WO1995020551A1 - Materiau tritigene en ceramique contenant du lithium et son procede de preparation - Google Patents

Materiau tritigene en ceramique contenant du lithium et son procede de preparation Download PDF

Info

Publication number
WO1995020551A1
WO1995020551A1 PCT/FR1995/000097 FR9500097W WO9520551A1 WO 1995020551 A1 WO1995020551 A1 WO 1995020551A1 FR 9500097 W FR9500097 W FR 9500097W WO 9520551 A1 WO9520551 A1 WO 9520551A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
tritigenic
powder
solution
ceramic
Prior art date
Application number
PCT/FR1995/000097
Other languages
English (en)
Inventor
Jean-Pierre Boilot
Marcel Boncoeur
Bernard Rasneur
Olivier Renoult
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO1995020551A1 publication Critical patent/WO1995020551A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to a tritigenic ceramic material containing lithium, usable in particular in thermonuclear fusion reactors controlled as an essential component of the cover.
  • the cover In such reactors, the cover must be stable at operating temperatures which are generally 400 to 700 ° C, and it must allow:
  • the present invention specifically relates to a new tritigenic ceramic material containing lithium, which overcomes these drawbacks.
  • the tritigenic material comprises a ceramic containing lithium of formula: Li 2 Ti 1 _ x _yZr x Sn y 0 3 in which x and y are such that
  • an isostructural compound of lithium zirconate resulting from the substitution in lithium zirconate of at most 10 % of Zr ⁇ + ions with one or more ions chosen from Ti ⁇ + and Sn ⁇ + , ie an isostructrual compound of the solid solution Li2Ti ⁇ _ySny ⁇ 3 resulting from the substitution of at most 10% of Ti ⁇ + and / or Sn ⁇ ions + by Zr '* - * ions.
  • These isostructural compounds are solid solutions:
  • lithium-containing ceramics makes it possible to obtain the relaxation of the tritium at lower temperatures than that obtained with the lithium aluminate ⁇ , which constitutes an important advantage.
  • the ceramic containing lithium is a ceramic of lithium zirconate or of a solid solution Li2Zr ⁇ 3-Li2Ti ⁇ 3, that is to say that in the formula given above, y is equal to 0.
  • those which also contain titanium are preferred, because the sintering of Li2Zr ⁇ 3 ceramics is favored by the addition of titanium.
  • lithium zirconate has a slow establishment of monoclinic crystal symmetry between 700 ° C and 1000 ° C.
  • This "transition" strongly counteracts sintering.
  • We can highlight this phenomenon by comparing the dilatometric curves recorded on a lithium zirconate from the same powder calcined at 750 ° C or 800 ° C; the powder calcined at 800 ° C. contains a higher proportion of monoclinic phase, the establishment of the phase is favored.
  • the sinterability is improved.
  • this transition to a more ordered state leads to a "bursting" of the ceramic during sintering, bursting that is all the more important as the ceramic is dense.
  • the tritigenic materials of the invention can be prepared by conventional solid phase reaction methods. However, it is preferred to prepare them by the process described below which allows better control of their microstructure.
  • the subject of the invention is also a process for preparing a ceramic containing lithium of formula:
  • anhydrous alcohol at least one alkoxide chosen from zirconium, titanium and tin alkoxides, with or without hydrated lithium hydro
  • This process is advantageous because it allows to control, on the one hand, the stoichiometric and, on the other hand, the microstructure of the ceramics obtained.
  • anhydrous short-chain alcohols such as methanol and ethanol, and zirconium, titanium and / or tin alkoxides such as butoxides and isopropoxides are generally used. these metals.
  • Lithium hydroxide hydrated or not, can be added to the freshly prepared solution in the form of a powder, solution or suspension in an alcohol; preferably, it is added in the form of a suspension in the same alcohol as that of the solution.
  • lithium hydroxide monohydrate is used.
  • step a) of this process a partial hydrolysis is carried out with a rise in temperature, and a solution is thus obtained in which the lithium and the metal or metals (Zr, Ti, Sn) are intimately mixed. Starting from very pure products, it is thus possible to obtain, by subsequent hydrolysis, a product of very high homogeneity and very high purity, which leads by drying to a fine powder which does not give rise to a significant loss of mass during a subsequent cooking.
  • step c) after drying, the powder obtained is subjected to calcination, before performing step d).
  • This calcination can be carried out at temperatures of 500 to 800 ° C., in an air atmosphere.
  • sintering is carried out in an oxygen atmosphere, for example in air.
  • the parts are preferably buried in a bed of powder of the same composition to properly control the stoichiometry.
  • the characteristics of the powder are checked, and therefore its sinterability, by appropriately adjusting the amount of alcohol used in the first solution and the amount of lithium hydroxide added.
  • the amount of lithium hydroxide generally corresponds to the stoichiometric amount, but the density of the final product can also be adjusted by using amounts of lithium hydroxide different from the stoichiometry to have a difference of for example up to 4% in mole.
  • the characteristics of the hydrolyzed product are also controlled by adding in step b) an amount of water such that the molar ratio of water to the alkoxide of Zr, Ti and / or Sn is from 2 to 26.
  • step a) of the process of the invention the solution of alkoxide (s) is prepared by mixing, with stirring, the alkoxide (s) with alcohol, then the lithium hydroxide is immediately added and the mixture is vigorously stirred for a sufficient time during which the temperature rises to approximately 70 ° C., in order to obtain an intimate mixture of the lithium with the other metal or the other metals. Generally, this duration ranges from 20 min to 60 min for a volume of 600 ml.
  • step a partial hydrolysis takes place, but complete hydrolysis is then carried out in step b) by adding water with stirring.
  • stage b) preferably deionized and decarbonate water is used to obtain, by hydrolysis, a powder of high purity.
  • Stage a) is preferably carried out under an atmosphere of inert gas, for example nitrogen, since the alkoxides are very sensitive to humidity.
  • step c) the product obtained is dried by hydrolysis at a temperature below 300 ° C. This can be done for example at 150 ° C in an oven or at a temperature above the critical point of alcohol in an autoclave, for example at 250 ° C under 7MPa.
  • FIG. 1 schematically represents an installation for testing the properties of the tritigenic material with regard to the release of tritium
  • FIG. 2 is a diagram illustrating the flow of released tritium as a function of temperature
  • FIG. 3 is a diagram illustrating the results of dilatometric studies on different ceramic powders containing lithium according to the invention.
  • Example 1 Preparation of LigZrOg.
