WO1995030908A1 - Rekonstruktion von bildern aus mr-signalen in inhomogenen magnetfeldern - Google Patents

Rekonstruktion von bildern aus mr-signalen in inhomogenen magnetfeldern Download PDF

Info

Publication number
WO1995030908A1
WO1995030908A1 PCT/DE1995/000592 DE9500592W WO9530908A1 WO 1995030908 A1 WO1995030908 A1 WO 1995030908A1 DE 9500592 W DE9500592 W DE 9500592W WO 9530908 A1 WO9530908 A1 WO 9530908A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradient
magnetic field
reconstruction
signals
space
Prior art date
Application number
PCT/DE1995/000592
Other languages
German (de)
English (en)
French (fr)
Inventor
Robert Krieg
Hans-Erich Reinfelder
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP7528597A priority Critical patent/JPH09512723A/ja
Publication of WO1995030908A1 publication Critical patent/WO1995030908A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Definitions

  • Pulse sequences used today are generally based on the so-called "SPIN-ARP" method, as described, for example, in US Pat. No. 4,706,025 .
  • a nuclear magnetic resonance signal is phase-coded in at least one direction before reading and frequency-coded in a further direction by a reading gradient during reading.
  • a number of nuclear-magnetic resonance signals which are phase-coded differently in the phase coding direction are obtained.
  • the core resonance signals are sampled, digitized on a raster in k-space and entered in a raw data matrix in k-space.
  • a Fourier transformation is carried out in the raw data matrix for image acquisition both in the phase coding direction and in the frequency coding direction.
  • Inhomogeneities of the basic magnetic field in the phase coding direction are relatively uncritical, since it is only a question of signal differences between the individual phase coding steps.
  • the overlay of the readout gradient with basic field inhomogeneities leads to distortions.
  • EP 0 492 706 AI describes a method for compensating image errors, which e.g. external magnetic fields, movement of the examination object (e.g. due to breathing) and drift in amplifiers or permanent magnets due to temperature influences. It is suggested to use overlapping data lines in the Fourier domain to estimate these errors. This estimate is used to correct the data sets obtained before the image reconstruction.
  • image errors e.g. external magnetic fields, movement of the examination object (e.g. due to breathing) and drift in amplifiers or permanent magnets due to temperature influences. It is suggested to use overlapping data lines in the Fourier domain to estimate these errors. This estimate is used to correct the data sets obtained before the image reconstruction.
  • EP 0 585 973 describes a method in which only a magnetic field gradient is applied in the slice selection direction before the actual imaging, but no magnetic field gradients in the phase coding direction and frequency coding direction.
  • an MR signal is generated, detected and Fourier-transformed.
  • Information about the intensity of the static magnetic field is obtained from the resulting frequency spectrum. This information is used as a parameter in imaging in order to obtain an MR image free of position errors.
  • the object of the invention is to provide an image reconstruction method which, in the case of basic magnetic fields of known inhomogeneity, delivers images which are largely free of distortion, that is to say images without geometric distortions and intensity errors.
  • 7 shows the relationship between location and resonance frequency for a linear magnetic field gradient
  • 8 shows the relationship between location and resonance frequency, taking magnetic field inhomogeneities into account
  • 9 and 10 show the comparison of an idealized SPIN distribution and an SPIN distribution actually measured in the inhomogeneous field for two different gradient slopes
  • Pulse sequences can be used, in which nuclear magnetic resonance signals are phase-coded before reading and frequency-coded during reading.
  • a frequency-selective high-frequency pulse RF is first radiated in under the action of a slice selection gradient Gg.
  • a slice selection gradient Gg nuclear spins are only excited in one slice of the object under examination.
  • the dephasing caused by the positive partial pulse of the slice selection gradient Gg is reversed by a negative partial pulse Gg ⁇ .
  • a phase coding gradient Gp is also irradiated.
  • a negative readout gradient GR ⁇ is also switched on.
  • the pulse sequence shown is repeated N times with different values of the phase coding gradient Gp, so that a total of one measurement matrix with N lines is obtained.
  • the phase coding gradient is switched from pulse sequence to pulse sequence in the same steps from the highest positive to the highest negative value or vice versa.
  • the raw data matrix RD can be regarded as a measurement space, in which, in the exemplary embodiment, the present two-dimensional case is considered as the measurement data level. This measurement data space is referred to as "K space" in magnetic resonance imaging.
  • the information about the spatial origin of the signal contributions necessary for image generation is coded in the phase factors, the relationship between the location space and the K space being mathematically related via a Fourier transformation. The following applies:
  • each line corresponds to an individual nuclear magnetic resonance signal S.
  • the phase coding gradient Gpc is incremented, the scanning in K space takes place in successive lines.
  • a phase coding gradient Gp is switched on in front of the first nuclear resonance signal S ⁇ [, the gradient amplitude of which gradually increases step by step from partial sequence to partial sequence. If, for example, each nuclear magnetic resonance signal is sampled with 256 measuring points and a 256 phase coding step is carried out, a raw data matrix with 256 rows and 256 columns, ie 256 x 256 measured values in k-space, is obtained.
  • the analog measurement signals obtained in the pulse sequence according to FIGS. 1 to 5 are digitized on a raster in k-space.
  • the aim of the invention is now to find a method in which the distortions shown are already avoided during image reconstruction.
  • the minimum resolution in the image is given by the smallest slope of the effective gradient, i. H. here there are optimization possibilities between inhomogeneity and the linear gradient. For example, ambiguities can be avoided by increasing the linear readout gradient.
  • distortion is not only understood to mean geometrical shifts, but also intensity errors.
  • the basic magnetic field B total ( - (x) is composed of the homogeneous basic magnetic field B and a portion of the inhomogeneity B (x).
  • the inhomogeneity can also be regarded as a gradient which, together with the linear readout gradients g, is an effective gradient g e ff results in:
  • This location dependence of the effective gradient means in particular that the resolution and bandwidth are not necessarily constant for the entire image.
  • the effect of inhomogeneities is shown again in FIGS. 9 and 10.
  • Bg in each case represents the intensity distribution in the image in the case of a one-dimensional, step-shaped spin distribution without the effect of an inhomogeneity. If, due to inhomogeneities, the effective gradient is no longer linear, but instead has a quadratic position dependency, the image B actually obtained becomes either to the left as shown in FIG. 9 (
  • Image pixels x m are obtained using the following formula from the measurement data previously Fourier-transformed in the phase coding direction for one row of the raw data matrix:
  • I (x) is an intensity correction factor with which the above-mentioned intensity errors are to be corrected. This intensity correction factor I (x) is determined as follows:
  • the following measurement signal s (t) is obtained in a spin-echo sequence.
  • t n the time grid of the scanning and designated by g the gradient in the x direction.
  • Equation 6 Equation 6
  • w (k) can be done by weighting the measurement data with a window function w (k), which adaptively reduces the resolution for each pixel exactly to the extent that would have been obtained in a homogeneous magnetic field under the same conditions.
  • a weighting function w (k n ) can be introduced into the reconstruction formula according to equation 1.
  • FIG. 11 shows the time dependence on nuclear magnetic resonance signals s (t) schematically, curve a representing a signal under a smaller gradient and curve b representing a signal under a larger gradient.
  • the weighting function w (k n ) could, for example, be implemented as a window function in the form of a rectangle F as in FIG. 11, the width of the window being adapted to the width of the echo signal s (t).
  • the weighting function w (t) could have the following form:
  • the weighting function does not necessarily have to have a rectangular shape.
  • the window function improves the signal-to-noise ratio. Artifacts that are otherwise caused by the varying resolution can be achieved due to the locally different effective gradient.
  • the described method does require a significantly higher computing time than conventional FFT algorithms. However, since the computing power available is constantly increasing, this disadvantage is becoming less important.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
PCT/DE1995/000592 1994-05-09 1995-05-05 Rekonstruktion von bildern aus mr-signalen in inhomogenen magnetfeldern WO1995030908A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7528597A JPH09512723A (ja) 1994-05-09 1995-05-05 不均一磁場内のmr−信号から画像を再構成する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4416363.0 1994-05-09
DE19944416363 DE4416363C2 (de) 1994-05-09 1994-05-09 Rekonstruktion von Bildern aus MR-Signalen in inhomogenen Magnetfeldern

Publications (1)

Publication Number Publication Date
WO1995030908A1 true WO1995030908A1 (de) 1995-11-16

Family

ID=6517703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000592 WO1995030908A1 (de) 1994-05-09 1995-05-05 Rekonstruktion von bildern aus mr-signalen in inhomogenen magnetfeldern

Country Status (3)

Country Link
JP (1) JPH09512723A (ja)
DE (1) DE4416363C2 (ja)
WO (1) WO1995030908A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829850A1 (de) * 1998-07-03 2000-01-13 Siemens Ag Rekonstruktion eines planaren Schnittbilds aus Magnetresonanzsignalen in inhomogenen Magnetfeldern
DE10132274A1 (de) * 2001-07-04 2003-01-23 Siemens Ag Trennung von Fett- und Wasserbildern durch das Zwei-Punkt-Dixon-Verfahren unter Berücksichtigung einer integrierten 3D-Feld-Messung zur Aufnahme einer Karte der Grundfeldinhomogenität
DE102007033874A1 (de) 2007-07-20 2009-01-29 Siemens Ag Verfahren zur Bestimmung von lokalen Abweichungen eines Grundmagnetfeldes eines Magnetresonanzgerätes von einem Soll-Wert sowie Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät zur Durchführung des Verfahrens
DE102007033880A1 (de) 2007-07-20 2009-01-29 Siemens Ag Verfahren zur Korrektur von Verzeichnungen in mittels eines Magnetresonanzgeräts aufgenommenen Bilddatensätzen sowie Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät zur Durchführung des Verfahrens
DE102007033897A1 (de) 2007-07-20 2009-02-19 Siemens Ag Verfahren zur Korrektur von Verzeichnungen in mittels eines Magnetresonanzgeräts aufgenommenen Bilddatensätzen sowie Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät zur Durchführung des Verfahrens
CN103027681A (zh) * 2011-10-06 2013-04-10 西门子公司 用于重构并行获取的mri图像的系统
WO2020078131A1 (zh) * 2018-10-17 2020-04-23 浙江大学 一种基于频率稳定模块的磁共振cest成像序列及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540837B4 (de) * 1995-10-30 2004-09-23 Siemens Ag Verfahren zur Verzeichnungskorrektur für Gradienten-Nichtlinearitäten bei Kernspintomographiegeräten
US5869965A (en) * 1997-02-07 1999-02-09 General Electric Company Correction of artifacts caused by Maxwell terms in MR echo-planar images
DE10028560C2 (de) * 2000-06-09 2002-10-24 Siemens Ag Verwendung von Koeffizienten bei einem Verfahren zum dreidimensionalen Korrigieren von Verzeichnungen und Magnetresonanzgerät zum Durchführen des Verfahrens
CN102283651B (zh) * 2011-07-11 2013-01-23 苏州安科医疗系统有限公司 一种核磁共振成像梯度场校正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005675A1 (de) * 1990-02-22 1991-08-29 Siemens Ag Verfahren zur unterdrueckung von artefakten bei der bilderzeugung mittels kernmagnetischer resonanz
EP0492706A1 (en) * 1990-12-21 1992-07-01 Koninklijke Philips Electronics N.V. Magnetic resonance imaging and device for reducing image errors in a magnetic resonance image
US5157330A (en) * 1991-02-22 1992-10-20 The Regents Of The University Of California Method and apparatus for compensating magnetic field inhomogeneity artifact in MRI
US5309101A (en) * 1993-01-08 1994-05-03 General Electric Company Magnetic resonance imaging in an inhomogeneous magnetic field

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706025A (en) * 1980-03-14 1987-11-10 National Research Development Corporation Methods of producing image formation from objects
JPS63109849A (ja) * 1986-10-29 1988-05-14 株式会社日立メディコ Nmrイメ−ジング装置
DE4218902C2 (de) * 1992-06-09 1994-03-31 Siemens Ag Verfahren zum Einstellen des Stromes durch Shim-Spulen bei Kernspinresonanzgeräten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005675A1 (de) * 1990-02-22 1991-08-29 Siemens Ag Verfahren zur unterdrueckung von artefakten bei der bilderzeugung mittels kernmagnetischer resonanz
EP0492706A1 (en) * 1990-12-21 1992-07-01 Koninklijke Philips Electronics N.V. Magnetic resonance imaging and device for reducing image errors in a magnetic resonance image
US5157330A (en) * 1991-02-22 1992-10-20 The Regents Of The University Of California Method and apparatus for compensating magnetic field inhomogeneity artifact in MRI
US5309101A (en) * 1993-01-08 1994-05-03 General Electric Company Magnetic resonance imaging in an inhomogeneous magnetic field

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D.C. NOLL ET AL.: "A HOMOGENEITY CORRECTION METHOD FOR MAGNETIC RESONANCE IMAGING WITH TIME-VARYING GRADIENTS", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 10, no. 4, 1 December 1991 (1991-12-01), NEW YORK US, pages 629 - 637 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829850A1 (de) * 1998-07-03 2000-01-13 Siemens Ag Rekonstruktion eines planaren Schnittbilds aus Magnetresonanzsignalen in inhomogenen Magnetfeldern
DE19829850C2 (de) * 1998-07-03 2000-06-15 Siemens Ag Rekonstruktion eines planaren Schnittbilds aus Magnetresonanzsignalen in inhomogenen Magnetfeldern
US6252401B1 (en) 1998-07-03 2001-06-26 Siemens Aktiengesellschaft Method for reconstructing a planar tomogram from magnetic resonance signals in an inhomogeneous magnetic fields
DE10132274A1 (de) * 2001-07-04 2003-01-23 Siemens Ag Trennung von Fett- und Wasserbildern durch das Zwei-Punkt-Dixon-Verfahren unter Berücksichtigung einer integrierten 3D-Feld-Messung zur Aufnahme einer Karte der Grundfeldinhomogenität
DE10132274B4 (de) * 2001-07-04 2004-01-15 Siemens Ag Trennung von Fett- und Wasserbildern durch das Zwei-Punkt-Dixon-Verfahren unter Berücksichtigung einer integrierten 3D-Feld-Messung zur Aufnahme einer Karte der Grundfeldinhomogenität
US6750650B2 (en) 2001-07-04 2004-06-15 Siemens Aktiengesellschaft Magnetic resonance tomography apparatus and method for separating fat and water images by correction of phase values dependent on a noise phase
DE102007033874A1 (de) 2007-07-20 2009-01-29 Siemens Ag Verfahren zur Bestimmung von lokalen Abweichungen eines Grundmagnetfeldes eines Magnetresonanzgerätes von einem Soll-Wert sowie Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät zur Durchführung des Verfahrens
DE102007033880A1 (de) 2007-07-20 2009-01-29 Siemens Ag Verfahren zur Korrektur von Verzeichnungen in mittels eines Magnetresonanzgeräts aufgenommenen Bilddatensätzen sowie Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät zur Durchführung des Verfahrens
DE102007033897A1 (de) 2007-07-20 2009-02-19 Siemens Ag Verfahren zur Korrektur von Verzeichnungen in mittels eines Magnetresonanzgeräts aufgenommenen Bilddatensätzen sowie Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät zur Durchführung des Verfahrens
US7812603B2 (en) 2007-07-20 2010-10-12 Siemens Aktiengesellschaft Method for determining local deviations of a main magnetic field of a magnetic resonance device
US8199992B2 (en) 2007-07-20 2012-06-12 Siemens Aktiengesellschaft Method for correction of distortion in image data records recorded by means of a magnetic resonance scanner, as well as a computer program, image processing unit and magnetic resonance scanner for carrying out the method
US8260021B2 (en) 2007-07-20 2012-09-04 Siemens Aktiengesellschaft Method for correction of distortion in image data records recorded by means of a magnetic resonance scanner, as well as a computer program, image processing unit and magnetic resonance scanner for carrying out the method
CN103027681A (zh) * 2011-10-06 2013-04-10 西门子公司 用于重构并行获取的mri图像的系统
WO2020078131A1 (zh) * 2018-10-17 2020-04-23 浙江大学 一种基于频率稳定模块的磁共振cest成像序列及装置
US11237239B2 (en) 2018-10-17 2022-02-01 Zhejiang University Magnetic resonance cest imaging sequence and device based on frequency stabilization module

Also Published As

Publication number Publication date
DE4416363A1 (de) 1995-11-23
JPH09512723A (ja) 1997-12-22
DE4416363C2 (de) 1996-03-21

Similar Documents

Publication Publication Date Title
EP0695947B1 (de) MR-Verfahren zur Bestimmung der Kernmagnetisierungsverteilung mit einer Oberflächenspulen-Anordnung
EP1780556B1 (de) Kernspintomographie mit lokalen Magnetfeldgradienten in Verbindung mit lokalen Empfangsspulen
DE60319475T2 (de) Parallele Magnetresonanzbildgebung unter Verwendung von Navigator-Echosignalen
DE19804823B4 (de) Korrektur von Artefakten, die durch Maxwell-Terme in Magnetresonanz-Echo-Planar-Bildern verursacht werden
DE19635019B4 (de) Virtuelle Frequenzkodierung von erfaßten kernmagnetischen Resonanz-Bilddaten
DE102014206395B4 (de) Aufnahme und iterative Rekonstruktion einer Parameterkarte eines Zielbereichs
DE102018218471B3 (de) Verfahren zur Magnetresonanzbildgebung mit Zusatzgradientenpulsen, Magnetresonanzeinrichtung, Computerprogramm und elektronisch lesbarer Datenträger
DE112015001951T5 (de) System und Verfahren zur Magnetresonanz-Bildgebung mit reduziertem Sichtfeld
DE102017222359A1 (de) Automatische Bestimmung von Korrekturfaktoren für eine Magnetresonanzanlage
DE102015204955A1 (de) Verfahren zur Magnetresonanz-Bildgebung
DE102013218636B3 (de) Verfahren zur Ermittlung einer B0-Feldkarte mit einer Magnetresonanzeinrichtung und Recheneinrichtung
WO1995030908A1 (de) Rekonstruktion von bildern aus mr-signalen in inhomogenen magnetfeldern
DE19814677B4 (de) Korrektur einer durch Maxwell-Terme verursachten Verschlechterung eines Axial-Bild-Signals
EP0560168B1 (de) Pulssequenz für ein Kernspinresonanzgerät
DE4415393B4 (de) Verfahren zur Erzeugung von Bildern in einem Kernspintomographiegerät mit einer Spinecho-Pulssequenz
DE102013217336B3 (de) Phasenkontrast-MR-Bildgebung mit Geschwindigkeitskodierung
DE102015204483A1 (de) Magnetresonanz-Vorschau-Abbildung
DE4003547C2 (de) Abtastung von Kernresonanzsignalen bei allgemeinen Gradientenformen
DE102020212250B4 (de) Verfahren zur Ermittlung einer Point-Spread-Funktion (PSF) für eine Rekonstruktion von Bilddaten aus mittels einer Mag-netresonanzanlage aufgenommenen Messdaten
DE102007033897A1 (de) Verfahren zur Korrektur von Verzeichnungen in mittels eines Magnetresonanzgeräts aufgenommenen Bilddatensätzen sowie Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät zur Durchführung des Verfahrens
EP0576712A1 (de) Pulssequenz zur schnellen Bildgebung in der Kernspintomographie
DE102020209382A1 (de) Verfahren zur Aufnahme von Messdaten mittels einer Magnetresonanzanlage mit einer Korrektur der verwendeten k-Raumtrajektorien
DE112019005169T5 (de) Magnetresonanztomographie mit bewegungskompensierter bildrekonstruktion
EP3290940B1 (de) Iterative rekonstruktion von quantitativen mr-bildern
DE19653476A1 (de) Verfahren zur Intensitätskorrektur eines Bildes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 732376

Date of ref document: 19961101

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase