampferzeu- gern zugeführte Teilströme nicht nur im gefeuerten Dampfer¬ zeuger ein großes BrennstoffSpektrum, z.B. Kohle, Schweröl, Schwachgase oder Sonderbrennstoffe, wie z.B. Müll, Holz oder Altöl, zum Einsatz kommen kann. Vielmehr kann bei einer sin¬ kenden Kesselleistung des gefeuerten Dampferzeugers infolge eines Brennstoffumbaus von z.B. Öl auf Kohle oder infolge ei¬ nes Umbaus auf eine stickoxidarme Feuerung dennoch eine be- sonders hohe Dampfturbinenleistung und damit ein höherer An¬ lagenwirkungsgrad aufgrund der zusätzlichen Dampferzeugerlei- stung aus dem Abhitzedampferzeuger aufrechterhalten werden.
Da der gefeuerte Dampferzeuger nur mit dem zur Verbrennung erforderlichen Abgas aus der Gasturbine beaufschlagt wird, ist auch bei beengten Platzverhältnissen die Aufstellung oder Nachrüstung einer Rauchgasreinigungsanlage unproblematisch, da die Rauchgasreinigungsanlage nur für einen Teilstrom des Abgases aus der Gasturbine und nicht für die gesamte Abgas- menge ausgelegt werden muß. Darüber hinaus können bei Altan¬ lagen mit hohen Leistungsreserven der Dampfturbinenanlage diese Leistungsreserven über die zusätzliche Dampfproduktion im Abhitzedampferzeuger genutzt werden.
Da die gesamten Abgase der Gasturbine nahezu verlustfrei ge¬ nutzt werden, wird ein besonders hoher Gesamtnutzungsgrad der Anlage erzielt. Insbesondere kann bei Ersatz eines älteren Gasturbinen-Modells durch ein modernes Aggregat mit einem vergleichsweise hohen Abhitzeangebot diese Abhitze oder über- schüssige Restwärme bestmöglich im Abhitzedampferzeuger ge¬ nutzt werden.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur ein Schalt- Schema einer kombinierten Gas- und Dampfturbinenanlage mit der Gasturbine nachgeschaltet sowohl einem fossil gefeuerten Dampferzeuger als auch einem Abhitzedampferzeuger.
Die Gas- und Dampfturbinenanlage 1 gemäß der Figur umfaßt ei- ne Gasturbinenanlage mit einer Gasturbine 2 mit angekoppeltem Luftverdichter 3 und eine der Gasturbine 2 vorgeschaltete Brennkammer 4, die an eine Frischluftleitung 5 des Luftver- dichters 3 angeschlossen ist. In die Brennkammer 4 der Gas¬ turbine 2 mündet eine Brennstoff- oder Brenngasleitung 6. Die Gasturbine 2 und der Luftverdichter 3 sowie ein Generator 7 sitzen auf einer gemeinsamen Welle 8.
Die Gas- und Dampfturbinenanlage 1 umfaßt weiter eine Dampf- turbinenanlage mit einer Dampfturbine 10 mit angekoppeltem Generator 11 und in einem Wasser-Dampf-Kreislauf 12 einen der Dampfturbine 10 nachgeschalteten Kondensator 13 sowie einen gefeuerten Dampferzeuger 14 und einen Abhitzedampferzeuger 15.
Die Dampfturbine 10 besteht aus einem Hochdruckteil 10a und einem Mitteldruckteil 10b sowie einem Niederdruckteil 10c, die über eine gemeinsame Welle 16 den Generator 11 antreiben.
Zum Zuführen von in der Gasturbine 2 entspanntem Arbeitsmit¬ tel oder Abgas A in den gefeuerten Dampferzeuger 14 ist eine erste Teilstromleitung 18 an einen Eingang 14a des gefeuerten Dampferzeugers 14 angeschlossen. Ein über die Teilstromlei¬ tung 18 geführter erster Teilstrom t]_ des Abgases A aus der Gasturbine 2 mit einem Sauerstoffgehalt von ca. 15% dient als Verbrennungsluft bei der Verbrennung eines gasförmigen, flüs¬ sigen oder festen Brennstoffs B. Dieser wird über eine mit einem Eingang 14b des gefeuerten Dampferzeugers 14 verbundene Brennstoffleitung 20 in den gefeuerten Dampferzeuger 14 ge¬ führt. Zum Einstellen des ersten Teilstroms t^ ist eine in die Teilstromleitung 18 geschaltete Steuerklappe 22 vorgese¬ hen. Bei der Verbrennung des fossilen Brennstoffs B entste- hendes Rauchgas R sowie der als Verbrennungsluft dienende
Teilstrom t^ des Abgases A aus der Gasturbine 2 verlassen den gefeuerten Dampferzeuger 14 über eine Rauchgasleitung 24 und nach deren Reinigung in einer Reinigungsanlage 26 in Richtung auf einen (nicht dargestellten) Kamin. Die Rauchgasreini- gungsanlage 26 umfaßt in nicht näher dargestellter Art eine Rauchgasentschwefelungseinrichtung und eine Entstickungsein- richtung (DeNOx-Anlage) sowie eine Entstaubungseinrichtung. Zum Zuführen eines zweiten Teilstroms t2 des Abgases A aus der Gasturbine 2 in den Abhitzedampferzeuger 15 ist eine zweite Teilstromleitung 28 mit einer Steuerklappe 29 an einen Eingang 15a des Abhitzedampferzeugers 15 angeschlossen. Der Teilstrom t2 des entspannten Abgases A aus der Gasturbine 2 verläßt den Abhitzedampferzeuger 15 über dessen Ausgang 15b in Richtung auf den Kamin.
Ober eine dritte Teilstromleitung oder Bypassleitung 30 mit einer Klappe 32 wird - z.B. beim An- und Abfahren der Anlage 1 - das weder für den gefeuerten Dampferzeuger 14 noch für den Abhitzedampferzeuger 15 benötigte Abgas A aus der Gastur¬ bine 2 geführt. Insbesondere dient diese Bypassleitung 30 je¬ doch zum Abführen des Abgases A aus der Gasturbine 2, wenn diese im sogenannten Single-Cycle-Betrieb allein betrieben wird.
In die Teilstromleitung tη_ mündet eine Frischluftleitung 34, in die ein Gebläse 36 und ein dampfbeheizter Wärmetauscher 38 sowie eine Klappe 40 geschaltet sind. Über diese Frischluft¬ leitung 34 kann im Vergleich zum Abgas A aus der Gasturbine 2 kalte Frischluft KL dem Teilstrom t^ des Abgases A aus der Gasturbine 2 zugemischt werden.
Der Abhitzedampferzeuger 15 umfaßt als Heizflächen einen Vor¬ wärmer 42, zwischen dessen Ein- und Ausgang eine Umwälzpumpe 44 geschaltet ist. Der Vorwärmer 42 ist eingangsseitig mit dem Ausgang eines Kondensatvorwärmers 46 verbunden, der sei¬ nerseits eingangsseitig über eine Kondensatpumpe 48 mit dem Kondensator 13 verbunden ist. Der Kondensatvorwärmer 46 wird über eine mit dem Niederdruckteil 10c der Dampfturbine 10 verbundene Anzapfleitung 50 mit Dampf beheizt. Zwei dem Kon¬ densatvorwärmer 46 nachgeschaltete und ebenfalls über mit dem Niederdruckteil 10c verbundene Anzapfleitungen 52 und 54 be- heizte Vorwärmer 56 bzw. 58 sind dem im Abhitzedampferzeuger 15 angeordneten Vorwärmer 42 parallel geschaltet und aus- gangsseitig mit einem Speisewasserbehälter 60 verbunden. Der Abhitzedampferzeuger 15 umfaßt weiter als Heizflächen ei¬ nen Mitteldruck-Vorwärmer oder -Economizer 62 und einen Mit¬ teldruck-Verdampfer 64 sowie einen Mitteldruck-Überhitzer 66, der ausgangsseitig an eine mit dem Hochdruckteil 10a der Dampfturbine 10 verbundene Dampfleitung 68 und mit einem Zwi¬ schenüberhitzer 70 verbunden ist. Die Mitteldruck-Heizflächen 62, 64, 66 sind über den Zwischenüberhitzer 70 an eine in den Mitteldruckteil 10b der Dampfturbine 10 mündende Dampfleitung 72 angeschlossen. Die Mitteldruck-Heizflächen 62, 64, 66 so- wie der Zwischenüberhitzer 70 und der Mitteldruckteil 10b der Dampfturbine 10 bilden somit eine Mitteldruckstufe des Was¬ ser-Dampf-Kreislaufε 12.
Der Abhitzedampferzeuger 15 umfaßt ferner in einer Hochdruck- stufe als Heizflächen zwei hintereinander geschaltete Hoch¬ druck-Verdampfer oder -Economizer 74 und 75 sowie einen Hoch¬ druck-Verdampfer 76 und einen Hochdruck-Überhitzer 78. Der Hochdruck-Überhitzer 78 ist ausgangsseitig über eine Dampf¬ leitung 80 mit dem Eingang des Hochdruckteils 10a der Dampf- turbine 10 verbunden.
Während der Mitteldruck-Economizer 62 und die Hochdruck-Eco- no izer 74, 75 innerhalb des Abhitzedampferzeugers 15 im Be¬ reich gleicher Abgastemperatur angeordnet sind, sind der Hochdruck-Verdampfer 76 und der Hochdruck-Überhitzer 78 in Strömungsrichtung des Teilstroms t2 des Abgases A aus der Gasturbine 2 vor der Hintereinanderschaltung aus dem Mittel- druck-Verdampfer 64 und dem Mitteldruck-Überhitzer 66 ange¬ ordnet, wobei der Zwischenüberhitzer 70 und der Hochdruck- Überhitzer 78 im Bereich gleicher Abgastemperatur angeordnet sind.
Der Speisewasserbehälter 60 ist über eine Hochdruckpumpe 82 und eine Wärmetauscheranordnung mit einer Hintereinander- Schaltung aus drei Vorwärmern 84, 86, 88 mit dem gefeuerten Dampferzeuger 14 verbunden. Der Speisewasserbehälter 60 ist außerdem über eine Mitteldruckpumpe 90 mit dem Mitteldruck- Economizer 62 verbunden.
Auf der Druckseite der Hochdruckpumpe 82 ist an eine in den gefeuerten Dampferzeuger 14 führende Speisewasserleitung 92 eine Teilstromleitung 92a angeschlossen, die über einen Kes- sel-Teileconomizer 94 zwischen den Vorwärmern 86 und 88 an die Speisewasserleitung 92 angeschlossen ist. Diese ist außerdem über eine weitere Teilstromleitung 92b mit dem Hoch- druck-Economizer 74 verbunden. Der Kessel-Teilecono izer 94 und der Vorwärmer oder Kessel-Economizer 88 sind in die Rauchgasleitung 24 des gefeuerten Dampferzeugers 14 geschal¬ tet.
Ausgangsseitig ist der gefeuerte Dampferzeuger 14 über einen Hochdrucküberhitzer 96, an den ausgangsseitig die Dampflei¬ tung 80 angeschlossen ist, mit dem Eingang des Hochdruckteils 10a der Dampfturbine 10 verbunden. Ein dem im Abhitzedampfer¬ zeuger 15 angeordneten Zwischenüberhitzer 70 parallel ge- schalteter Zwischenüberhitzer 98 ist eingangsseitig über die Dampfleitung 68 mit dem Ausgang des Hochdruckteils 10a und ausgangsseitig mit dem Mitteldruckteil 10b der Dampfturbine 10 verbunden. Die Vorwärmer 84 und 86 werden über Dampflei¬ tungen 100 und 102 mittels Anzapfdampf aus dem Mitteldruck- teil 10b bzw. dem Hochdruckteil 10a der Dampfturbine 10 be¬ heizt.
Beim Betrieb der kombinierten Gas- und Dampfturbinenanlage 1 wird der Brennkammer 4 der Gasturbine 2 in nicht näher dar- gestellter Art und Weise ein Brennstoff B' über die Brenn¬ stoffleitung 6 zugeführt. Der Brennstoff B' wird in der Brennkammer 4 mit verdichteter Frischluft L aus dem Luftver¬ dichter 3 verbrannt. Das bei der Verbrennung entstehende heiße Verbrennungsgas V wird über eine Gasleitung 6a in die Gasturbine 2 geleitet. Dort entspannt es sich und treibt da¬ bei die Gasturbine 2 an, die wiederum den Luftverdichter 3 und den Generator 7 antreibt. Das aus der Gasturbine 2 aus- tretende heiße Abgas A wird im ersten Teilstrom tη_ über die Teilstromleitung 18 als Verbrennungsluft in den gefeuerten Dampferzeuger 14 geleitet. Der zweite Teilstrom t2 des heißen Abgases A aus der Gasturbine 2 wird über die Teilstromleitung 28 und durch den Abhitzedampferzeuger 15 geführt.
Das unter Zufuhr des Teilstroms t^ des Abgases A aus der Gas¬ turbine 2 bei der Verbrennung des fossilen Brennstoffs B ent¬ stehende heiße Rauchgas R dient dort zur Dampferzeugung und verläßt anschließend den gefeuerten Dampfturbine 14 über die Rauchgasleitung 24 in Richtung auf die Rauchgasreinigungsan¬ lage 26, wobei es zuvor zunächst im Kessel-Economizer 88 und anschließend im Kessel-Teileconomizer 94 durch Wärmetausch mit Speisewasser aus dem Speisewasserbehälter 60 abgekühlt worden ist.
Die Vorwärmung des Speisewassers erfolgt in drei Teilströmen S]_ bis S3. Dabei wird ein erster, mittels eines in die Teil- Stromleitung 92a geschalteten Ventils 104 einstellbarer Teil- ström S^ des unter hohem Druck stehenden Speisewassers durch den Kessel-Teileconomizer 94 geführt und mittels des Rauchga- ses R und des Teilstroms t]_ des Abgases A der Gasturbine 2 vorgewärmt. Ein zweiter, mittels eines in die Teilstromlei¬ tung 92b geschalteten Ventils 106 einstellbarer Teilstrom S2 wird durch die Hochdruck-Economizer 74 und 75 geführt und durch Wärmetausch mit dem zweiten Teilstrom t2 des Abgases A aus der Gasturbine 2 vorgewärmt. Die Vorwärmung eines drit¬ ten, mittels eines in die Speisewasserleitung 92 geschalteten Ventils 108 einstellbaren Teilstroms S3 des unter hohem Druck stehenden Speisewassers erfolgt in den Vorwärmern 84 und 86 mittels Anzapf ampf aus der Dampfturbine 10.
Die Vorwärmung des Speisewassers sowohl für den gefeuerten Dampferzeuger 14 als auch für den Abhitzedampferzeuger 15 er- folgt somit jeweils mehrstufig. Dabei erfolgt eine zweistu¬ fige Vorwärmung des Speisewasser-Teilstroms S2 innerhalb des Abhitzedampferzeugers 15 in den wasser-/dampfseitig hinter- einander geschalteten Hochdruck-Economizern 74 und 75. Das Speisewasser für den gefeuerten Dampferzeuger 15 wird in drei Stufen vorgewärmt. Dabei wird der zunächst in den Vorwärmern 84 und 86 zweistufig vorgewärmte dritte Teilstrom S3 an- schließend zusammen mit dem im Kessel-Teileconomizer 94 par¬ allel vorgewärmten Teilstrom S^ im Kessel-Economizer 88 in der gemeinsamen dritten Stufe vorgewärmt. Diese mehrstufige Vorwärmung des Speisewassers in drei Teilströmen S]_ bis S3 ermöglicht eine besonders vorteilhafte Verteilung oder Auf- teilung des Speisewassers auf die beiden Dampferzeuger 14 und 15, so daß eine unerwünschte Verdampfung innerhalb deren gas¬ beheizten Vorwärmern 74, 75 bzw. 88, 94 infolge eines erhöh¬ ten Wärmeeintrags aus den Teilströmen t]_ und t2 des Abgases A aus der Gasturbine 2 sowie aus dem Rauchgas R auch bei Ein- satz einer besonders leistungsstarken Gasturbine 2 praktisch vermieden ist.
Der im Abhitzedampferzeuger 15 im Hochdruck-Verdampfer 76 er¬ zeugte und im Hochdruck-Überhitzer 78 überhitzte Dampf wird zusammen mit dem im gefeuerten Dampferzeuger 14 erzeugten und im Überhitzer 96 überhitzten Dampf in den Hochdruckteil 10a der Dampfturbine 10 geführt. Der in dem Hochdruckteil 10a teilentspannte Dampf wird zum Teil in dem im Abhitzedampfer¬ zeuger 15 angeordneten Überhitzer 70 und zum Teil im Zwi- schenüberhitzer 98 des gefeuerten Dampferzeugers 14 erneut überhitzt und anschließend dem Mitteldruckteil 10b der Dampf¬ turbine 10 zugeführt. Der im Mitteldruckteil 10b weiter ent¬ spannte Dampf wird zum Teil zur Aufwärmung des Speisewassers im Speisewasserbehälter 60 und zum Teil zur Vorwärmung des durch den Vorwärmer 84 geführten Speisewasser-Teilstroms S3 genutzt sowie zum Teil direkt in den Niederdruckteil 10c der Dampfturbine 10 geführt. Der im Niederdruckteil 10c ent¬ spannte Dampf wird über die Anzapfleitungen 50 bis 54 zur Vorwärmung von in den Speisewasserbehälter 60 geführtem Kon- densat K genutzt. Der aus dem Niederdruckteil 10c austretende Dampf wird im Kondensator 13 kondensiert und als Kondensat K über die Kondensatpumpe 48 und die Vorwärmer 46, 56 und 58 in den Speisewasserbehälter 60 gefördert. Somit ist der dem ge¬ feuerten Dampferzeuger 14 und dem Abhitzedampferzeuger 15 ge¬ meinsame Wasser-Dampf-Kreislauf 12 geschlossen.

Claims

Patentansprüche
1.Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage (1), bei der das Sauerstoffhaltige Abgas (A) aus der Gastur- bine (2) zur Dampferzeugung genutzt wird, d a d u r c h g e k e n n z e i c h n e t , daß ein er¬ ster Teilstrom (t^) des Abgases (A) aus der Gasturbine (2) als Verbrennungsluft für die Verbrennung eines fossilen Brennstoffs (B) verwendet wird, und daß ein zweiter Teilstrom (t2) des Abgases (A) aus der Gasturbine (2) zur Abhitzedampf¬ erzeugung genutzt wird, wobei die Dampferzeugung durch Ver¬ brennung des fossilen Brennstoffs (B) und die Abhitzedampfer¬ zeugung in einem gemeinsamen Wasser-Dampf-Kreislauf (12) der Dampfturbine (10) erfolgt.
2.Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß unter ho¬ hem Druck stehendes Speisewasser des Wasser-Dampf-Kreislaufs (12) in Teilstrδmen (S^ bis S3) vorgewärmt wird, wobei die Vorwärmung eines ersten Teilstroms (S]_) des Speisewassers mittels bei der Verbrennung des fossilen Brennstoffs (B) ent¬ stehendem Rauchgas (R, tη_), die Vorwärmung eines zweiten Teilstroms (S2) des Speisewassers mittels des zweiten Teil¬ stroms (t2> des Abgases (A) aus der Gasturbine (2) und die Vorwärmung eines dritten Teilstroms (S3) des Speisewassers mittels Dampf aus der Dampfturbine (10) erfolgt.
3.Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß die Vor- wärmung der drei Teilströme (S^ bis S3) des Speisewassers mehrstufig erfolgt, wobei die Vorwärmung des ersten Teil¬ stroms (Si) und des dritten Teilstroms (S3) in einer diesen gemeinsamen zweiten Vorwärmstufe (88) mittels des bei der Verbrennung des fossilen Brennstoffs (B) entstehenden Rauch- gases (R, t]_) erfolgt.
4.Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß dem als Verbrennungsluft dienenden ersten Teilstrom (t^) des Abgases (A) aus der Gasturbine (2) ein Kaltluftstrom (KL) zugemischt wird.
5.Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß der als Verbrennungsluft dienende erste Teilstrom (t^) des Abgases (A) aus der Gasturbine (2) zusammen mit dem bei der Verbren¬ nung des fossilen Brennstoffs (B) entstehenden Rauchgas (R) gereinigt wird.
6.Gas- und Dampfturbinenanlage zur Durchführung des Verfah- rens nach einem der Ansprüche 1 bis 5, mit einem in einen
Wasser-Dampf-Kreislauf (12) der Dampfturbine (10) geschalte¬ ten fossil gefeuerten Dampferzeuger (14), dem wasser- /dampfseitig ein Abhitzedampferzeuger (15) parallel geschal¬ tet ist, wobei sowohl der gefeuerte Dampferzeuger (14) über eine erste Teilstromleitung (18) als auch der Abhitzedampfer¬ zeuger (15) über eine zweite Teilstromleitung (28) der Gas¬ turbine (2) abgasseitig nachgeschaltet sind.
7.Gas- und Dampfturbinenanlage nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß dem ge¬ feuerten Dampferzeuger (14) rauchgasseitig eine Rauchgasrei¬ nigungsanlage (26) nachgeschaltet ist.
8.Gas- und Dampfturbinenanlage nach Anspruch 6 oder 7, d a d u r c h g e k e n n z e i c h n e t , daß dem ge¬ feuerten Dampferzeuger (14) eine Hintereinanderschaltung aus zwei rauchgasbeheizten Kessel-Vorwärmern (88, 94) wasser- /dampfseitig vorgeschaltet ist.
9.Gas- und Dampfturbinenanlage nach einem.der Ansprüche 6 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß der Abhitzedampferzeuger (15) Heizflächen (42) zur Kondensatvor- wärmung und diesen abgasseitig vorgeschaltete Mitteldruck- Heizflächen (62, 64, 66) mit einem Zwischenüberhitzer (70) sowie zu diesen abgasseitig mindestens zum Teil parallel an¬ geordnete und wasser-/dampfseitig parallel geschaltete Hoch¬ druck-Heizflächen (74, 75, 76, 78) umfaßt.
PCT/DE1995/001263 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage WO1996010124A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8511259A JPH10506165A (ja) 1994-09-27 1995-09-14 複合型ガス及び蒸気タービン設備の運転方法及びこの方法により運転される設備
DE59502433T DE59502433D1 (de) 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage
EP95931137A EP0783619B1 (de) 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4434526A DE4434526C1 (de) 1994-09-27 1994-09-27 Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
DEP4434526.7 1994-09-27

Publications (1)

Publication Number Publication Date
WO1996010124A1 true WO1996010124A1 (de) 1996-04-04

Family

ID=6529324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001263 WO1996010124A1 (de) 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage

Country Status (7)

Country Link
US (1) US5887418A (de)
EP (2) EP0822320B1 (de)
JP (1) JPH10506165A (de)
KR (1) KR100385372B1 (de)
CN (1) CN1067137C (de)
DE (3) DE4434526C1 (de)
WO (1) WO1996010124A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542917A1 (de) * 1994-12-21 1996-06-27 Abb Management Ag Kombianlage mit konventionellem Wasser/Dampf-Kreislauf
DE19541914A1 (de) * 1995-11-10 1997-05-15 Asea Brown Boveri Kühlluftkühler für Kraftwerksanlagen
DE19619470C1 (de) * 1996-05-14 1997-09-25 Siemens Ag Gas- und Dampfturbinenanlage sowie Verfahren zu deren Betrieb
DE19626011A1 (de) * 1996-06-28 1998-01-02 Lentjes Kraftwerkstechnik Kombinierte Gas-Dampf-Kraftanlage und Prozeß
DE19720789B4 (de) * 1997-05-17 2006-04-27 Alstom Verfahren und Vorrichtung zur Erzeugung von Dampf
US6065280A (en) * 1998-04-08 2000-05-23 General Electric Co. Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
NL1009467C2 (nl) * 1998-06-22 1999-12-27 Stork Eng & Contractors Bv Warmte-krachtinstallatie, en werkwijze voor het bedrijven daarvan.
US6202782B1 (en) * 1999-05-03 2001-03-20 Takefumi Hatanaka Vehicle driving method and hybrid vehicle propulsion system
DE10001997A1 (de) 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
SE0004931D0 (sv) * 2000-12-29 2000-12-29 Addpower Ab Sätt att konvertera värme i varma rökgaser
US7073337B2 (en) * 2003-05-30 2006-07-11 General Electric Company Combined power generation and desalinization apparatus and related method
CN1948720B (zh) * 2006-10-31 2011-08-10 章祖文 永磁传动低温多级涡轮发电机
US7628609B2 (en) * 2006-12-29 2009-12-08 Electrolux Home Products, Inc. Hub and spoke burner with flame stability
JP4939511B2 (ja) * 2008-10-29 2012-05-30 三菱重工業株式会社 石炭ガス化複合発電設備
ITBS20090224A1 (it) * 2009-12-16 2011-06-17 Turboden Srl Sistema e metodo per la produzione di energia elettrica a partire da sorgenti termiche a temperatura variabile
DE102011013325A1 (de) * 2011-03-08 2012-09-13 Rwe Technology Gmbh Kraftwerk sowie Verfahren zum Betreiben eines Kraftwerks
US9074494B2 (en) 2011-10-21 2015-07-07 General Electric Company System and apparatus for controlling temperature in a heat recovery steam generator
DE202011107312U1 (de) * 2011-11-02 2012-02-29 Gammel Engineering Gmbh Abgasnacherhitzungs-Vorrichtung
US8955322B2 (en) * 2012-03-05 2015-02-17 Ormat Technologies Inc. Apparatus and method for increasing power plant efficiency at partial loads
CN103047047B (zh) * 2013-01-24 2015-12-02 矫明义 发动机废气动力装置及使用方法
FR3005143A1 (fr) * 2013-04-25 2014-10-31 Pyraine Installation thermique de production d'electricite par combustion
DE102013208002A1 (de) * 2013-05-02 2014-11-06 Siemens Aktiengesellschaft Thermische Wasseraufbereitung bei STIG Kraftwerkskonzepten
GB2519129A (en) * 2013-10-10 2015-04-15 Ide Technologies Ltd Pumping Apparatus
WO2015187423A2 (en) * 2014-06-04 2015-12-10 Conlon William M Dispatchable solar hybrid power plant
JP6317652B2 (ja) * 2014-09-12 2018-04-25 株式会社東芝 プラント制御装置及びコンバインドサイクル発電プラント
EP3262284B1 (de) * 2015-02-24 2019-01-02 Siemens Aktiengesellschaft Kombikraftwerk mit überkritischer dampfturbine
EP3371421B1 (de) 2015-11-05 2023-02-15 Pintail Power LLC Kombikraftwerke mit abrufbarem speicher
US10174639B2 (en) * 2017-01-31 2019-01-08 General Electric Company Steam turbine preheating system
US10337357B2 (en) 2017-01-31 2019-07-02 General Electric Company Steam turbine preheating system with a steam generator
US10670334B2 (en) * 2017-12-01 2020-06-02 Dilip Kumar De Highly cost effective technology for capture of industrial emissions without reagent for clean energy and clean environment applications
CN108679587A (zh) * 2018-05-11 2018-10-19 中国成达工程有限公司 一种燃气透平乏气并串级热量回收系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1312469A (fr) * 1961-10-03 1962-12-21 Babcock & Wilcox France Perfectionnements aux installations de production d'énergie à cycle mixte vapeur et gaz
DE1426890A1 (de) * 1963-08-30 1969-06-12 Aeg Kanis Turbinen Kraftwerk mit Muellverbrennung
DE3815536C1 (en) * 1988-05-06 1989-07-20 Wolff Walsrode Ag, 3030 Walsrode, De Heating and power station and method for generating heat energy in the form of steam and generating electrical energy
US4852344A (en) * 1988-06-06 1989-08-01 Energy Economics & Development, Inc. Waste disposal method and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1426443B2 (de) * 1962-09-21 1971-09-09 Waermekraftanlage
DE4029991A1 (de) * 1990-09-21 1992-03-26 Siemens Ag Kombinierte gas- und dampfturbinenanlage
JPH04362207A (ja) * 1991-06-10 1992-12-15 Toshiba Corp 汽力発電設備のリパワリングシステム
DE4126036A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
US5628183A (en) * 1994-10-12 1997-05-13 Rice; Ivan G. Split stream boiler for combined cycle power plants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1312469A (fr) * 1961-10-03 1962-12-21 Babcock & Wilcox France Perfectionnements aux installations de production d'énergie à cycle mixte vapeur et gaz
DE1426890A1 (de) * 1963-08-30 1969-06-12 Aeg Kanis Turbinen Kraftwerk mit Muellverbrennung
DE3815536C1 (en) * 1988-05-06 1989-07-20 Wolff Walsrode Ag, 3030 Walsrode, De Heating and power station and method for generating heat energy in the form of steam and generating electrical energy
US4852344A (en) * 1988-06-06 1989-08-01 Energy Economics & Development, Inc. Waste disposal method and apparatus

Also Published As

Publication number Publication date
KR100385372B1 (ko) 2003-08-19
JPH10506165A (ja) 1998-06-16
CN1067137C (zh) 2001-06-13
DE59508574D1 (de) 2000-08-17
EP0822320B1 (de) 2000-07-12
EP0822320A1 (de) 1998-02-04
US5887418A (en) 1999-03-30
EP0783619A1 (de) 1997-07-16
CN1155318A (zh) 1997-07-23
DE4434526C1 (de) 1996-04-04
DE59502433D1 (de) 1998-07-09
EP0783619B1 (de) 1998-06-03
KR970706444A (ko) 1997-11-03

Similar Documents

Publication Publication Date Title
EP0783619A1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0778397B1 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
EP0819209B1 (de) Verfahren zum betreiben eines abhitzedampferzeugers sowie danach arbeitender abhitzedampferzeuger
EP0591163B1 (de) Kombinierte gas- und dampfturbinenanlage
DE4312072C2 (de) Dampfkraftwerk mit Vorschaltgasturbine
EP2368021B1 (de) Abhitzedampferzeuger sowie ein verfahren zum verbesserten betrieb eines abhitzedampferzeugers
DE10001997A1 (de) Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
EP0898641B1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
EP1023526A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage
CH678987A5 (de)
EP1584798B1 (de) Verfahren und Einrichtung zur Erzeugung von Kraft und Wärme
EP0523466B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0709561B1 (de) Kraftwerksanlage
EP0840837B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
DE19627425A1 (de) Verfahren zum Betrieb einer Hybrid-Solar-Kombianlage sowie eine Hybrid-Solar-Kombianlage
WO2003104629A1 (de) Gasturbogruppe
WO2012126727A1 (de) Verfahren zum schnellen zuschalten eines dampferzeugers
DE3815993A1 (de) Zweistoff-turbinenanlage
DE4409811C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
EP1404947B1 (de) Verfahren zum betreiben einer dampfkraftanlage sowie dampfkraftanlage zur durchführung des verfahrens
DE19849740A1 (de) Gas- und Dampfturbinenanlage
WO1997007323A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage sowie abhitzedampferzeuger für eine gas- und dampfturbinenanlage
DE10124492B4 (de) Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen
WO1989003471A1 (en) Gas-steam generating power plant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95194614.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995931137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970701998

Country of ref document: KR

Ref document number: 08826240

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995931137

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970701998

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995931137

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970701998

Country of ref document: KR