  • a first solution is prepared by mixing 122.67 g of zirconium butoxide Zr (004119) 4 from Aldrich Chemical Cy with 250 ml of ethanol under a dry nitrogen atmosphere.
  • a suspension of lithium hydroxide is prepared by suspending 24.12 g of LiOH, H2O in 160 ml of ethanol.
  • the suspension thus obtained is then added to the first solution and the whole is subjected to vigorous stirring for 30 min during which the temperature increases to 70 ° C. A white solution is thus obtained.
  • the white solution obtained is then dried in an oven at 150 ° C for at least 2 h, then the powder obtained is calcined at 800 ° C for 2 h.
  • This powder is then subjected to cold isostatic pressing under a pressure of 200 MPa, for 1 min to form spheres of approximately 4 mm in diameter.
  • These spheres are then sintered in an alumina crucible at a temperature of 950 ° C for 2 h with a heating rate of 3 ° C / min, after having buried them in a bed of powder of the same composition to limit variations in stoichiometry .
  • a first solution is prepared by mixing under a dry nitrogen atmosphere 100 g of titanium isopropoxide Ti (OCH (CH 3 ) 2 ) 4 (97%) from Aldrich Chemical Co. with 250 ml of ethanol.
  • a suspension of lithium hydroxide is prepared by suspending 28.92 g of LiOH, H2 ⁇ in 160 ml of ethanol.
  • Hydrolysis of this solution is then carried out by adding deionized and decarbonate water in an amount such that the water / titanium isopropoxide molar ratio is 10, and the mixture is stirred for approximately 15 minutes.
  • the white solution obtained is then dried in an oven at 150 ° C for at least 2 hours.
  • the powder obtained is calcined at 750 ° C for 2 hours.
  • This powder is then subjected to cold isostatic pressing under a pressure of 200 MPa for 1 minute to form spheres of approximately 4 mm in diameter. These spheres are then sintered in an alumina crucible at a temperature of 875 ° C for 2 hours with a heating rate of 3 ° C / min, after having buried them in a bed of powder of the same composition to limit variations in stoichiometry .
  • Example 3 Preparation of LJ Zrp gTip 1O3.
  • a first solution is prepared by mixing 125 g of zirconium butoxide Zr (0041 * 19) 4 from Aldrich Chemical Co. with 9.53 g of isopropoxide under dry nitrogen atmosphere. titanium Ti (OCH (CH 3 ) 2 ) 4 (97%) from Aldrich Chemical Co. and 250 ml of ethanol.
  • a suspension of lithium hydroxide is prepared by suspending 27.57 g of LiOH, H2 ⁇ in 160 ml of ethanol.
  • Hydrolysis of this solution is then carried out by adding deionized and decarbonate water in an amount such that the water / (titanium isopropoxide + zirconium butoxide) molar ratio is 10, and the mixture is stirred for approximately 15 minutes.
  • the white solution obtained is then dried in an oven at 150 ° C for at least 2 hours.
  • the powder obtained is calcined at 750 ° C for 2 hours.
  • This powder is then subjected to cold isostatic pressing under a pressure of 200 MPa for 1 minute to form spheres of approximately 4 mm in diameter.
  • These spheres are then sintered in an alumina crucible at a temperature of 950 ° C for 2 hours with a heating rate of 3 ° C / min, after having buried them in a bed of powder of the same composition to limit variations in stoichiometry .
  • the ceramic spheres obtained in Examples 1 to 3 are subjected to a test for the release of tritium.
  • each sphere which weighs 80 to 100 mg is subjected to a vacuum degassing at 650 ° C for 3 h, then it is introduced into a quartz bulb previously filled with 27KPa (200 Torrs) of helium, seals the ampoule and the assembly is subjected to neutron irradiation under a flux of approximately 10 14 neutrons / cm-2.s for 2 h.
  • the irradiated ceramic sphere is introduced into the test installation shown in FIG. 1.
  • This installation comprises a quartz tube 1 into which the sample 3 is introduced at the level of a heating furnace 5.
  • This quartz tube comprises downstream of the furnace 5 a filling of zinc balls 7 surrounded by a second furnace of heating 9 and it can be traversed by a carrier gas introduced at 11. After passing through the two ovens, the tritium content of the carrier gas is measured in a proportional counter or an ionization chamber 13.
  • the ceramic sphere 3 which has been irradiated is introduced into the quartz tube 1, after having been extracted from the bulb used for its irradiation.
  • this quartz tube it is heated by the oven 5 so as to undergo heating at a constant speed of 0.5 ° C / min, being swept by a carrier gas consisting of helium containing 0.1% hydrogen at a flow rate of 30 ml / min.
  • the tritium included in the ceramic is released in the carrier gas, in the form of tritiated gas and tritiated water vapor; the tritiated water vapor is reduced to tritiated gas by the reducing agent 7 consisting of zinc balls with a large specific surface in the reduction furnace 9, at a temperature of 370 ° C.
  • the carrier gas therefore contains tritium in the form of tritiated gas and the tritium content of this gas is measured in the proportional counter or the ionization chamber 13.
  • the results obtained (in Becquerel / second) as a function of the temperature reached in the heating oven 5 (in ° C.) are shown in FIG. 2.
  • FIG. 2 In this figure,
  • the curve in mixed lines refers to the ceramic of example 1, Li2Zr ⁇ 3,
  • the curve in solid lines refers to the ceramic of Example 2, Li2Ti ⁇ 3, and
  • the dashed curve refers to the ceramic of example 3, Li2Zro . 9 io . 1O3.
  • Example 2 The same procedure is followed as in Example 1 to prepare a powder of this ceramic, but the calcination is carried out at 750 ° C. for 2 h.
  • This powder is then compressed into the form of a bar of 5 to 20 mm in diameter by cold isostatic compression under a pressure of 200 MPa for 1 min, then the sintering ability of the powder is studied by observing the dilatometric behavior of the bar depending on the temperature.
  • this figure shows the results obtained when the same study is carried out on the Li2 powder r ⁇ 3 obtained in Example 1 which was calcined at 800 ° C (curve 2) and on the Li2ZrQ powder. , 9Tio, 10O3 of Example 3, which was calcined at 750 ° C.
  • a first solution is prepared by mixing under dry nitrogen atmosphere
  • a suspension of lithium hydroxide is prepared by placing a suspension of 28.4 g of LiOH, H2O in 160 ml of ethanol. The first solution is added to the suspension thus obtained and the whole is subjected to vigorous stirring for 30 minutes during which the temperature increases to 60 ° C. A white solution is thus obtained. Hydrolysis of this solution is then carried out by adding deionized and decarbonate water in an amount such that the water / tin butoxide molar ratio is 10, and the mixture is stirred for approximately 15 minutes.
  • the solution obtained is dried in an oven at 150 ° C for two hours minimum.
  • the powder obtained is calcined at 750 ° C for two hours.
  • Example 2 Then proceed as in Example 1 for shaping and sintering. After sintering, the relative density is 92%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)

Abstract

L'invention concerne un matériau tritigène contenant du lithium et son procédé de préparation. Ce matériau comprend une céramique contenant du lithium de formule: Li2Ti1-x-yZrxSnyO3 dans laquelle x et y sont tels que 0≤x+y≤1 avec (0≤x≤0,1 ou 0,9 ≤x∫1). Ce matériau peut être préparé par hydrolyse d'un mélange d'alcoxyde(s) de Zr, Ti et/ou Sn et d'hydroxyde de lithium, suivie d'un séchage et d'un frittage. Il peut relâcher du tritium à des températures de 300 °C.

Description

MATERIAU TRITIGENE EN CERAMIQUE CONTENANT DU LITHIUM
ET SON PROCEDE DE PREPARATION
DESCRIPTION
La présente invention a pour objet un matériau tritigène en céramique contenant du lithium, utilisable en particulier dans des réacteurs de fusion thermonucléaire contrôlée en tant que composant essentiel de la couverture.
Dans de tels réacteurs, la couverture doit être stable aux températures de fonctionnement qui sont généralement de 400 à 700°C, et elle doit permettre :
- la production et le relâchement aisé du tritium issu du bombardement des atomes de lithium-6 par les neutrons émis par la réaction de fusion D-T (deutérium-tritium) du plasma, et
- la récupération de l'énergie, soit de la chaleur, dégagée par ces réactions.
On a déjà envisagé d'utiliser dans la couverture de ces réacteurs des céramiques à base d'aluminate de lithium gamma, mais la température nécessaire pour obtenir le relâchement du tritium par la céramique reste élevée.
La présente invention a précisément pour objet un nouveau matériau tritigène en céramique contenant du lithium, qui pallie ces inconvénients.
Selon l'invention, le matériau tritigène comprend une céramique contenant du lithium de formule : Li2Ti1_x_yZrxSny03 dans laquelle x et y sont tels que
0<x+y<l avec (0<x<0,l ou 0,9<x<l) Ainsi, selon l'invention, le matériau tritigène peut être soit un titanate de lithium (x=y=0) - soit un stannate de lithium (y=l), soit un composé isostructural du titanate de lithium résultant de la substitution partielle ou totale des ions Ti4+ par des ions Sn4+ (x=0) , soit un composé isostructural du zirconate de lithium résultant de la substitution dans du zirconate de lithium d'au plus 10 % des ions Zr^+ par un ou plusieurs ions choisis parmi Ti^+ et Sn^+, soit un composé isostructrual de la solution solide Li2Tiι_ySnyθ3 résultant de la substitution d'au plus 10 % des ions Ti^+ et/ou Sn^+ par des ions Zr'*-*. Ces composés isostructuraux sont des solutions solides :
Li2Zrθ3*-Li2Tiθ3, Li2Tiθ3-Li2Snθ3, Li2Zrθ3-Li2Snθ3, ou Li2Zrθ3-Li2 iθ3-Li2Snθ3.
L'utilisation de ces céramiques contenant du lithium permet d'obtenir le relâchement du tritium à des températures plus faibles que celle obtenue avec l'aluminate de lithium γ, ce qui constitue un avantage important.
En effet, dans les futures réacteurs de fusion, on prévoit l'existence de points "froids" au sein de la couverture, car certains endroits de la couverture seront à 700°C, alors que d'autres seront seulement à 400-450°C. Or, le relâchement du tritium fait appel à des processus thermiquement activés, mais pour des raisons de sécurité et d'alimentation des réacteurs de fusion deutérium-tritium, il n'est pas souhaitable que le temps de séjour du tritium dans la couverture soit trop long. Aussi, un gain de 100°C sur la température de relâchement du tritium est intéressant, car il permet de relâcher du tritium dans les parties froides de la couverture.
Selon un exemple de réalisation du matériau de l'invention, la céramique contenant du lithium est une céramique de zirconate de lithium ou d'une solution solide Li2Zrθ3-Li2Tiθ3, c'est-à-dire que dans la formule donnée ci-dessus, y est égal à 0.
Parmi les céramiques de ce type, on préfère celles qui contiennent également du titane, car le frittage des céramiques Li2Zrθ3 est favorisé par l'apport de titane.
En effet, le zirconate de lithium possède une mise en place lente de symétrie cristalline monoclinique entre 700°C et 1000°C. Cette "transition" contrarie fortement le frittage. On peut mettre ce phénomène en évidence en comparant les courbes dilatométriques enregistrées sur un zirconate de lithium issu d'une même poudre calcinée à 750°C ou à 800°C ; la poudre calcinée à 800°C contient une proportion de phase monoclinique plus importante, la mise en place de la phase est favorisée. Aussi, la frittabilité est améliorée. Cependant, à la stoechiométrie, cette transition vers un état plus ordonné conduit à un "éclatement" de la céramique lors du frittage, éclatement d'autant plus important que la céramique est dense. Aussi, faut-il favoriser un peu plus cette transition ; soit par modification de la stoechiométrie, soit par substitution d'un élément. La substitution Zr4+< >Ti4+ favorise cette transition car le rayon ionique du titane est proche de celui du lithium, et ses divers degrés d'oxydation autorisent des écarts à la stoechiométrie lors de la mise en ordre de la structure. De ce fait, une poudre de céramique de composition Li2 iι_xZrxθ3 a une aptitude au frittage meilleure que celle d'une poudre de Li2Zrθ3-
De plus, la modification des paramètres de la maille cristalline du zirconate de lithium pur induite par la substitution Ti4+ < > Zr4+ est favorable aux propriétés mécaniques.
