WO1995031036A1 - Amplificateur accorde - Google Patents

Amplificateur accorde Download PDF

Info

Publication number
WO1995031036A1
WO1995031036A1 PCT/JP1995/000880 JP9500880W WO9531036A1 WO 1995031036 A1 WO1995031036 A1 WO 1995031036A1 JP 9500880 W JP9500880 W JP 9500880W WO 9531036 A1 WO9531036 A1 WO 9531036A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
circuit
phase shift
resistor
shift circuit
Prior art date
Application number
PCT/JP1995/000880
Other languages
English (en)
French (fr)
Inventor
Takeshi Ikeda
Tadataka Ohe
Original Assignee
Takeshi Ikeda
Tadataka Ohe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeshi Ikeda, Tadataka Ohe filed Critical Takeshi Ikeda
Priority to AU23538/95A priority Critical patent/AU2353895A/en
Priority to DE69524091T priority patent/DE69524091T2/de
Priority to EP95917516A priority patent/EP0763886B1/en
Priority to JP7528840A priority patent/JP2808549B2/ja
Publication of WO1995031036A1 publication Critical patent/WO1995031036A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • H03F3/1935High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices with junction-FET devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/408Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising three power stages

Definitions

  • the present invention relates to a tuning amplifier that can be easily integrated, and more particularly to a tuning amplifier that can arbitrarily adjust a tuning frequency and a maximum attenuation without interfering with each other.
  • adjusting the tuning frequency changes the maximum attenuation
  • adjusting the maximum attenuation changes the tuning frequency.Therefore, adjust the tuning frequency and the maximum attenuation without interfering with each other. Was extremely difficult.
  • the tuning amplifier according to the present invention includes a conversion unit that converts an AC signal input via an input impedance into an in-phase and an out-of-phase AC signal and outputs the converted signal, a first reactance element that converts the two converted AC signals, and A first phase shift circuit comprising means for synthesizing and phase shifting via the first resistor, and converting the AC signal shifted by the first phase shift circuit into an in-phase and an anti-phase AC signal.
  • a conversion means for converting and outputting, and a means for synthesizing the two converted AC signals via a second reactance element and a second resistor to shift the phase and are the same as the first phase shift circuit described above.
  • a second phase shift circuit that shifts the phase in the direction, a phase inversion circuit that inverts the phase of the output of the second phase shift circuit and outputs the output, and outputs the output of the phase inversion circuit to the first And a circuit for returning to the input of the conversion means of the phase shift circuit.
  • a conversion unit that converts an AC signal input via an input impedance into an in-phase and an out-of-phase AC signal and outputs the same, and converts the two converted AC signals into a first reactance element and a first resistor.
  • a first phase-shift circuit comprising means for synthesizing and phase-shifting the signals through the first phase-shift circuit, and a converter for converting the AC signal phase-shifted by the first phase-shift circuit into an in-phase and a reverse-phase AC signal and outputting the same. And a means for combining the two converted AC signals via the second reactance element and the second resistor to shift the phase, and the phase is shifted in the opposite direction to the first phase shift circuit.
  • FIG. 1 is a circuit diagram showing a first embodiment of the tuning amplifier of the present invention
  • FIG. 2 is a circuit diagram showing the tuned amplifier of the present invention by a transfer function K,
  • FIG. 3 is an equivalent circuit diagram of the phase shift circuit in the circuit shown in FIG. 1,
  • FIG. 4 is a circle diagram showing the phase shift state of the circuit shown in FIG. 3,
  • FIG. 5 is a characteristic curve diagram showing the relationship between the ratio n between the input resistance value and the feedback resistance value in the circuit shown in FIG. 1 and the maximum attenuation,
  • FIG. 6 is a circuit diagram showing a second embodiment of the tuning amplifier of the present invention.
  • FIG. 7 is an equivalent circuit diagram of the phase shift circuit in the circuit shown in FIG. 6,
  • FIG. 8 is a circle diagram showing the phase shift state of the circuit shown in FIG. 7,
  • FIG. 9 is a circuit diagram showing a third embodiment of the tuning amplifier of the present invention.
  • FIG. 10 is a circuit diagram showing a fourth embodiment of the tuning amplifier of the present invention.
  • FIG. 11 is a circuit diagram showing a fifth embodiment of the tuning amplifier of the present invention.
  • FIG. 12 is a circuit diagram showing a sixth embodiment of the tuning amplifier of the present invention.
  • FIG. 13 is a circuit diagram showing another embodiment of the tuning amplifier of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the tuned amplifier of the present invention comprises a first cascaded phase shift circuit.
  • a resistor R 0 serving as a feedback impedance connected between the output terminal 6 of the circuit 3 and the addition point 5 and a DC blocking capacitor C 0 are connected in series.
  • the two phase shift circuits 1C and 2C have almost the same configuration, and are connected between the FET (F1, F2) having the gate electrode G, the drain electrode D, and the source electrode S, and between the positive power supply and the drain electrode D. And a resistor Rs connected between the negative power supply and the source electrode S, a capacitor C as a reactance element connected to the drain electrode D, and a variable resistor R connected to the source electrode S. The output side of C and the variable resistor R are connected in common. The resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have substantially the same resistance value.
  • the phase inversion circuit 3 includes a FET (F3) having a gate electrode G, a drain electrode D, and a source electrode S, a resistor connected between a positive power supply and a drain electrode D, a negative power supply and a source electrode S.
  • the resistance rd on the drain electrode side is set to a resistance value (rd> rs) larger than the resistance rs on the source electrode side so that the amplification factor is greater than 1. Have been.
  • the gate electrode G of the FET (Fl) in the first phase shift circuit 1C serves as an addition point 5 and is connected to the input terminal 4 via an adjustable input resistance Ri and a DC blocking capacitor Ci. It is connected to the output terminal 6 of the phase inversion circuit 3 via the feedback resistor Ro and the DC blocking capacitor Co.Furthermore, the power supply voltage is divided by the resistors Rl and R2 to the gate electrode G of the FET (Fl). The applied bias voltage is applied via the resistor R3.
  • the output of the first phase shift circuit 1C is connected to the gate electrode G of the FET (F2) in the second phase shift circuit 2C, and the output of the second phase shift circuit 2C is connected to the FET in the phase inversion circuit 3. (F3) is connected to the gate electrode G, and the drain electrode D of this FET (F3) is connected to the output terminal 6 and to the addition point 5 via the feedback resistor Ro and the DC blocking capacitor Co. ing.
  • a circuit formed by connecting such phase shift circuits 1C and 2C has a transfer function K If the whole system is expressed as a circuit as shown in Fig. 2 (a), the circuit shown in Fig. 2 (a) is converted by Mira's theorem, as shown in Fig. 2 (b). And the transfer function A of the whole system is
  • phase shift circuits 1C and 2C can be expressed by an equivalent circuit shown in FIG. 3, and include a signal source 11 for generating an AC signal having the same polarity as the input AC signal E i, and an input AC signal It has a signal source 12 for generating an AC signal having a polarity opposite to that of the signal Ei, a closed loop composed of a capacitor, and a resistor R.
  • the voltage component (IR) by the resistor R and the voltage component (1 j j ⁇ ) by the capacitor C are orthogonal,
  • the absolute value of the output voltage ⁇ is equal to the radius of the circle, that is, the input AC voltage Ei, and forms a phase shift circuit that maintains a constant value.
  • Equation 7 Substituting Equation 7 into Equation 1 gives
  • the cascade connection includes a first phase shift circuit 1L, a second phase shift circuit 2L, and a phase inversion circuit 3, and further connected between an input terminal 4 and an addition point 5.
  • the two phase shift circuits 1L and 2L have almost the same configuration, with the FET (F1, F2), the resistor Rd connected between the positive power supply and the drain electrode, and the Contact It consists of a connected resistor Rs, an inductance L which is a reactance element connected to the drain electrode, and a variable resistor R connected to the source electrode.
  • the output sides of the inductance L and the variable resistor R are connected in common.
  • the capacitor Cd connected in series with the inductance L is for blocking DC current, and its impedance is set very low at the operating frequency.
  • the resistance Rd on the drain electrode side and the resistance Rd on the source electrode side Rs has almost the same resistance value.
  • the phase shift circuit 1L 2L can be expressed by an equivalent circuit shown in FIG. 7, and the signal source 11 generates an AC signal having the same polarity as the input AC signal Ei. And a closed loop consisting of a signal source 12 for generating an AC signal having a polarity opposite to that of the input AC signal E i, an inductance, and a resistor R.
  • the voltage component (IR) due to the resistance R and the voltage component (I ⁇ j ⁇ L) due to the inductance L are orthogonal to each other.
  • the absolute value of the output voltage Eo is equal to the radius of the circle, that is, the input AC voltage Ei, and forms a phase shift circuit that maintains a constant value.
  • the phase shift circuit 1 and 2L are the output voltage Eo because the voltage component (IR) due to the resistance R and the voltage component (I ⁇ j wL) due to the inductance L are orthogonal.
  • the absolute value of is equal to the radius of the circle, that is, the input AC voltage Ei, and constitutes a phase shift circuit that holds a constant value.
  • the tuning amplification operation can be performed at a frequency of 360 °.
  • the first phase shift circuit 1 L includes a FET (Fl), a resistor Rd connected between the positive power supply and the drain electrode, a resistor Rs connected between the negative power supply and the source electrode, and a drain electrode It is composed of an inductance L serving as a reactance element connected to the power supply and a variable resistor R connected to the source electrode. The outputs of the inductance L and the variable resistance R are commonly connected. Note that the capacitor C d connected in series with the inductance L is for blocking DC current, and the resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have almost the same resistance value. Things.
  • the second phase shift circuit 2C includes a FET (F2), a resistor Rd connected between the positive power supply and the drain electrode, a resistor Rs connected between the negative power supply and the source electrode, and a It consists of a connected variable resistor R and a capacitor C that is a reactance element connected to the source electrode.
  • the output sides of the capacitor C and the variable resistor R are connected in common.
  • the resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have substantially the same resistance value.
  • the inductance L of the first phase shift circuit 1 L is connected to the drain electrode side of the FET (F1), and the capacitor C of the second phase shift circuit 2 C is connected to the FET (F2).
  • the phase can be shifted in the same direction even when the inductance L and the capacitor C are used together.
  • the tuning amplification operation can be performed at a frequency of 360 °.
  • the impedance of the inductance L of the first phase shift circuit 1 increases, and the output increases as the load decreases.
  • the impedance of the 2 C capacitor C decreases, and the output decreases as the load increases.
  • the frequency level and the output level have a relationship where they cancel each other. This is convenient when operating in the temperature range.
  • the first phase shift circuit 1L includes a FET (Fl), a resistor Rd connected between the positive power supply and the drain electrode, a resistor Rs connected between the negative power supply and the source electrode, and a It is composed of an inductance L as a connected reactance element and a variable resistor R connected to a source electrode. The output sides of the inductance L and the variable resistor R are commonly connected. Note that the capacitor C d connected in series with the inductance L is for blocking DC current, and the resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have almost the same resistance value. Things.
  • the second phase shift circuit 2C includes a FET (F2), a resistor Rd connected between the positive power supply and the drain electrode, a resistor Rs connected between the negative power supply and the source electrode, and a It consists of a connected capacitor C as a reactance element and a variable resistor R connected to the source electrode. The outputs of the capacitor C and the variable resistor R are connected in common. The resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have substantially the same resistance value.
  • F2 F2
  • Rd connected between the positive power supply and the drain electrode
  • a resistor Rs connected between the negative power supply and the source electrode
  • a It consists of a connected capacitor C as a reactance element and a variable resistor R connected to the source electrode.
  • the outputs of the capacitor C and the variable resistor R are connected in common.
  • the resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have substantially the same resistance value.
  • the inductance L of the first phase shift circuit 1L is connected to the drain electrode side of FET (F1), and the capacitor C of the second phase shift circuit 2C is connected to FET (F2).
  • F1 the drain electrode side
  • F2 the capacitor C of the second phase shift circuit 2C
  • the non-inverting amplifier circuit 7 operating as a buffer circuit includes a FET (F3), a resistor connected between the positive power supply and the drain electrode, a resistor connected between the negative power supply and the source electrode, and PNP transistor with base electrode connected to drain electrode of FET (F3) It has a transistor Tr.
  • the emitter electrode of this transistor Tr is directly connected to the positive power supply, and the collector electrode is connected to the source electrode of the FET (F3) via the resistor rc.
  • the gain of the non-inverting amplifier circuit 7 can be changed by adjusting the resistance rc.
  • the first phase shift circuit 1C includes a FET (Fl), a resistor Rd connected between the positive power supply and the drain electrode, a resistor Rs connected between the negative power supply and the source electrode, and a It consists of a connected capacitor C as a reactance element and a variable resistor R connected to the source electrode. The outputs of the capacitor C and the variable resistor R are connected in common.
  • the second phase shift circuit 2C includes a FET (F2), a resistor Rd connected between the positive power supply and the drain electrode, a resistor Rs connected between the negative power supply and the source electrode, and a It consists of a connected variable resistor R and a capacitor C as a reactance element connected to the source electrode. The output sides of the variable resistor R and the capacitor C are connected in common.
  • F2 F2
  • resistor Rd connected between the positive power supply and the drain electrode
  • a resistor Rs connected between the negative power supply and the source electrode
  • It consists of a connected variable resistor R and a capacitor C as a reactance element connected to the source electrode.
  • the output sides of the variable resistor R and the capacitor C are connected in common.
  • the resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have substantially the same resistance value.
  • the addition point 5 at the input of the first phase shift circuit 1 C is connected to the input terminal 4 via an adjustable input resistance Ri, and connected to the output terminal 6 of the non-inverting amplifier circuit 3 via a feedback resistance Ro. Have been.
  • a bias voltage obtained by dividing the power supply voltage by the resistors Rl and R2 is applied to the gate electrode of the FET (Fl), and the gate electrode of the FET (Fl) is added via the DC blocking capacitor Co. Connected to point 5.
  • the capacitor Co can be omitted.
  • the capacitor C of the first phase shift circuit 1C is connected to the FET (Fl).
  • Fl the FET
  • the phase shift amounts of the two-stage phase shift circuits 1C and 2C are added, the sum is equalized to 0 °, and when the non-inverting amplifier circuit 7 does not invert the signal and feeds it back to the summing point 5 via the feedback resistor Ro, the tuning is performed.
  • An amplification operation can be performed.
  • a capacitor C is used as a reluctance element in each of the phase shift circuits 1C and 2C, but as shown in FIG. 12, an inductance L is used as a reluctance element. Can be used.
  • the first phase shift circuit 1U the FET (Fl), the resistor Rd connected between the positive power supply and the drain electrode, the resistor Rs connected between the negative power supply and the source electrode, and the drain electrode It comprises an inductance L, which is a connected reactance element, and a variable resistor R connected to the source electrode.
  • the output of the inductance L and the output of the variable resistor R are commonly connected.
  • the second phase shift circuit 2L includes a FET (F2), a resistor Rd connected between the positive power supply and the drain electrode, a resistor Rs connected between the negative power supply and the source electrode, and a It is composed of a connected variable resistor R and an inductance L which is a reactance element connected to the source electrode. The outputs of the inductance L and the variable resistor R are commonly connected.
  • F2 F2
  • resistor Rd connected between the positive power supply and the drain electrode
  • a resistor Rs connected between the negative power supply and the source electrode
  • It is composed of a connected variable resistor R and an inductance L which is a reactance element connected to the source electrode.
  • the outputs of the inductance L and the variable resistor R are commonly connected.
  • the capacitor Cd connected in series with the inductance L is for blocking DC current, and its impedance is set very small at the operating frequency.
  • the resistance Rd on the drain electrode side and the resistance Rs on the source electrode side have substantially the same resistance value.
  • the inductance L of the first phase shift circuit 1L is connected to the drain electrode side of the FET (Fl), and the inductance L of the second phase shift circuit 2L is connected to the source electrode side of the FET (F2).
  • the first phase shift circuit 1L and the second phase shift circuit 2L cause phase shifts in opposite directions, and the phase shift amounts in the two-stage phase shift circuit 1L and 2L are added. If the angle is set to 0 ° and positive feedback is made to the addition point 5 via the feedback resistor Ro without being inverted by the non-inverting amplifier circuit 3, the tuning amplification operation can be performed.
  • FET is used for the phase shift circuit.
  • the same operation can be performed by using a bipolar transistor.
  • the channel between the source and drain of the FET (fl, f2) is used as the resistor R in each of the phase shift circuits 1 and 2, and the gate of this FET (fl, f2) is used.
  • the channel voltage is changed externally to change the channel resistance, the phase shift amount of each phase shift circuit changes, and the tuning frequency can be arbitrarily adjusted.
  • fine adjustment can be easily performed by changing the resistance value of one of the resistors R in the two-stage phase shift circuit.
  • "n" in Equation 8 is changed, and thus the maximum attenuation can be adjusted as shown in FIG.
  • the output voltage does not change whether the resistance R of the circuit constant is changed alone or in relation to both. In other words, it is advantageous when all circuits of the tuned amplifier are integrated into one chip on an integrated circuit.
  • the when using a capacitor may be formed a capacitor through an insulating oxide film such as S i 0 2, as a reactance element in each phase shift circuit, Indakutansu
  • a spiral coil can be formed by photo-engraving on a platform that uses.
  • the time constant ⁇ L / R. It is more advantageous to use a capacitor C when operating at high frequency, and to use an inductance L when operating at a high frequency band.
  • each element constituting the tuned amplifier of the present invention can be formed by a semiconductor manufacturing method, the tuned amplifier is formed as an integrated circuit on a semiconductor device. It can be made inexpensively by mass production. Industrial applicability
  • the tuning frequency and the maximum attenuation can be arbitrarily adjusted without interfering with each other. Therefore, it is possible to obtain an amplifier that matches the frequency and waveform of the signal to be amplified, and also to adjust the power.
  • Each element of the tuning amplifier can be formed by a semiconductor manufacturing method.
  • the amplifier can be formed as a small integrated circuit on a semiconductor wafer and made inexpensively by mass production.
  • the FET's gate uses the FET's source-drain channel as a variable resistor in each phase shift circuit.
  • the control voltage applied to the electrodes is externally adjusted to change the resistance of the channel, the inductance of the wiring to which the control voltage is applied can be reduced. It is possible to avoid the effect of the capacitance ⁇ capacitance and obtain a tuned amplifier having ideal characteristics almost as designed.
  • the tuning frequency f 0 is
  • the change will be in proportion to the square root of the amount of change, but according to the tuning amplifier of the present invention, it will be proportional to the resistance value. Since the tuning frequency can be changed by adjusting the frequency, a large adjustment is possible.

Description

明 細 書
同調増幅器 技術分野 ·
この発明は、 集積化が容易な同調増幅器に関し、 特に、 同調周波数と最大減衰 量とを互いに干渉することなく、 任意に調整し得る同調増幅器に関する。 背景技術
同調増幅器として従来より能動素子およびリァクタンス素子を使用した各種の 回路が提案され実用化されている。
従来の同調増幅器においては、 同調周波数を調整すると、 最大減衰量が変化し、 最大減衰量を調整すると同調周波数が変化するので、 同調周波数と最大減衰量と を互いに干渉しあうことなく調整することは、 極めて困難であった。
さらに、 同調周波数および最大減衰量を調整し得る同調増幅器を集積回路によ つて形成することも困難であった。
そこで、 この発明は、 このような問題点を解決するために考えられたものであ る。 発明の開示
この発明の同調増幅器は、 入力インピーダンスを介して入力された交流信号を 同相および逆相の交流信号に変換して出力する変換手段と、 変換された 2つの交 流信号を第 1のリアクタンス素子および第 1の抵抗を介して合成して移相する手 段とよりなる第 1の移相回路と、 この第 1の移相回路で移相された交流信号を同 相および逆相の交流信号に変換して出力する変換手段と、 変換された 2つの交流 信号を第 2のリアクタンス素子および第 2の抵抗を介して合成して移相する手段 とよりなり、 上記第 1の移相回路と同じ方向に移相する第 2の移相回路と、 この 第 2の移相回路の出力の位相を反転して出力する位相反転回路と、 この位相反転 回路の出力を帰還インピーダンスを介して第 1の移相回路の変換手段の入力へ帰 還する回路とを備えている。 または、 入力インピーダンスを介して入力された交流信号を同相および逆相の 交流信号に変換して出力する変換手段と、 変換された 2つの交流信号を第 1のリ ァクタンス素子および第 1の抵抗を介して合成して移相する手段とよりなる第 1 の移相回路と、 この第 1の移相回路で移相された交流信号を同相および逆相の交 流信号に変換して出力する変換手段と、 変換された 2つの交流信号を第 2のリア クタンス素子および第 2の抵抗を介して合成して移相する手段とよりなり、 第 1 の移相回路と互いに反対方向に移相する第 2の移相回路と、 この第 2の移相回路 の出力を同相で出力する非反転回路と、 この非反転回路の出力を帰還インピーダ ンスを介して第 1の移相回路の変換手段の入力へ帰還する回路とを具備している c 図面の簡単な説明
第 1図は、 この発明の同調増幅器の第 1の形態を示す回路図、
第 2図は、 この発明の同調増幅器を伝達関数 Kで表わした回路図、
第 3図は、 第 1図に示す回路における移相回路の等価回路図、
第 4図は、 第 3図に示す回路の移相状態を表わした円線図、
第 5図は、 第 1図に示す回路における入力抵抗値と帰還抵抗値との比 nと最大 減衰量との関係を示す特性曲線図、
第 6図は、 この発明の同調増幅器の第 2の形態を示す回路図、
第 7図は、 第 6図に示す回路における移相回路の等価回路図、
第 8図は、 第 7図に示す回路の移相状態を表わした円線図、
第 9図は、 この発明の同調増幅器の第 3の形態を示す回路図、
第 1 0図は、 この発明の同調増幅器の第 4の形態を示す回路図、
第 1 1図は、 この発明の同調増幅器の第 5の形態を示す回路図、
第 1 2図は、 この発明の同調増幅器の第 6の形態を示す回路図、
第 1 3図は、 この発明の同調増幅器の他の形態を示す回路図である。 発明を実施するための最良の形態
(第 1の実施形態)
この発明の同調増幅器は、 第 1図に示すように、 縦続接続された第 1の移相回 路 1C、 第 2の移相回路 2 Cおよび位相反転回路 3を備え、 さらに、 入力端子 4と 加算点 5との間に接続された入力インピーダンスとなる抵抗 Ri(=nRo)と、 位 相反転回路 3の出力端子 6と加算点 5との間に接続された帰還インピーダンスと なる抵抗 R 0および直流阻止用コンデンサ C 0の直列接続とを備えている。
2つの移相回路 1C、 2Cは、 ほぼ同じ構成であって、 ゲート電極 G、 ドレイン 電極 D、 ソース電極 Sを有する FET(F1、 F2)と、 正電源とドレイン電極 Dとの 間に接続された抵抗 Rdと、 負電源とソース電極 Sの間に接続された抵抗 Rsと、 ドレイン電極 Dに接続されたリアクタンス素子となるコンデンサ Cおよびソース 電極 Sに接続された可変抵抗 Rで構成され、 コンデンサ Cおよび可変抵抗 Rの出 力側は共通に接続されている。 ドレイン電極側の抵抗 Rdおよびソース電極側の 抵抗 Rsは、 ほぼ同じ抵抗値を有するものである。
位相反転回路 3は、 ゲート電極 G、 ドレイン電極 D、 ソース電極 Sを有する F ET(F3)と、 正電源とドレイン電極 Dとの間に接続された抵抗 と、 負電源とソ ―ス電極 Sの間に接続された抵抗 rsとを備えており、 その増幅率が 1より大きく なるように、 ドレイン電極側の抵抗 rdをソース電極側の抵抗 rsよりも大きい抵抗 値 (rd〉rs) に設定されている。
第 1の移相回路 1Cにおける FET(Fl)のゲート電極 Gは、 加算点 5となるも のであって、 調整し得る入力抵抗 Riおよび直流阻止用コンデンサ Ciを介して入 力端子 4に接続され、 帰還抵抗 Roおよび直流阻止用コンデンサ Coを介して位相 反転回路 3の出力端子 6に接続されており、 さらに、 FET(Fl)のゲート電極 G には、 電源電圧を抵抗 Rl、 R2によって分圧したバイアス電圧が、 抵抗 R3を介 して印加されている。
第 1の移相回路 1Cの出力は、 第 2の移相回路 2Cにおける FET(F2)のゲート 電極 Gに接続され、 第 2の移相回路 2 Cの出力は、 位相反転回路 3における FE T(F3)のゲート電極 Gに接続され、 この FET(F3)のドレイン電極 Dは、 出力端 子 6に接続されるとともに、 帰還抵抗 Roおよび直流阻止用コンデンサ Coを介し て加算点 5に接続されている。
次に、 このように構成された同調増幅器の動作について説明する。
このような移相回路 1C、 2Cを接続して形成される回路を、 伝達関数 Kを有す る回路としてシステム全体を表現すると、 第 2図(a)に示すようになり、 さらに、 第 2図(a)の回路をミラ一の定理によって変換すると、 第 2図(b)に示すように 表わすことができ、 システム全体の伝達関数 Aは、
A" V i - n (1-K) +1 U) で表わすことができる。
各段の移相回路 1C、 2Cにおける FET(F1、 F2)のゲート電極 Gに交流電圧が 印加されると、 ドレイン電極 Dに、 位相が反転された交流電圧を発生し、 ソース 電極 Sに、 同相の交流電圧を発生する。 これらの移相回路 1C、 2Cは、 第 3図に 示す等価回路で表現することが可能で、 入力された交流信号 E iと同極性の交流 信号を発生する信号源 11と、 入力された交流信号 E iと逆極性の交流信号を発生 する信号源 12と、 コンデンサじと、 抵抗 Rとよりなる閉ループを備えている。 このような等価回路で示した移相回路においては、 第 4図の円線図に示すよう に、 抵抗 Rによる電圧成分 ( I R) とコンデンサ Cによる電圧成分 (1ノ j ωθ とが直交し、 出力電圧 Εοの絶対値は、 円の半径、 すなわち、 入力された交流電 圧 Eiに等しくて、 一定値を保持する移相回路を構成する。
この移相回路 1C、 2Cの出力電圧 Eoと入力電圧 Eiとが直交する条件は、 抵抗 Rによる電圧成分 ( I R) とコンデンサ Cによる電圧成分 ( I Z j ωθ との絶 対値が等しいことであるから、 出力電圧 Eoの位相が入力電圧 Eiに対して 90° 回転したとき、 wCR=lが成立する。
第 3図に示す等価回路の閉ループに流れる電流 Iは、
1 = 2Ei ……
R+ (1Z j ωθ Δ) で求められ、 出力電圧 Eoは、
Eo+ I R— Ei=0 …… (3) となり、 式 2を式 3に代入して出力電圧 Eoを求めると、
Γ 1—— j wCR) … 、 Εθ= l + j cCR · El …… (4) となるから、 移相回路一段当たりの伝達関数 K1は、 Kl= ^ l = |" ] ω^ "-… (5) 1 + j ω C R
であり、 同じ構成の移相回路を 2段接続したものの伝達関数 Kは、
一 (1- j wCR) 2
Λ— (1+ j c CR) 2
( j wCR)2-2 j wCR+l 、
= ( h )
( j wCR)2+2 j wCR-f 1
であって、 位相反転回路 3を接続したものの伝達関数 Kは、
Figure imgf000007_0001
になり、 式 7を式 1に代入すると、
9 · {1 -(wCR)2- 2 j wCR}
A = - R …… (8)
1 - (cuCR)2+ 2]
n + 1
となる。
この式 8より ω=0 (直流の領域) のとき、 Α =— 1 (211+1)となって、 最大減衰量を与えることがわかる。 また、 ω =∞のときにも同様に最大減衰量を 与えることがわかる。 o>CR=l (同調点) においては A= 1であって、 "n" に無関係であることが明らかである。 換言すれば、 第 5図に示すように、 "n" を変化させても同調点がずれることがなく、 同調点の減衰量も変化しない。
この第 1の実施形態のように、 リアクタンス素子として静電容量 Cを使用した 場合の時定数 Tは、 T = CRであり、 静電容量 Cおよび抵抗 Rを大きくすること は容易であるから、 低い周波数帯で動作させる場合に有利である。
(第 2の実施形態)
第 6図に示すように、 縦続接続された第 1の移相回路 1L、 第 2の移相回路 2L および位相反転回路 3を備え、 さらに、 入力端子 4と加算点 5との間に接続され た入力抵抗 Ri (=nRo) と、 位相反転回路 3の出力端子 6と加算点 5との間に 接続された帰還抵抗 Roとを備えている。
2つの移相回路 1L、 2Lは、 ほぼ同じ構成であって、 FET(F1、 F2)と、 正電 源とドレイン電極との間に接続された抵抗 Rdと、 負電源とソース電極の間に接 続された抵抗 Rsと、 ドレイン電極に接続されたリアクタンス素子となるインダ クタンス Lおよびソース電極に接続された可変抵抗 Rで構成され、 インダクタン ス Lおよび可変抵抗 Rの出力側は共通に接続されている。 なお、 インダクタンス Lに直列に接続されたコンデンサ Cdは、 直流電流を阻止するためのもので、 そ のインピーダンスは動作周波数において極めて小さく設定されており、 ドレイン 電極側の抵抗 Rdおよびソース電極側の抵抗 Rsは、 ほぼ同じ抵抗値を有するもの である。
この第 2の実施形態において、 移相回路 1レ 2Lは、 第 7図に示す等価回路で 表現することが可能であり、 入力された交流信号 Eiと同極性の交流信号を発生 する信号源 11と、 入力された交流信号 E iと逆極性の交流信号を発生する信号源 1 2と、 インダクタンスしと、 抵抗 Rとよりなる閉ループを備えている。
この等価回路で示した移相回路においては、 第 8図の円線図に示すように、 抵 抗 Rによる電圧成分 ( I R) とィンダクタンス Lによる電圧成分 ( I · j ωL とが直交し、 出力電圧 Eoの絶対値は、 円の半径、 すなわち、 入力された交流電 圧 Eiに等しくて、 一定値を保持する移相回路を構成する。
第 8図の円線図に示すように、 移相回路 1し、 2Lが、 抵抗 Rによる電圧成分 (I R) とイングクタンス Lによる電圧成分 ( I · j wL) とが直交し、 出力電圧 Eo の絶対値は、 円の半径、 すなわち、 入力された交流電圧 Eiに等しくて、 一定値 を保持する移相回路を構成する。
この移相回路 1L、 2 Lの出力電圧 Eoと入力電圧 Eiとが直交する条件は、 抵抗 Rによる電圧成分 (I R) とイングクタンス Lによる電圧成分 (I . j ωL) と の絶対値が等しいことであるから、 出力電圧 E 0の位相が入力電圧 E iに対して 9 0° 回転したとき、 wLZR= lが成立する。
そして、 2段の移相回路 1L、 2Lにおける移相量を加算すると 180° になり、 位相反転回路 3で反転させると 360° になる周波数で同調増幅動作を行なわせ ることができる。
この第 2の実施形態のように、 リアクタンス素子としてィンダクタンス Lを使 用した場合の時定数 Tは、 T = LZRであり、 インダクタンス Lを小さくするこ とは容易であるから、 高い周波数帯で動作させる場合に有利である。 (第 3の実施形態)
第 9図に示すように、 縦続接続された第 1の移相回路 1 L、 第 2の移相回路 2 C および位相反転回路 3を備え、 さらに、 入力端子 4と加算点 5との間に接続され た入力抵抗 Ri (= n Ro) と、 位相反転回路 3の出力端子 6と加算点 5との間に 接続された帰還抵抗 Roとを備えている。
第 1の移相回路 1 Lは、 F E T (Fl)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続されたリアクタンス素子となるインダクタンス Lおよびソース電極に接続 された可変抵抗 Rで構成され、 ィンダクタンス Lおよび可変抵抗 Rの出力側は共 通に接続されている。 なお、 イングクタンス Lに直列に接続されたコンデンサ C dは、 直流電流を阻止するためのものであり、 ドレイン電極側の抵抗 Rdおよびソ ース電極側の抵抗 Rsは、 ほぼ同じ抵抗値を有するものである。
第 2の移相回路 2Cは、 F E T (F2)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続された可変抵抗 Rおよびソース電極に接続されたリアクタンス素子となる コンデンサ Cで構成され、 コンデンサ Cおよび可変抵抗 Rの出力側は共通に接続 されている。 ドレイン電極側の抵抗 Rdおよびソース電極側の抵抗 Rsは、 ほぼ同 じ抵抗値を有するものである。
この第 3の実施形態においては、 第 1の移相回路 1 Lのィンダクタンス Lを F E T (F1)のドレイン電極側に接続し、 第 2の移相回路 2 Cのコンデンサ Cを F E T (F2)のソース電極側に接続することにより、 ィンダクタンス Lとコンデンサ C とを併用しても同じ方向に移相できるので、 2段の移相回路 1レ 2Cにおける移 相量を加算すると 1 8 0 ° になり、 位相反転回路 3で反転させると 3 6 0 ° にな る周波数において同調増幅動作をさせることができる。
この第 3の実施形態においては、 周波数が高くなると、 第 1の移相回路 1しの ィンダクタンス Lのインピーダンスが大きくなり、 負荷が軽くなつて出力は大き くなるが、 第 2の移相回路 2 Cのコンデンサ Cのインピーダンスが小さくなり、 負荷が重くなつて出力は小さくなる。 このように、 2つの移相回路において、 周 波数の高低と出力の大小とが互いに打ち消し台う関係になるので、 周波数が中程 度の領域で動作させる場合に好都合である。
(第 4の実施形態)
第 10図に示すように、 縦続接続された第 1の移相回路 1し、 第 2の移相回路 2じおよび/くッファ回路として動作する F E T (F3)およびトランジスタ Trを備え た非反転回路 7を具備し、 さらに、 入力端子 4と加算点 5との間に接続された入 力抵抗 Ri (=nRo) と、 非反転増幅回路 7の出力端子 6と加算点 5との間に接 続された帰還抵抗 Roとを備えている。
第 1の移相回路 1Lは、 FET(Fl)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続されたリアクタンス素子となるインダクタンス Lおよびソース電極に接続 された可変抵抗 Rで構成され、 ィンダクタンス Lおよび可変抵抗 Rの出力側は共 通に接続されている。 なお、 イングクタンス Lに直列に接続されたコンデンサ C dは、 直流電流を阻止するためのものであり、 ドレイン電極側の抵抗 Rdおよびソ ース電極側の抵抗 Rsは、 ほぼ同じ抵抗値を有するものである。
第 2の移相回路 2Cは、 FET(F2)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続されたリアクタンス素子となるコンデンサ Cおよびソース電極に接続され た可変抵抗 Rで構成され、 コンデンサ Cおよび可変抵抗 Rの出力側は共通に接続 されている。 ドレイン電極側の抵抗 Rdおよびソース電極側の抵抗 Rsは、 ほぼ同 じ抵抗値を有するものである。
この第 4の実施形態においては、 第 1の移相回路 1Lのィンダクタンス Lを F ET(F1)のドレイン電極側に接続し、 第 2の移相回路 2Cのコンデンサ Cを FE T(F2)のドレイン電極側に接続することにより、 インダクタンス Lとコンデンサ Cとを併用して互いに反対方向に移相して、 2段の移相回路 1し、 2Cにおける移 相量を加算すると 0° にならしめ、 非反転増幅回路 7で反転させないで加算点 5 へ帰還抵抗 Roを介して正帰還させると、 同調増幅動作をさせることができる。 なお、 バッファ回路として動作する非反転増幅回路 7は、 FET(F3)と、 正電 源とドレイン電極との間に接続された抵抗 と、 負電源とソース電極の間に接続 された抵抗 と、 FET(F3)のドレイン電極にベース電極が接続された PNPト ランジスタ Trを備えており、 このトランジスタ Trのエミッタ電極は直接正電源に 接続され、 コレクタ電極は抵抗 rcを介して FET(F3)のソース電極に接続されて いる。 この抵抗 rcを調整することにより、 非反転増幅回路 7の増幅率を変化させ ることができる。
(第 5の実施形態)
第 11図に示すように、 縦続接続された第 1の移相回路 1 第 2の移相回路 2Cおよびバッファ回路として動作する非反転増幅回路 7を備え、 さらに、 入力 端子 4と加算点 5との間に接続された入力抵抗 Ri(=nRo)と、 非反転増幅回路 7の出力端子 6と加算点 5との間に接続された帰還抵抗 Roとを備えている。 第 1の移相回路 1Cは、 FET(Fl)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続されたリアクタンス素子となるコンデンサ Cおよびソース電極に接続され た可変抵抗 Rで構成され、 コンデンサ Cおよび可変抵抗 Rの出力側は共通に接続 されている。
第 2の移相回路 2Cは、 FET(F2)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続された可変抵抗 Rおよびソース電極に接続されたリアクタンス素子となる コンデンサ Cで構成され、 可変抵抗 Rおよびコンデンサ Cの出力側は共通に接続 されている。
なお、 2段の移相回路 1C、 2Cにおいて、 ドレイン電極側の抵抗 Rdおよびソ ース電極側の抵抗 Rsは、 ほぼ同じ抵抗値を有するものである。
第 1の移相回路 1 Cの入力における加算点 5は、 調整し得る入力抵抗 R iを介し て入力端子 4に接続され、 帰還抵抗 Roを介して非反転増幅回路 3の出力端子 6 に接続されている。
さらに、 FET(Fl)のゲート電極には、 電源電圧を抵抗 Rl、 R2によって分圧 したバイアス電圧が印加されており、 FET(Fl)のゲート電極は、 直流阻止用コ ンデンサ Coを介して加算点 5に接続されている。 なお、 低い周波数の信号を増 幅する場合には、 このコンデンサ Coを省くこともできる。
この実施形態においては、 第 1の移相回路 1Cのコンデンサ Cを FET(Fl)の ドレイン電極側に接続し、 第 2の移相回路 2Cのコンデンサ Cを FET (F2)のソ ース電極側に接続することにより、 2段の移相回路 1 2 Cにおいて互いに反対 方向に移相させて、 2段の移相回路 1C、 2Cにおける移相量を加算すると 0° に ならしめ、 非反転増幅回路 7で反転させないで加算点 5へ帰還抵抗 Roを介して 正帰還させると、 同調増幅動作をさせることができる。
(第 6の実施形態)
第 11図に示す第 5の実施形態においては、 各移相回路 1C、 2Cにおけるリラ クタンス素子としてコンデンサ Cを使用しているが、 第 12図に示すように、 リ ラクタンス素子としてィンダクタンス Lを使用することができる。
第 1の移相回路 1Uま、 FET(Fl)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続されたリアクタンス素子となるィンダクタンス Lおよびソース電極に接続 された可変抵抗 Rで構成され、 ィンダク夕ンス Lおよび可変抵抗 Rの出力側は共 通に接続されている。
第 2の移相回路 2Lは、 FET(F2)と、 正電源とドレイン電極との間に接続さ れた抵抗 Rdと、 負電源とソース電極の間に接続された抵抗 Rsと、 ドレイン電極 に接続された可変抵抗 Rおよびソース電極に接続されたリアクタンス素子となる ィンダクタンス Lで構成され、 ィンダクタンス Lおよび可変抵抗 Rの出力側は共 通に接続されている。
なお、 各段の移相回路 1し、 2Uこおいて、 イングクタンス Lに直列に接続され たコンデンサ Cdは、 直流電流を阻止するためのもので、 そのインピーダンスは 動作周波数において極めて小さく設定されており、 ドレイン電極側の抵抗 Rdお よびソース電極側の抵抗 R sは、 ほぼ同じ抵抗値を有するものである。
この実施形態においては、 第 1の移相回路 1Lのィンダクタンス Lを FET(Fl) のドレイン電極側に接続し、 第 2の移相回路 2Lのィンダクタンス Lを FET(F2) のソース電極側に接続することにより、 第 1の移相回路 1 Lと第 2の移相回路 2 L とにおいて互いに反対方向に移相させて、 2段の移相回路 1レ 2Lにおける移相 量を加算すると 0° にならしめ、 非反転増幅回路 3で反転させないで加算点 5へ 帰還抵抗 Roを介して正帰還させると、 同調増幅動作をさせることができる。 (その他の発明を実施するための形態)
以上で説明した発明を実施するための形態においては、 移相回路に F E Tを使 用しているが、 バイポーラ . トランジスタを使用しても同様に動作させることが できる。
また、 第 1 3図に示すように、 各移相回路 1、 2における抵抗 Rとして、 F E T (fl、 f2)のソース ' ドレイン間のチャンネルを使用し、 この F E T (fl、 f2)の ゲ一ト電圧を外部から変化させてチャンネルの抵抗値を変化させると、 各移相回 路の移相量が変化して同調周波数を任意に調整することができる。 なお、 同調周 波数の調整に際して、 2段の移相回路のうち、 いずれか一方の抵抗 Rの抵抗値を 変化させることにより容易に微調整を行なうことができる。
同様に入力抵抗 Ri(= n Ro)も F E T (f3)のソース · ドレイン間のチャンネル を使用して形成することが可能であり、 この F E T(f3)のゲート電圧を外部から 変化させてチャンネルの抵抗値を変化させると、 式 8における " n "を変化させ たことになるから、 第 5図に示すように最大減衰量を調整することができる。 出力電圧が一定である理想的な移相回路を多段使用した場合には、 回路定数の 抵抗 Rを単独で変化させても、 双方関連させて変化させても出力電圧は変化しな い。 すなわち、 同調増幅器の全回路を集積回路上に集積したワンチップ化すると きに有利である。
また、 各移相回路におけるリアクタンス素子として、 コンデンサを使用する場 合には、 S i 02などの絶縁酸化膜を介してコンデンサを形成すればよく、 各移 相回路におけるリアクタンス素子として、 ィンダクタンスを使用する場台には、 写真触刻法によりスパイラル状のコイルを形成すればよいのである。
リアクタンス素子としてコンデンサ Cを使用した場合の時定数 Tは、 T = C R であり、 リアクタンス素子としてィンダクタンス Lを使用した場合の時定数 Τは、 Τ = L / Rであるから、 低 、周波数帯で動作させる場合にはコンデンサ Cを使用 する方が有利であり、 高い周波数帯で動作させる場合にはイングクタンス Lを使 用する方が有利である。
このように、 この発明の同調増幅器を構成する各素子は、 半導体の製法によつ て形成することが可能であるから、 同調増幅器を半導体ゥエノ、上に集積回路とし て形成でき、 大量生産によって安価に作ることができる。 産業上の利用可能性
以上の発明を実施するための最良の形態に基づく説明から明らかなように、 こ の発明の同調増幅器によると、 同調周波数と最大減衰量とを互いに干渉すること なく、 任意に調整することが可能であって、 増幅する信号の周波数および波形に 合わせた増幅器を得ることができ、 し力、も、 同調増幅器を構成する各素子は、 半 導体の製法によって形成することが可能であるから、 同調増幅器を半導体ウェハ 上に集積回路として小型に形成でき、 大量生産によって安価に作ることができる 特に、 各移相回路における可変抵抗として F E Tのソース · ドレイン間のチヤ ンネルを使用し、 この F E Tのゲート電極に印加する制御電圧を外部から調整し てチャンネルの抵抗値を変化させるように構成すると、 制御電圧を印加する配線 のインダクタンスゃ静電容量の影響を回避することができ、 ほぼ設計どおりの理 想的な特性を備えた同調増幅器を得ることができる。
さらに、 キャパシタンス Cとインダクタンス Lとにより構成される同調回路に おいては、 同調周波数 f 0
f 0= l Z 2 7r>TL C
であるから、 同調周波数を調整するためにキャパシタンス Cまたはィンダク夕ン ス Lを変化させると、 その変化量の平方根に比例して変化するが、 この発明の同 調増幅器によると、 抵抗値に比例して同調周波数を変化させることができるので、 大幅な調整が可能である。

Claims

請求 の 範 囲
1. 入力インピーダンスを介して入力された交流信号を同相および逆相の交流信 号に変換して出力する変換手段と、 変換された 2つの交流信号を第 1のリアクタ ンス素子および第 1の抵抗を介して合成して移相する手段とよりなる第 1の移相 回路と、
該第 1の移相回路で移相された交流信号を同相および逆相の交流信号に変換し て出力する変換手段と、 変換された 2つの交流信号を第 2のリアクタンス素子お よび第 2の抵抗を介して合成して移相する手段とよりなり、 上記第 1の移相回路 と同じ方向に移相する第 2の移相回路と、
該第 2の移相回路の出力の位相を反転して出力する位相反転回路と、 該位相反転回路の出力を帰還ィンピーダンスを介して上記第 1の移相回路の変 換手段の入力へ帰還する回路と、
を具備することを特徴とする同調増幅器。
2. 第 1の移相回路の第 1の抵抗および/または第 2の移相回路の第 2の抵抗を 変化させて同調周波数を変化させることを特徴とする請求項 1に記載の同調増幅
3. 入力インピーダンスとなる抵抗および帰還インピーダンスとなる抵抗の抵抗 値の比を変化させて最大減衰量を変化させることを特徴とする請求項 1に記載の 同調増幅器。
4. 各抵抗を F Ε Τのチャンネルで形成することを特徴とする請求項 1に記載の 同調増幅器。 .
5. 半導体集積回路として形成することを特徴とする請求項 1に記載の同調増幅
6. 入力インピーダンスを介して入力された交流信号を同相および逆相の交流信 号に変換して出力する変換手段と、 変換された 2つの交流信号を第 1のリアクタ ンス素子および第 1の抵抗を介して合成して移相する手段とよりなる第 1の移相 回路と、
該第 1の移相回路で移相された交流信号を同相および逆相の交流信号に変換し て出力する変換手段と、 変換された 2つの交流信号を第 2のリアクタンス素子お 一 13 - 訂正された ¾紙 (M SiJ よび第 2の抵抗を介して合成して移相する手段とよりなり、 上記第 1の移相回路 と互いに反対方向に移相する第 2の移相回路と、
該第 2の移相回路の出力を帰還インピーダンスを介して上記第 1の移相回路の 変換手段の入力へ帰還する回路と、
を具備することを特徴とする同調増幅器。
7. 第 2の移相回路の出力と帰還インピーダンスとの間に非反転増幅器を介在さ せたことを特徴とする請求の範囲 6に記載の同調増幅器。
8. 第 1の移相回路の第 1の抵抗および または第 2の移相回路の第 2の抵抗を 変化させて同調周波数を変化させることを特徴とする請求の範囲 6に記載の同調 増幅器。
9. 入力インピーダンスとなる抵抗および帰還インピーダンスとなる抵抗の抵抗 値の比を変化させて最大減衰量を変化させることを特徴とする請求の範囲 6に記 載の同調増幅器。
1 0. 各抵抗を F E Tのチャンネルで形成することを特徴とする請求の範囲 6に 記載の同調増幅器。
1 1 . 半導体集積回路として形成することを特徴とする請求の範囲 6に記載の同 調増幅器。
PCT/JP1995/000880 1994-05-10 1995-05-09 Amplificateur accorde WO1995031036A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU23538/95A AU2353895A (en) 1994-05-10 1995-05-09 Tuned amplifier
DE69524091T DE69524091T2 (de) 1994-05-10 1995-05-09 Abgestimmter verstärker.
EP95917516A EP0763886B1 (en) 1994-05-10 1995-05-09 Tuned amplifier
JP7528840A JP2808549B2 (ja) 1994-05-10 1995-05-09 同調増幅器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP6/119714 1994-05-10
JP11971494 1994-05-10
JP15310194 1994-06-13
JP6/153101 1994-06-13
JP25603894 1994-09-27
JP6/256038 1994-09-27

Publications (1)

Publication Number Publication Date
WO1995031036A1 true WO1995031036A1 (fr) 1995-11-16

Family

ID=27313891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000880 WO1995031036A1 (fr) 1994-05-10 1995-05-09 Amplificateur accorde

Country Status (7)

Country Link
EP (1) EP0763886B1 (ja)
JP (1) JP2808549B2 (ja)
KR (1) KR100367070B1 (ja)
CN (1) CN1062996C (ja)
AU (1) AU2353895A (ja)
DE (1) DE69524091T2 (ja)
WO (1) WO1995031036A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017754A1 (fr) * 1995-11-07 1997-05-15 Ikeda, Takeshi Amplificateur d'accord
WO1997032396A1 (en) * 1996-03-01 1997-09-04 Matsushita Electric Industrial Co., Ltd. Frequency-dependent resistor
WO1997034368A1 (fr) * 1996-03-12 1997-09-18 T. I. F. Co., Ltd. Amplificateur d'accord

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010043121A1 (en) 1997-11-27 2001-11-22 Yuji Kakuta Semiconductor circuit with a stabilized gain slope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834056B1 (ja) * 1969-05-30 1973-10-18

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1142703B (it) * 1981-05-29 1986-10-15 Selenia Ind Elettroniche Perfezionamento negli amplificatori a transistori bipolari con alta di namica lineare
JPS61281708A (ja) * 1985-06-07 1986-12-12 Matsushita Electric Ind Co Ltd 広帯域増幅回路
JPH02130008A (ja) * 1988-11-09 1990-05-18 Toshiba Corp 高周波電力増幅回路
US4994761A (en) * 1989-11-06 1991-02-19 Motorola Inc. VHF power amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834056B1 (ja) * 1969-05-30 1973-10-18

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0763886A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017754A1 (fr) * 1995-11-07 1997-05-15 Ikeda, Takeshi Amplificateur d'accord
US6034566A (en) * 1995-11-07 2000-03-07 Takeshi Ikeda Tuning amplifier
WO1997032396A1 (en) * 1996-03-01 1997-09-04 Matsushita Electric Industrial Co., Ltd. Frequency-dependent resistor
US6008691A (en) * 1996-03-01 1999-12-28 Matsushita Electric Industrial Co., Ltd. Frequency-dependent resistor
CN1096145C (zh) * 1996-03-01 2002-12-11 松下电器产业株式会社 频率相关电阻器
WO1997034368A1 (fr) * 1996-03-12 1997-09-18 T. I. F. Co., Ltd. Amplificateur d'accord
US6087901A (en) * 1996-03-12 2000-07-11 T.I.F. Co., Ltd Tuning amplifier
CN1084963C (zh) * 1996-03-12 2002-05-15 新泻精密株式会社 调谐放大器

Also Published As

Publication number Publication date
CN1062996C (zh) 2001-03-07
KR100367070B1 (ko) 2003-03-15
DE69524091T2 (de) 2002-07-18
EP0763886A4 (en) 1997-09-10
DE69524091D1 (de) 2002-01-03
EP0763886A1 (en) 1997-03-19
AU2353895A (en) 1995-11-29
EP0763886B1 (en) 2001-11-21
JP2808549B2 (ja) 1998-10-08
CN1152977A (zh) 1997-06-25
KR970703060A (ko) 1997-06-10

Similar Documents

Publication Publication Date Title
TWI225729B (en) Improved variable gain amplifier
US5789973A (en) Resistorless operational transconductance amplifier circuit
CA2289212C (en) Active phase splitter
US5399988A (en) FT doubler amplifier
US4117415A (en) Bridge amplifiers employing complementary transistors
JPH10173482A (ja) フィルタ回路
JP3115741B2 (ja) 改良された線型性を持つ相互コンダクタンスセル
JP2005509347A (ja) 歪補償を持つ電力増幅器
US6838936B2 (en) Low-noise amplifier device having negative feedback via a controlled current source, and method of using the amplifier device
WO1995031036A1 (fr) Amplificateur accorde
CN114830527A (zh) 具有pvt跟踪的宽带可调谐频率单边带转换器
JPH0616569B2 (ja) 演算増幅器回路
JPH10150328A (ja) 差動入力電圧をシングル・エンド出力電圧に変換する電子回路
US11533021B1 (en) Down-conversion mixer
Srinivasan Synthesis of transfer functions using the operational amplifier pole
JP2005528836A (ja) 増幅回路、ジャイレータ回路、信号を増幅するためのフィルタ・デバイス及び方法
JPS5942489B2 (ja) 周波数弁別回路
JP3171247B2 (ja) 多機能演算回路
TW200306063A (en) Gain stage that minimizes the miller effect
JPS6132842B2 (ja)
JP2719251B2 (ja) 主信号通路とハイパスフィルター特性の補助的な信号通路を有するノイズ減衰回路
US6396328B2 (en) Variable capacitance circuit
JPS63232509A (ja) 同調増幅器
JPH0494203A (ja) 増幅回路
JP3043546B2 (ja) 差動増幅半導体集積回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95193834.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR RU US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019960706303

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995917516

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1996 732425

Country of ref document: US

Date of ref document: 19961220

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1995917516

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995917516

Country of ref document: EP