WO1995021692A1 - Reacteur a lit fluidifie et procede de gestion de la temperature pour reacteur a lit fluidifie - Google Patents

Reacteur a lit fluidifie et procede de gestion de la temperature pour reacteur a lit fluidifie Download PDF

Info

Publication number
WO1995021692A1
WO1995021692A1 PCT/JP1995/000163 JP9500163W WO9521692A1 WO 1995021692 A1 WO1995021692 A1 WO 1995021692A1 JP 9500163 W JP9500163 W JP 9500163W WO 9521692 A1 WO9521692 A1 WO 9521692A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
fluidized bed
heat removal
bed reactor
temperature
Prior art date
Application number
PCT/JP1995/000163
Other languages
English (en)
French (fr)
Inventor
Minoru Tanaka
Chi Wai Hui
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US08/532,649 priority Critical patent/US5700432A/en
Priority to EP95907851A priority patent/EP0695576A4/en
Priority to KR1019950703288A priority patent/KR960704626A/ko
Publication of WO1995021692A1 publication Critical patent/WO1995021692A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00141Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical

Definitions

  • the present invention relates to a fluidized bed reactor suitable for performing a gas phase exothermic reaction and easy to control the reaction temperature, and to a temperature control method for the fluidized bed reactor. More specifically, the present invention relates to a fluidized-bed reactor and a method for controlling the reaction temperature of a fluidized-bed reactor when a gas-phase exothermic reaction, for example, an oxidation reaction of a hydrocarbon compound is performed in a large-scale fluidized-bed reactor on an industrial scale.
  • a gas-phase exothermic reaction for example, an oxidation reaction of a hydrocarbon compound is performed in a large-scale fluidized-bed reactor on an industrial scale.
  • the reaction temperature of an industrial-scale fluidized bed reactor is controlled by installing a heat removal pipe in the fluidized bed and circulating water to recover the reaction heat as steam.
  • a heat removal pipe in the fluidized bed and circulating water to recover the reaction heat as steam.
  • attempts have been made to arrange heat removal tubes separately in the upper and lower portions of the fluidized bed to separately control the temperatures in the upper and lower portions of the fluidized bed (US Pat. No. 3,080,382). See).
  • the method of finely controlling the temperature of the fluidized bed by adjusting the temperature of the reaction material supplied to the reactor, and the amount of heat generated by adjusting the supply speed of the reaction material It is also known to finely control the temperature of the fluidized bed by increasing or decreasing the temperature.
  • catalysts used in fluidized bed reactors generally have a large effect on the reaction results and catalyst life depending on the conditions of use. It is also necessary to keep the fluidized bed in good condition. It is known that the flow condition is greatly affected by the gas flow rate and the catalyst particle size. You. Therefore, it is preferable to maintain the composition and supply rate of the reaction raw materials as constant as possible.
  • the temperature of the fluidized bed will inevitably change.
  • the reaction temperature was excessively increased, and the catalyst was degraded, and in severe cases, it could even hinder safe operation.
  • the fluidized state of the fluidized bed was kept good, and the temperature, moisture.
  • the temperature distribution inside the fluidized bed is reduced by keeping the factors that may influence the temperature of the fluidized bed such as the composition and the feed rate as constant as possible, the temperature of the fluidized bed will still change. Inevitable. Therefore, in order for the catalyst to achieve its best reaction reading, it is essential to actively control the temperature of the fluidized bed and maintain it at the optimum temperature.
  • An object of the present invention is to provide a fluidized bed reactor capable of quickly responding to such a small temperature change in a fluidized bed and a method for rapidly and accurately controlling the reaction temperature of the fluidized bed reactor. It is. Disclosure of the invention
  • the first aspect of the present invention is a fluidized bed reactor, in which a fluidized bed forming section is provided with a plurality of heat removing tubes and at least one temperature detecting section, and the heat removing tubes are the same as a refrigerant supply pipe outside the reactor. At least one heat removal pipe is connected to the extraction pipe, and at least one heat removal pipe is supplied with refrigerant at a constant speed, and at least one other heat removal pipe is composed of a heat removal pipe supplied with refrigerant at a variable speed. Maintain the temperature of the fluidized bed at the optimum temperature.
  • a second aspect of the present invention is to provide a fluidized bed reactor in which a plurality of heat removal tubes are installed in a fluidized bed in performing a gas phase exothermic reaction in a fluidized bed reactor.
  • a fluidized bed characterized in that a refrigerant is supplied to at least one heat removal tube at a steady speed using a heat exchanger, and the heat is removed by supplying a refrigerant at a variable speed to at least one other heat removal tube.
  • An object of the present invention is to provide a temperature control method for quickly and accurately controlling the reaction temperature of a reactor.
  • FIG. 1 is a conceptual diagram of one example of a fluidized bed reactor for carrying out the present invention.
  • FIG. 2 is a diagram showing the transition of the reaction temperature in the example.
  • FIG. 3 is a diagram showing the transition of the supply speed of n-butane in the example.
  • the catalyst used in the fluidized bed reactor of the present invention is a conventional fluidized bed reactor.
  • the catalyst used in the reactor can be used as it is, but its weight average particle size is 30 to 100 ⁇ m, preferably 40 to 80 ⁇ m, and the particle size is 4 Group A (G e 1 dert, D) of the Ge 1 dert particle classification map containing 20 to 70% by weight of fine powder having a particle size of 4 m or less and having a particle density of 300 kg / m 3 or less , Powder Technology, 7, 285 (see 197 3)).
  • the fluidized-bed reactor of the present invention is capable of producing a maleic anhydride by an oxidation reaction of butane, butene, butadiene, and benzene, and a phthalic anhydride by an oxidation reaction of ortho-xylene and naphthalene.
  • Large-scale fluidized bed reactor for industrial scale production oxidation reaction such as production of propylene, isopylene, and ammonium, and oxidation reaction of ethylene, etc.
  • the fluidized state of the catalyst in the fluidized bed is effective for aggregating fluidization of Bubbling R egime, Slug low R egime, furbulent R egime, etc. This is a fluidized bed reactor called Conventional Fluidized Bed.
  • the catalyst particles are preferably kept in a fluidized state by gas introduced from the lower part of the reactor.
  • the gas velocity is usually maintained at 35 to 80 cm / sec based on the effective area of the reactor.
  • the temperature detector is for detecting the temperature of the fluidized bed, and it may be installed alone, but it is usually preferable to install a plurality of temperature detectors so that the temperature of the entire fluidized bed can be correctly grasped.
  • the heat removal tubes are for removing heat from the fluidized bed and need to be installed in multiple rows.
  • the heat removal pipe is connected to a refrigerant supply pipe and a refrigerant discharge pipe outside the reactor, and the refrigerant flows from the refrigerant supply pipe to the refrigerant discharge pipe via the heat removal pipe.
  • the supply rate of the refrigerant to the steady-state heat removal tube to which the refrigerant is supplied at the steady speed is calculated based on the total heat removal amount to be removed by all the heat removal tubes and the ratio of the heat removal by the steady-state heat removal tube. be able to.
  • the total heat removal is mainly determined by the heat generation determined by the composition and supply rate of the reactants supplied to the reactor, and the set reaction temperature, and in some cases, the temperature of the reactants and the outer wall of the reactor It is slightly affected by the amount of heat released from the air. Therefore, as long as these conditions do not change, the supply rate of the refrigerant to the steady-state heat removal tube is kept constant.
  • the fluidized bed reactor of the present invention is not particularly limited in its heat removal quantity, remove heat total heat in all the heat removal tubes 1 0, 0 0 0 ⁇ 2 0 0, 0 0 0 kca 1 / m 2 ⁇ hr Is appropriate.
  • it is usually designed to remove most of the heat to be removed by the regular heat removal tube, preferably 50% or more of the total heat removal, especially 80% or more, and the rest is removed. It is preferable to remove the heat with an adjusting heat removal tube to which the refrigerant is supplied at a variable speed.
  • a liquid that can remove heat by utilizing the latent heat of vaporization of water or other refrigerant is usually used.
  • Ri can Do overall heat transfer coefficient of the constant for the heat removal tubes rather large by using such refrigerant, properly preferred c which can increase the quantity of heat removed per unit surface area of the heat removal tubes used in the water and refrigerant, and the At least a part should be converted to steam in the pipe.
  • the temperature of the supplied ice is appropriately selected depending on the reaction conditions and the like. Since the pressure of the steam at the outlet is determined, it is preferable that the saturation temperature at the arbitrary pressure is within a range of ⁇ 5 O, and preferably a saturation temperature of ⁇ 1 O.
  • the pressure of the water vapor constant for heat removal tube exit usually SSO kg Z m 2 it can. Therefore, as a refrigerant, heated ice in the range of 50 to 50% of saturated temperature soil at the pressure is supplied, and 3 to 15%, preferably 5 to 10% of the heated ice is supplied. Evaporate in the tube and recover from the outlet as a high-pressure gas-liquid multiphase flow.
  • the stationary heat removal pipe is not only an evaporating pipe that supplies water as a refrigerant to generate steam, but also a superheated pipe that supplies ice steam as a refrigerant to generate superheated steam. It is preferred to be composed of two types, a pipe and a tube. In this way, the heat of reaction of the fluidized bed reactor can be recovered from the superheater as dry steam that is convenient for use. Even in this case, it is advantageous to remove 50% or more, preferably 80% or more of the total heat removal by a heat removal pipe that supplies water to generate steam.
  • the supply rate of the refrigerant to the supplied adjusting heat removal tube is adjusted so as to maintain the temperature in the reactor at a predetermined value. That is, according to the difference between the temperature detected by the temperature detector provided in the fluidized bed and the set temperature of the reactor, the supply speed of the refrigerant is determined so as to reduce the difference.
  • heat removal tubes for adjustment and temperature detectors are installed at the upper and lower parts of the fluidized bed, respectively, and the upper and lower parts of the fluidized bed are independently temperature controlled. It is preferable to be able to make adjustments.
  • the heat removal amount and the refrigerant flow rate are almost proportional.
  • it is preferable that the phase change of the refrigerant is not caused and the sensible heat of the refrigerant is used. The reason is as follows.
  • the heat removal amount Q in the heat removal tube is determined by the product of the heat transfer area A of the tube, the overall heat transfer coefficient U, and the logarithmic average temperature difference ⁇ . (Formula (1) below)
  • the overall heat transfer coefficient U is the external heat transfer coefficient h. It is a function of the pipe heat transfer coefficient h i, the pipe thickness d, the pipe thermal conductivity; I and the pipe fouling coefficient r. (Formula (2) below)
  • Outer tube heat transfer coefficient h Is usually about 100,000 kcal Zm 2 , ⁇ , hr, and can be regarded as constant while controlling the temperature of the reactor. Similarly, d, s, and r can also be considered constant, so that the overall heat transfer coefficient U changes in accordance with the change in the pipe heat transfer coefficient hi.
  • the heat transfer coefficient hi in the pipe is determined by the flow state of the refrigerant in the pipe, and is about 100 to 100 kca 1 / m 2 , hr when there is no phase change of the refrigerant. In some cases, it is usually more than 1000 kca 1 / m 2 , V, hr.
  • the heat transfer coefficient hi in the pipe is the heat transfer coefficient h outside the pipe.
  • the overall heat transfer coefficient U does not change much, so that it is difficult to control the heat removal amount by adjusting the flow rate of the refrigerant.
  • water used as the refrigerant
  • the refrigerant in the adjusting heat removal tube may be a substance that does not cause a phase change in the heat removal tube, usually a gas, and preferably water vapor.
  • saturated steam at a pressure of 3 to 50 k / m 2 is supplied to generate superheated steam.
  • the supply rate of the refrigerant to the adjusting heat removal pipe is adjusted by adjusting the discharge rate of the refrigerant supply device, providing a refrigerant flow control valve in the refrigerant supply pipe, or controlling the flow rate of the refrigerant in the refrigerant discharge pipe. It can be performed by a method such as providing a control valve.
  • the refrigerant flows directly from the refrigerant supply pipe to the refrigerant discharge pipe without passing through the heat removal pipe between the refrigerant supply pipe and the refrigerant discharge pipe connected to the heat removal pipe for adjustment.
  • a bypass pipe is provided so that the refrigerant can flow, and a refrigerant control valve for controlling the flow rate of the refrigerant flowing through the bypass pipe is provided.
  • the refrigerant is supplied at a constant speed to the refrigerant supply pipe connected to the heat removal pipe for adjustment, and the required amount of the refrigerant is flowed into the heat removal pipe for adjustment by the refrigerant control valve, and the remainder flows into the refrigerant discharge pipe via the bypass pipe. Let it. By doing so, it is possible to control the supply amount of the refrigerant quickly and accurately. It is sufficient if the flow rate of the bypass pipe can be controlled so that the temperature of the refrigerant at the outlet does not fall within a range that does not damage the material of the device.
  • the degree of opening of the refrigerant control valve provided in the bypass pipe may be set to an optimum state at an opening of 20 to 90%, preferably 30 to 60%.
  • FIG. (2) is formed.
  • the fluidized bed is supplied with air from an air supply pipe (3) and raw hydrocarbons from a hydrocarbon supply pipe (4).
  • the feed rate of raw hydrocarbon is finely adjusted by the control valve (5).
  • Gas containing reaction products is the reaction gas extraction pipe
  • a stationary heat removal pipe (7) and an adjustment heat removal pipe (8) are installed in the fluidized bed (2). Only one series is shown, but usually each is installed in multiple rows).
  • a refrigerant supply pipe (9), (9 ') and a refrigerant discharge pipe (10)> (10') are connected to the stationary heat removal pipe and the adjustment heat removal pipe, respectively.
  • One heat removal pipe and one refrigerant removal pipe flow to remove heat from the fluidized bed (2).
  • a bypass pipe (11) connecting the refrigerant supply pipe (9 ') connected to the heat removal pipe (8) for adjustment and the refrigerant discharge pipe (10) is connected to the reactor.
  • the refrigerant can flow from the refrigerant supply pipe (9 ') to the refrigerant discharge pipe (10') via the bypass pipe (11).
  • a refrigerant control valve (12) is installed in the bypass pipe (11) so that the flow rate of the refrigerant flowing through the bypass pipe can be adjusted.
  • the fluidized bed (2) is provided with a temperature detecting section (13) (only one temperature detecting section is shown in the figure, but usually a plurality of temperature detecting sections are provided).
  • the temperature information detected by the temperature detector (13) is transmitted to the thermometer body (14), and is detected as the temperature of the fluidized bed.
  • the refrigerant control valve (1 2) Operate to adjust the amount of refrigerant flowing into the adjusting heat removal pipe (8). If only one temperature detector (13) is installed, it is usually installed at the center of the fluidized bed (2).
  • the temperature detector (13) is usually installed at the center of the fluidized bed (2).
  • the control temperature is calculated as a function of the temperature detected by each of these temperature detecting sections, and based on the difference between this temperature and the set temperature, the refrigerant control valve ( 1 2) can be operated.
  • the refrigerant control valve (12) is not installed in a bypass pipe, but in a refrigerant supply pipe (gz) or a refrigerant discharge pipe (10 '), a heat removal pipe (8) for adjustment, and a bypass pipe (11).
  • a three-way valve may be installed at the branch point.
  • Maleic anhydride was produced from butane using a 0.8 m diameter fluidized bed reactor as shown in Fig. 1.
  • the reactor with the average content of the particles size and at 6 0 in 4 4 um or less of fine powder 4 0 wt%, particle density 2 8 8 0 kg Zm 3 of Banajiumu * composite oxide of Li down system 150 kg of catalyst is charged.
  • the fluidized bed (2) formed with this catalyst has five series of stationary heat removal tubes (7) with an outer diameter of 60.5 mm and a length of 4 m, which also have an outer diameter of 60.5 mm and a length of 4 m.
  • One set of adjustment heat removal pipes (8 m) with a length of 4 m is installed. Refrigerant supply pipe for each heat removal pipe
  • a refrigerant discharge pipe (10, 1 (T)) A midway between the refrigerant supply pipe and the refrigerant discharge pipe connected to the heat removal pipe for adjustment is provided.
  • a bypass pipe (11) having a refrigerant control valve (12) is installed in the fluidized bed, and a temperature detector (13) is installed in the center of the fluidized bed.
  • feedstock hydrocarbon supply pipe from the n- pig emissions (4) approximately 18 5 ice was supplied to the stationary heat removal tube, which was supplied at 42 Nm 3 Z hr, respectively, and 5 to 10% of the ice was evaporated in the tube, and 19 4 and 13 kg / It was collected as a gas-liquid mixed phase flow of cm 2 G.
  • the control valve of the raw hydrocarbon feed pipe was operated according to the temperature detected by the temperature detection section (13) without operating the refrigerant control valve (12), and the n-butane The feed rate was fine-tuned so that the temperature of the fluidized bed was constant. Then 5 days from Day 5 performs supply of n- blanking evening down at a constant rate of 4 2 N m 3 Bruno hr, the temperature detecting unit (1 3) in accordance with the detected temperature by the refrigerant control valve (1 By adjusting the opening of 2) in the range of 30 to 60%, the supply amount of the saturated steam to the heat removal tube for adjustment was finely adjusted to keep the temperature of the fluidized bed constant.
  • Figure 2 shows the temperature of the fluidized bed during these 9 days
  • Figure 3 shows the feed rate of n-peptane. From FIG. 2, it can be seen that, according to the present invention, the temperature is controlled in a range of ⁇ 0.5 with respect to the set temperature of the fluidized bed of 42.5.5.
  • the temperature of the fluidized bed reactor can be controlled very precisely. You. In a fluidized bed reaction, the reaction is usually performed at a temperature of 200 or more. However, according to the present invention, even at a set temperature of about 450, the range of temperature change can be kept within ⁇ 0.5, so that a wide reaction is performed. Long-term stable operation is possible near the maximum yield point in the temperature range. A large part of the heat removal amount is borne by the stationary heat removal tube, and the adjustment heat removal tube can be operated only for the purpose of adjusting the heat removal amount, so it can accurately follow minute fluctuations in the required heat removal amount. it can.

Description

明 細 書 流動層反応器及び流動層反応器の温度制御方法 技術分野
本発明は、 気相発熱反応を行うに適した反応温度制御の容易な 流動層反応器及び流動層反応器の温度制御方法に関するものであ る。 詳しく は、 気相発熱反応、 例えば、 炭化水素化合物の酸化反 応を、 工業的規模での大型流動層反応器で行う際の流動層反応器 及び流動層の反応温度制御方法に関するものである。 背景技術
工業的規模の流動層反応器の反応温度制御は、 流動層内に除熱 管を設置し、 これに水を流通させて反応熱を水蒸気と して回収す る方法によるのが一般的である (米国特許第 3 1 5 6 5 3 8号明 細書参照) 。 また、 除熱管を流動層の上部と下部とに別々に配置 し、 流動層の上部及び下部の温度を別々に制御する試みもなされ ている (米国特許第 3 0 8 0 3 8 2号明細書参照) 。 更に、 これ らの冷媒による間接除熱に加えて、 反応器に供給する反応原料の 温度を調節して流動層の温度を細かく 制御する方法や、 反応原料 の供給速度を調節することにより発熱量を増減させて流動層の温 度を細かく制御する方法も知られている。
一方、 流動層反応器で用いる触媒は、 一般にその使用条件によ り、 反応成績や触媒寿命が大き く影響されることが多い。 また、 流動層の流動状態を良好に保つことも必要である。 流動状態はガ スの流速と触媒の粒径により大き く 影響されることが知られてい る。 従って反応原料の組成や供給速度はできるだけ一定に維持す るのが好ま しい。
しかしながら、 反応原料の組成、 温度や供給速度を一定になる ように制御しても、 流動層の温度は不可避的に変化する。 特に、 工業的に使用されている直径が 0 . 5 m以上もあるような大型の 流動層反応器では、 反応温度を迅速かつ正確に制御することは極 めて困難である。 そのため反応温度が上昇し過ぎて触媒が劣化し たり、 甚だしい場合には安全運転に支障をきたす場合すらあった, 即ち、 流動層の流動状態を良好に保ち、 且つ反応原料の温度、 湿分、 組成、 供給速度など流動層の温度に影響すると考えられる 要因をできるだけ一定に保持するようにして流動層の内部におけ る温度分布を小さ く しても、 なおかつ流動層の温度が変化するの が避けられない。 従って触媒がその最高の反応成讀を実現するた めには、 流動層の温度を積極的に制御してこれを最適温度に維持 することが不可欠である。
本発明は、 このような流動層の微小な温度変化にも迅速に対応 することができる流動層反応器及び該流動層反応器の反応温度を 迅速かつ正確に制御する方法を提供せんとするものである。 発明の開示
本発明の第 1 は、 流動層反応器であって、 流動層形成部に複数 の除熱管及び少く とも 1 個の温度検出部が設置され、 該除熱管は 反応器外部の冷媒供給管と同抜出管に接続されており、 且つ、 少 なく とも一つの除熱管は定常速度で冷媒が供給され、 他の少なく とも一つの除熱管は可変速度で冷媒が供給される除熱管からなる 構成を有することを特徵とする、 流動層の温度を最適温度に維持 することが容易な流動層反応器を提供するものであり、 本発明の 第 2 は、 流動層反応器で気相発熱反応を行なうにあたり、 流動層 内に複数の除熱管が設置されている反応器を用い、 少なく とも一 つの除熱管に定常速度で冷媒を供給し、 他の少なく と も一つの除 熱管には可変速度で冷媒を供給して除熱を行なう ことを特徵とす る流動層反応器の反応温度を迅速かつ正確に制御する温度制御方 法を提供するものである。 図面の簡単な説明
図 1 は本発明を実施する流動層反応器の 1 例の概念図である。 図 2 は実施例における反応温度の推移を示す図である。
図 3 は実施例における n—ブタ ンの供給速度の推移を示す図で ある。 発明を実施するための最良の形態
本発明について更に詳細に説明するに、 流動層反応器で気相発 熱反応を最良の反応成績で行なうには、 流動層の内部における温 度分布を小さ く すること及び温度の時間的変化をできるだけ小さ く することが必要である。
流動層の内部における温度分布を小さ く するには、 反応条件等 をできるだけ一定にして反応が安定して行なわれるようにするこ と、 また、 流動層の流動状態を良好に保つことが必要である。 流 動状態はガスの流速と触媒の粒径により大き く 影響されることが 一般に知られているが、 本発明の反応器内のガスの流速は、 流動 層の流動状態を良好に保つ速度であれば特に制限はない。
また本発明の流動層反応器に使用する触媒は、 通常の流動層反 応器で使用される触媒であればそのまま使用可能であるが、 その 重量平均粒子径が 3 0〜 1 0 0 u m、 好ま し く は 4 0〜 8 0 μ m であって、 粒子径が 4 4 m以下の粒径の微粉を 2 0〜 7 0重量 %含み、 かつ粒子密度が 3 0 0 0 k g /m 3 以下の G e 1 d e r tの粒子分類マップの Aグループ ( G e 1 d e r t , D . , P o w d e r T e c h n o l o g y , 7 , 2 8 5 ( 1 9 7 3 ) 参照) に分類されるものが好ま しい。
本発明の流動層反応器は、 気相発熱反応、 例えば、 ブタ ン、 ブ テン、 ブタ ジエン、 ベンゼンの酸化反応による無水マレイ ン酸の 製造、 オル トキシレン、 ナフタ レンの酸化反応による無水フタル 酸の製造、 プロ ピレン、 イ ソプチ レン、 プロパンのアンモォキシ デーシヨ ン反応、 エチレンのォキシク ロ リネ一ショ ン反応等の酸 化反応を、 工業的規模で行う際の大型流動層反応器で、 触媒反応 を連続的に行う固気系流動層に適用するものであり、 流動層の触 媒の流動化状態が B u b b l i n g R e g i m e、 S l u g l o w R e g i m e、 f u r b u l e n t R e g i m e等 の A g g r e g a t i v e F l u i d i z a t i o nに有効で あり、 一般に C o n v e n t i o n a l F l u i d i z e d B e d と呼ばれる流動層反応器である。
該流動層反応器中で、 触媒粒子は反応器下部より導入されるガ スによつて流動化状態を保持されているのがよい。 該ガス速度は. 通常反応器の有効断面積基準で 3 5〜 8 0 c m/ s e cに維持さ れているのがよい。
温度検出部は流動層の温度を検出するためのものであり、 1個 設置するだけでもよいが、 通常は流動層全体の温度を正しく把握 できるように複数個設置するのが好ま しい。 除熱管は流動層の除熱のためのものであり、 複数列設置する こ とが必要である。 除熱管は、 反応器の外部の冷媒供給管及び冷媒 抜出管に接辕きれており、 冷媒は冷媒供給管から除熱管を経て冷 媒抜出管へと流れるようになつている。
定常速度で冷媒が供給される定常用除熱管への冷媒の供給速度 は、 全除熱管で除熱すべき総除熱量と、 そのうち定常用除熱管で 除熱すべき割合とに基づいて算出することができる。 総除熱量は 反応器に供給される反応原料の組成及び供給速度で決定される発 熱量、 並びに設定反応温度により主と して決定され、 場合によつ ては反応原料の温度や反応器外壁からの放熱量などによっても若 干影響される。 従ってこれらの条件が変化しない限り、 定常用除 熱管への冷媒の供給速度は一定に維持される。
本発明の流動層反応器では、 その除熱量に特に制限はないが、 全除熱管で除熱する総熱量が 1 0 , 0 0 0 ~ 2 0 0 , 0 0 0 k c a 1 / m 2 · h rの範囲にするのが適当である。 また、 通常は定 常用除熱管で除去すべき熱量の大部分を除熱し、 好ま し く は全除 熱量の 5 0 %以上、 特に 8 0 %以上を除熱するよ うに設計し、 残 部を可変速度で冷媒が供給される調整用除熱管で除熱するのが好 ま しい。
定常用除熱管に供給する冷媒と しては通常は水その他の冷媒の 蒸発潜熱を利用 して除熱することができる液体を用いる。 かかる 冷媒を用いることにより定常用除熱管の総括伝熱係数が大き く な り、 除熱管の単位表面積当りの除熱量を増大させることができる c 好ま しく は水を冷媒と して用い、 且つその少く とも一部を管内で 水蒸気に変化させるようにする。 供給する氷の温度は、 反応条件 等により適宜選定されるが、 通常、 水蒸気の用途によって反応器 出口の水蒸気の圧力を決定するので、 その任意の圧力における飽 和温度 ± 5 O 、 好ま し く は飽和温度 ± 1 O の範囲とするのが よい。 本発明の場合は、 この出口の水蒸気を調整用除熱管の冷媒 と して使用するのが効率的であるので、 定常用除熱管出口の水蒸 気の圧力は通常 S S O k g Z m 2 に設定できる。 よって冷媒と して該圧力における飽和温度土 5 0 好ま し く は飽和温度土 1 O tの範囲の加熱氷を供給し、 その 3〜 1 5 %、 好ま し く はその 5 - 1 0 %を管内で蒸発させて、 出口から高圧の気液混相流と し て回収する。
本発明の一態様においては、 定常用除熱管は、 冷媒と して水を 供給して水蒸気を生成させる蒸発管のみならず、 冷媒と して氷蒸 気を供給して過熱水蒸気を生成させる過熱管との 2種類から構成 されるのが好ま しい。 このようにすると流動層反応器の反応熱を、 使用に便利な乾燥水蒸気と して過熱管から回収できる。 なお、 こ の場合でも総除熱量の 5 0 %以上、 好ま しく は 8 0 %以上は、 水 を供給して水蒸気を発生させる除熱管で除熱するのが有利である < 可変速度で冷媒が供給される調整用除熱管への冷媒の供給速度 は、 反応器内の温度を予じめ定められた所定の値に維持するよう に調節される。 すなわち流動層に設けた温度検出部で検出された 温度と反応器の設定温度との差に応じて、 この差を縮少させるよ うに冷媒の供給速度が決定される。
反応器内の温度が流動層の上下方向で異なる場合には、 流動層 の上部及び下部にそれぞれ調整用除熱管及び温度検出部を設置し、 流動層の上部と下部とでそれぞれ独立して温度調節をできるよう にするのが好ま しい。
調整用除熱管内では、 除熱量と冷媒流量とがほぼ比例するよう に、 冷媒の相変化を起させないように し、 冷媒の顕熱を利用する ものであるのが好ま しい。 その理由は下記の通りである。
除熱管での除熱量 Qは、 管の伝熱面積 Aと総括伝熱係数 Uと対 数平均温度差 ΔΤとの積で決定される。 (下記式 ( 1 ) )
Q = A · U · Δ T - ( 1 ) 除熱管の伝熱面積 Aは一定なので、 除熱量を変化させる為には、 総括伝熱係数 Uと対数平均温度差 Δ Tの少く とも一方を変化させ ることが必要である。 総括伝熱係数 Uは、 管外伝熱係数 h。 、 管 内伝熱係数 h i 、 管の厚み d、 管の熱伝導率; I及び管の汚れ係数 rの関数である。 (下記式 ( 2 ) )
Figure imgf000009_0001
管外伝熱係数 h。 は通常 l O O l O O O k c a l Zm2 , ^, h r程度であり、 且つ反応器の温度調節を行なう間は一定とみな し得る。 同様に d、 ス及び r も一定とみなし得るから、 結局、 総 括伝熱係数 Uは管内伝熱係数 h i の変化に応じて変化することに なる。 管内伝熱係数 h i は管内における冷媒の流動状態で決定さ れ、 冷媒の相変化が無い場合には 1 0 0〜 1 0 0 0 k c a 1 / m 2 , , h r程度であるが、 相変化がある場合には通常 1 0 0 0 k c a 1 /m2 , V , h r以上となる。
従って調整用除熱管内で冷媒の相変化がある場合には、 管内伝 熱係数 h i が管外伝熱係数 h。 より も著しく 大き く なり、 その結 果、 冷媒の流量を変化させても総括伝熱係数 Uがあま り変化しな いので、 冷媒の流量の調節による除熱量の制御が困難となる。 水 を冷媒とする場合、 これを高圧で除熱管に供給して管内で蒸発さ せない場合には、 出口温度を変化させることにより対数平均温度 差 ΔΤを広範囲に変化させることが容易であるが-. 管内で蒸発が 起る場合には出口温度は圧力に対応した飽和温度で一定となる。 従って出口温度を変化させるには圧力を変化させなければならな いが、 供給する氷の圧力を調整して出口温度を制御することは、 不可能ではないにしても極めて困難である。
よって、 調整用除熱管の冷媒は除熱管内で相変化を起こさない 物質、 通常は気体、 好ま しく は水蒸気が挙げられる。 例えば 3〜 5 0 k / m 2 の圧力における飽和水蒸気を供給して、 過熱水蒸 気を生成させる。
また、 調整用除熱管への冷媒の供給速度の調節は、 冷媒供給装 置の吐出速度を調節する方法、 冷媒供給管に冷媒の流量調節弁を 設ける方法や、 冷媒抜出管に冷媒の流量調節弁を設ける等の方法 で行う ことができる。
好ま しい一態様においては、 調整用除熱管に接続している冷媒 供給管と冷媒抜出管との間に、 調整用除熱管を経由せずに冷媒を 冷媒供給管から冷媒抜出管に直接流し得るようにバイパス管を設 け、 更にこのパイパス管に流れる冷媒の流量を制御するための冷 媒調節弁が設けられている。
調整用除熱管に接続する冷媒供給管へは冷媒を一定速度で供給 し、 冷媒調節弁によりそのうちの必要量を調整用除熱管に流入さ せ、 残部はバイパス管を経て冷媒抜出管に流入させる。 このよう にすることにより、 冷媒供給量の制御を迅速かつ正確に行なう こ とができる。 バイパス管は出口の冷媒の温度が装置の材質を損な う温度にならない範囲となるように、 その流量を制御できれば良 い。 例えば、 パイパス管に設けた冷媒調節弁の開度が 2 0〜 9 0 %、 好ま しく は 3 0〜 6 0 %で最適状態にできるように設定すれ ばよい。 本発明の好ま しい一態様を図面に基づいて更に具体的に説明す るに、 図 1 は流動層反応器の 1 例の模式図であり、 反応器 ( 1 ) 内には触媒よりなる流動層 ( 2 ) が形成されている。 流動層には 空気供給管 ( 3 ) から空気が、 炭化水素供給管 ( 4 ) から原料の 炭化水素が供給されている。 原料炭化水素の供給量は制御弁 ( 5 ) で精細に調整される。 反応生成物を含むガスは反応ガス抜出管
( 6 ) を経て反応器 ( 1 ) 外に抜出される。
反応器内には、 流動層 ( 2 ) 内に位置して定常用除熱管 ( 7 ) 及び調整用除熱管 ( 8 ) が設置されている (図では定常用除熱管 及び調整用除熱管が各 1 系列しか示されていないが、 通常はそれ ぞれ複数列設置されている) 。 定常用除熱管及び調節用除熱管に は、 それぞれ冷媒供給管 ( 9 ) , ( 9 ' ) 及び冷媒抜出管 ( 1 0 ) > ( 1 0 ' ) が接続していて、 冷媒が冷媒供給管一除熱管一 冷媒抜出管と流れて流動層 ( 2 ) の除熱を行ない得るよ うになつ ている。 また、 調整用除熱管 ( 8 ) に接続する冷媒供給管 ( 9 ' ) と冷媒抜出管 ( 1 0 ) とを結ぶバイパス配管 ( 1 1 ) が反応器
( 1 ) 外に設置されていて、 冷媒は冷媒供給管 ( 9 ' ) からバイ パス配管 ( 1 1 ) を経て冷媒抜出管 ( 1 0 ' ) へと流れ得るよう になっている。 バイパス配管 ( 1 1 ) には冷媒調節弁 ( 1 2 ) 力《 設置されていて、 バイパス配管を流れる冷媒の流量を調節し得る ようになつている。
また、 流動層 ( 2 ) には、 温度検出部 ( 1 3 ) が設置されてい る (図では温度検出部は 1 個しか示されていないが、 通常は複数 個設置されている) 。 温度検出部 ( 1 3 ) で検出された温度情報 は温度計本体 ( 1 4 ) に伝えられ、 流動層の温度と して検出され る。 このようにして検出された温度に基づいて、 冷媒調節弁 ( 1 2 ) を操作し、 調整用除熱管 ( 8 ) に流入する冷媒の量を調節す る。 温度検出部 ( 1 3 ) は、 1 個のみを設置する場合には、 通常 は流動層 ( 2 ) の中心部分に設置される。 また、 温度検出部 ( 1
3 ) を複数個設置する場合には、 これらの各温度検出部で検出さ れた温度の関数と して制御用温度を算出し、 この温度と設定温度 との差に基づいて冷媒調節弁 ( 1 2 ) を操作すればよい。 また冷 媒調節弁 ( 1 2 ) の設置位置はバイパス配管ではなく 、 冷媒供給 管 ( g z ) 又は冷媒抜出管 ( 1 0 ' ) と調整用除熱管 ( 8 ) とバ ィパス管 ( 1 1 ) との分岐点に 3方弁を設置してもよい。 実施例
以下に実施例により本発明を更に具体的に説明するが、 本発明 は 1下の実施例に限定されるものではない。
図 1 に示したような直径 0. 8 mの流動層反応器を用いてブタ ンから無水マレイ ン酸を製造した。 反応器には、 平均粒子径が 6 0 inで且つ 4 4 u m以下の微粉の含有量が 4 0重量%で、 粒子 密度が 2 8 8 0 k g Zm3 のバナジゥム * リ ン系の複合酸化物触 媒 1 5 0 0 k gが装入されている。 この触媒で形成される流動層 ( 2 ) には垂直に外径 6 0. 5 mm、 長さ 4 mの定常用除熱管 ( 7 ) が 5系列と、 同じく 外径 6 0. 5 mm、 長さ 4 mの調整用 除熱管 ( 8 ) 1 系列が設置されている。 各除熱管には冷媒供給管
( 9 , 9 ' ) 及び冷媒抜出管 ( 1 0 , 1 (T ) が接続されている。 且つ調整用除熱管に接続されている冷媒供給管と冷媒抜出管との 間には、 途中に冷媒調節弁 ( 1 2 ) を有するバイパス管 ( 1 1 ) が設置されている。 また、 流動層の中心部には温度検出部 ( 1 3 ) が設置されている。 この反応器に原料空気供給管 ( 3 ) より空気を乾燥空気量と し て 1 0 0 0 N m3 / h rの一定流量で、 また原料炭化水素供給管 ( 4 ) より n—ブタ ンを約 4 2 N m 3 Z h rでそれぞれ供給した, 定常用除熱管には 1 8 5 の氷を供給し、 その 5〜 1 0 %を管 内で蒸発させて出口から 1 9 4 、 1 3 k g / c m2 Gの気液混 相流と して回収した。
調整用除熱管には冷媒調節弁の開度 5 0 %で、 1 9 4 で、 1 3 k g / c m2 Gの飽和水蒸気を供給し、 出口より 2 5 0 ¾の過熱 水蒸気と して回収した。 流動層の設定温度は 4 5 2. 5 でと した < これにより定常用除熱管で初期除熱量の 8 5 %を除熱し、 残部 を調整用除熱管で除熱するように設定した。
最初の 4 日間は冷媒調節弁 ( 1 2 ) を操作する ことなく 、 温度 検出部 ( 1 3 ) で検出された温度に応じて原料炭化水素供給管の 調節弁を操作して、 n—ブタ ンの供給量を微調整し、 流動層の温 度が一定となるようにした。 続いて 5 日目から 5 日間は n—ブ夕 ンの供給を 4 2 N m3 ノ h rの一定速度で行ない、 温度検出部 ( 1 3 ) で検出された温度に応じて冷媒調節弁 ( 1 2 ) の開度を 3 0〜 6 0 %の範囲で操作して調整用除熱管への飽和水蒸気の供 給量を微調整し、 流動層の温度が一定となるようにした。
この 9 日間の流動層の温度を図 2 に、 n—プタ ンの供給速度を 図 3 に示す。 図 2から、 本発明によれば、 流動層の設定温度 4 5 2. 5 に対し ± 0. 5 の幅で温度が制御されていることがわか る o 産業上の利用可能性
本発明によれば、 流動層反応器の温度を極めて精密に制御でき る。 流動層反応では通常 2 0 0 以上で反応が行なわれるが、 本 発明によれば 4 5 0 程度の設定温度の場合でも温度変化の幅を ± 0 . 5 でにおさめることができるので、 広い反応温度範囲にお いて、 最高収率点の近く で長期間の安定運転が可能である。 そ して除熱量の大部分を定常用除熱管に負担させ、 調整用除熱 管は専ら除熱量の調整のみを目的と して操作できるので、 必要除 熱量の微少な変動にも正確に追随できる。

Claims

請 求 の 範 囲 . 流動層反応器であって、 流動層形成部に複数の除熱管及び少 く とも 1個の温度検出部が設置され、 該除熱管は反応器外部の 冷媒供給管と同抜出管に接続されており、 且つ、 少なく とも一 つの除熱管は定常速度で冷媒が供給され、 他の少なく とも一つ の除熱管は可変速度で冷媒が供給される除熱管からなる構成を 有することを特徵とする流動層反応器。
. 定常速度で冷媒が供給される除熱管が、 主に該冷媒の蒸発潜 熱を利用して除熱する、 潜熱利用型の除熱管である請求項 1 記 載の流動層反応器。
. 定常速度で冷媒が供給される除熱管の冷媒が氷である請求項 1 又は 2 に記載の流動層反応器。
. 冷媒が加熱水である請求項 3 に記載の流動層反応器。
. 可変速度で冷媒が供給される除熱管が、 主に該冷媒の顕熱を 利用して除熱を行なう、 顕熱利用型の除熱管である請求項 1 又 は 2 に記載の流動層反応器。
. 可変速度で冷媒が供給される除熱管の冷媒が気体である請求 項 1 又は 2 に記載の流動層反応器。
. 冷媒が水蒸気である請求項 6 に記載の流動層反応器。
. 可変速度で冷媒が供給される除熱管の冷媒の供給速度を流動 層内の温度検出部で検出された温度に依存して決定する、 該冷 媒の流量制御装置を有するものである請求項 1 又は 2 に記載の 流動層反応器。
. 冷媒の流量制御装置が、 除熱管に接続する冷媒流路に設けら れた流量調節弁と除熱管に接続する冷媒供給管と冷媒抜出管と を連結するバイパス路とからなるものである請求項 8 に記載の 流動層反応器。
0 . 定常速度で冷媒が供給される除熱管の除熱量が、 総除熱量 の 5 0 %以上である請求項 1 又は 2 に記載の流動層反応器。 1 . 全除熱管の除熱総量が 1 0 , 0 0 0〜 2 0 0 , 0 0 0 k c a 1 /m2 · h rである請求項 1 又は 2 に記載の流動層反応器,
2. 流動層反応器に、 平均粒子径が 3 0〜 1 0 0 mであって. 粒子径が 4 4 μ m以下の粒径の微粉を 2 0〜 7 0重量%舍み、 かつ粒子密度が 3 0 0 0 k g /m3 以下の触媒が使用されてい る請求項 1 に記載の流動層反応器。
3 . 流動層反応器中において、 触媒粒子が反応器下部から導入 されるガスによつて流動状態が保持されてなることを特徴とす る請求項 1 に記載の流動層反応器。
4 . ガス速度が反応器の有効断面積基準で 3 5〜 8 0 c mノ s e c に維持されている請求項 1 3 に記載の流動層反応器。
5 . 流動層反応器で気相発熱反応を行なうにあたり、 流動層内 に複数の除熱管が設置されている反応器を用い、 少なく とも一 つの除熱管に定常速度で冷媒を供給し、 他の少なく とも一つの 除熱管には可変速度で冷媒を供給して除熱を行なう ことを特徴 とする流動層反応器の温度制御方法。
6 . 定常速度で冷媒を供給する除熱管では、 主に該冷媒の蒸発 潜熱を利用して除熱を行なう請求項 1 5 に記載の流動層反応器 の温度制御方法。
7. 定常速度で冷媒を供給する除熱管に、 冷媒と して水を供給 する請求項 1 5又は 1 6 に記載の流動層反応器の温度制御方法 c
8 . 冷媒が加熱氷である請求項 1 7 に記載の流動層反応器の温 度制御方法。
9 . 可変速度で冷媒を供給する除熱管では、 主に該冷媒の顕熱 を利用して除熱を行なう請求項 1 5又は 1 6 に記載の流動層反 応器の温度制御方法。
0 . 可変速度で冷媒が供給される除熱管に、 冷媒と して気体を 供給する請求項 1 5又は 1 6 に記載の流動層反応器の温度制御 方法。
1 . 冷媒が水蒸気である請求項 2 0 に記載の流動層反応器の温 度制御方法。
2 . 可変速度で冷媒を供給する除熱管の冷媒の供給速度を流動 層内の温度検出部で検出された温度に依存して制御することを 特徴とする請求項 1 5又は 1 6 に記載の流動層反応器の温度制 御方法。
3 . 冷媒の供給速度を除熱管に接続する冷媒供給管と冷媒抜出 管とを連結するバイパス路への冷媒の供給速度を制御すること により制御することを特徴とする請求項 2 2 に記載の温度制御 方法。
4 . 定常速度で冷媒を供給する除熱管で総除熱量の 5 0 % £1上 を除熱することを特徴とする請求項 1 5又は 1 6 のいずれかに 記載の温度制御方法。
5 . 定常速度で冷媒を供給する除熱管での除熱量が総除熱量の
8 0 %以上である請求項 2 4 に記載の温度制御方法。
6 . 流動層反応器への反応原料の供給速度を一定範囲に維持す ることを特徵とする請求項 1 5又は 1 6 のいずれかに記載の温 度制御方法。
8 . 総除熱量力 1 0 , 0 0 0〜 2 0 0 , 0 0 0 k c a l /m2 ♦ h rである請求項 1 5又は 1 6 に記載の温度制御方法。 9. 流動層反応器に、 平均粒子径が 3 0〜 1 0 0 mであって 粒子径が 4 4 yu m以下の粒径の微粉を 2 0〜 7 0重量%舍み、 かつ粒子密度が 3 0 0 0 k g /m3 以下の触媒が使用されてい る請求項 1 5又は 1 6 に記載の流動層反応器の温度制御方法。 0 . 流動層反応器中において、 触媒粒子が反応器下部から導入 されるガスによって流動状態が保持されてなることを特徴とす る請求項 1 5又は 1 6 に記載の流動層反応器の温度制御方法。 1 . 触媒を流動状態に保持するためのガス速度が、 反応器の有 効断面積基準で 3 5〜 8 0 c m/ s e c に維持されている請求 項 3 0 に記載の流動層反応器の温度制御方法。
PCT/JP1995/000163 1994-02-08 1995-02-07 Reacteur a lit fluidifie et procede de gestion de la temperature pour reacteur a lit fluidifie WO1995021692A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/532,649 US5700432A (en) 1994-02-08 1995-02-07 Fluidized-bed reactor and a temperature-controlling method for the fluidized-bed reactor
EP95907851A EP0695576A4 (en) 1994-02-08 1995-02-07 FLUIDIFIED BED REACTOR AND TEMPERATURE MANAGEMENT METHOD FOR FLUIDIFIED BED REACTOR
KR1019950703288A KR960704626A (ko) 1994-02-08 1995-02-07 유동층 반응기 및 유동층 반응기의 온도제어방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6/14336 1994-02-08
JP1433694 1994-02-08
JP6/96319 1994-05-10
JP9631994 1994-05-10

Publications (1)

Publication Number Publication Date
WO1995021692A1 true WO1995021692A1 (fr) 1995-08-17

Family

ID=26350261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000163 WO1995021692A1 (fr) 1994-02-08 1995-02-07 Reacteur a lit fluidifie et procede de gestion de la temperature pour reacteur a lit fluidifie

Country Status (6)

Country Link
US (1) US5700432A (ja)
EP (1) EP0695576A4 (ja)
KR (1) KR960704626A (ja)
CN (1) CN1150057C (ja)
TW (1) TW314476B (ja)
WO (1) WO1995021692A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088043A (ja) * 2000-09-12 2002-03-27 Mitsubishi Gas Chem Co Inc ニトリル化合物の製造方法
JP2008043894A (ja) * 2006-08-18 2008-02-28 Asahi Kasei Chemicals Corp 流動層反応器の温度制御方法
JP2008080219A (ja) * 2006-09-27 2008-04-10 Asahi Kasei Chemicals Corp 流動層反応器の温度制御方法
KR100937374B1 (ko) 2008-03-17 2010-01-20 아사히 가세이 케미칼즈 가부시키가이샤 유동층 반응기의 온도 제어 방법
JP2011225481A (ja) * 2010-04-19 2011-11-10 Asahi Kasei Chemicals Corp 気相発熱反応方法
WO2012035881A1 (ja) * 2010-09-14 2012-03-22 旭化成ケミカルズ株式会社 気相発熱反応方法及び気相発熱反応装置
KR101286407B1 (ko) * 2008-05-30 2013-07-19 아사히 가세이 케미칼즈 가부시키가이샤 유동층 반응 장치 및 그것을 이용한 기상 발열 반응 방법
KR101356391B1 (ko) 2011-04-20 2014-02-03 주식회사 실리콘밸류 다결정 실리콘 제조장치
JP2017511326A (ja) * 2014-03-31 2017-04-20 イネオス ユーロープ アクチェンゲゼルシャフト 酸化又はアンモ酸化反応器のための冷却コイル設計
JP2017520510A (ja) * 2014-03-31 2017-07-27 イネオス ユーロープ アクチェンゲゼルシャフト 酸化又はアンモ酸化反応器のための冷却コイル設計

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831113A (en) * 1996-07-22 1998-11-03 Jgc Corporation Process for producing a carbonic acid diester
DE19849709C2 (de) * 1998-10-28 2000-09-14 Krupp Uhde Gmbh Verfahren und Wirbelschicht-Reaktor zur Oxichlorierung von Ethylen, Sauerstoff und HCl
US6657097B1 (en) 1999-03-08 2003-12-02 Mitsubishi Chemical Corporation Fluidized bed reactor
DE60213752T2 (de) * 2001-12-25 2006-12-07 Mitsubishi Gas Chemical Co., Inc. Reaktor zur Herstellung von Nitrilverbindungen und Verfahren dazu
US7598197B2 (en) * 2004-12-22 2009-10-06 Exxonmobil Chemical Patents Inc. Catalyst cooling processes utilizing steam superheating
KR100937373B1 (ko) * 2008-02-14 2010-01-20 아사히 가세이 케미칼즈 가부시키가이샤 유동층 반응기의 온도 제어 방법
CN101507907B (zh) * 2008-02-15 2012-01-25 旭化成化学株式会社 流化床反应器的温度控制方法
TWI486214B (zh) * 2008-03-10 2015-06-01 Asahi Kasei Chemicals Corp 流動層反應器之溫度控制方法
FR3010916A1 (fr) * 2013-09-26 2015-03-27 Gdf Suez Reacteur de methanation pour faire reagir du dihydrogene avec au moins un compose a base de carbone et produire du methane
CN107206362A (zh) * 2015-03-13 2017-09-26 三菱化学株式会社 向流化床反应器填充催化剂的方法及腈化合物的制造方法
CN104801259A (zh) * 2015-04-16 2015-07-29 安徽扬子化工有限公司 一种化学药剂旋转散热反应釜
CN110390036B (zh) * 2019-06-03 2020-04-10 惠安源和机械有限公司 双索引数据查询平台

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010675Y2 (ja) * 1980-01-09 1985-04-11 バブコツク日立株式会社 流動層を用いたガス冷却装置
JPH0219370A (ja) * 1988-07-08 1990-01-23 Mitsubishi Kasei Corp 無水マレイン酸の製造法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697334A (en) * 1950-12-13 1954-12-21 Standard Oil Dev Co Heat exchange system and method of operation
US2755782A (en) * 1952-09-09 1956-07-24 Sinclair Refining Co Heat recovery and temperature control system for bed of high temperature fluidized solids
BE745615A (fr) * 1969-02-08 1970-07-16 Topsoe Haldor F A Perfectionnements relatifs aux reacteurs catalytiques a lit fluidifie
US3825501A (en) * 1969-11-26 1974-07-23 Texaco Inc Exothermic reaction process
DE2834589C3 (de) * 1978-08-07 1994-11-17 Didier Eng Verfahren zum katalytischen Umwandeln eines kohlenoxyd- und wasserstoffreichen, schwefelarmen Einsatzgasgemischs
US4343634A (en) * 1981-03-23 1982-08-10 Union Carbide Corporation Process for operating a fluidized bed
US4563267A (en) * 1984-07-30 1986-01-07 The Badger Company, Inc. Process for reducing thermal shock in fluidized bed stem coils cycled in and out of service
US5225575A (en) * 1991-06-17 1993-07-06 Institute Of Catalysis Oxidation process and apparatus
DE4131962C2 (de) * 1991-09-25 1998-03-26 Hismelt Corp Pty Ltd Verfahren und Vorrichtung zur Behandlung von heissen Gasen mit Feststoffen in einem Wirbelbett

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010675Y2 (ja) * 1980-01-09 1985-04-11 バブコツク日立株式会社 流動層を用いたガス冷却装置
JPH0219370A (ja) * 1988-07-08 1990-01-23 Mitsubishi Kasei Corp 無水マレイン酸の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0695576A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088043A (ja) * 2000-09-12 2002-03-27 Mitsubishi Gas Chem Co Inc ニトリル化合物の製造方法
JP2008043894A (ja) * 2006-08-18 2008-02-28 Asahi Kasei Chemicals Corp 流動層反応器の温度制御方法
JP2008080219A (ja) * 2006-09-27 2008-04-10 Asahi Kasei Chemicals Corp 流動層反応器の温度制御方法
KR100937374B1 (ko) 2008-03-17 2010-01-20 아사히 가세이 케미칼즈 가부시키가이샤 유동층 반응기의 온도 제어 방법
KR101286407B1 (ko) * 2008-05-30 2013-07-19 아사히 가세이 케미칼즈 가부시키가이샤 유동층 반응 장치 및 그것을 이용한 기상 발열 반응 방법
JP2011225481A (ja) * 2010-04-19 2011-11-10 Asahi Kasei Chemicals Corp 気相発熱反応方法
CN103097014A (zh) * 2010-09-14 2013-05-08 旭化成化学株式会社 气相放热反应方法及气相放热反应装置
WO2012035881A1 (ja) * 2010-09-14 2012-03-22 旭化成ケミカルズ株式会社 気相発熱反応方法及び気相発熱反応装置
JP5770195B2 (ja) * 2010-09-14 2015-08-26 旭化成ケミカルズ株式会社 気相発熱反応方法及び気相発熱反応装置
CN103097014B (zh) * 2010-09-14 2015-12-09 旭化成化学株式会社 气相放热反应方法及气相放热反应装置
KR101356391B1 (ko) 2011-04-20 2014-02-03 주식회사 실리콘밸류 다결정 실리콘 제조장치
JP2017511326A (ja) * 2014-03-31 2017-04-20 イネオス ユーロープ アクチェンゲゼルシャフト 酸化又はアンモ酸化反応器のための冷却コイル設計
JP2017520510A (ja) * 2014-03-31 2017-07-27 イネオス ユーロープ アクチェンゲゼルシャフト 酸化又はアンモ酸化反応器のための冷却コイル設計
JP2020073851A (ja) * 2014-03-31 2020-05-14 イネオス ユーロープ アクチェンゲゼルシャフト 酸化又はアンモ酸化反応器のための冷却コイル設計
JP7216677B2 (ja) 2014-03-31 2023-02-01 イネオス ユーロープ アクチェンゲゼルシャフト 酸化又はアンモ酸化反応器のための冷却コイル設計

Also Published As

Publication number Publication date
EP0695576A1 (en) 1996-02-07
CN1124465A (zh) 1996-06-12
KR960704626A (ko) 1996-10-09
EP0695576A4 (en) 1996-07-17
US5700432A (en) 1997-12-23
CN1150057C (zh) 2004-05-19
TW314476B (ja) 1997-09-01

Similar Documents

Publication Publication Date Title
WO1995021692A1 (fr) Reacteur a lit fluidifie et procede de gestion de la temperature pour reacteur a lit fluidifie
JP5366289B2 (ja) 流動層反応器の温度制御方法
JP5840822B2 (ja) 流動層反応器の温度制御方法
US7541490B2 (en) Method for production of acrylic acid and apparatus for production of acrylic acid
KR20130069745A (ko) 기상 발열 반응 방법 및 기상 발열 반응 장치
US20080045685A1 (en) Process for long-term operation of a continuous heterogeneously catalyzed partial dehydrogenation of a hydrocarbon to be dehydrogenated
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
JPS6267034A (ja) 炭化水素の接触脱水素法
JP5103282B2 (ja) 流動層反応装置及びそれを用いた気相発熱反応方法
CN101507907B (zh) 流化床反应器的温度控制方法
US2472377A (en) Process for hydrocarbon synthesis
US3117990A (en) Process of producing vinyl compounds
CA1204581A (en) Process for conducting reactions using a circulating magnetically stabilized bed to control reaction temperature profile
JP2004298768A (ja) 気相反応装置の運転方法
JP2015174063A (ja) 流動層反応器の設計方法、および該設計方法により設計された流動層反応器
JP4183796B2 (ja) α,β−不飽和ニトリルの製造方法
US3491822A (en) Sea water desalination
KR100937374B1 (ko) 유동층 반응기의 온도 제어 방법
KR100937373B1 (ko) 유동층 반응기의 온도 제어 방법
EP0112323B1 (en) Maleic anhydride production with high butane feed concentration
TW200932357A (en) Temperature-controlling method for a fluidized bed reactor
CN203710998U (zh) 一种适用于液相强放热反应的等温反应器
JP5239997B2 (ja) プレート式反応器における温度制御方法及び反応生成物の製造方法
CN101543752A (zh) 流化床反应器的温度控制方法
WO2023026133A1 (en) Cooling effluent of oxidative dehydrogenation (odh) reactor with quench heat exchanger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190198.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995907851

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08532649

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995907851

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995907851

Country of ref document: EP