Les matériaux tritigènes de l'invention peuvent être préparés par des procédés classiques de réaction en phase solide. Toutefois, on préfère les préparer par le procédé décrit ci-après qui permet de mieux contrôler leur microstructure.
Aussi, l'invention a également pour objet un procédé de préparation d'une céramique contenant du lithium de formule :
Li2τil-x-yZrxSny°3 dans laquelle x et y sont tels que
0<x+y<l avec (0<x<0,l ou 0,9<x<l) caractérisé en ce qu'il comprend les étapes suivantes : a) mélanger dans un alcool anhydre au moins un alkoxyde choisi parmi les alkoxydes de zirconium, de titane et d'étain, avec un hydroxyde de lithium hydraté ou non, b) ajouter de l'eau au mélange obtenu dans l'étape a) pour l'hydrolyser, c) sécher, à une température inférieure à 300°C, le produit hydrolyse obtenu dans l'étape b) pour évaporer les alcools et l'eau, puis calciner à une température comprise entre 500 et 800°C pour obtenir une poudre cristallisée, d) mettre en forme la poudre obtenue dans l'étape c) , et e) soumettre le produit mis en forme à un traitement thermique de frittage effectué à une température de 800 à 1200°C pour obtenir une céramique frittée.
Ce procédé est avantageux car il permet de bien contrôler, d'une part, les rapports stoechiométriques et, d'autre part, la microstructure des céramiques obtenues.
Pour réaliser l'étape a) de ce procédé, on utilise généralement des alcools anhydre à chaîne courte, tels que le méthanol et l'éthanol et des alcoxydes de zirconium, de titane et/ou d'étain tels que les butoxydes et isopropoxydes de ces métaux.
L'hydroxyde de lithium hydraté ou non peut être ajouté à la solution fraîchement préparée sous la forme de poudre, de solution ou de suspension dans un alcool ; de préférence, on l'ajoute sous la forme de suspension dans le même alcool que celui de la solution. De préférence, on utilise de l'hydroxyde de lithium monohydraté. Dans l'étape a) de ce procédé, on réalise une hydrolyse partielle avec élévation de la température, et on obtient ainsi une solution dans laquelle le lithium et le ou les métaux (Zr, Ti, Sn) sont intimement mélangés. En partant de produits très purs, on peut ainsi obtenir, par hydrolyse ultérieure, un produit de très grande homogénéité et de très grande pureté, qui conduit par séchage à une fine poudre ne donnant pas lieu à une perte de masse importante lors d'une cuisson ultérieure.
Dans l'étape c) , après séchage, on soumet la poudre obtenue à une calcination, avant d'effectuer l'étape d) . Cette calcination peut être effectuée à des températures de 500 à 800°C, sous atmosphère d'air.
La transformation de la poudre séchée ou calcinée en céramique et son frittage sont ensuite obtenus en effectuant les étapes d) de mise en forme et e) de traitement thermique décrites précédemment. Par ce procédé, on peut obtenir des céramiques dont la densité varie de 70 % à 100 % de la densité théorique, avec des grains de taille homogène dont les dimensions moyennes vont de 0,1 à 10 μm en fonction de la température utilisée.
Généralement, on réalise le frittage en atmosphère d'oxygène, par exemple sous air.
Par ailleurs, lors du frittage, on enfouit de préférence les pièces dans un lit de poudre de même composition pour bien contrôler la stoechiométrie.
Dans le procédé de l'invention, on contrôle les caractéristiques de la poudre (stoechiométrie, cristallinité, taille des particules, ....), et par conséquent son aptitude au frittage, en réglant de façon appropriée la quantité d'alcool utilisé dans la première solution et la quantité d'hydroxyde de lithium ajoutée.
La quantité d'hydroxyde de lithium correspond généralement à la quantité stoechiométrique, mais on peut aussi régler la densité du produit final en utilisant des quantités d'hydroxyde de lithium différentes de la stoechiométrie pour avoir un écart allant par exemple jusqu'à 4 % en mole.
On contrôle aussi les caractéristiques du produit hydrolyse en ajoutant dans l'étape b) une quantité d'eau telle que le rapport molaire de l'eau à l'alcoxyde de Zr, Ti et/ou Sn soit de 2 à 26.
Dans l'étape a) du procédé de l'invention, on prépare la solution d'alcoxyde (s) en mélangeant sous agitation le (s) alcoxyde(s) à l'alcool, puis on ajoute immédiatement l'hydroxyde de lithium et on agite vigoureusement pendant une durée suffisante au cours de laquelle la température s'élève à 70°C environ, pour obtenir un mélange intime du lithium avec l'autre métal ou les autres métaux. Généralement, cette durée va de 20 min à 60 min pour un volume de 600 ml.
Dans l'étape a), il se produit une hydrolyse partielle, mais on réalise ensuite l'hydrolyse complète dans l'étape b) par addition d'eau sous agitation.
Pour cette étape b) , on utilise de préférence de l'eau désionisée et decarbonatee pour obtenir par hydrolyse une poudre de grande pureté. On réalise de préférence l'étape a) sous atmosphère de gaz inerte, par exemple d'azote, car les alcoxydes sont très sensibles à l'humidité.
Dans l'étape c) , on sèche le produit obtenu par hydrolyse à une température inférieure à 300°C. Ceci peut être effectué par exemple à 150°C dans une étuve ou à une température supérieure au point critique de l'alcool dans un autoclave, par exemple à 250°C sous 7MPa.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture des exemples suivants donnés bien entendu à titre illustratif et non limitatif, en référence au dessin annexé sur lequel :
- la figure 1 représente de façon schématique une installation pour tester les propriétés du matériau tritigène en ce qui concerne le relâchement du tritium,
- la figure 2 est un diagramme illustrant le flux de tritium relâché en fonction de la température, et
- la figure 3 est un diagramme illustrant les résultats d'études dilatométriques sur différentes poudres de céramique contenant du lithium conformes à l'invention. Exemple 1 : Préparation de LigZrOg.
Dans cet exemple, on prépare une première solution en mélangeant sous atmosphère d'azote sec 122,67 g de butoxyde de zirconium Zr(004119)4 provenant de Aldrich Chemical Cy avec 250 ml d'éthanol.
Dans un autre bêcher, on prépare une suspension d'hydroxyde de lithium en mettant en suspension 24,12 g de LiOH, H2O dans 160 ml d'éthanol.
On ajoute alors la suspension ainsi obtenue à la première solution et on soumet le tout à une agitation vigoureuse pendant 30 min au cours desquelles la température augmente à 70°C. On obtient ainsi une solution blanche.
On réalise alors l'hydrolyse de cette solution en ajoutant 62 ml d'eau désionisée et decarbonatee et on agite le mélange pendant 15 min. environ.
On sèche alors la solution blanche obtenue dans une étuve à 150°C pendant 2 h au moins, puis on calcine la poudre obtenue à 800°C pendant 2 h. On soumet ensuite cette poudre à un pressage isostatique à froid sous une pression de 200 MPa, pendant 1 min pour former des sphères d'environ 4 mm de diamètre. On fritte ensuite ces sphères dans un creuset en alumine à une température de 950°C pendant 2 h avec une vitesse de chauffage de 3°C/min, après les avoir enfouies dans un lit de poudre de même composition pour limiter les variations de stoechiométrie.
Après frittage, la densité relative obtenue est de 87,6 %.
Exemple 2 : Préparation de LigTiOg.
Dans cet exemple, on prépare une première solution en mélangeant sous atmosphère d'azote sec 100 g d'isopropoxyde de titane Ti (OCH(CH3)2) 4 (97 %) provenant de Aldrich Chemical Cie avec 250 ml d'éthanol.
Dans un autre bêcher, on prépare une suspension d'hydroxyde de lithium en mettant en suspension 28,92 g de LiOH,H2θ dans 160 ml d'éthanol.
On ajoute alors la suspension précédente à la première solution et on soumet le tout à une agitation vigoureuse pendant 30 minutes au cours desquelles la température augmente à 70°C. On obtient ainsi une solution blanche.
On réalise alors l'hydrolyse de cette solution en ajoutant de l'eau déionisée et decarbonatee en quantité telle que le rapport molaire eau/isopropoxyde de titane soit de 10, et on agite le mélange pendant 15 minutes environ.
La solution blanche obtenue est alors séchée en étuve à 150°C pendant 2 heures minimum. La poudre obtenue est calcinée à 750°C pendant 2 heures.
On soumet ensuite cette poudre à un pressage isostatique à froid sous une pression de 200 MPa pendant 1 minute pour former des sphères d'environ 4 mm de diamètre. On fritte ensuite ces sphères dans un creuset en alumine à une température de 875°C pendant 2 heures avec une vitesse de chauffage de 3°C/min, après les avoir enfouies dans un lit de poudre de même composition pour limiter les variations de stoechiométrie.
Après frittage, la densité relative obtenue est de 86,9 %. Exemple 3 : Préparation de LJ Zrp gTip 1O3.
Dans cet exemple, on prépare une première solution en mélangeant sous atmosphère d'azote sec 125 g de butoxyde de zirconium Zr(0041*19)4 provenant de Aldrich Chemical Cie avec 9,53 g d'isopropoxyde de titane Ti (OCH(CH3)2) 4 (97 %) provenant de Aldrich Chemical Cie et 250 ml d'éthanol.
Dans un autre bêcher, on prépare une suspension d'hydroxyde de lithium en mettant en suspension 27,57 g de LiOH,H2θ dans 160 ml d'éthanol.
On ajoute alors la suspension précédente à la première solution et on soumet le tout à une agitation vigoureuse pendant 30 minutes au cours desquelles la température augmente à 70°C. On obtient ainsi une solution blanche.
On réalise alors l'hydrolyse de cette solution en ajoutant de l'eau déionisée et decarbonatee en quantité telle que le rapport molaire eau/ (isopropoxyde de titane + butoxyde de zirconium) soit de 10, et on agite le mélange pendant 15 minutes environ.
La solution blanche obtenue est alors séchée en étuve à 150°C pendant 2 heures minimum. La poudre obtenue est calcinée à 750°C pendant 2 heures. On soumet ensuite cette poudre à un pressage isostatique à froid sous une pression de 200 MPa pendant 1 minute pour former des sphères d'environ 4 mm de diamètre. On fritte ensuite ces sphères dans un creuset en alumine à une température de 950°C pendant 2 heures avec une vitesse de chauffage de 3°C/min, après les avoir enfouies dans un lit de poudre de même composition pour limiter les variations de stoechiométrie.
Après frittage, la densité relative obtenue est de 86 %. Exemple 4
Dans cet exemple, on soumet les sphères en céramique obtenues dans les exemples 1 à 3 à un essai de dégagement de tritium. Dans ce but, on soumet chaque sphère qui pèse 80 à 100 mg à un dégazage sous vide à 650°C pendant 3 h, puis on l'introduit dans une ampoule en quartz préalablement remplie de 27KPa (200 Torrs) d'hélium, on scelle l'ampoule et on soumet l'ensemble à une irradiation neutronique sous un flux d'environ 10 14 neutrons/cm-2.s pendant 2h.
Après cette irradiation qui conduit à la formation de tritium dans la céramique, on introduit la sphère de céramique irradiée dans l'installation d'essai représentée sur la figure 1.
Cette installation comprend un tube en quartz 1 dans lequel on introduit l'échantillon 3 au niveau d'un four de chauffage 5. Ce tube de quartz comporte en aval du four 5 un remplissage de billes de zinc 7 entouré d'un second four de chauffage 9 et il peut être parcouru par un gaz vecteur introduit en 11. Après passage dans les deux fours, on mesure la teneur en tritium du gaz vecteur dans un compteur proportionnel ou une chambre d'ionisation 13.
Lors de l'essai, la sphère de céramique 3 qui a été irradiée, est introduite dans le tube de quartz 1, après avoir été extraite de l'ampoule ayant servi à son irradiation. Dans ce tube de quartz, elle est chauffée par le four 5 de façon à subir un échauffement à vitesse constante de 0,5°C/min, en étant balayée par un gaz vecteur constitué d'hélium contenant 0,1 % d'hydrogène à un débit de 30 ml/min. Lors du chauffage, le tritium inclus dans la céramique se dégage dans le gaz vecteur, sous forme de gaz tritié et de vapeur d'eau tritiée ; la vapeur d'eau tritiée est réduite en gaz tritié par le réducteur 7 constitué de billes de zinc à grande surface spécifique dans le four de réduction 9, à une température de 370°C. A la sortie du four de réduction, le gaz vecteur contient donc le tritium sous forme de gaz tritié et l'on mesure la teneur en tritium de ce gaz dans le compteur proportionnel ou la chambre d'ionisation 13. Les résultats obtenus (en Becquerel/seconde) en fonction de la température atteinte dans le four de chauffage 5 (en °C) sont représentés sur la figure 2. Sur cette figure,
- la courbe en traitx mixtes se réfère à la céramique de l'exemple 1, Li2Zrθ3,
- la courbe en trait plein se réfère à la céramique de l'exemple 2, Li2Tiθ3, et
- la courbe en tirets se réfère à la céramique de l'exemple 3, Li2Zro.9 io.1O3. Au vu de ces courbes, on remarque que l'on obtient dans tous les cas le maximiαm de relâchement du tritium à une température inférieure à 400°C.
Ainsi, on obtient de meilleurs résultats avec les céramiques de l'invention qu'avec 1'aluminate de lithium pour lequel le maximum de relâchement du tritium se situe généralement à 450°C. Exemple 5 ; Préparation de Li Z Og
On suit le même mode opératoire que dans 1'exemple 1 pour préparer une poudre de cette céramique, mais on effectue la calcination à 750°C pendant 2 h.
On comprime ensuite cette poudre sous la forme d'un barreau de 5 à 20 mm de diamètre par compression isostatique à froid sous une pression de 200 MPa pendant 1 min, puis on étudie l'aptitude au frittage de la poudre en observant le comportement dilatométrique du barreau en fonction de la température.
Les résultats obtenus sont donnés sur la figure 3. Sur cette figure, qui illustre le retrait du barreau ΔL/LQ OÙ LQ est la longueur initiale du barreau et ΔL son retrait, en fonction de la température, la courbe 1 qui se réfère à l'exemple 5, montre que le frittage n'est pas achevé à 1100°C puisqu'on n'a pas atteint de palier.
A titre comparatif, on a représenté sur cette figure les résultats obtenus lorsqu'on effectue la même étude sur la poudre de Li2 rθ3 obtenue dans l'exemple 1 qui a été calcinée à 800°C (courbe 2) et sur la poudre de Li2ZrQ, 9Tio, 1O3 de l'exemple 3, qui a été calcinée à 750°C.
Ainsi, on remarque que dans le cas de la courbe 2, le frittage est achevé à 1100°C et qu'il en est de même dans le cas de l'exemple 3 bien que la poudre n'ait été calcinée qu'à 750°C.
Ceci confirme l'intérêt des solutions solides Li2Zrθ3~Li2 iθ3 pour réaliser le frittage dans de meilleures conditions. Exemple 6 : Préparation de LigSnOg :
Dans cet exemple, on prépare une première solution en mélangeant sous atmosphère d'azote sec
146,7 g de butoxyde (ou butylate) d'étain Sn(004119)4 à
95 % provenant de Huis America Inc. avec 250 ml d'éthanol.
Dans un autre bêcher, on prépare une suspension d'hydroxyde de lithium en mettant une suspension de 28,4 g de LiOH, H2O dans 160 ml d'éthanol. On ajoute à la suspension ainsi obtenue la première solution et on soumet le tout à une agitation vigoureuse pendant 30 minutes au cours desquelles la température augmente à 60°C. On obtient ainsi une solution blanche. On réalise alors l'hydrolyse de cette solution en ajoutant de l'eau désionisee et decarbonatee en quantité telle que le rapport molaire eau/butoxyde d'étain soit de 10, et on agite le mélange pendant 15 minutes environ.
La solution obtenue est séchée en étuve à 150°C pendant deux heures minimum. La poudre obtenue est calcinée à 750°C pendant deux heures.
On procède ensuite comme dans l'exemple 1 pour la mise en forme et le frittage. Après frittage, la densité relative est de 92 %.

Claims

REVENDICATIONS
1. Matériau tritigène, caractérisé en ce qu'il comprend une céramique contenant du lithium de formule : Li2Ti1_x_yZrxSny03 dans laquelle x et y sont tels que 0<x+y<l avec (0<x<0,l ou 0,9<x<l) .
2. Matériau tritigène selon la revendication 1, caractérisé en ce que x et y sont égaux à 0.
3. Matériau tritigène selon la revendication
1, caractérisé en ce que y est égal à 1.
4. Matériau tritigène selon la revendication 1, caractérisé en ce que x est égal à 0.
5. Matériau tritigène selon la revendication 1, caractérisé en ce que x est égal à 0,1 et y est égal à 0.
6. Procédé de préparation d'une céramique contenant du lithium de formule :
Li2Ti1_x_yZrxSnyθ3 dans laquelle x et y sont tels que
0<x+y<l avec (0<x<0,l ou 0,9<x<l), caractérisé en ce qu'il comprend les étapes suivantes : a) mélanger dans un alcool anhydre au moins un alkoxyde choisi parmi les alkoxydes de zirconium, de titane et d'étain, avec un hydroxyde de lithium hydraté ou non, b) ajouter de l'eau au mélange obtenu dans l'étape a) pour l'hydrolyser, c) sécher, à une température inférieure à
300°C, le produit hydrolyse obtenu dans l'étape b) pour évaporer les alcools et l'eau, puis calciner à une température comprise entre 500 et 800°C pour obtenir une poudre cristallisée. d) mettre en forme la poudre obtenue dans 1 ' étape c) , et e) soumettre le produit mis en forme à un traitement thermique de frittage effectué à une température de 800 à 1200°C pour obtenir une céramique frittée.
7. Procédé selon la revendication 6, caractérisé en ce que l'hydroxyde de lithium hydraté ou non, est ajouté à la solution sous la forme d'une poudre, d'une solution ou d'une suspension d'hydroxyde de lithium dans le même alcool anhydre que celui de la solution.
8. Procédé selon l'une quelconque des revendications 6 et 7, caractérisé en ce que l'alkoxyde de zirconium est le butoxyde de zirconium.
9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que l'alkoxyde de titane est 1 ' isopropoxyde de titane.
10. Procédé selon l'une quelconque des revendications 6 à 9, caractérisé en ce que l'on utilise dans l'étape a) de l'hydroxyde de lithium monohydraté.
11. Procédé selon l'une quelconque des revendications 6 à 10, caractérisé en ce que l'alcool est l'éthanol.
12. Procédé selon l'une quelconque des revendications 6 à 11, caractérisé en ce que l'on réalise l'étape a) sous atmosphère d'azote.
PCT/FR1995/000097 1994-01-28 1995-01-27 Materiau tritigene en ceramique contenant du lithium et son procede de preparation WO1995020551A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/00956 1994-01-28
FR9400956A FR2715651B1 (fr) 1994-01-28 1994-01-28 Matériau tritigène en céramique contenant du lithium et son procédé de préparation.

Publications (1)

Publication Number Publication Date
WO1995020551A1 true WO1995020551A1 (fr) 1995-08-03

Family

ID=9459515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000097 WO1995020551A1 (fr) 1994-01-28 1995-01-27 Materiau tritigene en ceramique contenant du lithium et son procede de preparation

Country Status (2)

Country Link
FR (1) FR2715651B1 (fr)
WO (1) WO1995020551A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845080A1 (fr) * 2002-08-27 2004-04-02 Ngk Insulators Ltd Procede de production d'un materiau fertile de tritium, et materiau fertile de tritium obtenu
CN112174195A (zh) * 2020-09-28 2021-01-05 中科院过程工程研究所南京绿色制造产业创新研究院 一种碳包覆钛酸锂氚增殖剂及其制备方法与制备装置系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336751B2 (ja) * 2000-03-31 2009-09-30 日本碍子株式会社 リチウムタイタネート微小球の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH259H (en) * 1986-08-22 1987-04-07 The United States Of America As Represented By The United States Department Of Energy Coated ceramic breeder materials
JPS63112422A (ja) * 1986-10-28 1988-05-17 Murata Mfg Co Ltd Li↓2SnO↓3の合成方法
DE3742023A1 (de) * 1987-12-11 1989-06-22 Kernforschungsz Karlsruhe Brutmaterial aus ternaerem, lithiumhaltigem oxid
FR2641774A1 (fr) * 1989-01-16 1990-07-20 Studiecentrum Kernenergi Procede pour la preparation de zirconate de lithium, et zirconate de lithium et produits intermediaires prepares suivant celui-ci
FR2687139A1 (fr) * 1992-02-07 1993-08-13 Commissariat Energie Atomique Procede de preparation d'aluminate de lithium gamma a microstructure et stoechiometrie controlees.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH259H (en) * 1986-08-22 1987-04-07 The United States Of America As Represented By The United States Department Of Energy Coated ceramic breeder materials
JPS63112422A (ja) * 1986-10-28 1988-05-17 Murata Mfg Co Ltd Li↓2SnO↓3の合成方法
DE3742023A1 (de) * 1987-12-11 1989-06-22 Kernforschungsz Karlsruhe Brutmaterial aus ternaerem, lithiumhaltigem oxid
FR2641774A1 (fr) * 1989-01-16 1990-07-20 Studiecentrum Kernenergi Procede pour la preparation de zirconate de lithium, et zirconate de lithium et produits intermediaires prepares suivant celui-ci
FR2687139A1 (fr) * 1992-02-07 1993-08-13 Commissariat Energie Atomique Procede de preparation d'aluminate de lithium gamma a microstructure et stoechiometrie controlees.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 8825, Derwent World Patents Index; AN 88-172936 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845080A1 (fr) * 2002-08-27 2004-04-02 Ngk Insulators Ltd Procede de production d'un materiau fertile de tritium, et materiau fertile de tritium obtenu
CN112174195A (zh) * 2020-09-28 2021-01-05 中科院过程工程研究所南京绿色制造产业创新研究院 一种碳包覆钛酸锂氚增殖剂及其制备方法与制备装置系统

Also Published As

Publication number Publication date
FR2715651A1 (fr) 1995-08-04
FR2715651B1 (fr) 1996-03-01

Similar Documents

Publication Publication Date Title
US4312669A (en) Non-evaporable ternary gettering alloy and method of use for the sorption of water, water vapor and other gases
Deijkers et al. Hafnium silicate formation during oxidation of a permeable silicon+ HfO2 powder composite system
FR2966639A1 (fr) Procede de controle de la solubilite d&#39;additifs sur et a proximite des joints de grains et procede de production de pastilles de combustible nucleaire
Tang et al. Oxidation behavior of Ti2AlC in the temperature range of 1400° C–1600° C in steam
TW201251060A (en) Oxide sinter and tablet processed from the same
EP0701734B1 (fr) Combustible nucléaire retenant les produits de fission
FR3030500B1 (fr) Procede de fabrication d&#39;une pastille d&#39;au moins un oxyde metallique, son utilisation comme combustible nucleaire
JP2017518253A (ja) 透光性金属フッ化物セラミック
Overs et al. Properties of the Solid Electrolyte Gadolinia‐Doped Ceria Prepared by Thermal Decomposition of Mixed Cerium‐Gadolinium Oxalate
Nandi et al. ZrO2-NdO1. 5 system: Investigations of phase relation and thermophysical properties
WO1995020551A1 (fr) Materiau tritigene en ceramique contenant du lithium et son procede de preparation
WO2010137567A1 (fr) Matière générant de l&#39;hydrogène, son procédé de fabrication, procédé de fabrication d&#39;hydrogène et appareil pour la fabrication d&#39;hydrogène
WO2005007595A2 (fr) Materiau perovskite, procede de preparation et utilisation dans un reacteur catalytique membranaire
Sukarsono et al. Effect of sol concentration, aging and drying process on cerium stabilization zirconium gel produced by external gelation
CN108039467B (zh) 海绵状硅粉及其制备方法及应用其的锂离子电池
CN102433542B (zh) 碳-铝复合材料的制备方法
CN102380611B (zh) 球形碳-铝复合材料
JPH01100057A (ja) 超電導性材料の製造方法
Vadchenko Effect of thermal treatment in vacuum on ignition of titanium compacts in hydrogen
CN108039484B (zh) 海绵状硅粉及其制备方法以及锂离子电池
Permin et al. Preparation of optical ceramics based on highly dispersed powders of scandium oxide
Bite et al. Synthesis and characterization of translucent hafnia ceramics
FR2706886A1 (en) Tritigenic material based on lithium silicoaluminate and process for its preparation
FR2687139A1 (fr) Procede de preparation d&#39;aluminate de lithium gamma a microstructure et stoechiometrie controlees.
FR2860639A1 (fr) Procede de fabrication de pastilles de combustible nucleaire a base d&#39;oxyde mixte d&#39;uranium et de plutonium.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase