WO1995028009A1 - Halbleiterelement mit passivierter oberfläche und verfahren zu seiner herstellung - Google Patents
Halbleiterelement mit passivierter oberfläche und verfahren zu seiner herstellung Download PDFInfo
- Publication number
- WO1995028009A1 WO1995028009A1 PCT/EP1995/001295 EP9501295W WO9528009A1 WO 1995028009 A1 WO1995028009 A1 WO 1995028009A1 EP 9501295 W EP9501295 W EP 9501295W WO 9528009 A1 WO9528009 A1 WO 9528009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor element
- semiconductor
- layer
- insulator
- electrical
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 23
- 239000012212 insulator Substances 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 238000005452 bending Methods 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 3
- 239000000615 nonconductor Substances 0.000 claims 5
- 239000002800 charge carrier Substances 0.000 abstract description 23
- 230000007547 defect Effects 0.000 abstract description 11
- 238000000151 deposition Methods 0.000 abstract description 2
- 238000005507 spraying Methods 0.000 abstract 1
- 230000006798 recombination Effects 0.000 description 26
- 238000005215 recombination Methods 0.000 description 26
- 239000010410 layer Substances 0.000 description 23
- 238000005259 measurement Methods 0.000 description 9
- 238000002161 passivation Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- 239000005041 Mylar™ Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2648—Characterising semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2642—Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the invention relates to methods for producing a semiconductor element according to the preamble of claim 1 and methods for measuring the electron life in semiconductor materials.
- the lifespan of free charge carriers, such as electrons and holes in semiconductors, is an important factor for material characterization and for potential applications, such as the manufacture of components.
- the lifespan of electrons and holes is determined by band-band recombination, Auger recombination and recombination via defects.
- the lifespan of electrons and holes is determined by band-band recombination, Auger recombination and recombination via defects.
- direct semiconductors it is of the order of magnitude in the ns range, for semiconductors with an indirect band gap in the ⁇ s range.
- the recombination time of the charge carriers is limited by the radiating band-band recombination or the Auger recombination.
- the recombination via the impurities acting as recombination centers increases.
- Unsaturated bonds appear on the surface itself.
- the recombination lifetime in a layer close to the surface is therefore considerably lower than in volume and reaches a minimum directly on the surface.
- surface passivation is usually carried out in the prior art. This can be done, for example, by thermally applying an oxide layer to the semiconductor surface, such as silicon dioxide (SiO-,) on silicon.
- an oxide layer such as silicon dioxide (SiO-,) on silicon.
- the general rule here is that the quality of the surface passivation increases at higher process temperatures of thermal growth. The use of high temperatures is however the processing of many semiconductor components is undesirable.
- Another method is hydrogen passivation, in which the electronic defects lying on the surface are saturated by the application of hydrogen. This method is widely used, for example, in solar cell research.
- the disadvantage of this method is that the sample is subjected to hydrofluoric acid (HF) treatment, which is very dangerous on the one hand and is not permanent on the other because the hydrogen only adheres to the sample surface for a limited time.
- HF hydrofluoric acid
- the methods mentioned have further disadvantages.
- the application of a thermal oxide layer is only possible with semiconductor materials that form a natural oxide, such as silicon, but not e.g. GaAs.
- the hydrogen passivation process is also not suitable for all semiconductor materials.
- the methods mentioned are only effective with regard to the defects lying in a very thin surface layer near the surface, while defects lying somewhat deeper in the material usually remain unaffected. The surface recombination can thus only be reduced inadequately and with a disproportionately high outlay in terms of process technology by means of the methods mentioned.
- Fig. 1 the operation of the invention is shown schematically using a preferred embodiment.
- an oxide 2 in this case silicon dioxide (SiO “) is first deposited on a semiconductor sample 1, for example from silicon (Si).
- the deposition can be carried out at a low temperature. It can be accepted that a higher density of interface states occurs at the Si / SiO interface than would be expected if the process were carried out at high temperature.
- Another insulator material for example glass, photoresist or plastics
- the conduction and valence band of the semiconductor are bent upward by the negative charge carriers. This creates an electric field in the interior of the semiconductor element, by means of which electrons located in the conduction band are drawn from the area near the surface into the interior of the sample. Depending on the sign of the electrical charges and the band bending, the surface zone becomes depleted on a certain type of charge carrier. In the present case, these are the electrons as miniature carriers in p-conducting Si.
- the arrows drawn in FIG. 1B schematically indicate how electrons are excited from the valence band into the conduction band by light absorption, for the sake of simplicity only the absorption near the band edges is shown.
- the charge carriers are partially generated in the band-bent surface layer of the semiconductor when the light falls from the front. Under the influence of the electric field, these charge carriers then drift very quickly into areas far from the surface of the semiconductor in which the density of recombination centers is low. In some cases, the charge carriers are also generated in lower-lying regions of the semiconductor with a non-bent band structure. From the outset, the band bending prevents these charge carriers from diffusing into areas close to the surface.
- the charge carriers can be applied very effectively by a corona discharge. With such corona discharges, a tip lying at a negative or positive potential is positioned at a distance from the surface of the sample, so that charged air molecules are sprayed onto the oxide surface.
- the measured effective charge carrier lifetime (excitation wavelength 1.046 ⁇ m) rose from 17 ⁇ s (with surfaces uncharged on both sides of the wafer) to 833 ⁇ s (with surfaces charged on both sides). The latter value is probably a good approximation of the volume life of charge carriers in the sample used.
- the method described can be used to first determine the volume lifetime for any semiconductor material sample very precisely and then for one and the same sample, using the known volume lifetime, the surface lifetime of the charge carriers on a metal deposited on the sample. or insulator layer.
- the wafer is first provided on both sides with an insulator or oxide layer, to which, as already described, electrical charges are then applied.
- a lifetime measurement is then carried out, which essentially provides the volume lifetime. If, for example, the surface service life is to be measured on one of the oxide layers already present, then only the electrical charges present there need to be removed again, after which a new service life measurement is carried out. This measurement then provides an effective service life, from which the surface service life of the oxide layer in question can be determined relatively easily over the known volume service life.
- the oxide layer must be etched off on one side of the sample, to which, for example, a metal layer or another insulator layer is applied instead of the oxide layer. If a lifetime measurement is carried out again, the effective lifetime and the known volume lifetime, as already described above, can also be used to determine the surface lifetime on the newly applied layer relatively easily.
- the method described so far is therefore already fully usable for lifetime measurements.
- care must still be taken to ensure that the sprayed-on charges remain adhering to the surface of the oxide for a relatively long time.
- This can be ensured, for example, by applying an additional cover layer 4, as shown in FIG. 1A.
- the cover layer 4 can be thermally grown, for example. It can also consist of an insulator plate which is applied to the insulator layer 2 and is connected to it, for example by bonding.
- the cover layer 4 can, for example, also be a plastic film.
- the Cover layer 4 also consist of a material with a large band gap, such as SiC or diamond.
- the described method is not only important for solar cells, but in general for all components whose function can be improved by adjusting the surface recombination, e.g. Photodiodes or high frequency components.
- a decisive advantage of the method is that the semiconductor sample is not mechanically impaired during the passivation and at the same time the surface recombination is effectively suppressed.
- any insulator such as silicon dioxide or glass
- any insulator such as silicon dioxide or glass
- the electrets mostly have disordered electrical dipole moments in the initial state, which e.g. can be aligned by an electric field, with which a permanent electric dipole moment is generated. However, the alignment can also be brought about by a corona discharge, in which case the applied charges can then be removed again.
- the band bending should be brought and charged electret are enabled (the size of the band bending depends on the density of the rechargeable states in the surface).
- Silicon wafers e.g. in steps of Elementary charges have shown that the lifetime f measured after each step shows a characteristic course (Q). Specifically, the lifespan of p-silicon was initially shorter and then drastically increased after passing through a minimum until it saturated (if the surface passivation was sufficiently good). The interpretation of this result is the following: As is known, thermal oxides on silicon always carry positive oxide charges in the volume of the oxide. As a result, the semiconductor strips near the surface are already bent in the direction of depletion in p-silicon. A standard method for determining this oxide charge, which plays an important role in components, is contacting CV measurement.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7526077A JPH10502490A (ja) | 1994-04-09 | 1995-04-07 | 不動態化された表面を有する半導体素子およびその製造方法 |
EP95917303A EP0755574A1 (de) | 1994-04-09 | 1995-04-07 | Halbleiterelement mit passivierter oberfläche und verfahren zu seiner herstellung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4412297A DE4412297C2 (de) | 1994-04-09 | 1994-04-09 | Verfahren zur Rekombinationslebensdauermessung und Vorrichtung zur Durchführung des Verfahrens |
DEP4412297.7 | 1994-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995028009A1 true WO1995028009A1 (de) | 1995-10-19 |
Family
ID=6515024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1995/001295 WO1995028009A1 (de) | 1994-04-09 | 1995-04-07 | Halbleiterelement mit passivierter oberfläche und verfahren zu seiner herstellung |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0755574A1 (de) |
JP (1) | JPH10502490A (de) |
DE (1) | DE4412297C2 (de) |
WO (1) | WO1995028009A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004075252A2 (en) | 2003-02-13 | 2004-09-02 | Rwe Schott Solar Inc. | Surface modification of silicon nitride for thick film silver metallization of solar cell |
KR100737708B1 (ko) * | 1999-08-12 | 2007-07-11 | 로베르트 보쉬 게엠베하 | 마이크로메카니컬 각 가속도 센서 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10057296B4 (de) * | 2000-11-17 | 2004-02-19 | König, Dirk, Dipl.-Ing. | Solarzellen-Oberfläche |
DE102009024807B3 (de) | 2009-06-02 | 2010-10-07 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Solarzelle mit benachbarten elektrisch isolierenden Passivierbereichen mit hoher Oberflächenladung gegensätzlicher Polarität und Herstellungsverfahren |
DE102011051112B4 (de) | 2011-06-05 | 2015-01-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Messung der Hochspannungsdegradation von zumindest einer Solarzelle oder eines Photovoltaik-Moduls sowie dessen Verwendung |
DE102011051019B4 (de) | 2011-06-10 | 2021-10-07 | Hanwha Q Cells Gmbh | Solarzellenherstellungsverfahren |
JP6455915B2 (ja) * | 2014-08-29 | 2019-01-23 | 国立大学法人電気通信大学 | 太陽電池 |
JP6696729B2 (ja) | 2015-03-18 | 2020-05-20 | 株式会社Sumco | 半導体基板の評価方法及び半導体基板の製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4144094A (en) * | 1975-01-06 | 1979-03-13 | Motorola, Inc. | Radiation responsive current generating cell and method of forming same |
US4343962A (en) * | 1979-07-16 | 1982-08-10 | Arnost Neugroschel | Oxide charge induced high low junction emitter solar cell |
US4435610A (en) * | 1982-09-07 | 1984-03-06 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Electret semiconductor solar cell |
DE4111184A1 (de) * | 1991-04-06 | 1992-10-08 | Peter Dipl Ing Guenther | Elektret mis-il-solarzelle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD268843A3 (de) * | 1982-12-30 | 1989-06-14 | Akad Wissenschaften Ddr | Vorrichtung zur plasmachemischen Niedertemperaturveraschung oxidierbarer kohlenstoffhaltiger Materialien |
DD285536A7 (de) * | 1984-10-30 | 1990-12-19 | Technische Universitaet Karl-Marx-Stadt,Dd | Verfahren zur kapazitaets- spannungsmessung an mis- test-kondensatoren |
DD278704A3 (de) * | 1987-06-16 | 1990-05-16 | Karl Marx Stadt Tech Hochschul | Verfahren zur messung der minoritaetstraegerlebensdauer von mis-testkondensatoren |
-
1994
- 1994-04-09 DE DE4412297A patent/DE4412297C2/de not_active Expired - Fee Related
-
1995
- 1995-04-07 JP JP7526077A patent/JPH10502490A/ja active Pending
- 1995-04-07 EP EP95917303A patent/EP0755574A1/de not_active Withdrawn
- 1995-04-07 WO PCT/EP1995/001295 patent/WO1995028009A1/de not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4144094A (en) * | 1975-01-06 | 1979-03-13 | Motorola, Inc. | Radiation responsive current generating cell and method of forming same |
US4343962A (en) * | 1979-07-16 | 1982-08-10 | Arnost Neugroschel | Oxide charge induced high low junction emitter solar cell |
US4435610A (en) * | 1982-09-07 | 1984-03-06 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence | Electret semiconductor solar cell |
DE4111184A1 (de) * | 1991-04-06 | 1992-10-08 | Peter Dipl Ing Guenther | Elektret mis-il-solarzelle |
Non-Patent Citations (2)
Title |
---|
M. SCHÖFTHALER ET AL.: "Distinction between bulk and surface recombination in silicon wafers", 12TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, 11 April 1994 (1994-04-11), AMSTERDAM, pages 533 - 536 * |
M. SCHÖFTHALER ET AL.: "Optimization of the back contact geometry for high efficiency solar cells", 23RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 10 May 1993 (1993-05-10), LOUISVILLE, KY (USA), pages 315 - 320 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100737708B1 (ko) * | 1999-08-12 | 2007-07-11 | 로베르트 보쉬 게엠베하 | 마이크로메카니컬 각 가속도 센서 |
WO2004075252A2 (en) | 2003-02-13 | 2004-09-02 | Rwe Schott Solar Inc. | Surface modification of silicon nitride for thick film silver metallization of solar cell |
EP1602132A2 (de) * | 2003-02-13 | 2005-12-07 | RWE Schott Solar Inc. | Flächenänderung von silikonnitriden für die dickschicht-silbermetallisierung von solarzellen |
EP1602132A4 (de) * | 2003-02-13 | 2006-05-10 | Rwe Schott Solar Inc | Flächenänderung von silikonnitriden für die dickschicht-silbermetallisierung von solarzellen |
Also Published As
Publication number | Publication date |
---|---|
DE4412297C2 (de) | 1998-03-19 |
DE4412297A1 (de) | 1995-10-12 |
EP0755574A1 (de) | 1997-01-29 |
JPH10502490A (ja) | 1998-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112014005954B4 (de) | Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils | |
DE112013006103T5 (de) | Metallfolienunterstützte Herstellung von Dünnsilizium-Solarzellen | |
DE102008051494A1 (de) | SOI-Substrate mit einer feinen vergrabenen Isolationsschicht | |
DE112012002461T5 (de) | Gleichmässig verteilte selbstorganisierte kegelförmige Säulen für Solarzellen mit hohem Wirkungsgrad | |
DE112014005031B4 (de) | Verfahren zur Herstellung eines Halbleiter-Bauelements und Vorrichtung zur Herstellung einer Glasschicht | |
DE102010044985B4 (de) | Verfahren zum Aufbringen eines Konversionsmittels auf einen optoelektronischen Halbleiterchip und optoelektronisches Bauteil | |
DE112019006396T5 (de) | Freistehendes polykristallines diamantsubstrat und verfahren zur herstellung desselben | |
EP2695182A1 (de) | Verfahren zum permanenten bonden von wafern | |
DE69623000T2 (de) | Elektrolumineszentes Bauelement, das poröses Silicium enthält | |
DE102007014608B4 (de) | Verfahren zur Herstellung eines porösen halbleitenden Films | |
WO1995028009A1 (de) | Halbleiterelement mit passivierter oberfläche und verfahren zu seiner herstellung | |
DE102009040148A1 (de) | Konversionsmittelkörper, optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips | |
DE112018004186T5 (de) | Fertigungsprozesse für effektiv transparente Kontakte | |
DE102012102745A1 (de) | Verfahren zur Herstellung einer Solarzelle sowie Solarzelle | |
DE19936941B4 (de) | Verfahren zur Herstellung dünner Schichten, insbesondere Dünnschichtsolarzellen, auf einem Trägersubstrat | |
EP0557318A1 (de) | Verfahren zur herstellung von halbleiterelementen, insbesondere von dioden. | |
DE112009002084T5 (de) | Kristallherstellungsvorrichtung, mit derselben hergestellte Halbleitervorrichtung, und Verfahren zur Herstellung einer Halbleitervorrichtung mit derselben | |
WO2018039690A1 (de) | Optoelektronischer infrarotsensor | |
DE102016121099A1 (de) | Herstellung von strahlungsemittierenden halbleiterbauelementen | |
DE112012004047T5 (de) | Wafer für Solarzellen, Verfahren zur Herstellung eines Wafers für Solarzellen, Verfahren zur Herstellung einer Solarzelle, sowie Verfahren zur Herstellung eines Solarzellenmoduls | |
DE112019001022T5 (de) | Verfahren zur herstellung eines epitaktischen halbleiterwafers und verfahren zur herstellung eines halbleiterbauelements | |
DE212020000839U1 (de) | Leistungshalbleitervorrichtung und Leistungsmodul | |
Swanwick et al. | Ultrafast photo-triggered field emission cathodes using massive, uniform arrays of nano-sharp high-aspect-ratio silicon structures | |
DE19848460A1 (de) | Halbleiterbauelement und Verfahren zum Herstellen eines Halbleiterchips | |
DE102023108751B3 (de) | Verfahren zum trennen von dies von einem halbleitersubstrat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): HU JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995917303 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1996 722130 Date of ref document: 19961105 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1995917303 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995917303 Country of ref document: EP |