WO1996002315A1 - Verfahren zum reinigen von abgasen - Google Patents

Verfahren zum reinigen von abgasen Download PDF

Info

Publication number
WO1996002315A1
WO1996002315A1 PCT/EP1995/002839 EP9502839W WO9602315A1 WO 1996002315 A1 WO1996002315 A1 WO 1996002315A1 EP 9502839 W EP9502839 W EP 9502839W WO 9602315 A1 WO9602315 A1 WO 9602315A1
Authority
WO
WIPO (PCT)
Prior art keywords
rich gas
exhaust gas
adsorber
ammonia
gas
Prior art date
Application number
PCT/EP1995/002839
Other languages
English (en)
French (fr)
Inventor
Jürgen RITTER
Original Assignee
Fpr Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fpr Holding Ag filed Critical Fpr Holding Ag
Publication of WO1996002315A1 publication Critical patent/WO1996002315A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/60Isolation of sulfur dioxide from gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/82Preparation of sulfuric acid using a nitrogen oxide process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • C04B7/04Portland cement using raw materials containing gypsum, i.e. processes of the Mueller-Kuehne type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the invention relates to a method for cleaning exhaust gases loaded with at least S0 2 and nitrogen oxides, in particular waste incineration plants, in which the exhaust gas passes through an adsorber filled with regenerable active coke, the active coke of which is subjected to regeneration from time to time, the resulting process S0 2 -containing rich gas is subjected to a further treatment.
  • Denox process converted to nitrogen and water after the addition of ammonia, so that the exhaust gas at the end of the Denox treatment is largely free of pollutants.
  • the catalytic denitrification of the exhaust gas is complex in terms of plant technology and also expensive because of the use of expensive catalysts which have to be renewed from time to time.
  • the Denox treatment must be carried out at temperatures between 300 and 400 ° C, so that the exhaust gas which has cooled in the meantime has to be heated again.
  • the ammonia is preferably sprayed in the lower temperature range. Since the reactions take place more slowly, an approx. 3-fold stoichiometric excess has to be used.
  • the exhaust gas is passed through a solid filter into a multi-stage scrubber in which the excess ammonia is contained in the exhaust gas HCl, HF, S0 2 , etc. is washed out.
  • the ammonia is recovered from the waste water with a steam-operated stripping column after the waste water has previously been made weakly basic.
  • the HCl, HF and S0 2 contained in the exhaust gas are also neutralized and, after wastewater treatment, in which the heavy metals in particular are separated, introduced as salts into a receiving water or obtained as solids when the wastewater is evaporated, which may have to be disposed of.
  • This procedure cannot be used if, for example, one wants to produce a technically pure hydrochloric acid from the HCl or gypsum from the SO 2 .
  • the stripping system for the recovery of ammonia with the necessary auxiliary systems is complex, its operation costs a lot of energy and it must be driven carefully in order not to get incrustations from salt deposits in the stripper and to completely remove the ammonia from the waste water.
  • the method of the type mentioned at the outset is characterized according to the invention in that the exhaust gas is subjected to a Denox treatment at high temperature by entering ammonia, that excess ammonia together with the SO 2 in the adsorber it is adsorbed that the rich gas produced during the regeneration is subjected to a rich gas scrub to remove ammonia or ammonium compounds and that the SO 2 -containing rich gas leaving the rich gas scrub is subjected to further treatment.
  • the denox treatment of the hot exhaust gas by spraying in is therefore known per se
  • Ammonia In contrast to the previous Verfah reindeer, in which the excess ammonia wash Aus ⁇ exclusively by the gas stream has been withdrawn, is adsorbed ammonia in the adsorber for S0 2 in the inventive method. This is based on the knowledge that ammonia can be adsorbed on activated coke if there is sulfuric acid in the activated coke, since the ammonia forms ammonium sulfate with the sulfuric acid, which is dissolved in the sulfuric acid. Surprisingly, it is therefore possible to adsorb ammonia on activated coke if S0 2 is simultaneously adsorbed on this activated coke (in the form of H 2 S0 4 ).
  • the loaded active coke of the adsorber is subjected to regeneration, which is carried out in a manner known per se, oxygen-free at, for example, 650 ° C., so that any dioxins and furans adsorbed by the active coke are decomposed.
  • the rich gas generated during the regeneration contains S0 2 and ammonia released again.
  • the ammonia forms with the S0 2 ammonium sulfite present in the rich gas.
  • the washing water which is only withdrawn in small quantities from the rich gas scrub, and which contains the recovered excess ammonia in the form of ammonium sulfite, can be used together with ammonia spirit for the non-catalytic NO x reduction.
  • the S0 2 -containing rich gas at the outlet of the rich gas wash can be used in various ways. If mercury is still present in the rich gas, which is to be expected in particular in the case of waste incineration, the SO 2 and the mercury can be separated from one another and a sellable sulfuric acid can be produced from the SO 2 , as described in DE 40 12 887 C2 is.
