EP0822320B1 - Gas- und Dampfturbinenanlage - Google Patents

Gas- und Dampfturbinenanlage Download PDF

Info

Publication number
EP0822320B1
EP0822320B1 EP97117410A EP97117410A EP0822320B1 EP 0822320 B1 EP0822320 B1 EP 0822320B1 EP 97117410 A EP97117410 A EP 97117410A EP 97117410 A EP97117410 A EP 97117410A EP 0822320 B1 EP0822320 B1 EP 0822320B1
Authority
EP
European Patent Office
Prior art keywords
steam
gas
steam generator
turbine
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97117410A
Other languages
English (en)
French (fr)
Other versions
EP0822320A1 (de
Inventor
Hermann Brückner
Erich Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0822320A1 publication Critical patent/EP0822320A1/de
Application granted granted Critical
Publication of EP0822320B1 publication Critical patent/EP0822320B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler

Definitions

  • the invention relates to a gas and steam turbine plant according to the preamble of claim 1.
  • Such Appendix is shown in JP-A-4362207.
  • Other gas and steam turbine plants with heat recovery steam generators and fossil-fired Steam generators are from the patents DE 38 15 536 C1 and US 4,852,344 known.
  • the steam generator is suitable for the combined process with a downstream one Heat recovery steam generator especially for retrofitting one already existing gas turbine plant.
  • a new system usually a number of gas turbines with a corresponding one Number of heat recovery steam generators on a common Steam turbine switched. Because in this combination process steam generation is limited to pure heat recovery, the overall efficiency of the system is also only limited. In addition, it is also problematic with this combination process when a replacement is required or desired the gas turbine against a gas turbine with a comparatively high Performance to find a suitable gas turbine model.
  • the invention is therefore based on the object of a gas and Specify steam turbine plant, in which at the same time particularly high overall efficiency using one from one Variety of gas turbines of different sizes freely selectable gas turbine is possible.
  • a first partial flow of the exhaust gas is generated to generate steam the gas turbine for burning a fossil fuel used.
  • a second partial flow of the exhaust gas from the gas turbine is used to generate waste heat, with both the Steam generation by burning the fossil fuel as also waste heat generation in a common water-steam cycle the steam turbine.
  • This is advantageous pressurized feed water of the water-steam cycle preheated in partial flows, the Preheating a first partial flow of the feed water by means of resulting from the combustion of fossil fuel Flue gas occurs.
  • the preheating of a second partial flow of the Feed water takes place by means of the second, the heat recovery steam generator flowing part of the exhaust gas from the Gas turbine.
  • a third partial flow of the feed water is by means of Tap steam preheated from the steam turbine. This is done the preheating of the three partial flows of the feed water expediently multi-stage, the preheating of the first Partial stream and the third partial stream in a common second preheating stage by means of combustion of the flue gas produced from fossil fuel.
  • the steam turbine process can consist of one or more pressure stages be constructed.
  • a two-pressure system is expedient provided with reheating and condensate preheating.
  • the waste heat steam generator includes a condensate preheater and this upstream medium pressure heating surfaces with a reheater and advantageously arranged at least partially parallel to these on the exhaust side and high pressure heating surfaces connected in parallel on the water / steam side.
  • the reheater located in the heat recovery steam generator is another conveniently provided Reheater of the fired steam generator on the water / steam side connected in parallel.
  • the invention is based on the consideration that by the combination of pure waste heat use and use as Combustion air divides these types of use of the exhaust gas from the gas turbine regardless of its output size best possible with regard to the overall efficiency of the system is tunable if additionally in the exhaust gas from the gas turbine and in the combustion of fossil fuel Flue gas contained and not for steam generation more usable residual heat is used for preheating the feed water becomes.
  • the fired steam generator can advantageously large range of fuels are used.
  • fuels for example as fossil fuel oil, gas, coal or special fuels, such as. Garbage, wood or waste oil can be used.
  • Garbage, wood or waste oil can be used.
  • the exhaust gas temperature behind the Gas turbine at around 500 ° C for coal drying under certain circumstances is too high, can suitably as combustion air serving first partial flow of the exhaust gas from the Gas turbine be mixed with a cold air stream.
  • the oxygen-containing exhaust gas from the gas turbine for example 15% oxygen content serves as the sole combustion air for those to be burned in the fired steam generator fossil fuels, the fired steam generator expediently only with the one required for combustion Exhaust gas volume is applied.
  • a possible one Flue gas cleaning system must therefore only for the first partial flow of the exhaust gas from the gas turbine and not for the whole Exhaust gas volume can be designed, this as combustion air serving first partial flow of the exhaust gas from the Gas turbine along with that when burning the fossil The resulting flue gas is cleaned.
  • the fired steam generator is in a practical embodiment a flue gas cleaning system downstream of the flue gas side. Since the flue gas cleaning system is only for the first Partial flow of the exhaust gas from the gas turbine and for that in the fossil fired steam generator designed amount of flue gas must not occur with a new system or with a Retrofitting an old system Problems with a required Limiting the size of the cleaning system Space constraints. An undesirable reduction in steam generator output in the case of a cleaning system to be retrofitted, due to the space available on site only for one limited exhaust gas volume is sufficient is therefore not necessary.
  • the fired Steam generator a series connection of two flue gas-heated high-pressure preheaters on the water / steam side upstream. This is done in a first high-pressure preheater or boiler economizer all of the fired steam generator supplied feed water preheated while in one second downstream of the boiler economizer on the flue gas side second high pressure preheater or boiler parts economizer only the first partial flow of the feed water is preheated.
  • the advantages achieved with the invention are in particular in that by combining a fired steam generator and a heat recovery steam generator at the same time Distribution of the exhaust gas from the gas turbine in the steam generators supplied partial streams not only in the fired steam generator a wide range of fuels, e.g. Coal, heavy oil, Low gases or special fuels, e.g. Garbage, wood or Waste oil, can be used. Rather, it can decrease Boiler output of the fired steam generator as a result a fuel conversion of e.g. Oil on coal or as a result of Conversion to a low nitrogen oxide firing is still a special one high steam turbine output and thus a higher system efficiency due to the additional steam generator output be maintained from the heat recovery steam generator.
  • fuels e.g. Coal, heavy oil, Low gases or special fuels, e.g. Garbage, wood or Waste oil
  • FIG. 1 An embodiment of the invention is based on a Drawing explained in more detail.
  • the figure shows a circuit diagram a combined gas and steam turbine system with the gas turbine downstream of both a fossil-fired Steam generator as well as a heat recovery steam generator.
  • the gas and steam turbine system 1 comprises a gas turbine system with a gas turbine 2 with coupled Air compressor 3 and one of the gas turbine 2 upstream Combustion chamber 4, which is connected to a fresh air line 5 of the air compressor 3 is connected.
  • a combustion chamber 4 of the gas turbine 2 opens a fuel or fuel gas line 6. Die Gas turbine 2 and the air compressor 3 and a generator 7 sit on a common shaft 8.
  • the gas and steam turbine system 1 further comprises a steam turbine system with a steam turbine 10 with coupled Generator 11 and in a water-steam cycle 12 one of the Steam turbine 10 downstream capacitor 13 and a fired steam generator 14 and a heat recovery steam generator 15.
  • the steam turbine 10 consists of a high pressure part 10a and a medium pressure part 10b and a low pressure part 10c, which drive the generator 11 via a common shaft 16.
  • a first partial flow line 18 is connected to an inlet 14a of the fired steam generator 14 in order to supply working fluid or exhaust gas A relaxed in the gas turbine 2 to the fired steam generator 14.
  • a first partial flow t 1 of the exhaust gas A from the gas turbine 2 with an oxygen content of approx. 15%, which is conducted via the partial flow line 18, serves as combustion air during the combustion of a gaseous, liquid or solid fuel B. This is fired via an inlet 14b Steam generator 14 connected fuel line 20 led into the fired steam generator 14.
  • a control flap 22 connected to the partial flow line 18 is provided for setting the first partial flow t 1 .
  • the flue gas R formed and the partial flow t 1 of the exhaust gas A serving as combustion air from the gas turbine 2 leave the fired steam generator 14 via a flue gas line 24 and after it has been cleaned in a cleaning system 26 in the direction of a (not shown) Stack.
  • the flue gas cleaning system 26 comprises a flue gas desulfurization device and a denitrification device (DeNO x system) and a dedusting device in a manner not shown.
  • a second partial flow line 28 with a control flap 29 is connected to an inlet 15a of the waste heat steam generator 15.
  • the partial flow t 2 of the relaxed exhaust gas A from the gas turbine 2 leaves the heat recovery steam generator 15 via its outlet 15b in the direction of the chimney.
  • a third partial flow line or bypass line 30 with a flap 32 is - e.g. when starting and stopping the system 1 - neither for the fired steam generator 14 nor for the waste heat steam generator 15 required exhaust gas A from the gas turbine 2 led.
  • this bypass line 30 is used to discharge the exhaust gas A from the gas turbine 2, if operated alone in so-called single-cycle operation becomes.
  • a fresh air line 34 into which a blower 36 and a steam-heated heat exchanger 38 and a flap 40 are connected, opens into the partial flow line t 1 .
  • cold fresh air KL can be mixed into the partial flow t 1 of the exhaust gas A from the gas turbine 2 via this fresh air line 34.
  • the heat recovery steam generator 15 comprises a preheater as heating surfaces 42, between its inlet and outlet a circulation pump 44 is switched.
  • the preheater 42 is on the input side connected to the output of a condensate preheater 46, which in turn on the input side via a condensate pump 48 with the Capacitor 13 is connected.
  • the condensate preheater 46 will via one with the low pressure part 10c of the steam turbine 10 connected tap 50 heated with steam.
  • Two the condensate preheater 46 downstream and also over with the Low pressure part 10c connected tap lines 52 and 54 heated Preheaters 56 and 58 are in the heat recovery steam generator 15 arranged preheater 42 connected in parallel and on the output side connected to a feed water tank 60.
  • the heat recovery steam generator 15 further comprises one as heating surfaces Medium pressure preheater or economizer 62 and a medium pressure evaporator 64 and a medium pressure superheater 66, the output side to one with the high pressure part 10a Steam turbine 10 connected steam line 68 and with a reheater 70 is connected.
  • the medium pressure heating surfaces 62, 64, 66 are via the reheater 70 to one in the Medium pressure part 10b of the steam turbine 10 opening steam line 72 connected.
  • the medium pressure heating surfaces 62, 64, 66 and the reheater 70 and the medium pressure part 10b of the Steam turbine 10 thus form a medium pressure stage of the water-steam cycle 12th
  • the heat recovery steam generator 15 further comprises in a high pressure stage two high-pressure preheaters connected in series as heating surfaces or -Economizer 74 and 75 and a high pressure evaporator 76 and a high pressure superheater 78.
  • the High-pressure superheater 78 is on the outlet side via a steam line 80 with the entrance of the high pressure part 10a of the steam turbine 10 connected.
  • the medium-pressure economizer 62 and the high-pressure economizer 74, 75 are arranged within the heat recovery steam generator 15 in the region of the same exhaust gas temperature, the high-pressure evaporator 76 and the high-pressure superheater 78 are off in the flow direction of the partial flow t 2 of the exhaust gas A from the gas turbine 2 before the series connection the medium pressure evaporator 64 and the medium pressure superheater 66, the intermediate superheater 70 and the high pressure superheater 78 being arranged in the region of the same exhaust gas temperature.
  • the feed water tank 60 is via a high pressure pump 82 and a heat exchanger arrangement with a series connection from three preheaters 84, 86, 88 with the fired Steam generator 14 connected.
  • the feed water tank 60 is also via a medium pressure pump 90 with the medium pressure economizer 62 connected.
  • a partial flow line 92a connected via a boiler part economizer 94 between preheaters 86 and 88 the feed water line 92 is connected. This is also via a further partial flow line 92b with the high-pressure economizer 74 connected.
  • the boiler parts economizer 94 and the preheater or boiler economizer 88 are in the Flue gas line 24 of the fired steam generator 14 switched.
  • the fired steam generator 14 is on the output side via a High-pressure superheater 96, the steam line on the outlet side 80 is connected to the input of the high pressure part 10a of the steam turbine 10 connected.
  • One in the heat recovery steam generator 15 arranged reheaters 70 connected in parallel Intermediate heater 98 is on the input side via the Steam line 68 with the outlet of the high pressure part 10a and on the output side with the medium pressure part 10b of the steam turbine 10 connected.
  • the preheaters 84 and 86 are via steam lines 100 and 102 using bleed steam from the medium pressure section 10b or the high pressure part 10a of the steam turbine 10 is heated.
  • a fuel B ′ is fed to the combustion chamber 4 of the gas turbine 2 in a manner not shown in detail via the fuel line 6.
  • the fuel B ' is burned in the combustion chamber 4 with compressed fresh air L from the air compressor 3.
  • the hot combustion gas V formed during the combustion is conducted into the gas turbine 2 via a gas line 6a. There it relaxes and drives the gas turbine 2, which in turn drives the air compressor 3 and the generator 7.
  • the hot exhaust gas A emerging from the gas turbine 2 is conducted in the first partial flow t 1 via the partial flow line 18 as combustion air into the fired steam generator 14.
  • the second partial flow t 2 of the hot exhaust gas A from the gas turbine 2 is conducted via the partial flow line 28 and through the heat recovery steam generator 15.
  • the hot flue gas R which is produced by supplying the partial flow t 1 of the exhaust gas A from the gas turbine 2 during the combustion of the fossil fuel B is used there to generate steam and then leaves the fired steam generator 14 via the flue gas line 24 in the direction of the flue gas cleaning system 26, previously has first been cooled in the boiler economizer 88 and then in the boiler part economizer 94 by heat exchange with feed water from the feed water tank 60.
  • the feed water is preheated in three partial flows S 1 to S 3 .
  • a first partial flow S 1 of the feed water under high pressure which is adjustable by means of a valve 104 connected to the partial flow line 92 a, is passed through the boiler part economizer 94 and preheated by means of the flue gas R and the partial flow t 1 of the exhaust gas A of the gas turbine 2.
  • a second partial flow S 2 which can be set by means of a valve 106 connected to the partial flow line 92b, is led through the high-pressure economizers 74 and 75 and preheated by heat exchange with the second partial flow t 2 of the exhaust gas A from the gas turbine 2.
  • the preheating of the feed water both for the fired steam generator 14 and for the waste heat steam generator 15 is thus carried out in several stages.
  • a two-stage preheating of the feed water partial stream S 2 takes place within the heat recovery steam generator 15 in the high pressure economizers 74 and 75 connected in series on the water / steam side.
  • the feed water for the fired steam generator 15 is preheated in three stages.
  • the third partial flow S 3, which is preheated in two stages in the preheaters 84 and 86, is then preheated together with the partial flow S 1 preheated in parallel in the boiler part economizer 94 in the boiler economizer 88 in the common third stage.
  • This multi-stage preheating of the feed water in three partial streams S 1 to S 3 enables a particularly advantageous distribution or division of the feed water between the two steam generators 14 and 15, so that undesired evaporation within their gas-heated preheaters 74, 75 and 88, 94 as a result of an increased Heat input from the partial streams t 1 and t 2 of the exhaust gas A from the gas turbine 2 and from the flue gas R is practically avoided even when using a particularly powerful gas turbine 2.
  • the steam generated in the waste heat steam generator 15 in the high pressure evaporator 76 and superheated in the high pressure superheater 78 is conducted together with the steam generated in the fired steam generator 14 and superheated in the superheater 96 into the high pressure part 10a of the steam turbine 10.
  • the steam which is partially expanded in the high pressure part 10a is partly overheated again in the superheater 70 arranged in the waste heat steam generator 15 and partly in the intermediate superheater 98 of the fired steam generator 14 and then fed to the medium pressure part 10b of the steam turbine 10.
  • the steam which is further expanded in the medium pressure part 10b is used partly for heating the feed water in the feed water tank 60 and partly for preheating the feed water partial flow S 3 led through the preheater 84, and partly directly into the low pressure part 10c of the steam turbine 10.
  • the steam released in the low-pressure part 10c is used via the bleed lines 50 to 54 for preheating condensate K fed into the feed water tank 60.
  • the steam emerging from the low-pressure part 10c is condensed in the condenser 13 and conveyed as condensate K via the condensate pump 48 and the preheaters 46, 56 and 58 into the feed water tank 60.
  • the water-steam circuit 12 common to the fired steam generator 14 and the waste heat steam generator 15 is thus closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung bezieht sich auf eine Gas- und Dampfturbinenanlage gemäß dem Oberbegriff des Anspruchs 1. Eine derartige Anlage ist in JP-A-4362207 gezeigt. Weitere Gas- und Dampfturbinenanlagen mit Abhitzedampferzeugern und fossil befeuerten Dampferzeugern sind aus den Patentschriften DE 38 15 536 C1 und US 4,852,344 bekannt.
Bei der Kombination eines Dampfturbinenprozesses und eines Gasturbinenprozesses gibt es prinzipiell zwei Möglichkeiten, das Abgas aus der Gasturbine zur Dampferzeugung zu nutzen. Wie in dem Aufsatz "Kombinierte Gas-/Dampfturbinenprozesse" in Brennstoff-Wärme-Kraft (BWK) 31 (1979), Nr. 5, Mai, beschrieben, dienen bei einem möglichen Kombiprozeß mit nachgeschaltetem Dampferzeuger die sauerstoffreichen Abgase der Gasturbine als Verbrennungsluft für den fossil befeuerten Dampferzeuger. Bei einem anderen Kombiprozeß mit nachgeschaltetem Abhitzedampferzeuger werden Gasturbinen- und Dampfturbinenprozeß kombiniert, indem die Abwärme der Gasturbine im Abhitzedampferzeuger verwertet wird. Ein Gas- und Dampfturbinenkraftwerk mit Abhitzedampferzeuger und solar beheiztem Dampferzeuger sowie mit einem einer Zusatzbrennkammer nachgeschalteten fossil beheizten Wärmetauscher ist aus der DE-OS 41 26 036 bekannt.
Bei einem Kombiprozeß sind die Leistungen der Dampfturbine und der Gasturbine sowie des befeuerten Dampferzeugers voneinander abhängig, so daß sie bei einer Auslegung einer derartigen Anlage aufeinander abgestimmt werden müssen. Dies gilt nicht nur bei einer Nachrüstung einer bereits bestehenden Dampfturbinenanlage, sondern auch für eine Neuanlage. Die Abstimmung erfolgt dabei üblicherweise derart, daß bei Nennlastbetrieb der Sauerstoffbedarf des gefeuerten Dampferzeugers durch die Abgase der Gasturbine gedeckt werden kann. Es werden allerdings Gasturbinen mit nur wenigen unterschiedlichen Leistungsgrößen, beispielsweise mit 50 MW, 150 MW oder 200 MW, hergestellt und angeboten, so daß deren Anpassung an die Leistung der Dampfturbine und die des Dampferzeugers äußerst schwierig ist. Daher liefert - bei einer vorgegebenen Anlagengröße - die Gasturbine im Vergleich zur als Verbrennungsluft benötigten Abgasmenge für den gefeuerten Dampferzeuger im Vollastbereich entweder eine zu große oder eine zu kleine Abgasmenge. Bei einer zu kleinen Abgasmenge ist im Vollastbereich nur ein geringer Wirkungsgrad der Anlage zu erreichen, der dann im Teillastbereich besser wird.
Dagegen kann eine zu große Abgasmenge aus der Gasturbine dazu führen, daß im Falle eines Kombiprozesses, bei dem die überschüssigen Abgase aus der Gasturbine an einer Brennkammer des gefeuerten Dampferzeugers vorbei zu einem Kessel- oder Speisewasservorwärmer (Economizer) geleitet werden, dieser durch den zu hohen Wärmeeintrag in unerwünschter Weise bereits in die Verdampfung gerät. Oder es muß bei einer zu großen Abgasmenge im Teillastbereich bereits zu einem frühen Zeitpunkt die Leistung der Gasturbine reduziert werden. Mit zunehmender Reduzierung der Leistung der Gasturbine nimmt allerdings der Wirkungsgrad der Anlage im Teillastbereich ab. Mit anderen Worten: In beiden Fällen ist der erzielte Gesamtwirkungsgrad nur begrenzt. Insbesondere bei der Nachrüstung einer bereits bestehenden Dampfturbinenanlage muß daher auf einen Leistungszuwachs aus der Gasturbine verzichtet werden, wenn die Abgaswärme der Gasturbine nicht vollständig genutzt oder ein akzeptables Teillastverhalten nicht erreicht werden kann.
Im Gegensatz zum Kombiprozeß mit nachgeschaltetem gefeuerten Dampferzeuger eignet sich der Kombiprozeß mit nachgeschaltetem Abhitzedampferzeuger besonders zur Nachrüstung einer bereits bestehenden Gasturbinenanlage. Bei einer Neuanlage werden üblicherweise eine Anzahl von Gasturbinen mit einer entsprechenden Anzahl von Abhitzedampferzeugern auf eine gemeinsame Dampfturbine geschaltet. Da sich bei diesem Kombiprozeß die Dampferzeugung auf eine reine Abhitzenutzung beschränkt, ist der Gesamtwirkungsgrad der Anlage ebenfalls nur begrenzt. Darüber hinaus ist es auch bei diesem Kombiprozeß problematisch, bei einem erforderlichen oder gewünschten Austausch der Gasturbine gegen eine Gasturbine mit vergleichsweise hoher Leistung ein geeignetes Gasturbinen-Modell zu finden. Denn bei einer vorgegebenen Leistung der Dampfturbine und damit vorgegebener Auslegung des Abhitzedampferzeugers wäre der Wärmeeintrag mit dem Abgas aus einer vergleichsweise großen Gasturbine in den Abhitzedampferzeuger zu groß, so daß insbesondere in innerhalb des Dampferzeugers angeordneten Vorwärmern (Economizer) in unerwünschter Weise bereits eine Verdampfung stattfinden würde.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Gas- und Dampfturbinenanlage anzugeben, bei der bei gleichzeitig besonders hohem Gesamtwirkungsgrad der Einsatz einer aus einer Vielzahl von Gasturbinen unterschiedlicher Leistungsgröße frei wählbaren Gasturbine möglich ist.
Bezüglich der Gas- und Dampfturbinenanlage der eingangs genannten Art wird diese Aufgabe erfindungsgemäß gelöst durch die kennzeichnenden Merkmale des Anspruchs 1.
In den Wasser-Dampf-Kreislauf der Dampfturbine ist ein fossil gefeuerter Dampferzeuger geschaltet, dem wasser-/dampfseitig ein Abhitzedampferzeuger parallel geschaltet ist, wobei sowohl der gefeuerte Dampferzeuger über eine erste Teilstromleitung als auch der Abhitzedampferzeuger über eine zweite Teilstromleitung der Gasturbine abgasseitig nachgeschaltet sind. Dabei erfolgt die Vorwärmung des Speisewassers für beide Dampferzeuger mehrstufig.
Zur Dampferzeugung wird ein erster Teilstrom des Abgases aus der Gasturbine für die Verbrennung eines fossilen Brennstoffs verwendet. Ein zweiter Teilstrom des Abgases aus der Gasturbine wird zur Abhitzedampferzeugung genutzt, wobei sowohl die Dampferzeugung durch Verbrennung des fossilen Brennstoffs als auch die Abhitzedampferzeugung in einem gemeinsamen Wasser-Dampf-Kreislauf der Dampfturbine erfolgt. Dabei wird vorteilhafterweise unter hohem Druck stehendes Speisewasser des Wasser-Dampf-Kreislaufs in Teilströmen vorgewärmt, wobei die Vorwärmung eines ersten Teilstroms des Speisewassers mittels bei der Verbrennung des fossilen Brennstoffs entstehendem Rauchgas erfolgt. Die Vorwärmung eines zweiten Teilstroms des Speisewassers erfolgt mittels des zweiten, den Abhitzedampferzeuger durchströmenden Teilstroms des Abgases aus der Gasturbine. Ein dritter Teilstrom des Speisewassers wird mittels Anzapfdampf aus der Dampfturbine vorgewärmt. Dabei erfolgt die Vorwärmung der drei Teilströme des Speisewassers zweckmäßigerweise mehrstufig, wobei die Vorwärmung des ersten Teilstroms und des dritten Teilstroms in einer diesen gemeinsamen zweiten Vorwärmstufe mittels des bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgases erfolgt.
Der Dampfturbinenprozeß kann aus einer oder mehreren Druckstufen aufgebaut sein. Zweckmäßigerweise ist ein Zweidrucksystem mit Zwischenüberhitzung und Kondensatvorwärmung vorgesehen. Dazu umfaßt der Abhitzedampferzeuger einen Kondensatvorwärmer und diesem abgasseitig vorgeschaltete Mitteldruckheizflächen mit einem Zwischenüberhitzer sowie vorteilhafterweise zu diesen abgasseitig mindestens zum Teil parallel angeordnete und wasser-/dampfseitig parallel geschaltete Hochdruckheizflächen. Der im Abhitzedampferzeuger angeordnete Zwischenüberhitzer ist einem zweckmäßigerweise vorgesehenen weiteren Zwischenüberhitzer des gefeuerten Dampferzeugers wasser-/dampfseitig parallel geschaltet.
Die Erfindung geht dabei von der Überlegung aus, daß durch die Kombination der reinen Abhitzenutzung und der Nutzung als Verbrennungsluft eine Aufteilung dieser Nutzungsarten des Abgases aus der Gasturbine unabhängig von deren Leistungsgröße hinsichtlich des Gesamtwirkungsgrades der Anlage bestmöglich abstimmbar ist, wenn zusätzlich die im Abgas aus der Gasturbine und im bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgas enthaltene und zur Dampferzeugung nicht mehr verwertbare Restwärme zur Speisewasservorwärmung genutzt wird.
In dem gefeuerten Dampferzeuger kann vorteilhafterweise ein großes Brennstoffspektrum zum Einsatz kommen. So können beispielsweise als fossiler Brennstoff Öl, Gas, Kohle oder Sonderbrennstoffe, wie z.B. Müll, Holz oder Altöl verwendet werden. Da bei der Verwendung von z.B. Kohle als Brennstoff für den gefeuerten Dampferzeuger die Abgastemperatur hinter der Gasturbine mit etwa 500° C für eine Kohletrocknung unter Umständen zu hoch ist, kann zweckmäßigerweise dem als Verbrennungsluft dienenden ersten Teilstrom des Abgases aus der Gasturbine ein Kaltluftstrom zugemischt werden.
Das noch sauerstoffhaltige Abgas aus der Gasturbine mit beispielsweise 15% Sauerstoffgehalt dient als alleinige Verbrennungsluft für die im gefeuerten Dampferzeuger zu verbrennenden fossilen Brennstoffe, wobei der gefeuerte Dampferzeuger zweckmäßigerweise nur mit der zur Verbrennung erforderlichen Abgasmenge beaufschlagt wird. Eine eventuell vorgesehene Rauchgasreinigungsanlage muß daher nur für den ersten Teilstrom des Abgases aus der Gasturbine und nicht für die gesamte Abgasmenge ausgelegt werden, wobei dieser als Verbrennungsluft dienende erste Teilstrom des Abgases aus der Gasturbine zusammen mit dem bei der Verbrennung des fossilen Brennstoffs entstehenden Rauchgas gereinigt wird.
In zweckmäßiger Ausgestaltung ist dem gefeuerten Dampferzeuger rauchgasseitig eine Rauchgasreinigungsanlage nachgeschaltet. Da die Rauchgasreinigungsanlage lediglich für den ersten Teilstrom des Abgases aus der Gasturbine und für die im fossil gefeuerten Dampferzeuger erzeugte Rauchgasmenge ausgelegt werden muß, treten weder bei einer Neuanlage noch bei einer Nachrüstung einer Altanlage Probleme hinsichtlich einer erforderlichen Begrenzung der Größe der Reinigungsanlage aus Platzgründen auf. Eine unerwünschte Reduzierung der Dampferzeugerleistung im Falle einer nachzurüstenden Reinigungsanlage, die aufgrund der Platzverhältnisse vor Ort nur für ein begrenztes Abgasvolumen ausreichend ist, ist daher nicht erforderlich.
Um die im Rauchgas aus dem gefeuerten Dampferzeuger im ersten Teilstrom des Abgases aus der Gasturbine noch enthaltene Restwärme möglichst vollständig nutzen zu können, ist dem gefeuerten Dampferzeuger eine Hintereinanderschaltung aus zwei rauchgasbeheizten Hochdruckvorwärmern wasser-/dampfseitig vorgeschaltet. Dabei wird in einem ersten Hochdruckvorwärmer oder Kessel-Economizer das gesamte dem gefeuerten Dampferzeuger zugeführte Speisewasser vorgewärmt, während in einem zweiten dem Kessel-Economizer rauchgasseitig nachgeschalteten zweiten Hochdruckvorwärmer oder Kessel-Teileconomizer lediglich der erste Teilstrom des Speisewassers vorgewärmt wird.
Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß durch die Kombination eines gefeuerten Dampferzeugers und eines Abhitzedampferzeugers bei gleichzeitiger Aufteilung des Abgases aus der Gasturbine in den Dampferzeugern zugeführte Teilströme nicht nur im gefeuerten Dampferzeuger ein großes Brennstoffspektrum, z.B. Kohle, Schweröl, Schwachgase oder Sonderbrennstoffe, wie z.B. Müll, Holz oder Altöl, zum Einsatz kommen kann. Vielmehr kann bei einer sinkenden Kesselleistung des gefeuerten Dampferzeugers infolge eines Brennstoffumbaus von z.B. Öl auf Kohle oder infolge eines Umbaus auf eine stickoxidarme Feuerung dennoch eine besonders hohe Dampfturbinenleistung und damit ein höherer Anlagenwirkungsgrad aufgrund der zusätzlichen Dampferzeugerleistung aus dem Abhitzedampferzeuger aufrechterhalten werden.
Da der gefeuerte Dampferzeuger nur mit dem zur Verbrennung erforderlichen Abgas aus der Gasturbine beaufschlagt wird, ist auch bei beengten Platzverhältnissen die Aufstellung oder Nachrüstung einer Rauchgasreinigungsanlage unproblematisch, da die Rauchgasreinigungsanlage nur für einen Teilstrom des Abgases aus der Gasturbine und nicht für die gesamte Abgasmenge ausgelegt werden muß. Darüber hinaus können bei Altanlagen mit hohen Leistungsreserven der Dampfturbinenanlage diese Leistungsreserven über die zusätzliche Dampfproduktion im Abhitzedampferzeuger genutzt werden.
Da die gesamten Abgase der Gasturbine nahezu verlustfrei genutzt werden, wird ein besonders hoher Gesamtnutzungsgrad der Anlage erzielt. Insbesondere kann bei Ersatz eines älteren Gasturbinen-Modells durch ein modernes Aggregat mit einem vergleichsweise hohen Abhitzeangebot diese Abhitze oder überschüssige Restwärme bestmöglich im Abhitzedampferzeuger genutzt werden.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die Figur ein Schaltschema einer kombinierten Gas- und Dampfturbinenanlage mit der Gasturbine nachgeschaltet sowohl einem fossil gefeuerten Dampferzeuger als auch einem Abhitzedampferzeuger.
Die Gas- und Dampfturbinenanlage 1 gemäß der Figur umfaßt eine Gasturbinenanlage mit einer Gasturbine 2 mit angekoppeltem Luftverdichter 3 und eine der Gasturbine 2 vorgeschaltete Brennkammer 4, die an eine Frischluftleitung 5 des Luftverdichters 3 angeschlossen ist. In die Brennkammer 4 der Gasturbine 2 mündet eine Brennstoff- oder Brenngasleitung 6. Die Gasturbine 2 und der Luftverdichter 3 sowie ein Generator 7 sitzen auf einer gemeinsamen Welle 8.
Die Gas- und Dampfturbinenanlage 1 umfaßt weiter eine Dampfturbinenanlage mit einer Dampfturbine 10 mit angekoppeltem Generator 11 und in einem Wasser-Dampf-Kreislauf 12 einen der Dampfturbine 10 nachgeschalteten Kondensator 13 sowie einen gefeuerten Dampferzeuger 14 und einen Abhitzedampferzeuger 15.
Die Dampfturbine 10 besteht aus einem Hochdruckteil 10a und einem Mitteldruckteil 10b sowie einem Niederdruckteil 10c, die über eine gemeinsame Welle 16 den Generator 11 antreiben.
Zum Zuführen von in der Gasturbine 2 entspanntem Arbeitsmittel oder Abgas A in den gefeuerten Dampferzeuger 14 ist eine erste Teilstromleitung 18 an einen Eingang 14a des gefeuerten Dampferzeugers 14 angeschlossen. Ein über die Teilstromleitung 18 geführter erster Teilstrom t1 des Abgases A aus der Gasturbine 2 mit einem Sauerstoffgehalt von ca. 15% dient als Verbrennungsluft bei der Verbrennung eines gasförmigen, flüssigen oder festen Brennstoffs B. Dieser wird über eine mit einem Eingang 14b des gefeuerten Dampferzeugers 14 verbundene Brennstoffleitung 20 in den gefeuerten Dampferzeuger 14 geführt. Zum Einstellen des ersten Teilstroms t1 ist eine in die Teilstromleitung 18 geschaltete Steuerklappe 22 vorgesehen. Bei der Verbrennung des fossilen Brennstoffs B entstehendes Rauchgas R sowie der als Verbrennungsluft dienende Teilstrom t1 des Abgases A aus der Gasturbine 2 verlassen den gefeuerten Dampferzeuger 14 über eine Rauchgasleitung 24 und nach deren Reinigung in einer Reinigungsanlage 26 in Richtung auf einen (nicht dargestellten) Kamin. Die Rauchgasreinigungsanlage 26 umfaßt in nicht näher dargestellter Art eine Rauchgasentschwefelungseinrichtung und eine Entstickungseinrichtung (DeNOx-Anlage) sowie eine Entstaubungseinrichtung. Zum Zuführen eines zweiten Teilstroms t2 des Abgases A aus der Gasturbine 2 in den Abhitzedampferzeuger 15 ist eine zweite Teilstromleitung 28 mit einer Steuerklappe 29 an einen Eingang 15a des Abhitzedampferzeugers 15 angeschlossen. Der Teilstrom t2 des entspannten Abgases A aus der Gasturbine 2 verläßt den Abhitzedampferzeuger 15 über dessen Ausgang 15b in Richtung auf den Kamin.
Über eine dritte Teilstromleitung oder Bypassleitung 30 mit einer Klappe 32 wird - z.B. beim An- und Abfahren der Anlage 1 - das weder für den gefeuerten Dampferzeuger 14 noch für den Abhitzedampferzeuger 15 benötigte Abgas A aus der Gasturbine 2 geführt. Insbesondere dient diese Bypassleitung 30 jedoch zum Abführen des Abgases A aus der Gasturbine 2, wenn diese im sogenannten Single-Cycle-Betrieb allein betrieben wird.
In die Teilstromleitung t1 mündet eine Frischluftleitung 34, in die ein Gebläse 36 und ein dampfbeheizter Wärmetauscher 38 sowie eine Klappe 40 geschaltet sind. Über diese Frischluftleitung 34 kann im Vergleich zum Abgas A aus der Gasturbine 2 kalte Frischluft KL dem Teilstrom t1 des Abgases A aus der Gasturbine 2 zugemischt werden.
Der Abhitzedampferzeuger 15 umfaßt als Heizflächen einen Vorwärmer 42, zwischen dessen Ein- und Ausgang eine Umwälzpumpe 44 geschaltet ist. Der Vorwärmer 42 ist eingangsseitig mit dem Ausgang eines Kondensatvorwärmers 46 verbunden, der seinerseits eingangsseitig über eine Kondensatpumpe 48 mit dem Kondensator 13 verbunden ist. Der Kondensatvorwärmer 46 wird über eine mit dem Niederdruckteil 10c der Dampfturbine 10 verbundene Anzapfleitung 50 mit Dampf beheizt. Zwei dem Kondensatvorwärmer 46 nachgeschaltete und ebenfalls über mit dem Niederdruckteil 10c verbundene Anzapfleitungen 52 und 54 beheizte Vorwärmer 56 bzw. 58 sind dem im Abhitzedampferzeuger 15 angeordneten Vorwärmer 42 parallel geschaltet und ausgangsseitig mit einem Speisewasserbehälter 60 verbunden. Der Abhitzedampferzeuger 15 umfaßt weiter als Heizflächen einen Mitteldruckvorwärmer oder -Economizer 62 und einen Mitteldruckverdampfer 64 sowie einen Mitteldrucküberhitzer 66, der ausgangsseitig an eine mit dem Hochdruckteil 10a der Dampfturbine 10 verbundene Dampfleitung 68 und mit einem Zwischenüberhitzer 70 verbunden ist. Die Mitteldruckheizflächen 62, 64, 66 sind über den Zwischenüberhitzer 70 an eine in den Mitteldruckteil 10b der Dampfturbine 10 mündende Dampfleitung 72 angeschlossen. Die Mitteldruckheizflächen 62, 64, 66 sowie der Zwischenüberhitzer 70 und der Mitteldruckteil 10b der Dampfturbine 10 bilden somit eine Mitteldruckstufe des Wasser-Dampf-Kreislaufs 12.
Der Abhitzedampferzeuger 15 umfaßt ferner in einer Hochdruckstufe als Heizflächen zwei hintereinander geschaltete Hochdruckvorwärmer oder -Economizer 74 und 75 sowie einen Hochdruckverdampfer 76 und einen Hochdrucküberhitzer 78. Der Hochdrucküberhitzer 78 ist ausgangsseitig über eine Dampfleitung 80 mit dem Eingang des Hochdruckteils 10a der Dampfturbine 10 verbunden.
Während der Mitteldruck-Economizer 62 und die Hochdruck-Economizer 74, 75 innerhalb des Abhitzedampferzeugers 15 im Bereich gleicher Abgastemperatur angeordnet sind, sind der Hochdruckverdampfer 76 und der Hochdrucküberhitzer 78 in Strömungsrichtung des Teilstroms t2 des Abgases A aus der Gasturbine 2 vor der Hintereinanderschaltung aus dem Mitteldruckverdampfer 64 und dem Mitteldrucküberhitzer 66 angeordnet, wobei der Zwischenüberhitzer 70 und der Hochdrucküberhitzer 78 im Bereich gleicher Abgastemperatur angeordnet sind.
Der Speisewasserbehälter 60 ist über eine Hochdruckpumpe 82 und eine Wärmetauscheranordnung mit einer Hintereinanderschaltung aus drei Vorwärmern 84, 86, 88 mit dem gefeuerten Dampferzeuger 14 verbunden. Der Speisewasserbehälter 60 ist außerdem über eine Mitteldruckpumpe 90 mit dem Mitteldruck-Economizer 62 verbunden.
Auf der Druckseite der Hochdruckpumpe 82 ist an eine in den gefeuerten Dampferzeuger 14 führende Speisewasserleitung 92 eine Teilstromleitung 92a angeschlossen, die über einen Kessel-Teileconomizer 94 zwischen den Vorwärmern 86 und 88 an die Speisewasserleitung 92 angeschlossen ist. Diese ist außerdem über eine weitere Teilstromleitung 92b mit dem Hochdruck-Economizer 74 verbunden. Der Kessel-Teileconomizer 94 und der Vorwärmer oder Kessel-Economizer 88 sind in die Rauchgasleitung 24 des gefeuerten Dampferzeugers 14 geschaltet.
Ausgangsseitig ist der gefeuerte Dampferzeuger 14 über einen Hochdrucküberhitzer 96, an den ausgangsseitig die Dampfleitung 80 angeschlossen ist, mit dem Eingang des Hochdruckteils 10a der Dampfturbine 10 verbunden. Ein dem im Abhitzedampferzeuger 15 angeordneten Zwischenüberhitzer 70 parallel geschalteter Zwischenüberhitzer 98 ist eingangsseitig über die Dampfleitung 68 mit dem Ausgang des Hochdruckteils 10a und ausgangsseitig mit dem Mitteldruckteil 10b der Dampfturbine 10 verbunden. Die Vorwärmer 84 und 86 werden über Dampfleitungen 100 und 102 mittels Anzapfdampf aus dem Mitteldruckteil 10b bzw. dem Hochdruckteil 10a der Dampfturbine 10 beheizt.
Beim Betrieb der kombinierten Gas- und Dampfturbinenanlage 1 wird der Brennkammer 4 der Gasturbine 2 in nicht näher dargestellter Art und Weise ein Brennstoff B' über die Brennstoffleitung 6 zugeführt. Der Brennstoff B' wird in der Brennkammer 4 mit verdichteter Frischluft L aus dem Luftverdichter 3 verbrannt. Das bei der Verbrennung entstehende heiße Verbrennungsgas V wird über eine Gasleitung 6a in die Gasturbine 2 geleitet. Dort entspannt es sich und treibt dabei die Gasturbine 2 an, die wiederum den Luftverdichter 3 und den Generator 7 antreibt. Das aus der Gasturbine 2 austretende heiße Abgas A wird im ersten Teilstrom t1 über die Teilstromleitung 18 als Verbrennungsluft in den gefeuerten Dampferzeuger 14 geleitet. Der zweite Teilstrom t2 des heißen Abgases A aus der Gasturbine 2 wird über die Teilstromleitung 28 und durch den Abhitzedampferzeuger 15 geführt.
Das unter Zufuhr des Teilstroms t1 des Abgases A aus der Gasturbine 2 bei der Verbrennung des fossilen Brennstoffs B entstehende heiße Rauchgas R dient dort zur Dampferzeugung und verläßt anschließend den gefeuerten Dampferzeuger 14 über die Rauchgasleitung 24 in Richtung auf die Rauchgasreinigungsanlage 26, wobei es zuvor zunächst im Kessel-Economizer 88 und anschließend im Kessel-Teileconomizer 94 durch Wärmetausch mit Speisewasser aus dem Speisewasserbehälter 60 abgekühlt worden ist.
Die Vorwärmung des Speisewassers erfolgt in drei Teilströmen S1 bis S3. Dabei wird ein erster, mittels eines in die Teilstromleitung 92a geschalteten Ventils 104 einstellbarer Teilstrom S1 des unter hohem Druck stehenden Speisewassers durch den Kessel-Teileconomizer 94 geführt und mittels des Rauchgases R und des Teilstroms t1 des Abgases A der Gasturbine 2 vorgewärmt. Ein zweiter, mittels eines in die Teilstromleitung 92b geschalteten Ventils 106 einstellbarer Teilstrom S2 wird durch die Hochdruck-Economizer 74 und 75 geführt und durch Wärmetausch mit dem zweiten Teilstrom t2 des Abgases A aus der Gasturbine 2 vorgewärmt. Die Vorwärmung eines dritten, mittels eines in die Speisewasserleitung 92 geschalteten Ventils 108 einstellbaren Teilstroms S3 des unter hohem Druck stehenden Speisewassers erfolgt in den Vorwärmern 84 und 86 mittels Anzapfdampf aus der Dampfturbine 10.
Die Vorwärmung des Speisewassers sowohl für den gefeuerten Dampferzeuger 14 als auch für den Abhitzedampferzeuger 15 erfolgt somit jeweils mehrstufig. Dabei erfolgt eine zweistufige Vorwärmung des Speisewasserteilstroms S2 innerhalb des Abhitzedampferzeugers 15 in den wasser-/dampfseitig hintereinander geschalteten Hochdruck-Economizern 74 und 75. Das Speisewasser für den gefeuerten Dampferzeuger 15 wird in drei Stufen vorgewärmt. Dabei wird der zunächst in den Vorwärmern 84 und 86 zweistufig vorgewärmte dritte Teilstrom S3 anschließend zusammen mit dem im Kessel-Teileconomizer 94 parallel vorgewärmten Teilstrom S1 im Kessel-Economizer 88 in der gemeinsamen dritten Stufe vorgewärmt. Diese mehrstufige Vorwärmung des Speisewassers in drei Teilströmen S1 bis S3 ermöglicht eine besonders vorteilhafte Verteilung oder Aufteilung des Speisewassers auf die beiden Dampferzeuger 14 und 15, so daß eine unerwünschte Verdampfung innerhalb deren gasbeheizten Vorwärmern 74, 75 bzw. 88, 94 infolge eines erhöhten Wärmeeintrags aus den Teilströmen t1 und t2 des Abgases A aus der Gasturbine 2 sowie aus dem Rauchgas R auch bei Einsatz einer besonders leistungsstarken Gasturbine 2 praktisch vermieden ist.
Der im Abhitzedampferzeuger 15 im Hochdruckverdampfer 76 erzeugte und im Hochdrucküberhitzer 78 überhitzte Dampf wird zusammen mit dem im gefeuerten Dampferzeuger 14 erzeugten und im Überhitzer 96 überhitzten Dampf in den Hochdruckteil 10a der Dampfturbine 10 geführt. Der in dem Hochdruckteil 10a teilentspannte Dampf wird zum Teil in dem im Abhitzedampferzeuger 15 angeordneten Überhitzer 70 und zum Teil im Zwischenüberhitzer 98 des gefeuerten Dampferzeugers 14 erneut überhitzt und anschließend dem Mitteldruckteil 10b der Dampfturbine 10 zugeführt. Der im Mitteldruckteil 10b weiter entspannte Dampf wird zum Teil zur Aufwärmung des Speisewassers im Speisewasserbehälter 60 und zum Teil zur Vorwärmung des durch den Vorwärmer 84 geführten Speisewasserteilstroms S3 genutzt sowie zum Teil direkt in den Niederdruckteil 10c der Dampfturbine 10 geführt. Der im Niederdruckteil 10c entspannte Dampf wird über die Anzapfleitungen 50 bis 54 zur Vorwärmung von in den Speisewasserbehälter 60 geführtem Kondensat K genutzt. Der aus dem Niederdruckteil 10c austretende Dampf wird im Kondensator 13 kondensiert und als Kondensat K über die Kondensatpumpe 48 und die Vorwärmer 46, 56 und 58 in den Speisewasserbehälter 60 gefördert. Somit ist der dem gefeuerten Dampferzeuger 14 und dem Abhitzedampferzeuger 15 gemeinsame Wasser-Dampf-Kreislauf 12 geschlossen.

Claims (4)

  1. Gas- und Dampfturbinenanlage mit einem in einen Wasser-Dampf-Kreislauf (12) der Dampfturbine (10) geschalteten fossil gefeuerten Dampferzeuger (14), dem wasser-/dampfseitig ein Abhitzedampferzeuger (15) parallel geschaltet ist, wobei sowohl der gefeuerte Dampferzeuger (14) über eine erste Teilstromleitung (18) als auch der Abhitzedampferzeuger (15) über eine zweite Teilstromleitung (28) der Gasturbine (2) abgasseitig nachgeschaltet sind,
    mit einer Anzahl von Vorwärmern (74, 75, 84, 86, 88, 94) zur mehrstufigen Vorwärmung von Speisewasser (S1 bis S3) sowohl für den gefeuerten Dampferzeuger (14) als auch für den Abhitzedampferzeuger (15), wobei mindestens einer der dem gefeuerten Dampferzeuger (14) vorgeschalteten Vorwärmer (88, 94) rauchgasbeheizbar ist, dadurch gekennzeichnet, daß der Abhitzedampferzeuger (15) Heizflächen (42) zur Kondensatvorwärmung und diesen abgasseitig vorgeschaltete Mitteldruck-Heizflächen (62, 64, 66) mit einem Zwischenüberhitzer (70) sowie zu diesen abgasseitig mindestens zum Teil parallel angeordnete und wasser-/dampfseitig parallel geschaltete Hochdruckheizflächen (74, 75, 76, 78) umfaßt.
  2. Gas- und Dampfturbinenanlage nach Anspruch 1,
    dadurch gekennzeichnet, daß dem gefeuerten Dampferzeuger (14) rauchgasseitig eine Rauchgasreinigungsanlage (26) nachgeschaltet ist.
  3. Gas- und Dampfturbinenanlage nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß dem gefeuerten Dampferzeuger (14) eine Hintereinanderschaltung aus zwei rauchgasbeheizten Kessel-Vorwärmern (88, 94) wasser-/dampfseitig vorgeschaltet ist.
  4. Gas- und Dampfturbinenanlage nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß der gefeuerte Dampferzeuger (14) über mindestens einen mittels Dampf aus der Dampfturbine (10) beheizten Vorwärmer (84, 86) mit einem Speisewasserbehälter (60) verbunden ist.
EP97117410A 1994-09-27 1995-09-14 Gas- und Dampfturbinenanlage Expired - Lifetime EP0822320B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4434526 1994-09-27
DE4434526A DE4434526C1 (de) 1994-09-27 1994-09-27 Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
EP95931137A EP0783619B1 (de) 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP95931137A Division EP0783619B1 (de) 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage

Publications (2)

Publication Number Publication Date
EP0822320A1 EP0822320A1 (de) 1998-02-04
EP0822320B1 true EP0822320B1 (de) 2000-07-12

Family

ID=6529324

Family Applications (2)

Application Number Title Priority Date Filing Date
EP95931137A Expired - Lifetime EP0783619B1 (de) 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage
EP97117410A Expired - Lifetime EP0822320B1 (de) 1994-09-27 1995-09-14 Gas- und Dampfturbinenanlage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP95931137A Expired - Lifetime EP0783619B1 (de) 1994-09-27 1995-09-14 Verfahren zum betreiben einer gas- und dampfturbinenanlage

Country Status (7)

Country Link
US (1) US5887418A (de)
EP (2) EP0783619B1 (de)
JP (1) JPH10506165A (de)
KR (1) KR100385372B1 (de)
CN (1) CN1067137C (de)
DE (3) DE4434526C1 (de)
WO (1) WO1996010124A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542917A1 (de) * 1994-12-21 1996-06-27 Abb Management Ag Kombianlage mit konventionellem Wasser/Dampf-Kreislauf
DE19541914A1 (de) * 1995-11-10 1997-05-15 Asea Brown Boveri Kühlluftkühler für Kraftwerksanlagen
DE19619470C1 (de) * 1996-05-14 1997-09-25 Siemens Ag Gas- und Dampfturbinenanlage sowie Verfahren zu deren Betrieb
DE19626011A1 (de) * 1996-06-28 1998-01-02 Lentjes Kraftwerkstechnik Kombinierte Gas-Dampf-Kraftanlage und Prozeß
DE19720789B4 (de) * 1997-05-17 2006-04-27 Alstom Verfahren und Vorrichtung zur Erzeugung von Dampf
US6065280A (en) * 1998-04-08 2000-05-23 General Electric Co. Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
NL1009467C2 (nl) * 1998-06-22 1999-12-27 Stork Eng & Contractors Bv Warmte-krachtinstallatie, en werkwijze voor het bedrijven daarvan.
US6202782B1 (en) * 1999-05-03 2001-03-20 Takefumi Hatanaka Vehicle driving method and hybrid vehicle propulsion system
DE10001997A1 (de) 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
SE0004931D0 (sv) * 2000-12-29 2000-12-29 Addpower Ab Sätt att konvertera värme i varma rökgaser
US7073337B2 (en) * 2003-05-30 2006-07-11 General Electric Company Combined power generation and desalinization apparatus and related method
CN1948720B (zh) * 2006-10-31 2011-08-10 章祖文 永磁传动低温多级涡轮发电机
US7628609B2 (en) * 2006-12-29 2009-12-08 Electrolux Home Products, Inc. Hub and spoke burner with flame stability
JP4939511B2 (ja) * 2008-10-29 2012-05-30 三菱重工業株式会社 石炭ガス化複合発電設備
ITBS20090224A1 (it) * 2009-12-16 2011-06-17 Turboden Srl Sistema e metodo per la produzione di energia elettrica a partire da sorgenti termiche a temperatura variabile
DE102011013325A1 (de) * 2011-03-08 2012-09-13 Rwe Technology Gmbh Kraftwerk sowie Verfahren zum Betreiben eines Kraftwerks
US9074494B2 (en) * 2011-10-21 2015-07-07 General Electric Company System and apparatus for controlling temperature in a heat recovery steam generator
DE202011107312U1 (de) * 2011-11-02 2012-02-29 Gammel Engineering Gmbh Abgasnacherhitzungs-Vorrichtung
US8955322B2 (en) * 2012-03-05 2015-02-17 Ormat Technologies Inc. Apparatus and method for increasing power plant efficiency at partial loads
CN103047047B (zh) * 2013-01-24 2015-12-02 矫明义 发动机废气动力装置及使用方法
FR3005143A1 (fr) * 2013-04-25 2014-10-31 Pyraine Installation thermique de production d'electricite par combustion
DE102013208002A1 (de) * 2013-05-02 2014-11-06 Siemens Aktiengesellschaft Thermische Wasseraufbereitung bei STIG Kraftwerkskonzepten
GB2519129A (en) * 2013-10-10 2015-04-15 Ide Technologies Ltd Pumping Apparatus
WO2015187423A2 (en) 2014-06-04 2015-12-10 Conlon William M Dispatchable solar hybrid power plant
JP6317652B2 (ja) * 2014-09-12 2018-04-25 株式会社東芝 プラント制御装置及びコンバインドサイクル発電プラント
US10316700B2 (en) * 2015-02-24 2019-06-11 Siemens Aktiengesellschaft Combined cycle power plant having supercritical steam turbine
WO2017079617A1 (en) 2015-11-05 2017-05-11 Conlon William M Dispatchable storage combined cycle power plants
US10174639B2 (en) * 2017-01-31 2019-01-08 General Electric Company Steam turbine preheating system
US10337357B2 (en) 2017-01-31 2019-07-02 General Electric Company Steam turbine preheating system with a steam generator
US10670334B2 (en) * 2017-12-01 2020-06-02 Dilip Kumar De Highly cost effective technology for capture of industrial emissions without reagent for clean energy and clean environment applications
CN108679587A (zh) * 2018-05-11 2018-10-19 中国成达工程有限公司 一种燃气透平乏气并串级热量回收系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1312469A (fr) * 1961-10-03 1962-12-21 Babcock & Wilcox France Perfectionnements aux installations de production d'énergie à cycle mixte vapeur et gaz
DE1426443B2 (de) * 1962-09-21 1971-09-09 Waermekraftanlage
DE1426890A1 (de) * 1963-08-30 1969-06-12 Aeg Kanis Turbinen Kraftwerk mit Muellverbrennung
DE3815536C1 (en) * 1988-05-06 1989-07-20 Wolff Walsrode Ag, 3030 Walsrode, De Heating and power station and method for generating heat energy in the form of steam and generating electrical energy
US4852344A (en) * 1988-06-06 1989-08-01 Energy Economics & Development, Inc. Waste disposal method and apparatus
DE4029991A1 (de) * 1990-09-21 1992-03-26 Siemens Ag Kombinierte gas- und dampfturbinenanlage
JPH04362207A (ja) * 1991-06-10 1992-12-15 Toshiba Corp 汽力発電設備のリパワリングシステム
DE4126036A1 (de) * 1991-08-06 1993-02-11 Siemens Ag Gas- und dampfturbinenkraftwerk mit einem solar beheizten dampferzeuger
US5628183A (en) * 1994-10-12 1997-05-13 Rice; Ivan G. Split stream boiler for combined cycle power plants

Also Published As

Publication number Publication date
DE59508574D1 (de) 2000-08-17
DE59502433D1 (de) 1998-07-09
CN1155318A (zh) 1997-07-23
EP0783619A1 (de) 1997-07-16
CN1067137C (zh) 2001-06-13
EP0822320A1 (de) 1998-02-04
DE4434526C1 (de) 1996-04-04
KR100385372B1 (ko) 2003-08-19
WO1996010124A1 (de) 1996-04-04
KR970706444A (ko) 1997-11-03
EP0783619B1 (de) 1998-06-03
JPH10506165A (ja) 1998-06-16
US5887418A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
EP0822320B1 (de) Gas- und Dampfturbinenanlage
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0591163B2 (de) Kombinierte gas- und dampfturbinenanlage
DE10001997A1 (de) Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
EP0778397A2 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Dampfturbogruppe
WO1999019608A1 (de) Gas- und dampfturbinenanlage und verfahren zum betreiben einer derartigen anlage
EP0898641B1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
EP0515911B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und entsprechende Anlage
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
WO2000020728A1 (de) Gas- und dampfturbinenanlage
EP0523466B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0595009B1 (de) Verfahren zum Betreiben einer Kraftwerksanlage sowie danach arbeitende Anlage
DE69220240T2 (de) Wasserdampfsystem für eine anlage mit mehreren kesseln
EP0840837B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
DE19720789B4 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
DE19943782C5 (de) Gas- und Dampfturbinenanlage
EP1425079B1 (de) Verfahren und vorrichtung zur thermischen entgasung des arbeitsmittels eines zweiphasenprozesses
EP0931978B1 (de) Verfahren zur Vermeidung von Dampfbildung in einem Zwangsumlaufdampferzeuger
EP0709561A1 (de) Kraftwerksanlage
DE4409811C1 (de) Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
DE19612921A1 (de) Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage
DE3815993A1 (de) Zweistoff-turbinenanlage
EP1404947B1 (de) Verfahren zum betreiben einer dampfkraftanlage sowie dampfkraftanlage zur durchführung des verfahrens
DE10004187C1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Anlage
DE19849740A1 (de) Gas- und Dampfturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 783619

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19980720

17Q First examination report despatched

Effective date: 19990122

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 783619

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59508574

Country of ref document: DE

Date of ref document: 20000817

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000914

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001214

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010913

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010914

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010928

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120917

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121119

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59508574

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401