WO1996006809A1 - Verfahren zur herstellung von faserverstärkten xerogelen, sowie ihre verwendung - Google Patents

Verfahren zur herstellung von faserverstärkten xerogelen, sowie ihre verwendung Download PDF

Info

Publication number
WO1996006809A1
WO1996006809A1 PCT/EP1995/003275 EP9503275W WO9606809A1 WO 1996006809 A1 WO1996006809 A1 WO 1996006809A1 EP 9503275 W EP9503275 W EP 9503275W WO 9606809 A1 WO9606809 A1 WO 9606809A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
fibers
fiber
reinforced
sol
Prior art date
Application number
PCT/EP1995/003275
Other languages
English (en)
French (fr)
Inventor
Dierk Frank
Birgit Kessler
Andreas Zimmermann
Original Assignee
Hoechst Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP50845596A priority Critical patent/JP3897125B2/ja
Priority to PL95318900A priority patent/PL180069B1/pl
Priority to DE59504435T priority patent/DE59504435D1/de
Priority to RU97104883A priority patent/RU2146661C1/ru
Priority to BR9508644A priority patent/BR9508644A/pt
Priority to EP95929888A priority patent/EP0778815B1/de
Priority to MX9701587A priority patent/MX9701587A/es
Priority to DK95929888T priority patent/DK0778815T3/da
Application filed by Hoechst Aktiengesellschaft filed Critical Hoechst Aktiengesellschaft
Priority to AU33467/95A priority patent/AU694797B2/en
Priority to US08/793,543 priority patent/US5866027A/en
Publication of WO1996006809A1 publication Critical patent/WO1996006809A1/de
Priority to NO19970867A priority patent/NO312828B1/no
Priority to FI970809A priority patent/FI970809A/fi
Priority to GR990400583T priority patent/GR3029487T3/el

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature

Definitions

  • the invention relates to a process for the production of modified, fiber-reinforced xerogels with porosities greater than 60% and densities below 0.6 g / cm 3 , hereinafter referred to as "fiber-reinforced xerogels", and their use.
  • Aerogels in the wider sense i.e. in the sense of "gel with air as a dispersing agent" are produced by drying a suitable gel.
  • airgel in this sense includes aerogels in the narrower sense, xerogels and cryogels.
  • a dried gel is referred to as an airgel in the narrower sense if the liquid of the gel is largely removed at temperatures above the critical temperature and starting from pressures above the critical pressure. If, on the other hand, the liquid of the gel is removed subcritically, for example with the formation of a liquid-vapor boundary phase, the resulting gel is referred to as a xerogel.
  • the capillary pressure P c which arises during drying, is determined by the surface tension ⁇ L , the surface between the pore liquid 2 and its vapor 4 Contact angle ⁇ between the liquid meniscus and pore wall 3 and the radius r of the pore 1 (Fig. 1):
  • the collapse can be avoided if the gel is dried supercritically, as described for example in EP-A-0382310, EP-A-0018955 and US-A-4,610,863, and thus the surface tension v aLJ is reduced to zero.
  • the aerogels produced in this way are not very stable mechanically.
  • the mechanical stability can, however, be improved by fiber reinforcement of the airgel, as described in WO93 / 06044.
  • temperatures of 250 to 260 ° C and pressures between 9.7 and 15.9 MPa can be used.
  • DE-A-43 42 548 and WO 94/25149 describe processes for the preparation of xerogies with densities below 0.3 g / cm 3 and porosities above 60%, which make supercritical drying of gels superfluous.
  • the gels are modified by treating the inner surface, for example by silylation in the case of SiO 2 xerogels, in such a way that they can be dried in the air without collapsing.
  • the xerogels produced in this way are also not very stable mechanically and break easily.
  • the invention relates to a process for producing fiber-reinforced xerogels with porosities greater than 60% by volume and densities of the xerogel matrix less than 0.6 g / cm 3 , characterized in that a) a sol is produced, b) fibers are added to the sol are, c) the sol obtained in b) is converted into a gel, d) optionally the liquid contained in the gel is exchanged, e) the gel is reacted with one or more surface-modifying substances such that such a large proportion of the surface groups of the Gels is replaced by groups of the surface-modifying substance that further condensation between the surface groups on different pore surfaces is largely suppressed and / or by changing the contact angle between the pore surface and the liquid from which the capillary forces are reduced, f) if necessary, those in the gel contained liquid is exchanged and g) the result is dried at a temperature below the critical temperature of the liquid contained in the gel and a pressure of 0.001 bar up to the vapor pressure of this
  • Si and Al compounds (CJ Brinker, GW Scherer, Sol-Gel Science, 1990, chapters 2 and 3) suitable for the sol-gel technique, such as Si, Al alkoxides or water glass and the like, serve as starting materials based on organic substances, such as, for example, melamine formaldehyde condensates (US Pat. No. 5,086,085) or resorcinol formaldehyde condensates (US Pat. No. 4,873,219). You can also click on Mixtures of the above materials are based.
  • the sol can consist of particulate or colloidal Si or Al oxide. Si compounds, in particular water glass, are preferably used.
  • the fibers added to the sol can be individual fibers, fiber mats or nonwovens. In the case of single fibers in particular, the fibers can also be added during gel formation, when the sol has already reached a high viscosity but is not yet solid.
  • the sol can be converted into a gel, for example, by hydrolysis and condensation of Si or Al alkoxides, gelling of particulate or colloidal Si or Al oxide or a combination of these methods.
  • the preparation of gels containing Si is described, for example, in WO93 / 06044.
  • the aging of the gel generally takes place at a temperature from 20 ° C. to the boiling point of the liquid contained in the gel. If the gel liquid is, for example, water, the aging process generally takes place at 20 to 90 ° C., preferably 20 to 70 ° C., at a pH of 6 to 11, preferably 6 to 9, within 1 minute up to 48 hours, especially 15 minutes to 24 hours. If an aqueous sol was used in step a) and the pH was changed with a mineral acid, the gel should be washed with water free of electrolytes.
  • the liquid contained in the gel can be replaced by the same or a different liquid in a washing process (step d). If the gel contains water, for example, it is advisable to wash the gel with a protic or aprotic organic solvent until the water content of the gel is ⁇ 5% by weight, preferably ⁇ 2% by weight.
  • Steps a) to d) are generally carried out at a temperature between the freezing point of the liquid contained in the gel and 70 ° C., but at most the boiling temperature of the liquid contained in the gel.
  • the surface-modifying substances used in step e) convert a large proportion of the hydrophilic or reactive surface groups on the pore surfaces to hydrophobic or surface groups unsuitable for further condensation.
  • R ' is hydrogen or a non-reactive organic linear, branched, cyclic, aromatic or heteroaromatic radical such as C 1 -C 18 alkyl, preferably C 6 -C 6 alkyl, particularly preferably methyl or ethyl, cyclohexyl or phenyl; the R's are independently the same or different or can be bridged.
  • the silylated gel can preferably be washed with a protic or aprotic solvent until the unreacted surface-modifying substance has essentially been removed (residual content 1 1% by weight).
  • Suitable solvents are those mentioned in step d). Analogously, the solvents mentioned there as preferred are also preferred here.
  • the fiber-reinforced, surface-modified gel is at temperatures from -30 to 200 ° C, preferably 0 to 100 ° C, and a pressure of 0.001 to 20 bar, preferably 0.01 to 5 bar, particularly preferably 0.1 to 2 bar, dried. Temperatures higher than 200 ° C and / or pressures higher than 20 bar are easily possible, but they are associated with unnecessary effort and bring no advantages.
  • the advantage of the process according to the invention is that temperatures and pressures which are well below the critical temperatures and / or pressures for the conventional solvents are sufficient for drying. Drying is generally continued until the gel has a residual solvent content of less than 0.1% by weight.
  • the drying of the gel can be significantly accelerated by using dielectric drying processes, for example microwave drying.
  • the solvent in step f) is replaced by a solvent which absorbs microwaves well, such as water, ethanol or preferably acetone.
  • the gels can then be quickly dried in a microwave dryer.
  • the process according to the invention for producing fiber-reinforced SiO 2 xerogels with porosities greater than 60% by volume and densities of the xerogel matrix less than 0.6 g / cm 3 is preferred, characterized in that a) an aqueous water glass solution (SiO 2 concentration) ⁇ 10% by weight, preferably ⁇ 7% by weight, is adjusted to a pH value of ⁇ 3, for example with the aid of an acidic ion exchange resin or a mineral acid, and a base, generally NH 4 OH, NaOH, to the resulting silica.
  • Inorganic fibers such as glass fibers or mineral fibers, organic fibers such as polyester fibers, aramid fibers, nylon fibers or fibers of plant origin, and mixtures thereof can be used as the fiber material.
  • the fibers can also be coated, for example polyester fibers, which are metallized with a metal such as aluminum. For better dispersibility of the fibers or wetting of the nonwoven, the fibers can be coated with a suitable size. The coating can also serve to better bind the gel to the fibers.
  • the volume fraction of the fibers should be 0.1 to 30%, preferably 0.1 to 10% and b) the thermal conductivity of the fiber material should be as low as possible, preferably ⁇ 1 W / mK.
  • the fiber diameter in a) non-metallized fibers should preferably be 0.1 to 30 ⁇ m and / or in b) metallized fibers preferably 0.1 to 20 ⁇ m.
  • the fibers can e.g. can be introduced as disordered or aligned fibers.
  • Nonwovens or mats can also be used, it also being possible to stack several nonwovens or mats on top of one another. In the case of layering mats with a preferred direction, changing the preferred direction from one layer to the next is advantageous.
  • the use of nonwovens or mats has the advantage that cracks can occur in the xerogel matrix when the bending stress is high, but the xerogel matrix does not break through the nonwoven.
  • Fiber-reinforced gel plates with a thickness between 0.5 and 5 mm are particularly advantageous for solvent exchange and drying, since the duration for the exchange of solvents or the drying time is essentially determined by the diffusion of the solvent or the solvent vapor.
  • the fiber-reinforced xerogels thus obtained are hydrophobic if the surface groups applied by the surface modification are hydrophobic, e.g. when using trimethylchlorosilane.
  • the hydrophobicity can subsequently be reduced, for example, by heating or partial pyrolysis.
  • Thicker plates made of fiber-reinforced Xerogeien can be z. B. by placing in a suitable envelope, by gluing or by a suitable mechanical connection such as staples or sewing.
  • the surface of the fiber-reinforced xerogel can be discussed with the person skilled in the art known materials such as plastic films, paper, cardboard, nonwovens or fabrics, are laminated.
  • the fiber-reinforced xerogels obtained by the process according to the invention are suitable as heat insulation materials.
  • suitable translucent fibers e.g. Glass fibers
  • the bending stiffness of the panels can be varied by the choice of the fiber material used.
  • decorative effects can be achieved in addition to the insulating effect.
  • Figure 1 shows a schematic representation of a pore 1, which is approximately half-filled with pore liquid 2 and steam 4, the contact angle ⁇ occurring between the liquid meniscus and pore wall 3 and the radius r of the pore.
  • TEOS tetraethyl orthosilicate
  • the aged gel cooled to room temperature, was placed in ethanol and then heated at 50 ° C for 1 hour. This process was repeated twice with fresh ethanol and then once with n-hexane. The n-hexane was then exchanged three more times, and the sample was stored at 50 ° C. for a further 24 hours.
  • TMCS trimethylchlorosilane
  • the drying was then carried out in three stages over 24 hours at 37 ° C, 50 ° C and 140 ° C.
  • Table 1 shows the results of the tests.
  • the thermal conductivity was determined using a heating wire method (O. Nielsson, G. Joschenpöhler, J. classical, J. Fricke, High Temperatures-High Pressures, 21 (1989), 267-274), the module and the breaking stress using a three-point Bending method (e.g. GW Scherer, SA Pardenek, RM Swiatek, J. Non-Crystalline Solids, 107 (1988), 14-22).
  • the fiber-reinforced Xerogel did not break in the three-point bending measurement at a certain tension, but only deformed irreversibly under high loads.
  • HMA Hoechst aramid
  • the fiber-reinforced Xerogel did not break at a certain tension in the three-point bending measurement, but only deformed under high loads irreversible.
  • Example 2 The tests were carried out as in Example 1, with the fiber material being a
  • the fiber-reinforced Xerogel did not break in the three-point bending measurement at a certain tension, but only deformed irreversibly under high loads.
  • Example 2 The tests were carried out as in Example 1, with the fiber material being a
  • Polyester fleece TREVIRA SPUNBOND ® with a basis weight of 70 kg / m 3 was used. The results are summarized in Table 1.
  • the fiber-reinforced Xerogel did not break in the three-point bending measurement at a certain tension, but only deformed irreversibly under high loads.
  • the fiber-reinforced Xerogel did not break in the three-point bending measurement at a certain tension, but only deformed irreversibly under high loads.
  • a polyester fleece each made of 50% TREVIRA 290 with 0.9 dtex and 1.7 dtex with a density of 15 kg / m 3 , needled with 150 stitches / cm 2 , was then introduced into the gellable solution.
  • the proportion of the fleece is 5% by volume in relation to the gel.
  • the resulting gel was then left to age at 50 ° C. for a further 24 hours.
  • the water contained in the gel was first extracted with 3 l of ethanol.
  • the ethanol was then replaced with 3 l of n-heptane.
  • the hexane-containing gel was silylated with trimethylchlorosilane (TMCS) (0.05 g TMCS per gram of wet gel), then washed again with 0.5 l of n-hexane.
  • TMCS trimethylchlorosilane
  • the fiber-reinforced Xerogel did not break in the three-point bending measurement at a certain tension, but only deformed irreversibly under high loads.
  • the modulus of elasticity was 2 MPa.
  • Example 6 the experiment was carried out with glass fibers.
  • the fiber-reinforced Xerogel did not break in the three-point bending measurement at a certain tension, but only deformed irreversibly under high loads.
  • the elastic modulus was 10 MPa.
  • Table 2 Experimental results for drying TEOS xerogels with microwaves from ethanol at 50 W power
  • a gel was prepared as in Example 3. Before drying, a solvent exchange with ethanol was carried out. Drying was carried out with a nitrogen stream heated to 80 ° C. for a drying time of 60
  • Xerogel plates were produced on the basis of water glass according to the following procedure: a glass fiber fleece with a weight per unit area of 300 g / m 2 and one
  • Thickness of 3 mm PolyMat glass needle mat type G300 from Schuller,
  • Wertheim was annealed at 500 ° C for 1 hour.
  • the fleece was placed in a mold and the sol was poured over it so that the
  • the plate was then washed with acetone until the water content was below 0.5
  • TMCS trimethylchlorosilane
  • Drying was carried out in two stages, 24 hours at 50 ° C and 850 mbar
  • the density of the composite material was 0.25 g / cm 3 .
  • the thermal conductivity was determined as in Example 1. A value of 17 mW / mK was found for the thermal conductivity.
  • the xerogel plate did not break during the three-point bending measurement at a certain stress, but only irreversibly deformed under high loads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Glass Compositions (AREA)
  • Thermal Insulation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Toys (AREA)
  • Inorganic Fibers (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von modifizierten, faserverstärkten Xerogelen mit Porositäten größer als 60 % und Dichten der Xerogelmatrix unter 0,6 g/cm3, sowie deren Verwendung als Wärmeisolationsmaterial.

Description

Beschreibung
Verfahren zur Herstellung von faserverstärkten Xerogeien, sowie ihre Verwendung
Die Erfindung betrifft ein Verfahren zur Herstellung von modifizierten, faserverstärkten Xerogeien mit Porositäten größer als 60 % und Dichten unter 0,6 g/cm3, im folgenden "faserverstärkte Xerogele" genannt, sowie deren Verwendung.
Xerogele mit Porositäten über 60 % und Dichten unter 0,6 g/cm3 weisen wie überkritisch getrocknete Aerogele, aufgrund ihrer sehr geringen Dichte und hohen Porosität eine sehr geringe Wärmeleitfähigkeit auf. Die hohe Porosität führt aber auch zu geringer mechanischer Stabilität sowohl des Gels aus dem das Xerogel getrocknet wird, wie auch des Xerogels.
Aerogele im weiteren Sinn, d.h. im Sinne von "Gel mit Luft als Dispersions- mittel", werden durch Trocknung eines geeigneten Gels hergestellt. Unter den Begriff "Aerogel" in diesem Sinne, fallen Aerogele im engeren Sinne, Xerogele und Kryogele. Dabei wird ein getrocknetes Gel als Aerogel im engeren Sinn bezeichnet, wenn die Flüssigkeit des Gels bei Temperaturen oberhalb der kritischen Temperatur und ausgehend von Drücken oberhalb des kritischen Druckes weitestgehend entfernt wird. Wird die Flüssigkeit des Gels dagegen unterkritisch, beispielsweise unter Bildung einer Flüssig-Dampf-Grenzphase entfernt, dann bezeichnet man das entstehende Gel als Xerogel.
Bei der Trocknung konventioneller Gele treten durch Kapillarkräfte sehr hohe Spannungen auf, die in Verbindung mit der geringen Stabilität des hochporösen Gerüsts zum Kollaps bei der Trocknung führen. Der Kapillardruck Pc, der während der Trocknung entsteht, ist bestimmt durch die Oberflächenspannung γL , der Oberfläche zwischen der Porenflüssigkeit 2 und ihrem Dampf 4, den Kontaktwinkel Θ zwischen Flüssigkeitsmeniskus und Porenwand 3 und den Radius r der Pore 1 (Fig. 1 ):
2 L COS ®
Pc =
Der Kollaps läßt sich vermeiden, wenn man das Gel überkritisch trocknet, wie z.B. in der EP-A-0382310, der EP-A-0018955 und der US-A-4,610,863 beschrieben, und damit die Oberflächenspannung v aLJ Null reduziert. Die so hergestellten Aerogele sind jedoch mechanisch nicht sehr stabil.
Die mechanische Stabilität läßt sich jedoch durch eine Faserverstärkung des Aerogels, wie in der WO93/06044 beschrieben, verbessern. Das in der WO93/06044 beschriebene Herstellungsverfahren erfordert aber durch die Notwendigkeit der überkritischen Trocknung einen erheblichen technischen Aufwand. Dabei müssen für die Trocknung eines Gels aus einem Alkohol, z.B. Methanol, Temperaturen von 250 bis 260°C und Drücke zwischen 9,7 und 15,9 MPa angewendet werden.
In der DE-A-43 42 548 und der WO 94/25149 werden Verfahren zur Herstellung von Xerogeien mit Dichten unter 0,3 g/cm3 und Porositäten über 60 % beschrieben, die die überkritische Trocknung von Gelen überflüssig machen. Dabei werden die Gele durch Behandlung der inneren Oberfläche, z.B. durch Silylierung im Fall von SiO2-Xerogelen, so modifiziert, daß sie an der Luft getrocknet werden können, ohne zu kollabieren. Die so hergestellten Xerogele sind ebenfalls mechanisch nicht sehr stabil und brechen leicht.
Aufgabe ist es daher, ein Verfahren zur Herstellung von mechanisch stabilen Xerogeien mit Porositäten über 60 % und Dichten der Xerogelmatrix unter 0,6 g/cm3 zu finden, das die oben geschilderten Nachteile vermeidet. Es wurde nun gefunden, daß man mechanisch stabile Xerogele herstellen kann, wenn man vor bzw. bei der Bildung des Gels in geeigneter Form und Menge Fasern in das Sol einbringt, die Porenoberfläche des daraus hergestellten Gels in geeigneter Form modifiziert, und es dann unter unterkritischen Bedingungen trocknet. Die erhaltenen Produkte werden im folgenden als "faserverstärkte Xerogele" bezeichnet.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung faserverstärkter Xerogele mit Porositäten größer als 60 Vol.-% und Dichten der Xerogelmatrix kleiner als 0,6 g/cm3, dadurch gekennzeichnet, daß a) ein Sol hergestellt wird, b) dem Sol Fasern zugesetzt werden, c) das in b) erhaltene Sol in ein Gel überführt wird, d) gegebenenfalls die in dem Gel enthaltene Flüssigkeit ausgetauscht wird, e) das Gel mit einer oder mehreren oberflächenmodifizierenden Substanzen so umgesetzt wird, daß ein so großer Anteil der Oberflächengruppen des Gels durch Gruppen der oberflächenmodifizierenden Substanz ersetzt wird, daß eine weitere Kondensation zwischen den Oberflächengruppen auf verschiedenen Porenoberflächen weitgehend unterdrückt wird und/oder durch Änderung des Kontaktwinkels zwischen Porenoberfläche und Flüssigkeit aus der getrocknet wird, die Kapillarkräfte reduziert werden, f) gegebenenfalls die in dem Gel enthaltene Flüssigkeit ausgetauscht wird und g) das resultierende Gel bei einer Temperatur unter der kritischen Temperatur der in dem Gel enthaltenen Flüssigkeit und einem Druck von 0,001 bar bis zu dem Dampfdruck dieser Flüssigkeit bei dieser Temperatur getrocknet wird.
Als Ausgangsmaterialien dienen für die Sol-Gel-Technik geeignete Si- und AI- Verbindungen (C.J. Brinker, G.W. Scherer, Sol-Gel-Science, 1990, Kap. 2 und 3) wie z.B. Si-, AI-Alkoxide oder Wasserglas sowie solche auf der Basis organischer Stoffe, wie z.B. Melaminformaldehydkondensate (US-A-5,086,085) oder Resorcinformaldehydkondensate (US-A-4,873,219). Sie können auch auf Mischungen der obengenannten Materialien basieren. Weiterhin kann das Sol aus partikulärem oder kolloidalem Si- oder AI-Oxid bestehen. Bevorzugt eingesetzt werden Si-Verbindungen, insbesondere Wasserglas.
Die Solpartikel tragen auf der Oberfläche funktionelle Gruppen, die zur Kondensation fähig sind. Diese Gruppen werden im folgenden Oberflächengruppen genannt. Typischerweise tragen Solpartikel aus Si- oder AI- Verbindungen hydrophile Hydroxylgruppen (OH). Herstellungsbedingt können auch noch Reste von Alkoxygruppen (OR) vorliegen, wenn Alkoxide als Ausgangsmaterial eingesetzt wurden ( C.J. Brinker, G.W. Scherer, Sol-Gel- Science, 1990, Kap. 10).
Bei den dem Sol zugesetzten Fasern kann es sich um einzelne Fasern, Fasermatten oder - vliese handeln. Die Zugabe der Fasern kann insbesondere im Fall von Einzelfasern auch während der Gelbildung erfolgen, wenn das Sol schon eine hohe Viskosität erreicht hat, aber noch nicht fest ist.
Die Überführung des Sols in ein Gel kann zum Beispiel durch Hydrolyse und Kondensation von Si- oder Al-Alkoxiden, Gelieren von partikulärem oder kolloidalem Si- oder AI-Oxid oder einer Kombination dieser Methoden erfolgen. Die Herstellung von Si-haltigen Gelen wird beispielsweise in der WO93/06044 beschrieben.
Es ist vorteilhaft, das in Schritt c) oder d) erhaltene Gel vor der Oberflächenmodifikation altern zu lassen, um die Gelfestigkeit zu erhöhen. Die Alterung des Gels findet im allgemeinen bei einer Temperatur von 20°C bis zum Siedepunkt der in dem Gel enthaltenen Flüssigkeit statt. Handelt es sich bei der Gelflüssigkeit beispielsweise um Wasser, so findet der Alterungsprozeß im allgemeinen bei 20 bis 90°C, vorzugsweise 20 bis 70°C, bei einem pH-Wert von 6 bis 1 1 , vorzugsweise 6 bis 9, innerhalb von 1 Minute bis 48 Stunden, insbesondere 15 Minuten bis 24 Stunden statt. Falls in Schritt a) ein wäßriges Sol verwendet wurde und der pH-Wert mit einer Mineralsäure verändert wurde, sollte das Gel mit Wasser elektrolytfrei gewaschen werden. Die in dem Gel enthaltene Flüssigkeit kann in einem Waschprozeß (Schritt d) durch die gleiche oder eine andere Flüssigkeit ausgetauscht werden. Enthält das Gel beispielsweise Wasser, empfiehlt es sich, das Gel mit einem protischen oder aprotischen organischen Lösungsmittel zu waschen bis der Wassergehalt des Gels < 5 Gew.-%, bevorzugt ≤ 2 Gew.-% ist.
Als organische Lösungsmittel werden dabei im allgemeinen aliphatische Alkohole, Ether, Ester oder Ketone sowie aliphatische oder aromatische Kohlenwasserstoffe verwendet. Bevorzugte Lösungsmittel sind Methanol, Ethanol, Aceton, Tetrahydrofuran, Essigsäureethylester, Dioxan, n-Hexan, n-Heptan und Toluol. Man kann auch Gemische aus den genannten Lösungsmitteln verwenden. Das Lösungsmittel muß hinsichtlich der in Schritt e) eingesetzten oberfächenmodifizierenden Substanz weitgehend inert sein.
Die Schritte a) bis d) werden im allgemeinen bei einer Temperatur zwischen dem Gefrierpunkt der im Gel enthaltenen Flüssigkeit und 70°C, jedoch maximal der Siedetemperatur der im Gel enthaltenen Flüssigkeit, durchgeführt.
Durch die in Schritt e) verwendeten oberflächenmodifizierenden Substanzen wird ein großer Anteil der hydrophilen oder reaktiven Oberflächengruppen auf den Porenoberflächen zu hydrophoben oder zur weiteren Kondensation ungeeigneten Oberflächengruppen umgesetzt.
Als Folge wird eine weitere Kondensation zwischen Gruppen auf verschiedenen Porenoberflächen unterdrückt, bzw. werden durch Änderung des Kontaktwinkels zwischen Porenwand und Flüssigkeitsmeniskus der Flüssigkeit aus der getrocknet wird, die Kapillarkräfte reduziert. Als ursprüngliche Oberflächengruppen treten dabei im allgemeinen Gruppen der Formel MOH oder MOR auf, wobei M = AI oder Si und R = C-,-C6-Alkyl, vorzugsweise Methyl oder Ethyl, ist. Durch Umsetzung mit oberflächenmodifizierenden Substanzen der allgemeinen Formel R'nMXm werden die ursprünglichen Oberflächengruppen durch inerte Gruppen des Typs MR'n ersetzt. Dabei sind n und m ganze Zahlen größer als Null, deren Summe der Wertigkeit von M entspricht. R' ist Wasserstoff oder ein nicht reaktiver organischer linearer, verzweigter, zyklischer, aromatischer oder heteroaromatischer Rest wie z.B. Cι-C18-Alkyl, vorzugsweise C-,-C6-Alkyl, besonders bevorzugt Methyl oder Ethyl, Cyclohexyl oder Phenyl; die R'sind unabhängig voneinander gleich oder verschieden oder können verbrückt sein. Weiter ist X ein Halogen, vorzugsweise Cl, oder ein Rest -OR", -SR" oder - NR"2, wobei R" einen geradkettigen oder verzweigten, ein- oder mehrfach gleich oder verschieden substituierten aliphatischen Rest C-| bis C18 darstellt, in dem eine oder mehrere CH2-Gruppen durch -C sC-, -CH = CH-, -COO-, -O(C = O)-, -SiR'"2-, -CO-, Phenylendiyl und/oder bis zu jede CH2-Einheit durch O oder NR"' ersetzt sein können, wobei R"' gleich Phenyl, C-|-C18-Alkyl oder Benzyl ist, oder R" ein Benzylrest oder Phenylrest bedeutet, der durch 1 bis 5 Substituenten R', OH, OR', COOR', OCOR', SO3H, SO2CI, F, Cl, Br, NO2 oder CN substituiert sein kann; im Falle von N können die R" unabhängig voneinander gleich oder verschieden sein. Ist m mindestens zwei, so können die X unabhängig voneinander gleich oder verbrückt sein. Es können auch Mischungen der oberflächenmodifizierenden Substanzen eingesetzt werden.
Bevorzugt werden Silylierungsmittel der Formel R'4.nSiCln oder R'4.nSi(OR')n mit n = 1 bis 3 eingesetzt, wobei R' die vorstehende Bedeutung hat. Auch Silazane sind geeignet. Vorzugsweise verwendet man Methyltrichlorsilan, Dimethyldichlorsilan, Trimethylchlorsilan, Trimethylmethoxysilan oder Hexamethyldisilazan. Die Umsetzung wird im allgemeinen bei 20 bis 100°C, vorzugsweise 30 bis 70°C, jedoch maximal bei der Siedetemperatur der im Gel enthaltenen Flüssigkeit, durchgeführt.
Vorzugsweise kann das silylierte Gel in Schritt f) mit einem protischen oder aprotischen Lösungsmittel gewaschen werden, bis die unumgesetzte oberflächenmodifizierende Substanz im wesentlichen entfernt ist (Restgehalt ≤ 1 Gew.-%). Geeignete Lösungsmittel sind dabei die bei Schritt d) genannten. Analog sind die dort als bevorzugt genannten Lösungsmittel auch hier bevorzugt.
In Schritt g) wird das faserverstärkte, oberflächeπmodifizierte Gel bei Temperaturen von -30 bis 200°C, vorzugsweise 0 bis 100°C, sowie einem Druck von 0,001 bis 20 bar, vorzugsweise 0,01 bis 5 bar, besonders bevorzugt 0,1 bis 2 bar, getrocknet. Höhere Temperaturen als 200°C und/oder höhere Drücke als 20 bar sind ohne weiteres möglich, aber sie sind mit überflüssigem Aufwand verbunden und bringen keine Vorteile mit sich. Der Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß bei der Trocknung Temperaturen und Drücke genügen, die für die üblichen Lösungsmittel weit unter deren kritischen Temperaturen und/oder Drücken liegen. Die Trocknung wird im allgemeinen so lange fortgeführt, bis das Gel einen Lösungsmittel-Restgehalt von weniger als 0, 1 Gew.-% aufweist.
Als Trocknungsverfahren geeignet sind zum Beispiel die Kontakt- und Konvektionstrocknung.
Die Trocknung des Gels kann durch Verwendung von dielektrischen Trocknungsverfahren, z.B. durch Mikrowellentrocknung, wesentlich beschleunigt werden. Dazu wird nach der Oberflächenmodifikation das Lösungsmittel in Schritt f), falls erforderlich, gegen ein Lösungsmittel ausgetauscht, das Mikrowellen gut absorbiert wie z.B. Wasser, Ethanol oder vorzugsweise Aceton. Die Gele lassen sich dann in einem Mikrowellentrockner schnell trocknen. Bevorzugt ist das erfindungsgemäße Verfahren zur Herstellung von faserverstärkten SiO2-Xerogelen mit Porositäten größer als 60 Vol.-% und Dichten der Xerogelmatrix kleiner als 0,6 g/cm3, dadurch gekennzeichnet, daß a) eine wäßrige Wasserglaslösung (SiO2-Konzentration < 10 Gew. %, vorzugsweise ≤ 7 Gew. %, auf einen pH-Wert ≤ 3 eingestellt wird, beispielsweise mit Hilfe eines sauren lonenaustauscherharzes oder einer Mineralsäure, und zu der dabei entstandenen Kieselsäure eine Base, im allgemeinen NH4OH, NaOH, KOH, AI(OH)3 und/oder kolloidale Kieselsäure, gegeben wird, b) Fasern zugegeben werden, c) man die Kieselsäure polykondensieren läßt, d) das in Schritt c) erhaltene faserverstärkte Gel mit einem organischen Lösungsmittel gewaschen wird bis der Wassergehalt des Gels ≤ 5 Gew.-% ist, e) das in Schritt d) erhaltene Gel mit einem Silylierungsmittel umgesetzt wird, f) gegebenenfalls das silylierte Gel mit einem organischen Lösungsmittel gewaschen wird bis der Restgehalt des unumgesetzten Silylierungsmittels 1 Gew.-% ist und g) das in Schritt e) oder f) erhaltene silylierte Gel bei -30 bis 200°C und 0,001 bis 20 bar getrocknet wird.
In Schritt a) wird bevorzugt ein saures lonenaustauscherharz eingesetzt.
Als Fasermaterial können anorganische Fasern, wie Glasfasern oder Mineralfasern, organische Fasern, wie Polyesterfasern, Aramidfasern, Nylonfasern oder Fasern pflanzlichen Ursprungs, sowie Gemische derselben verwendet werden. Die Fasern können auch beschichtet sein, z.B. Polyesterfasern, die mit einem Metall wie Aluminium metallisiert sind. Zur besseren Dispergierbarkeit der Fasern bzw. Benetzung des Vlieses können die Fasern mit einer geeigneten Schlichte beschichtet sein. Die Beschichtung kann auch einer besseren Anbindung des Gels an die Fasern dienen.
Die Brandklasse des faserverstärkten Xerogels wird durch die Brandklasse der Xerogelmatrix und die des Fasermaterials bestimmt. Um eine möglichst günstige Brandklasse (schwer entflammbar oder unbrennbar) des faserverstärkten Xerogels zu erhalten, sollten die Fasern aus nichtbrennbarem Material, wie z. B. Mineral- oder Glasfasern, oder aus schwerentflammbarem Material, wie z. B. Melaminharzen, bestehen. Weiterhin ist es möglich, die organischen Bestandteile der Xerogelmatrix durch thermische Behandlung abzuspalten, ohne daß die Struktur und damit die thermische Leitfähigkeit des Xerogels wesentlich verändert wird.
Um eine möglichst geringe Wärmeleitfähigkeit des faserverstärkten Xerogels zu erhalten, sollte a) der Volumenanteil der Fasern 0, 1 bis 30 %, vorzugsweise 0, 1 bis 10 % betragen und b) die Wärmeleitfähigkeit des Fasermaterials so gering wie möglich, vorzugsweise < 1 W/mK, sein.
Durch geeignete Wahl von Faserdurchmesser und/oder -material kann der Strahlungsbeitrag zur Wärmeleitfähigkeit reduziert und eine große mechanische Festigkeit erzielt werden. Dazu soll der Faserdurchmesser bei a) nichtmetallisierten Fasern vorzugsweise 0, 1 bis 30 μm und/oder bei b) metallisierten Fasern vorzugsweise 0,1 bis 20 μm betragen.
Der Strahlungsbeitrag kann weiter dadurch reduziert werden, daß IR-getrübte Fasern, z.B. mit Ruß geschwärzte PET-Fasern, verwendet werden. Der Strahlungsbeitrag zur Wärmeleitfähigkeit kann weiter reduziert werden, wenn man dem Sol vor der Gelherstellung ein IR-Trübungsmittel, z.B. Ruß, Titandioxid, Eisenoxide oder Zirkondioxid, zusetzt.
Die mechanische Festigkeit wird weiter durch Länge und Verteilung der Fasern im Xerogel beeinflußt.
Die Fasern können z.B. als einzelne Fasern ungeordnet oder ausgerichtet eingebracht werden.
Ebenso können Vliese oder Matten verwendet werden, wobei auch mehrere Vliese oder Matten übereinandergeschichtet werden können. Im Falle der Schichtung von Matten mit einer Vorzugsrichtung ist eine Änderung der Vorzugsrichtung von einer Schicht zur nächsten vorteilhaft. Die Verwendung von Vliesen oder Matten bringt den Vorteil, daß bei starker Biegebeanspruchung zwar in der Xerogelmatrix Risse entstehen können, die Xerogelmatrix durch das Vlies jedoch nicht bricht. Besonders vorteilhaft für Lösungsmittelaustausch und Trocknung sind faserverstärkte Gelplatten mit einer Dicke zwischen 0,5 und 5 mm, da die Dauer für den Austausch von Lösungsmitteln bzw. die Trocknungszeit wesentlich durch die Diffusion des Lösungsmittels bzw. des Lösungsmitteldampfes bestimmt wird.
Die so erhaltenen faserverstärkten Xerogele sind hydrophob, wenn die durch die Oberflächenmodifikation aufgebrachten Oberflächengruppen hydrophob sind, wie z.B. bei der Verwendung von Trimethylchlorsilan. Die Hydrophobizität kann nachträglich beispielsweise durch Ausheizen bzw. partielle Pyrolyse reduziert werden.
Dickere Platten aus faserverstärkten Xerogeien können durch Zusammenfügen von dünnen Platten z. B. durch Einbringen in eine geeignete Hülle, durch Verkleben oder durch eine geeignete mechanische Verbindung wie Klammern oder Nähen, erhalten werden. Die Oberfläche des faserverstärkten Xerogels kann mit dem Fachmann bekannten Materialien wie z.B. Kunststoffolien, Papier, Pappe, Vliesen oder Geweben, kaschiert werden.
Die nach dem erfindungsgemäßen Verfahren erhaltenen faserverstärkten Xerogele eignen sich aufgrund ihrer geringen Wärmeleitfähigkeit als Wärmeisolationsmaterialien. Bei Auswahl geeigneter lichtdurchlässiger Fasern, z.B. Glasfasern, erhält man ein lichtdurchlässiges, transparentes Xerogel, das sich für die transparente Wärmedämmung eignet. Durch die Wahl des eingesetzten Fasermaterials kann die Biegesteifigkeit der Platten dabei variiert werden. Durch Wahl geeigneten Fasermaterials und geeigneter Faserverteilung können dabei neben der isolierenden Wirkung dekorative Effekte erzielt werden.
Daneben können sie als Schallabsorptionsmaterialien direkt oder in der Form von Resonanzabsorbern verwendet werden, da sie eine geringe Schallgeschwindigkeit und eine für massive Materialien hohe Schalldämpfung aufweisen.
Kurze Beschreibung der Abbildung
Figur 1 zeigt eine schematische Darstellung einer Pore 1 , die mit Porenflüssigkeit 2 und Dampf 4 je in etwa halb gefüllt ist, den zwischen Flüssigkeitsmeniskus und Porenwand 3 auftretenden Kontaktwinkel Θ und den Radius r der Pore.
Beispiel 1 :
Aus Tetraethylorthosilikat (TEOS) wurden verschiedene faserverstärkte Xerogele nach folgendem Verfahren hergestellt:
100 ml TEOS, 100 ml Ethanol, 7,98 ml destilliertes Wasser und 0,33 ml I M
HCI wurden zusammengegeben und für 1 ,5 bis 2 Stunden unter Rückfluß gekocht.
10 Teile des Sols wurden mit einem Teil einer 0,5 molaren NH4OH-Lösung versetzt und in Petrischalen über die darin liegenden Steinwollefasern gegossen. Die Steinwolle wurde aus einer handelsüblichen Isoliermatte ausgeschnitten. Die Menge war so groß, daß die Fasern gerade bedeckt waren. Die Gelierzeit betrug ca. 20 Minuten. Die Proben wurden dabei dicht verschlossen. Das Altern des Gels wurde durch 24-stündiges Tempern bei 50°C herbeigeführt.
Das gealterte, auf Raumtemperatur abgekühlte Gel wurde in Ethanol gegeben und anschließend 1 Stunde auf 50°C erwärmt. Dieser Vorgang wurde noch zweimal mit frischem Ethanol und anschließend einmal mit n-Hexan wiederholt. Danach wurde noch dreimal das n-Hexan ausgetauscht, und die Probe für weitere 24 Stunden bei 50°C gelagert.
Das feuchte Gel wurde dann mit 10 Gew.-% Trimethylchlorsilan (TMCS) versetzt und 24 Stunden bei 50°C gelagert. Danach wurden die TMCS-Reste zweimal mit n-Hexan je 1 Stunde bei 50°C ausgewaschen.
Die Trocknung erfolgte dann in drei Stufen über jeweils 24 Stunden bei 37°C, 50°C und 140°C.
Tabelle 1 zeigt die Resultate der Versuche. Die Wärmeleitfähigkeit wurde mit einer Heizdrahtmethode ( O. Nielsson, G. Rüschenpöhler, J. Groß, J. Fricke, High Temperatures-High Pressures, 21 (1989), 267-274), der Modul und die Bruchspannung mit einer Drei-Punkt-Biegemethode (z.B. G.W. Scherer, S.A. Pardenek, R.M. Swiatek, J. Non-Crystalline Solids, 107 (1988), 14-22) gemessen.
Das faserverstärkte Xerogel brach bei der Drei-Punkt-Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel.
Beispiel 2:
Die Versuche wurden wie in Beispiel 1 durchgeführt, wobei das Fasermaterial
Hoechst Aramid-(HMA)-Kurzschnitt mit 2 mm Länge war. Die Ergebnisse sind in
Tabelle 1 zusammengefaßt.
Das faserverstärkte Xerogel brach bei der Drei-Punkt-Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel.
Beispiel 3:
Die Versuche wurden wie in Beispiel 1 durchgeführt, wobei als Fasermaterial ein
Polyestervlies (PET) aus je 50 % Trevira* 290 mit 0,9 dtex und 1 ,7 dtex mit einer Dichte von 15 kg/m3, vernadelt mit 150 Stichen/cm2, verwendet wurde.
Die Ergebnisse sind in Tabelle 1 zusammengefaßt.
Das faserverstärkte Xerogel brach bei der Drei-Punkt-Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel.
Beispiel 4:
Die Versuche wurden wie in Beispiel 1 durchgeführt, wobei als Fasermaterial ein
Polyestervlies TREVIRA SPUNBOND® mit einem Flächengewicht von 70 kg/m3 verwendet wurde. Die Ergebnisse sind in Tabelle 1 zusammengefaßt.
Das faserverstärkte Xerogel brach bei der Drei-Punkt-Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel.
Beispiel 5:
Die Versuche wurden wie in Beispiel 1 nun aber mit Glasfasern durchgeführt,
Die Ergebnisse sind in Tabelle 1 zusammengefaßt.
Das faserverstärkte Xerogel brach bei der Drei-Punkt-Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel.
Beispiel 6:
1 I einer Natriumwasserglaslösung (mit einem Gehalt von 8 Gew.-% SiO2 und einem Na2O:SiO2 Gewichtsverhältnis von 1 :3,3) wurde zusammen mit 0,5 I eines sauren lonenaustauscherharzes (Styroldivinylbenzolcopolymer mit Sulfonsäuregruppen, handelsüblich unter dem Namen Duolite C20) gerührt, bis der pH-Wert der wäßrigen Lösung 2,7 betrug. Anschließend wurde das lonenaustauscherharz abfiltriert und die wäßrige Lösung mit 0,5 molarer NH4OH-Lösung auf einen pH-Wert von 4,8 eingestellt.
In die gelierfähige Lösung wurde dann ein Polyestervlies aus je 50 % TREVIRA 290 mit 0,9 dtex und 1 ,7 dtex mit einer Dichte von 15 kg/m3, vernadelt mit 150 Stichen/cm2, eingebracht. Der Anteil des Vlieses beträgt 5 Vol.-% in Bezug auf das Gel.
Danach ließ man das entstandene Gel noch 24 Stunden bei 50°C altern. Das in dem Gel enthaltene Wasser wurde zunächst mit 3 I Ethanol extrahiert. Danach wurde das Ethanol mit 3 I n-Heptan ausgetauscht. Das hexanhaltige Gel wurde mit Trimethylchlorsilan (TMCS) silyliert (0,05 g TMCS pro Gramm nasses Gel), dann wieder mit 0,5 I n-Hexan gewaschen. Die Trocknung des Gels erfolgte an Luft (3 Stunden bei 40°C, dann 2 Stunden bei 50°C und 12 Stunden bei 150°C).
Das faserverstärkte Xerogel brach bei der Drei-Punkt-Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel. Der Elastizitätsmodul betrug 2 MPa.
Beispiel 7:
Der Versuch wurde wie in Beispiel 6 nun aber mit Glasfasern durchgeführt. Das faserverstärkte Xerogel brach bei der Drei-Punkt-Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel. Der Elastizitätsmodul betrug 10 MPa.
Beispiel 8 bis 1 1 :
Es wurden Gele wie in Beispiel 1 bis 4 hergestellt. Vor der Trocknung wurde ein Lösungsmitteltausch mit Ethanol durchgeführt. Die Proben wurden daraufhin mit Mikrowellen bei einer Leistung von 50 W in einem Ofen der Firma El-A, München getrocknet. Es trat kein Volumenschrumpf auf. Tabelle 2 zeigt die für die Trocknung notwendigen Trocknungszeiten. Tabelle 1 : Experimentelle Resultate für Wärmeleitfähigkeit und Modul faserverstärkter TEOS-Xerogele
Bsp. Fasermaterial Volumenanteil Dichte Wärmeleitfähig¬ Elastizitäts¬ Bruchspannung d. Fasern [%] [kg/m3] keit [mW/mKj modul [MPa] [MPa]
1 Steinwolle 5 157 23 4 X
2 HMA-Kurzschnitt, 2 mm 5 184 21 2 X
3 PET Vlies, 150 1 ,4 200 20 2 X Stiche/cm2, 15 kg/m3 oi
4 PET-Trevira Spunbond, 5 250 33 20 X 70 kg/m3
5 Glasfasern 2 180 18 8 X
x = Es trat nur irreversible Verformung unter Rißbildung auf, aber kein Brechen
Figure imgf000017_0001
Tabelle 2: Experimentelle Resultate für die Trocknung von TEOS-Xerogelen mit Mikrowellen aus Ethanol bei 50 W Leistung
Bsp. Fasermaterial Dicke der Probe Trocknungs¬ Dichte Restfeuchte Volumenschrumpf [mm] zeit [min] [kg/m3] [%] [%]
8 Steinwolle 6 110 160 0,82 0
9 HMA-Kurzschnitt, 2 mm 7 55 181 0,00 0
10 PET Vlies, 100 3 40 203 1 ,06 0 Stiche/cm2, 19 kg/m3 σ>
1 1 PET-Trevira Spunbond, 3 30 177 0,00 0 70 kg/m3
Figure imgf000018_0001
Beispiel 12:
Es wurde ein Gel wie in Beispiel 3 hergestellt. Vor der Trocknung wurde noch ein Lösungsmitteltausch mit Ethanol durchgeführt. Die Trocknung erfolgte mit einem auf 80 °C erhitzten Stickstoffstrom für eine Trocknungszeit von 60
Minuten. Folgende Kenndaten ergaben sich für das getrocknete faserverstärkte
Xerogel:
Dicke der Probe 3 mm
Dichte 170 kg/m3
Restfeuchte 1 ,6 %
Volumenschrumpf 2 %
Beispiel 13
Auf der Basis von Wasserglas wurden Xerogelplatten nach folgendem Verfahren hergestellt: Ein Glasfaservlies mit einem Flächengewicht von 300 g/m2 und einer
Dicke von 3 mm (PolyMat-Glasnadelmatte Typ G300 der Fa. Schuller,
Wertheim) wurde bei 500°C für 1 Stunde ausgeglüht.
1 I einer Natriumwasserglaslösung (mit einem Gehalt von 8 Gew.-% SiO2 und ein Na2O:SiO2 Gewichtsverhältnis von 1 :3,3) wurde zusammen mit 0,5 I eines sauren lonenaustauscherharzes (Styroldivinylbenzolcopolymer mit
Sulfonsäuregruppen handelsüblich unter dem Namen ®Duolite C20) gerührt, bis die wäßrige Lösung eine pH-Wert von 2,7 erreicht hatte. Anschließend wurde das lonenaustauscherharz abfiltriert und die wäßrige Lösung mit 1 molarer
NaOH-Lösung auf einen pH-Wert von 4,8 gebracht.
Das Vlies wurde in eine Form gegeben und mit dem Sol übergössen, so daß das
Vlies ganz mit Sol bedeckt war. Die Form wurde dann dicht verschlossen und in einem Trockenschrank für 5 Stunden bei 85 °C gelagert.
Die Platte wurde dann mit Aceton gewaschen bis der Wassergehalt unter 0,5
Gew.-% lag. Das feuchte Gel wurde mit 10 Gew.-% Trimethylchlorsilan (TMCS) versetzt und 24 Stunden bei Raumtemperatur gelagert. Danach wurde es noch sechsmal mit Aceton gewaschen.
Die Trocknung erfolgte in zwei Stufen, 24 Stunden bei 50°C und 850 mbar
Druck, dann 12 Stunden bei 140°C und 50 mbar Druck.
Die Dichte des Verbundmaterials betrug 0,25 g/cm3. Die Wärmeleitfähigkeit wurde wie in Beispiel 1 bestimmt. Für die Wärmeleitfähigkeit ergab sich ein Wert von 17 mW/mK. Die Xerogelplatte zerbrach bei der Dreipunkt- Biegemessung nicht bei einer bestimmten Spannung, sondern verformte sich bei hohen Lasten nur irreversibel.

Claims

Patentansprüche:
1. Verfahren zur Herstellung faserverstärkter Xerogele mit Porositäten größer als 60 Vol.-% und Dichten der Xerogelmatrix kleiner als 0,6 g/cm3, dadurch gekennzeichnet, daß a) ein Sol hergestellt wird, b) dem Sol Fasern zugesetzt werden, c) das in b) erhaltene Sol in ein Gel überführt wird, d) gegebenenfalls die in dem Gel enthaltene Flüssigkeit ausgetauscht wird, e) das Gel mit einer oder mehreren oberflächenmodifizierenden Substanzen so umgesetzt wird, daß ein so großer Anteil der Oberflächengruppen des Gels durch Gruppen der oberflächenmodifizierenden Substanz ersetzt wird, daß eine weitere Kondensation zwischen den Oberflächengruppen auf verschiedenen Porenoberflächen weitgehend unterdrückt wird und/oder durch Änderung des Kontaktwinkels zwischen Porenoberfläche und Flüssigkeit aus der getrocknet wird, die Kapillarkräfte reduziert werden, f) gegebenenfalls die in dem Gel enthaltene Flüssigkeit ausgetauscht wird und g) das resultierende Gel bei einer Temperatur unter der kritischen Temperatur der in dem Gel enthaltenen Flüssigkeit und einem Druck von 0,001 bar bis zu dem Dampfdruck dieser Flüssigkeit bei dieser Temperatur getrocknet wird.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, daß man das in
Schritt c) oder d) erhaltene Gel bei einer Temperatur von 20°C bis zum Siedepunkt der in dem Gel enthaltenen Flüssigkeit altern läßt.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Gel in Schritt e) mit mindestens einer oberflächenmodifizierenden Substanz der allgemeinen Formel R'nMXm umgesetzt wird, worin R' Wasserstoff oder ein nicht reaktiver organischer linearer, verzweigter, zyklischer, aromatischer oder heteroaromatischer Rest ist, wobei die R' unabhängig voneinander gleich oder verschieden sind, M = AI oder Si ist, X ein Halogen oder ein Rest -OR", -SR" sowie -NR"2 ist, wobei R" einen geradkettigen oder verzweigten, ein- oder mehrfach gleich oder verschieden substituierten aliphatischen Rest C-, bis C18 darstellt, in dem eine oder mehrere CH2-Gruppen durch -C ≡C-, -CH = CH-, -
COO-, -O(C = O)-, -SiR'"2-, -CO-, Phenylendiyl und/oder bis zu jede CH2-Einheit durch O oder NR"', ersetzt sein können, wobei R"' gleich Phenyl, C^C^-Alkyl oder Benzyl ist, oder R" einen Benzylrest oder Phenylrest bedeutet, der durch 1 bis 5 Substituenten R', OH, OR', COOR', OCOR', SO3H, SO2CI, F, Cl, Br, NO2 oder CN substituiert sein kann; und im Falle von N die R" unabhängig voneinander gleich oder verschieden sein können, n und m ganze Zahlen größer Null sind, deren Summe oder Wertigkeit von M entspricht, wobei für m ≥ 2 die X unabhängig voneinander gleich oder verschieden sein können.
4. Verfahren zur Herstellung von faserverstärkten SiO2-Xerogelen gemäß Anspruch 3, dadurch gekennzeichnet, daß
a) eine wäßrige Wasserglaslösung auf einen pH-Wert < 3 eingestellt wird und zu der dabei entstandenen Kieselsäure eine Base gegeben wird, b) Fasern zugegeben werden, c) man die Kieselsäure polykondensieren läßt, d) das in Schritt c) erhaltene faserverstärkte Gel mit einem organischen Lösungsmittel gewaschen wird bis der Wassergehalt des Gels < 5 Gew.- % ist, e) das in Schritt d) erhaltene Gel mit einem Silylierungsmittel umgesetzt wird, f) gegebenenfalls das silylierte Gel mit einem organischen Lösungsmittel gewaschen wird bis der Restgehalt des unumgesetzten Silylierungsmittels ≤ 1 Gew.-% ist und g) das in Schritt e) oder f) erhaltene silylierte Gel bei -30 bis 200°C und 0,001 bis 20 bar getrocknet wird.
5. Verfahren gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Gel in Schritt g) durch ein dielektrisches Verfahren getrocknet wird.
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß das Gel durch Mikrowellen getrocknet wird.
7. Verfahren gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Volumenanteil der Fasern 0, 1 bis 30 % beträgt.
8. Verfahren gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Faserdurchmesser a) bei nichtmetallisierten Fasern 0, 1 bis 30 μm und/oder b) bei metallisierten Fasern 0, 1 bis 20 μm beträgt.
9. Verfahren gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß man dem Sol in Schritt a) oder b) ein IR-Trübungsmittel zusetzt.
10. Verfahren gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß Fasern in Form von Vliesen oder Matten verwendet werden.
11. Verfahren gemäß mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß einzelne Fasern ungeordnet oder ausgerichtet verwendet werden.
12. Verwendung der gemäß dem Verfahren nach mindestens einem der Ansprüche 1 bis 1 1 hergestellten, faserverstärkten Xerogele als Wärmeisolationsmaterial und/oder Schallabsorptionsmaterial.
PCT/EP1995/003275 1994-08-29 1995-08-17 Verfahren zur herstellung von faserverstärkten xerogelen, sowie ihre verwendung WO1996006809A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
MX9701587A MX9701587A (es) 1994-08-29 1995-08-17 Procedimiento para producir xerogeles reforzado con fibra y su uso.
DE59504435T DE59504435D1 (de) 1994-08-29 1995-08-17 Verfahren zur herstellung von faserverstärkten xerogelen, sowie ihre verwendung
RU97104883A RU2146661C1 (ru) 1994-08-29 1995-08-17 Способ получения упрочненных волокнами ксерогелей и их применение
BR9508644A BR9508644A (pt) 1994-08-29 1995-08-17 Processo para preparação de xerogéis reforçados por fibra assim como sua aplicação
EP95929888A EP0778815B1 (de) 1994-08-29 1995-08-17 Verfahren zur herstellung von faserverstärkten xerogelen, sowie ihre verwendung
JP50845596A JP3897125B2 (ja) 1994-08-29 1995-08-17 繊維−強化キセロゲルを製造する方法およびそれらの使用
DK95929888T DK0778815T3 (da) 1994-08-29 1995-08-17 Fremgangsmåde til fremstilling af fiberforstærkede xerogeler samt deres anvendelse
PL95318900A PL180069B1 (pl) 1994-08-29 1995-08-17 Sposób wytwarzania kserozeli wzmocnionych wlóknem PL PL PL PL PL PL PL
AU33467/95A AU694797B2 (en) 1994-08-29 1995-08-17 Process for producing fibre-reinforced xerogels and their use
US08/793,543 US5866027A (en) 1994-08-29 1995-08-17 Process for producing fiber-reinforced xerogels and their use
NO19970867A NO312828B1 (no) 1994-08-29 1997-02-26 Fremgangsmåte for fremstilling av fiberforsterkende xerogeler samt anvendelse derav
FI970809A FI970809A (fi) 1994-08-29 1997-02-26 Menetelmä kuituvahvistettujen kserogeelien valmistamiseksi sekä niiden käyttö
GR990400583T GR3029487T3 (en) 1994-08-29 1999-02-25 Process for producing fibre-reinforced xerogels and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4430669A DE4430669A1 (de) 1994-08-29 1994-08-29 Verfahren zur Herstellung von faserverstärkten Xerogelen, sowie ihre Verwendung
DEP4430669.5 1994-08-29

Publications (1)

Publication Number Publication Date
WO1996006809A1 true WO1996006809A1 (de) 1996-03-07

Family

ID=6526851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003275 WO1996006809A1 (de) 1994-08-29 1995-08-17 Verfahren zur herstellung von faserverstärkten xerogelen, sowie ihre verwendung

Country Status (19)

Country Link
US (1) US5866027A (de)
EP (1) EP0778815B1 (de)
JP (1) JP3897125B2 (de)
KR (1) KR100366475B1 (de)
CN (1) CN1044597C (de)
AT (1) ATE174017T1 (de)
AU (1) AU694797B2 (de)
BR (1) BR9508644A (de)
CA (1) CA2198732A1 (de)
DE (2) DE4430669A1 (de)
DK (1) DK0778815T3 (de)
ES (1) ES2126926T3 (de)
FI (1) FI970809A (de)
GR (1) GR3029487T3 (de)
MX (1) MX9701587A (de)
NO (1) NO312828B1 (de)
PL (1) PL180069B1 (de)
RU (1) RU2146661C1 (de)
WO (1) WO1996006809A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877100A (en) * 1996-09-27 1999-03-02 Cabot Corporation Compositions and insulation bodies having low thermal conductivity
US6210751B1 (en) * 1995-11-09 2001-04-03 Cabot Corporation Process for preparing organically modified aerogels in which the salts formed are precipitated out
US6378229B1 (en) 1997-12-19 2002-04-30 Cabot Corporation Method for the sub-critical drying of lyogels to produce aerogels
US6481649B1 (en) 1997-05-02 2002-11-19 Cabot Corporation Method for granulating aerogels
US6620355B1 (en) 1997-05-02 2003-09-16 Cabot Corporation Method for compacting aerogels
US7297718B2 (en) 1998-01-14 2007-11-20 Cabot Corporation Method of producing substantially spherical lyogels in water insoluble silylating agents
JP2011080064A (ja) * 1997-01-24 2011-04-21 Cabot Corp 物体音および/または衝撃音減衰のためのエアロゲルの使用法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648798C2 (de) * 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
DE19726330C2 (de) * 1997-06-20 1999-07-29 Joerg Ortjohann Vakuum-Isolationspaneel, Verfahren zur Herstellung eines solchen Paneels und ein Verfahren zur Regelung der Wärmeströme
US6218325B1 (en) * 1997-08-11 2001-04-17 Honda Giken Kogyo Kabushiki Kaisha Fiber-reinforced ceramic green body and sindered ceramic article obtained therefrom
US6635331B2 (en) * 1998-03-23 2003-10-21 Ronald N. Kessler Universal mat with removable strips
DE59811774D1 (de) * 1998-06-05 2004-09-09 Cabot Corp Nanoporöse interpenetrierende organisch-anorganische netzwerke
IT1318617B1 (it) * 2000-07-10 2003-08-27 Novara Technology Srl Processo sol-gel per la produzione di geli secchi di grandidimensioni e vetri derivati.
CN1306993C (zh) * 2000-12-22 2007-03-28 思攀气凝胶公司 带有纤维胎的气凝胶复合材料
DE10065138C2 (de) * 2000-12-23 2002-10-31 Georg Grathwohl Verfahren zur Herstellung eines Aluminiumoxid-Werksückes mit definierter Porenstruktur im Niedertemperaturbereich sowie dessen Verwendungen
BRPI0410083B1 (pt) * 2003-05-06 2017-12-05 Aspen Aerogels, Inc. Tube-in-tube type apparatus for thermal isolation of a flow line
WO2006024010A2 (en) * 2004-08-24 2006-03-02 Aspen Aerogels, Inc. Aerogel-based vehicle thermalmanagement systems and methods
US7635411B2 (en) * 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
US8461223B2 (en) 2005-04-07 2013-06-11 Aspen Aerogels, Inc. Microporous polycyclopentadiene-based aerogels
US9469739B2 (en) 2005-04-07 2016-10-18 Aspen Aerogels, Inc. Microporous polyolefin-based aerogels
US20060264133A1 (en) * 2005-04-15 2006-11-23 Aspen Aerogels,Inc. Coated Aerogel Composites
US20060269734A1 (en) * 2005-04-15 2006-11-30 Aspen Aerogels Inc. Coated Insulation Articles and Their Manufacture
US9476123B2 (en) 2005-05-31 2016-10-25 Aspen Aerogels, Inc. Solvent management methods for gel production
WO2007011750A2 (en) 2005-07-15 2007-01-25 Aspen Aerogels, Inc. Secured aerogel composites and method of manufacture thereof
GB2431173B (en) * 2005-09-15 2010-01-13 Alexium Ltd Method for attachment of silicon-containing compounds to a surface
US8815351B2 (en) * 2005-09-15 2014-08-26 The United States Of America As Represented By The Secretary Of The Air Force Method for attachment of silicon-containing compounds to a surface and for synthesis of hypervalent silicon-compounds
US8455088B2 (en) * 2005-12-23 2013-06-04 Boston Scientific Scimed, Inc. Spun nanofiber, medical devices, and methods
WO2007140293A2 (en) 2006-05-25 2007-12-06 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
EP2180104A1 (de) 2008-10-21 2010-04-28 Rockwool International A/S Fassadenisolierungssystem
JP2011068526A (ja) * 2009-09-28 2011-04-07 Sumitomo Osaka Cement Co Ltd 多孔質酸化物粒子並びに多孔質酸化物粒子の水酸基及び吸着水の除去方法
WO2011066209A2 (en) 2009-11-25 2011-06-03 Cabot Corporation Aerogel composites and methods for making and using them
US8952119B2 (en) 2010-11-18 2015-02-10 Aspen Aerogels, Inc. Organically modified hybrid aerogels
US8906973B2 (en) 2010-11-30 2014-12-09 Aspen Aerogels, Inc. Modified hybrid silica aerogels
JP4860005B1 (ja) 2010-12-22 2012-01-25 ニチアス株式会社 断熱材及びその製造方法
US10344484B2 (en) 2011-01-17 2019-07-09 Basf Se Composite thermal insulation system
US9133280B2 (en) 2011-06-30 2015-09-15 Aspen Aerogels, Inc. Sulfur-containing organic-inorganic hybrid gel compositions and aerogels
FR2981341B1 (fr) 2011-10-14 2018-02-16 Enersens Procede de fabrication de xerogels
SI24001A (sl) 2012-02-10 2013-08-30 Aerogel Card D.O.O. Kriogena naprava za transport in skladiščenje utekočinjenih plinov
US9302247B2 (en) 2012-04-28 2016-04-05 Aspen Aerogels, Inc. Aerogel sorbents
US11053369B2 (en) 2012-08-10 2021-07-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
BR112015021190B1 (pt) 2013-03-08 2021-10-05 Aspen Aerogels, Inc Compósito de aerogel e painel laminado
CN103272539B (zh) * 2013-05-07 2015-08-12 李光武 减压干燥制备气凝胶的方法
FR3007025B1 (fr) 2013-06-14 2015-06-19 Enersens Materiaux composites isolants comprenant un aerogel inorganique et une mousse de melamine
US9434831B2 (en) 2013-11-04 2016-09-06 Aspen Aerogels, Inc. Benzimidazole based aerogel materials
US11380953B2 (en) 2014-06-23 2022-07-05 Aspen Aerogels, Inc. Thin aerogel materials
JP6738990B2 (ja) 2014-08-26 2020-08-12 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法
BR112017006480B1 (pt) 2014-10-03 2022-10-11 Aspen Aerogels, Inc. Compósito em aerogel reforçado e método para preparar um compósito em aerogel reforçado
CN106457749B (zh) * 2015-03-30 2018-09-14 松下知识产权经营株式会社 一种绝热片、使用其的电子设备及绝热片的制造方法
US11230475B2 (en) * 2016-02-15 2022-01-25 Panasonic Intellectual Property Management Co., Ltd. Hydrophobic treatment method and manufacturing method for sheet-like member using method
KR101955184B1 (ko) 2016-03-28 2019-03-08 주식회사 엘지화학 저분진 고단열 에어로겔 블랭킷의 제조방법
JP6960590B2 (ja) * 2017-02-28 2021-11-05 パナソニックIpマネジメント株式会社 複合材料およびその製造方法
WO2019035104A1 (en) * 2017-08-18 2019-02-21 Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet) REINFORCED COMPOSITE MATERIAL HAVING ENHANCED MECHANICAL AND THERMAL PROPERTIES AND METHOD OF OBTAINING THE SAME
KR102190889B1 (ko) * 2017-11-21 2020-12-14 주식회사 엘지화학 고단열 및 고강도 실리카 에어로겔 블랭킷 제조방법
US20210009780A1 (en) * 2018-03-28 2021-01-14 National University Of Singapore Polyethylene terephthalate (pet) aerogel
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3346180A1 (de) * 1983-12-21 1985-08-29 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Starrer waermedaemmkoerper
JPH0543344A (ja) * 1991-08-09 1993-02-23 Colloid Res:Kk アルミナ系多孔体の製造方法
WO1993006044A1 (en) * 1991-09-18 1993-04-01 Battelle Memorial Institute Aerogel matrix composites
WO1994025149A1 (en) * 1993-04-28 1994-11-10 University Of New Mexico Preparation of high porosity xerogels by chemical surface modification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249543B2 (de) * 1973-08-20 1977-12-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3346180A1 (de) * 1983-12-21 1985-08-29 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Starrer waermedaemmkoerper
JPH0543344A (ja) * 1991-08-09 1993-02-23 Colloid Res:Kk アルミナ系多孔体の製造方法
WO1993006044A1 (en) * 1991-09-18 1993-04-01 Battelle Memorial Institute Aerogel matrix composites
WO1994025149A1 (en) * 1993-04-28 1994-11-10 University Of New Mexico Preparation of high porosity xerogels by chemical surface modification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 119, no. 4, 26 July 1993, Columbus, Ohio, US; abstract no. 33157k *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210751B1 (en) * 1995-11-09 2001-04-03 Cabot Corporation Process for preparing organically modified aerogels in which the salts formed are precipitated out
US5877100A (en) * 1996-09-27 1999-03-02 Cabot Corporation Compositions and insulation bodies having low thermal conductivity
JP2011080064A (ja) * 1997-01-24 2011-04-21 Cabot Corp 物体音および/または衝撃音減衰のためのエアロゲルの使用法
US6481649B1 (en) 1997-05-02 2002-11-19 Cabot Corporation Method for granulating aerogels
US6620355B1 (en) 1997-05-02 2003-09-16 Cabot Corporation Method for compacting aerogels
US6378229B1 (en) 1997-12-19 2002-04-30 Cabot Corporation Method for the sub-critical drying of lyogels to produce aerogels
US7297718B2 (en) 1998-01-14 2007-11-20 Cabot Corporation Method of producing substantially spherical lyogels in water insoluble silylating agents

Also Published As

Publication number Publication date
RU2146661C1 (ru) 2000-03-20
JP3897125B2 (ja) 2007-03-22
EP0778815B1 (de) 1998-12-02
BR9508644A (pt) 1997-11-25
US5866027A (en) 1999-02-02
GR3029487T3 (en) 1999-05-28
CN1158598A (zh) 1997-09-03
AU3346795A (en) 1996-03-22
DE4430669A1 (de) 1996-03-07
MX9701587A (es) 1997-05-31
PL318900A1 (en) 1997-07-21
NO312828B1 (no) 2002-07-08
FI970809A0 (fi) 1997-02-26
DE59504435D1 (de) 1999-01-14
PL180069B1 (pl) 2000-12-29
JPH10504793A (ja) 1998-05-12
AU694797B2 (en) 1998-07-30
ES2126926T3 (es) 1999-04-01
ATE174017T1 (de) 1998-12-15
CN1044597C (zh) 1999-08-11
FI970809A (fi) 1997-02-26
KR970705525A (ko) 1997-10-09
EP0778815A1 (de) 1997-06-18
NO970867D0 (no) 1997-02-26
KR100366475B1 (ko) 2003-04-26
CA2198732A1 (en) 1996-03-07
NO970867L (no) 1997-02-26
DK0778815T3 (da) 1999-08-16

Similar Documents

Publication Publication Date Title
EP0778815B1 (de) Verfahren zur herstellung von faserverstärkten xerogelen, sowie ihre verwendung
EP0778814B1 (de) Aerogelverbundstoffe, verfahren zu ihrer herstellung sowie ihre verwendung
DE69732758T2 (de) Verfahren zur Herstellung eines Aerogels
DE19648798C2 (de) Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
EP0793627B1 (de) Aerogelhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
EP0859740B1 (de) Verfahren zur herstellung von organisch modifizierten aerogelen, bei dem die gebildeten salze ausgefällt werden
WO1996026890A2 (de) Verfahren zur herstellung hydrophiler oder teilweise hydrophiler, anorganischer aerogele
EP1093486B1 (de) Nanoporöse interpenetrierende organisch-anorganische netzwerke
DE112017001567T5 (de) Ein Schnellherstellungsverfahren für ein Aerogel mit einer Mikroemulsion als Prekursor
DE19548128A1 (de) Faservlies-Aerogel-Verbundmaterial enthaltend mindestens ein thermoplastisches Fasermaterial, Verfahren zu seiner Herstellung, sowie seine Verwendung
DE19648797A1 (de) Verfahren zur Herstellung von organisch modifizierten, dauerhaft hydrophoben Aerogelen
EP0672635A1 (de) Formkörper, enthaltend Silica-Aerogel-Partikel sowie Verfahren zu ihrer Herstellung
WO1996012683A1 (de) Aerogelhaltige zusammensetzung, verfahren zur ihrer herstellung sowie ihre verwendung
DE3890173C2 (de)
EP0861207A1 (de) Verfahren zur herstellung von organisch modifizierten aerogelen unter verwendung von alkoholen, bei dem die gebildeten salze ausgefällt werden
DE102012218548B4 (de) Verfahren zur Herstellung flexibler Aerogele auf Basis von Resorcin-Formaldehyd sowie mit diesem Verfahren erhältliche Aerogele
DE19721600A1 (de) Nanoporöse interpenetrierende organisch-anorganische Netzwerke
EP0925256A1 (de) Verfahren zur herstellung von organisch modifizierten aerogelen
DE19631267C1 (de) Verfahren zur Herstellung von organisch modifizierten Aerogelen
DE3000542C2 (de)
DE19523382A1 (de) Plättchenförmige, hydrophobe Kohlenstoffaerogele mit einer Faserverstärkung aus elektrisch nichtleitenden, anorganischen Materialien und ein Verfahren zu deren Herstellung
EP3491072B1 (de) Verfahren zur herstellung hydrophober silica formkörper
DE19537821A1 (de) Aerogelbeschichtete Folie
DE19606114A1 (de) Aerogelbeschichtete Folie
CH717558A1 (de) Aerogel-Verbundwerkstoffen, sowie Wärmedämmelement.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195325.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN FI JP KR MX NO PL RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995929888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08793543

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 970809

Country of ref document: FI

ENP Entry into the national phase

Ref document number: 2198732

Country of ref document: CA

Ref document number: 2198732

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970701252

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1995929888

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970701252

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995929888

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970701252

Country of ref document: KR