  • S0 2 -containing rich gas Another possibility for using the S0 2 -containing rich gas is to use it directly in a process in which S0 2 -containing gases can be used for secondary products, such as for example in the production of cement clinker. If any residual mercury interferes with this, this can be eliminated by a small adsorber filled with regenerable activated coke, through which the SO 2 rich gas with SO 2 breakthrough is driven until a mercury loading suitable for regeneration is carried out is done is done. The correspondingly loaded activated coke can then be fed to the regeneration together with the activated coke from the main adsorber, the sink for the mercury component being the rich gas scrubbing.
  • FIG. 1 - a schematic representation of the inventive exhaust gas purification process
  • Figure 2 - a supplementary representation for the treatment of flying dust in a melting plant.
  • the process shown in FIG. 1 is composed of the actual exhaust gas purification 1, the regeneration 2 with a further treatment of the pollutants and a processing stage 3 for HCl-thin acid obtained.
  • Exhaust gas cleaning begins by spraying ammonia into the combustion boiler, which carries out the Denox treatment.
  • the exhaust gas then passes through a known solid filter and is passed through a heat exchanger which cools the exhaust gas through an adsorber which is filled with molded active coke (FAK) and is preferably in the form of a countercurrent reactor.
  • FAK molded active coke
  • S0 2 contained in the exhaust gas, mercury, dioxins, furans and residual dust as well as ammonium sulfate formed from sulfuric acid and ammonia are deposited in the adsorber and thus removed from the exhaust gas stream.
  • Appropriate dimensioning of the adsorber and suitable process control can achieve a practically 100% separation of the substances mentioned.
  • HCl passes through the adsorber practically unadsorbed. Any accumulated HCl traces are displaced by the addition of sulfuric acid.
  • the HCl is washed out in a known HCl scrubber, which produces an approx. 10% hydrochloric acid as thin acid.
  • the clean gas can be passed into a chimney and thus into the atmosphere via a heat exchanger.
  • FAK form activated coke
  • the loaded FAK passes into a FAK regeneration which is run in a sealed container free of oxygen with an inert gas of high temperature (for example 650 ° C.). At this temperature, stored dioxins and furans are destroyed and S0 2 , gaseous mercury and ammonia are released.
  • the rich gas originating from the regeneration is subjected to a rich gas wash in which the
  • Ammonium sulfite which has formed from ammonia and SO 2 , and any residual pollutants and mercury are separated from the SO 2 .
  • the metallic mercury is condensed out in the rich gas wash.
  • small amounts of Hg (I) chloride precipitate out as poorly soluble salts.
  • Metallic mercury and the Hg (I) chloride obtained are withdrawn from the bottom of the rich gas scrubber and fed to the mercury recovery.
  • the wash water which contains ammonia or ammonium sulfite, is fed into the boiler for spraying, i.e. used for denox treatment in the boiler.
  • the ammonium sulfite decomposes due to the temperature of over 850 ° C, so that ammonia is available in the required form.
  • the SO 2 -containing rich gas leaving the rich gas scrubbing is fed to a production of sulfuric acid, preferably a nitrogen oxide-sulfuric acid plant, in which hot nitrosylsulfuric acid destroys any dioxins and furans still present and any remaining mercury is dissolved as mercury sulfate and by adding a thiosulfate as HgS from the Sulfuric acid can be precipitated.
  • the precipitated HgS is brought to the smelting plant for airborne dusts and thermally decomposed in it, the mercury being released in metallic form and thus being recoverable. It comes with the exhaust gas from the melting plant into the raw gas of the thermal waste treatment plant and is adsorbed by the activated coke in the adsorber.
  • the molded active coke regenerated in the FAK regeneration returns to the adsorber and is thus recycled, with fresh coke only being required to reduce the active coke consumption resulting from abrasion and undersize and carbon consumption during the desorption of H 2 S0 4 and conversion to S0 2 to replace.
  • the thin acid obtained from the HCl scrubber is either concentrated in processing unit 3 to a salable 30% hydrochloric acid or worked up to salable NaCl or CaCl 2 .
  • the solids filtered off in the solids filter like the FAK undersize separated in the filter / classifier and the dust, are fed to a melting plant for airborne dust shown in FIG. After gas cooling and passing through a bag filter, the exhaust gas is added to the raw gas behind the solids filter.
  • Dust and any volatile heavy metals (not mercury) that can only be found in the exhaust gas in very small quantities can be separated in the bag filter.
  • the production of sulfuric acid can be dispensed with if the S0 2 rich gas leaving the rich gas scrubbing is fed directly, for example, to the production of cement clinker, in which sulfates are formed from the S0 2 .
  • the S0 2 rich gas can be passed through a small adsorber for clinker production, the adsorber not having the task of accumulating S0 2 , but only the mercury.
  • the adsorber is therefore breakthrough for S0 2 , and its operating time until regeneration is such that mercury is always always adsorbed.
  • the regeneration of the FAK of this auxiliary adsorber takes place together with the loaded FAK of the adsorber in exhaust gas cleaning 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Treating Waste Gases (AREA)

Abstract

Die Reinigung von mit wenigstens SO2 und Stickoxiden beladenen Abgasen, insbesondere von Müllverbrennungsanlagen, bei der das Abgas einen mit regenerierbaren Aktivkoks gefüllten Adsorber durchläuft, dessen Aktivkoks von Zeit zu Zeit einer Regeneration unterworfen wird, wobei das entstehende SO2-haltige Reichgas einer weiteren Behandlung unterworfen wird, läßt sich bezüglich der Entstickung kostengünstig und mit einfachem apparativem Aufwand dadurch gestalten, daß das Abgas vor Eintritt in den Adsorber bei hoher Temperatur durch Eingeben von Ammoniak einer Denox-Behandlung unterworfen wird, daß überschüssiges Ammoniak zusammen mit dem SO2 in dem Adsorber adsorbiert wird, daß das bei der Regeneration entstehende Reichgas einer Reichgaswäsche zum Entfernen von Ammoniak bzw. Ammoniumverbindungen unterzogen wird und daß das die Reichgaswäsche verlassende SO2-haltige Reichgas der weiteren Behandlung unterzogen wird.

Description

Verfahren zum Reinigen von Abgasen
Die Erfindung betrifft ein Verfahren zum Reinigen von mit wenigstens S02 und Stickoxiden beladenen Abgasen, insbesondere von Müllverbrennungsanlagen, bei dem das Abgas einen mit re¬ generierbarem Aktivkoks gefüllten Adsorber durchläuft, dessen Aktivkoks von Zeit zu Zeit einer Regeneration unterworfen wird, wobei das dabei entstehende S02-haltige Reichgas einer weiteren Behandlung unterworfen wird.
Ein derartiges Verfahren ist durch DE 40 12 887 C2 bekannt. Das aus dem Kessel einer Müllverbrennungsanlage austretende Abgas gelangt über einen Feststoffilter in einen mit regenerierbarem Aktivkoks gefüllten Adsorber, wo S02, Quecksilber, Dioxine, Furane und Reststaub abgeschieden werden. Das den Adsorber ver¬ lassende Gas enthält noch HC1 sowie Stickoxide. Das HC1 wird ausgewaschen. Die Stickoxide werden in einem katalytischen
Denox-Verfahren nach Zugabe von Ammoniak zu Stickstoff und Was¬ ser umgesetzt, so daß das Abgas am Ende der Denox-Behandlung weitgehend Schadstofffrei ist. Die katalytische Entstickung des Abgases ist anlagentechnisch aufwendig und wegen des Einsatzes teurer Katalysatoren, die von Zeit zu Zeit erneuert werden müs¬ sen, auch kostspielig. Darüber hinaus muß die Denox-Behandlung bei Temperaturen zwischen 300 und 400 °C durchgeführt werden, so daß das zwischenzeitlich abgekühlte Abgas wieder aufgeheizt werden muß.
INAL UNTERLAGEN Es ist ferner bekannt, daß eine NOx-Reduktion auch ohne Einsatz von Katalysatoren möglich ist. Bei diesem nichtkatalytischen Verfahren wird Ammoniak in Form von Salmiakgeist (24 bis 25 % NH3) in einem definierten Temperaturbereich zwischen 850 °C und 1000 °C - bei Müllverbrennungsanlagen beispielsweise im oberen Kesselbereich - eingesprüht, um die Umsetzung ablaufen zu las¬ sen. Zur Erzielung einer sicheren und bei hohen NOx-Konzen- trationen möglichst hohen Umsetzungsleistung, wird Ammoniak überstöchiometrisch eingesprüht. Die Größe der Ammoniakzugabe hängt aber auch von der Temperatur ab, bei der die Reaktion ablaufen soll. Um ein Verbrennen von Ammoniak und damit eine verminderte Entstickungsleistung bei Temperaturen über 1000 °C zu vermeiden, sprüht man das Ammoniak vorzugsweise im unteren Temperaturbereich ein. Da dort die Reaktionen träger ablaufen, muß man mit einem ca. 3fachen stöchiometrischen Überschuß fah¬ ren. Zur Rückgewinnung des Ammoniaküberschusses wird das Abgas über einen Feststoffilter in einen mehrstufigen Wäscher einge¬ leitet, in der das überschüssige Ammoniak mit dem im Abgas ent¬ haltenen HCl, HF, S02 usw. ausgewaschen wird. Aus dem Abwasser wird das Ammoniak mit einer dampfbetriebenen Strippkolonne zu¬ rückgewonnen, nachdem das Abwasser vorher schwach basisch ge¬ stellt wurde. Die im Abgas enthaltenen HCl, HF und S02 werden ebenfalls neutralisiert und nach einer Abwasserreinigung, in der vor allem die Schwermetalle abgeschieden werden, als Salze in einen Vorfluter eingeleitet oder bei Eindampfung des Abwassers als Feststoffe erhalten, die ggf. deponiert werden müssen. Diese Verfahrensweise ist nicht anwendbar, wenn man aus dem HCl bei¬ spielsweise eine technisch reine Salzsäure oder aus dem S02 Gips herstellen will. Außerdem ist die Strippanlage zur Rückgewinnung von Ammoniak mit den erforderlichen Nebenanlagen aufwendig, ihr Betrieb kostet viel Energie und sie muß sorgfältig gefahren werden, um im Stripper keine Verkrustungen durch Salzanlagerun¬ gen zu erhalten und um das Ammoniak aus dem Abwasser restlos zu entfernen.
Das sich aus den bekannten Verfahren stellende Problem besteht darin, daß entweder ein teurer Katalysator für die Entstickung und Energie zur Wiederaufheizung des Abgases benötigt wird oder durch die Durchführung der Entstickung des von den anderen Schadstoffen noch nicht befreiten Abgases Probleme für die Wie¬ dergewinnung des überschüssigen Ammoniaks entstehen und eine Rückgewinnung von etwaigem HCl und von S02 als Wertstoffe nicht praktikabel ist.
Ausgehend von dieser Problemstellung ist das Verfahren der ein¬ gangs erwähnten Art erfindungsgemäß dadurch gekennzeichnet, daß das Abgas vor Eintritt in den Adsorber bei hoher Temperatur durch Eingeben von Ammoniak einer Denox-Behandlung unterworfen wird, daß überschüssiges Ammoniak zusammen mit dem S02 in dem Adsorber adsorbiert wird, daß das bei der Regeneration entste¬ hende Reichgas einer Reichgaswäsche zum Entfernen von Ammoniak bzw. Ammoniumverbindungen unterzogen wird und daß das die Reich¬ gaswäsche verlassende S02-haltige Reichgas der weiteren Behand¬ lung unterzogen wird.
Erfindungsgemäß wird daher in an sich bekannter Weise die Denox-Behandlung des heißen Abgases durch Einsprühen von
Ammoniak vorgenommen. Im Unterschied zu den bisherigen Verfah¬ ren, bei denen das Überschuß-Ammoniak ausschließlich durch Aus¬ waschen dem Gasstrom entzogen worden ist, wird bei dem erfin¬ dungsgemäßen Verfahren das Ammoniak in dem Adsorber für S02 adsorbiert. Dem liegt die Erkenntnis zugrunde, daß an Aktivkoks Ammoniak adsorbierbar ist, wenn sich im Aktivkoks Schwefelsäure befindet, da das Ammoniak mit der Schwefelsäure Ammoniumsulfat bildet, das in der Schwefelsäure gelöst ist. Überraschenderweise ist es daher möglich, Ammoniak an Aktivkoks zu adsorbieren, wenn gleichzeitig S02 an diesem Aktivkoks (in Form von H2S04) adsor¬ biert wird. Dadurch gelingt es, das Überschuß-Ammoniak vollstän¬ dig aus dem Gasstrom zu entfernen und von weiteren, nicht adsor¬ bierbaren Komponenten, wie beispielsweise HCl und HF, zu tren¬ nen. Das überschüssige Ammoniak bildet zudem mit dem im Abgas immer enthaltenen S03 schon vor Eintritt in den Adsorber Ammoni¬ umsulfat, das vom Aktivkoks adsorbiert wird. Hierdurch wird der Säuretaupunkt des Abgases unter die Betriebstemperatur des Ad- sorbers gesenkt. Bildet sich außerdem mit dem S02 in kleinen Mengen Ammoniumsulfit, so wird dieses auf dem Aktivkoks in Anwe¬ senheit von Schwefelsäure zu Ammoniumsulfat umgewandelt. Sollten sich außerdem vor Eintritt in den Adsorber noch kleine Mengen von Ammoniumchlorid oder Ammoniumfluorid bilden, so werden diese auf dem Aktivkoks durch die Schwefelsäure zu Ammoniumsulfat umgebildet. HCl und HF werden dabei freigesetzt und treten durch den Adsorber hindurch. Die Entfernung von HCl und HF aus dem Gasstrom erfolgt in einem mehrstufigen HCl-Wäscher, aus dem Dünnsäure abgezogen wird, aus der aufkonzentrierte Salzsäure, NaCl oder CaCl2 in verwertbarer Form gewinnbar sind. Am Ausgang des Wäschers steht dann ein Reingas an, das ohne den Einsatz einer weiteren Gasreinigungsanlage ins Freie geleitet werden kann. Der beladene Aktivkoks des Adsorbers wird erfindungsgemäß einer Regeneration unterzogen, die in an sich bekannter Weise Sauerstofffrei bei beispielsweise 650 °C vorgenommen wird, so daß etwaige vom Aktivkoks adsorbierte Dioxine und Furane zer¬ setzt werden. Das bei der Regeneration entstehende Reichgas enthält S02 und wieder freigewordenes Ammoniak. Das Ammoniak bildet mit dem im Reichgas vorhandenen S02 Ammoniumsulfit. Das aus der Reichgaswäsche nur in kleinen Mengen abgezogene Wasch¬ wasser, das das zurückgewonnene überschüssige Ammoniak in Form von Ammoniumsulfit enthält, kann zusammen mit Salmiakgeist für die nichtkatalytische NOx-Reduktion eingesetzt werden. Das S02- haltige Reichgas am Ausgang der Reichgaswäsche kann in verschie¬ dener Weise verwendet werden. Sofern in dem Reichgas noch Quecksilberanteile vorhanden sind, was insbesondere bei Müll¬ verbrennungen zu erwarten ist, können das S02 und das Quecksilber voneinander getrennt werden und aus dem S02 eine verkaufsfähige Schwefelsäure hergestellt werden, wie dies in der DE 40 12 887 C2 beschrieben ist.
Es ist ferner möglich, das S02-haltige Reichgas einer Stickoxid- Schwefelsäureanlage zuzuführen, in der verkaufsfähige Schwefel- säure produziert wird, wie dies in der DE 41 27 075 AI offenbart ist. Etwaige Quecksilberanteile werden bei diesem Verfahren als Quecksilbersulfid abgeschieden und können zu elementarem Queck- silber zurückgewonnen werden. Ein bei diesem Verfahren entste¬ hendes Abgas kann dem erfindungsgemäß zu behandelnden Rohgas nach der Denox-Behandlungsstufe zugeführt werden.
Eine weitere Möglichkeit zur Verwendung des S02-haltigen Reich¬ gases besteht darin, dieses unmittelbar in einem Verfahren zu verwenden, bei dem für Folgeprodukte S02-haltige Gase verwendbar sind, wie beispielsweise bei der Herstellung von Zementklinkern. Sofern ein etwaiger Restanteil von Quecksilber hierfür stört, kann dieser durch einen kleinen, mit regenerierbarem Aktivkoks gefüllten Adsorber beseitigt werden, durch den das S02-Reichgas mit S02-Durchbruch so lange gefahren wird, bis eine zur Re¬ generation geeignete Beladung mit Quecksilber erfolgt ist. Der entsprechend beladene Aktivkoks kann dann der Regeneration zu- sammen mit dem Aktivkoks aus dem Hauptadsorber zugeführt werden, wobei die Senke für den Quecksilberanteil in der Reichgaswäsche besteht.
Die Erfindung soll im folgenden anhand eines in der Zeichnung dargestellten Ausführungsbeispieles erläutert werden. Es zeigen:
Figur 1 - eine schematische Darstellung des erfindungs¬ gemäßen Abgasreinigungsverfahrens
Figur 2 - eine ergänzende Darstellung für die Behandlung von Flugstaub in einer Einschmelzanlage.
Das in Figur 1 dargestellte Verfahren setzt sich zusammen aus der eigentlichen Abgasreinigung 1, der Regeneration 2 mit einer weiteren Behandlung der Schadstoffe und einer Ver¬ arbeitungsstufe 3 für gewonnene HCl-Dünnsäure.
Die Abgasreinigung beginnt durch Einsprühen von Ammoniak in den Verbrennungskessel, wodurch die Denox-Behandlung durchgeführt wird. Anschließend durchläuft das Abgas einen bekannten Fest¬ stoffilter und wird über einen eine Abkühlung des Abgases her- beiführenden Wärmetauscher durch einen Adsorber geleitet, der mit Formaktivkoks (FAK) gefüllt und vorzugsweise in Form eines Gegenstromreaktors ausgebildet ist. In dem Adsorber werden im Abgas enthaltenes S02, Quecksilber, Dioxine, Furane und Reststaub sowie aus Schwefelsäure und Ammoniak gebildetes Ammoniumsulfat angelagert und so dem Abgasstrom entzogen. Durch eine geeignete Dimensionierung des Adsorbers und eine geeignete Verfahrensfüh- rung läßt sich eine praktisch 100 %ige Abscheidung der genannten Stoffe erreichen.
Den Adsorber durchwandert HCl praktisch unadsorbiert. Etwaige angelagerte HCl-Spuren werden durch die Anlagerung von Schwe¬ felsäure verdrängt. Das HCl wird in einem an sich bekannten HCl- Wäscher ausgewaschen, wodurch eine ca. 10 %ige Salzsäure als Dünnsäure entsteht. Über einen Wärmetauscher kann das Reingas in einen Kamin, und damit in die Atmosphäre, geleitet werden. Sobald der Formaktivkoks (FAK) ausreichend mit Schadstoffen beladen ist, wird er aus dem Adsorber entnommen und durch unbeladenen FAK ersetzt. Der beladene FAK gelangt nach Abtren¬ nung von Unterkorn und Staub in einem Filter/Sichter in eine FAK-Regeneration, die in einem abgeschlossenen Behälter Sauer¬ stofffrei mit einem Inertgas hoher Temperatur (beispielsweise 650 °C) gefahren wird. Bei dieser Temperatur werden angela¬ gerte Dioxine und Furane zerstört und S02, gasförmiges Hg und Ammoniak freigesetzt. Das aus der Regeneration stammende Reichgas wird einer Reichgaswäsche unterzogen, in der das
Ammoniumsulfit, das sich aus Ammoniak und S02 gebildet hat, und etwaige Restschadstoffe sowie Quecksilber vom S02 getrennt wer¬ den. Das metallische Quecksilber wird in der Reichgaswäsche auskondensiert. Außerdem fallen kleine Mengen an Hg(I)-Chlorid als schwerlösliche Salze aus. Metallisches Quecksilber und das angefallene Hg(I)-Chlorid werden aus dem Sumpf der Reichgas¬ wäsche abgezogen und der Quecksilberrückgewinnung zugeführt. Das Waschwasser, das Ammoniak bzw. Ammoniumsulfit enthält, wird zum Einsprühen in den Kessel geleitet, also zur Denox-Behandlung im Kessel mitverwendet. Das Ammoniumsulfit zersetzt sich dabei aufgrund der Temperaturen von über 850 °C, so daß Ammoniak in der benötigten Form zur Verfügung steht.
Das die Reichgaswäsche verlassende S02-haltige Reichgas wird einer Schwefelsäureherstellung zugeführt, vorzugsweise einer Stickoxid-Schwefelsäureanlage, in der heiße Nitrosylschwefel- säure etwaige noch vorhandene Dioxine und Furane zerstört und etwaiges restliches Quecksilber als Quecksilbersulfat gelöst wird und durch Zugabe eines Thiosulfats als HgS aus der Schwe- feisäure ausgefällt werden kann. Das ausgefällte HgS wird zur Einschmelzanlage für Flugstäube gebracht und in ihr thermisch zersetzt, wobei das Quecksilber in metallischer Form freigesetzt und damit rückgewinnbar wird. Es gelangt mit dem Abgas der Ein¬ schmelzanlage in das Rohgas der thermischen Abfallbehandlungs- anläge und wird im Adsorber vom Aktivkoks adsorbiert. In dem hinter der Einschmelzanlage eingesetzten Schlauchfilter werden andere leichtflüchtige Schwermetalle, die nicht in die Schmelze gehen, abgeschieden und aus dem System ausgeschleust. Am Ausgang der Schwefelsäureherstellung steht eine hochreine, verkaufs¬ fähige 75 bis 78 %ige Schwefelsäure zur Verfügung, die ggf. zu einer 37 %igen Schwefelsäure verdünnt als Akkusäure vermarktet werden kann. Das bei der Schwefelsäureherstellung entstehende Abgas wird dem Rohgas am Ausgang des Kessels zugemischt, also in die Abgasreinigung 1 eingeleitet.
Der in der FAK-Regeneration regenerierte Formaktivkoks gelangt wieder in den Adsorber und wird somit im Kreislauf geführt, wobei eine Frischkokszugabe lediglich erforderlich ist, um den Aktivkoksverbrauch, resultierend aus Abrieb und Unterkorn sowie Kohlenstoffverbrauch bei der Desorption von H2S04 und Umwandlung zu S02, zu ersetzen.
Die aus dem HCl-Wäscher gewonnene Dünnsäure wird in der Verar¬ beitungsanlage 3 entweder zu einer verkaufsfähigen 30 %igen Salzsäure aufkonzentriert oder zu verkaufsfähigem NaCl oder CaCl2 aufgearbeitet.
Die im Feststoffilter abgefilterten Feststoffe werden, ebenso wie das im Filter/Sichter abgetrennte FAK-Unterkorn und der Staub einer in Figur 2 dargestellten Einschmelzanlage für Flugstaub zugeführt. Das Abgas wird nach einer Gaskühlung und Passieren eines Schlauchfilters dem Rohgas hinter dem Feststof- filter hinzugefügt.
Im Schlauchfilter können Staub und etwaige leichtflüchtige Schwermetalle (nicht Quecksilber) abgeschieden werden, die re- gelmäßig nur in sehr geringen Mengen im Abgas enthalten sind.
Es wird deutlich, daß die Abgasreinigung das in die Atmosphäre geleitete Reingas produziert und im übrigen die Rückgewinnung verkaufsfähiger oder wiederverwendbarer Produkte (Salzsäure, Schwefelsäure, Quecksilber) ermöglicht. Anfallendes Waschwasser und das Abgas aus der Schwefelsäureproduktion verbleiben im System, ohne daß es zu einer Aufkonzentration von Schadstoffen kommen kann. Deponiestoffe fallen nicht, jedenfalls nicht in nennenswertem Umfang an.
Auf die Schwefelsäureherstellung kann ggf. verzichtet werden, wenn das die Reichgaswäsche verlassende S02-Reichgas direkt beispielsweise einer Herstellung von Zementklinkern zugeführt wird, bei der aus dem S02 Sulfate gebildet werden. Sofern mit nicht vernachlässigbaren Rest-Quecksilbergehalten zu rechnen ist, kann das S02-Reichgas über einen kleinen Adsorber zur Klinkerherstellung geleitet werden, wobei der Adsorber nicht die Aufgabe hat, S02 anzulagern, sondern ausschließlich das Queck¬ silber. Der Adsorber wird daher für S02 im Durchbruch gefahren, und seine Einsatzzeit bis zur Regeneration ist so bemessen, daß mit Sicherheit Quecksilber immer adsorbiert wird. Die Regenera- tion des FAK dieses Hilfsadsorbers erfolgt zusammen mit dem beladenen FAK des Adsorbers in der Abgasreinigung 1.

Claims

Patentansprüche
1. Verfahren zum Reinigen von mit wenigstens S02 und Stick¬ oxiden beladenen Abgasen, insbesondere von Müllverbren¬ nungsanlagen, bei dem das Abgas einen mit regenerierba¬ rem Aktivkoks gefüllten Adsorber durchläuft, dessen Aktivkoks von Zeit zu Zeit einer Regeneration unterwor¬ fen wird, wobei das dabei entstehende S02-haltige Reich¬ gas einer weiteren Behandlung unterworfen wird, dadurch gekennzeichnet, daß das Abgas vor Eintritt in den Adsor¬ ber bei hoher Temperatur durch Eingeben von Ammoniak einer Denox-Behandlung unterworfen wird, daß überschüs¬ siges Ammoniak zusammen mit dem S02 in dem Adsorber ad¬ sorbiert wird, daß das bei der Regeneration entstehende Reichgas einer Reichgaswäsche zum Entfernen von Ammoniak bzw. Ammoniumverbindungen unterzogen wird und daß das die Reichgaswäsche verlassende S02-haltige Reichgas der weiteren Behandlung unterzogen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zwischen der Denox-Behandlung und dem Einleiten in den Adsorber Feststoffe aus dem Abgas ausgefiltert werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die Regeneration Sauerstofffrei bei Temperatu- ren vorgenommen wird, bei denen an dem Aktivkoks angela¬ gerte Dioxine und Furane zersetzt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch ge- kennzeichnet, daß bei der Reichgaswäsche ausgefälltes
Quecksilber bzw. ausgefällte quecksilberhaltige Verbin¬ dungen zur Gewinnung von reinem Quecksilber abgezogen werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch ge¬ kennzeichnet, daß das am Ausgang der Reichgaswäsche an¬ stehende S02-haltige Reichgas zur Herstellung von Ver¬ kaufsfähiger Schwefelsäure behandelt wird.
6. Verfahren nach Anspruch 5, gekennzeichnet durch die Ver¬ wendung einer Stickoxid-Schwefelsäureanlage zur Herstel¬ lung der Schwefelsäure.
7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch ge- kennzeichnet, daß das S02-haltige Reichgas einem Herstel¬ lungsprozeß für Folgeprodukte zugeführt wird, in dem S02 in ein in den Folgeprodukten verwendetes Salz umgewan¬ delt wird.
8. Verfahren nach Anspruch 7, gekennzeichnet durch die Ver¬ wendung des S02-haltigen Reichgases bei der Herstellung von Zementklinkern.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch ge- kennzeichnet, daß das zur Reichgaswäsche benutzte Wasch¬ wasser zur Denox-Behandlung verwendet wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem das Abgas zusätzlich mit HCl beladen ist, dadurch gekenn- zeichnet, daß im Anschluß an den Adsorber das HCl-Gas mit Wasser ausgewaschen wird und daß das Abgas nach der Wäsche ins Freie geleitet wird.
PCT/EP1995/002839 1994-07-19 1995-07-19 Verfahren zum reinigen von abgasen WO1996002315A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4425471.7 1994-07-19
DE4425471A DE4425471A1 (de) 1994-07-19 1994-07-19 Verfahren zum Reinigen von Abgasen

Publications (1)

Publication Number Publication Date
WO1996002315A1 true WO1996002315A1 (de) 1996-02-01

Family

ID=6523551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/002839 WO1996002315A1 (de) 1994-07-19 1995-07-19 Verfahren zum reinigen von abgasen

Country Status (2)

Country Link
DE (1) DE4425471A1 (de)
WO (1) WO1996002315A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000243A1 (en) * 1984-06-28 1986-01-16 Bergwerksverband Gmbh PROCESS FOR SEPARATING SO2 and NOx
WO1987001963A1 (en) * 1985-10-05 1987-04-09 Perfluktiv Technik Ag Process for reducing the content of noxious matter in dust-containing flue or process gases
DE3602710A1 (de) * 1986-01-30 1987-08-06 Petersen Hugo Verfahrenstech Verfahren zum regenerieren von mit schwefelsaeure und mit ammoniumsulfaten beladenem koernigem kohlenstoffhaltigem adsorptionsmittel
DE4012887A1 (de) * 1990-04-23 1991-10-31 Nymic Anstalt Verfahren zur reinigung von abgasen, insbesondere aus abfallverbrennungsanlagen
DE4127075A1 (de) * 1991-08-16 1993-02-18 Nymic Anstalt Verfahren zum reinigen von belasteten abgasen von verbrennungsanlagen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1594674A1 (de) * 1966-05-12 1971-04-22 Bergwerksverband Gmbh Verfahren zur Entfernung von Schwefeloxiden aus solche enthaltenden Gasen
DE3724666C1 (en) * 1987-07-25 1989-02-23 Rheinische Braunkohlenw Ag Process for the denitration of flue gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000243A1 (en) * 1984-06-28 1986-01-16 Bergwerksverband Gmbh PROCESS FOR SEPARATING SO2 and NOx
WO1987001963A1 (en) * 1985-10-05 1987-04-09 Perfluktiv Technik Ag Process for reducing the content of noxious matter in dust-containing flue or process gases
DE3602710A1 (de) * 1986-01-30 1987-08-06 Petersen Hugo Verfahrenstech Verfahren zum regenerieren von mit schwefelsaeure und mit ammoniumsulfaten beladenem koernigem kohlenstoffhaltigem adsorptionsmittel
DE4012887A1 (de) * 1990-04-23 1991-10-31 Nymic Anstalt Verfahren zur reinigung von abgasen, insbesondere aus abfallverbrennungsanlagen
DE4127075A1 (de) * 1991-08-16 1993-02-18 Nymic Anstalt Verfahren zum reinigen von belasteten abgasen von verbrennungsanlagen

Also Published As

Publication number Publication date
DE4425471A1 (de) 1996-01-25

Similar Documents

Publication Publication Date Title
EP0553337B1 (de) Verfahren zum reinigen von belasteten abgasen von verbrennungsanlagen
EP0664146A2 (de) Verfahren zur Reinigung von Abgasen der Abfallverbrennung
DE112006001647T5 (de) Abgasbehandlungsverfahren unter Entfernung von Quecksilber
DE3629817A1 (de) Verfahren zur verringerung der schadstoffemisionen von kraftwerken mit kombinierten gas-/dampfturbinenprozessen mit vorgeschalteter kohlevergasung
DE102005001595A1 (de) Verfahren zum Reinigen von Abgasen eines Glasschmelzprozesses, insbesondere für Gläser für LCD-Bildschirme
AT511543B1 (de) Verfahren und vorrichtung zur quecksilberabscheidung bei der zementklinkerherstellung
EP0478744B1 (de) Verfahren zur reinigung von abgasen, insbesondere aus abfallverbrennungsanlagen
EP2411123B1 (de) Verfahren zur behandlung von schwefeloxide enthaltenden abgasen
DE3706131A1 (de) Verfahren zur entfernung von schadstoffen aus rauchgas
EP0453005B1 (de) Abgas-Reinigungsverfahren
WO1996002315A1 (de) Verfahren zum reinigen von abgasen
DE4431558C2 (de) Verfahren zur Entfernung von Schadstoffen aus Verbrennungsabgasen
WO2014127980A1 (de) Vorrichtung und verfahren zur aufbereitung eines gasstroms und insbesondere zur aufbereitung eines rauchgasstroms
DE3117794C2 (de) Verfahren zur Feinreinigung von Gasen
EP2340885A1 (de) Verfahren und Anlage zur Rauchgas-Reinigung
DE19638584C2 (de) Verfahren zur Abscheidung von Staub aus einem staubhaltigen und wasserdampfhaltigen Abgas in einem filtrierenden Abscheider
DD247613A5 (de) Verfahren zur reduzierung der emissionswerte von industriellen abgasen und industrieller abluft
DE4216772A1 (de) Verfahren zur Reinigung von Gasen und Abgasen mit Oxidationsmitteln
DE4333039C2 (de) Verfahren zum Reinigen eines im wesentlichen sauerstofffreien, brennbaren Gases
AT394955B (de) Verfahren zur reinigung von rauchgasen
WO1993004765A1 (de) Verfahren zur reinigung von rauchgas
DE4035205A1 (de) Verfahren zur reinigung von abgasen in einem oxidierenden waschverfahren mit h202
DE4422924C2 (de) Verfahren zur Reinigung eines Abgasstromes aus einer Verbrennungsanlage
EP0716677A1 (de) Verfahren zum reinigen eines im wesentlichen sauerstofffreien, brennbaren gases
DE4404997A1 (de) Verfahren zum Reinigen eines im wesentlichen sauerstofffreien, brennbaren Gases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase