WO1995017477A1 - Article dote d'une surface en fluororesine hydrophobe et procede de production dudit article - Google Patents

Article dote d'une surface en fluororesine hydrophobe et procede de production dudit article Download PDF

Info

Publication number
WO1995017477A1
WO1995017477A1 PCT/JP1994/002163 JP9402163W WO9517477A1 WO 1995017477 A1 WO1995017477 A1 WO 1995017477A1 JP 9402163 W JP9402163 W JP 9402163W WO 9517477 A1 WO9517477 A1 WO 9517477A1
Authority
WO
WIPO (PCT)
Prior art keywords
article
water
fluorine
particles
containing resin
Prior art date
Application number
PCT/JP1994/002163
Other languages
English (en)
French (fr)
Inventor
Takumi Saito
Original Assignee
Dupont-Mitsui Fluorochemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP26612494A external-priority patent/JPH07228821A/ja
Priority claimed from JP6266125A external-priority patent/JPH07228822A/ja
Priority claimed from JP27313694A external-priority patent/JPH08108139A/ja
Priority claimed from JP6275600A external-priority patent/JPH08113756A/ja
Application filed by Dupont-Mitsui Fluorochemicals Co., Ltd. filed Critical Dupont-Mitsui Fluorochemicals Co., Ltd.
Priority to EP95903914A priority Critical patent/EP0696623A4/en
Priority to US08/507,228 priority patent/US5968642A/en
Publication of WO1995017477A1 publication Critical patent/WO1995017477A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to an article having a fluorine-containing resin surface which is excellent in water repellency and is hard to adhere to water droplets and accompanying stains, and a method for producing the same.
  • the surface of the conventional article is roughened by blasting or etching, and then treated with a primer or the like, and then polytetrafluoroethylene (non-adhesive) is used.
  • a paint such as enames containing fluororesin particles such as (PTFE)
  • PTFE fluororesin particles
  • Japanese Unexamined Patent Application Publication No. 4-239633 discloses that a layer having irregularities in which fine particles and silica glass are mixed and a polymer film layer containing a fluorocarbon group and a siloxane group are bonded by siloxane bonding. There is disclosed a method of forming a water- and oil-repellent film having an uneven surface by chemical bonding.
  • Japanese Patent Application Laid-Open No. Hei 4-2,328,688 discloses that polytetrafluoroethylene sesame having a molecular weight of about 800 to 100,000 is dispersed in a mechanic solution. To form a water-repellent metal by co-depositing the oligomer on the plating film. It is stated that a complex is formed.
  • the inventors of the present invention form an amorphous porous body by stacking high molecular weight fluorine-containing resin particles having a specific particle diameter so that the particles do not easily fall off.
  • the present inventors have found that excellent water repellency is imparted by this, and have also found various methods for obtaining such a water repellent article, thereby completing the present invention.
  • an object of the present invention is to provide an article having a fluorine-containing resin surface whose water repellency and antifouling property are remarkably improved as compared with the prior art, and a method for producing the same. Disclosure of the invention
  • the article having a water-repellent fluorine-containing resin surface of the present invention has an irregular shape having a maximum IPA diffusion diameter of 8 mm or more formed by stacking fluorine-containing resin particles having an average particle diameter of 40 / m or less. It is made of a porous material, and has a tangent value of a turning angle of less than or equal to 550.
  • the article having the water-repellent fluorine-containing resin surface may be, for example, a fluorine-containing resin particle having an average particle diameter of 40 / m or less, or water, an organic liquid containing the fluorine-containing resin particle, or a mixture and dispersion thereof.
  • the fluorine-containing resin of the present invention is a thermoplastic resin containing at least one or more fluorine atoms in a molecule, for example, a polytetrafluoroethylene (PTFE) resin, a tetrafluoroethylene resin.
  • PTFE polytetrafluoroethylene
  • FEP Roechiren 'to Kisafuru Oropuro pyrene copolymer
  • FEP molethacrylate
  • PFA Nono 0 as one Furuoroarukiru group C, ⁇ C 5
  • Pafuruoro such as resin Resins are preferred.
  • resins having a molecular weight of 100,000 or more are more preferable. It is economically advantageous to use commercially available general-purpose resins as these resins.
  • the surface of the fluorine-containing resin In order for the surface of the fluorine-containing resin to exhibit water repellency higher than the water repellency inherent to the fluorine-containing resin that is the forming substance, a surface structure that reduces the contact area with water droplets is adopted. This is preferred. For this reason, the article surface of the article of the present invention is covered with a porous body having a micron-order void formed by stacking fluorine-containing resin particles having an average particle diameter of 40 / m or less. It is necessary to be.
  • the porous body of the present invention does not have a fixed shape, but as a result of the irregular stacking of the fluorine-containing resin particles, as shown in the electron micrographs (FIGS. 1 to 5). It is composed of a regular fluorine-containing resin structure and voids. It is a feature of the amorphous porous body of the present invention that individual fluorine-containing resin particles having an average particle diameter of 40 / m or less, which do not easily fall off, can be observed in the structure. On the other hand, an article having a fluorine-containing resin surface different from that of the present invention has the entire surface fused as shown in FIG. 6, has no voids, and does not have a porous body.
  • Porous body such ⁇ Fu fluororesin has an average particle diameter (d 5 0) of ⁇ Fu fluororesin particles forming this it is necessary and this is less than 4 0 ⁇ m. That is, primary particles having an average particle diameter of the fluorine-containing resin of 40 / m or less or aggregated particles of these primary particles may be used. If the primary particle diameter is larger than this, the pores of the formed porous body are large, so that water penetrates into the pores and replaces the air and water, so that the porous body is not suitable for water repellency. .
  • the preferred particle size for stacking differs depending on the coating method, but the particle size is 0.1 to 20 im for spray coating, and 20 to 30 m for electrostatic coating. Is preferred.
  • the size of the voids in the porous body can be controlled by selecting the fluorine-containing resin particle size / aggregated particle size to be used.
  • the particles used include colloid particles having an average particle diameter of about 0.2 im directly obtained from emulsion polymerization, and so-called secondary particles obtained by aggregating colloid particles with ethanol or the like. Even if the agglomerated particles, the agglomerated particles are dried and pulverized again, or the particles exceeding 40 ⁇ obtained from the suspension polymerization are pulverized, the primary particle size may be 40 / m or less.
  • porous material present on the surface of the article is too thin, water droplets may come into contact with the surface of the substrate and water repellency may not be exerted. If the porous material is too thick, the strength of the article surface will be low. It is not practically desirable as an article. Therefore, it is usually 0.5 ⁇ ⁇ ! A thickness of ⁇ 500 m is suitable.
  • the porosity of the articles of the present invention is compared by measuring the maximum diameter of IPA that has diffused and penetrated into the porous material by dropping one drop of isopropyl alcohol (IPA) on the surface of the fluororesin. can do.
  • IPA isopropyl alcohol
  • the diameter at the time of dropping remains the same, while in the case of a porous body such as the present invention, IPA penetrates into the porous body, so that the diameter at the time of dropping is lower.
  • the diameter of the IPA increases.
  • Water repellency of the present invention The article is characterized by a maximum IPA diffusion diameter of at least 8 mm, preferably at least 16 mm, more preferably at least 20 mm.
  • the article surface of the present invention exhibits excellent water repellency because it is covered with a porous body.
  • the contact angle with water is about 110 degrees even with PTFE, which is a water-repellent material, whereas the water-repellent material of the present invention usually has a contact angle with water of 1: 1. 50 degrees or more.
  • the minimum angle of the surface of the article where the water droplet rolls on the surface without adhering to the surface when the water droplet is dropped onto the surface of the article is measured by the method described later, and this is defined as the water conversion angle. It was expressed as a tangent and was used as a measure of water repellency.
  • the cutting film of PTFE measures about 110 degrees by the contact angle method, but shows a value of about 120/500 at the diversion angle.
  • the water conversion angle on the surface of the article of the present invention is characterized by showing a value of 500 to 500 or less.
  • the base material may be a metal plate such as iron or aluminum which is conventionally coated with a fluorine-containing resin, or a fluorine-containing resin.
  • a metal plate such as iron or aluminum which is conventionally coated with a fluorine-containing resin, or a fluorine-containing resin.
  • Various plastics, wood, paper, and other materials can be selected as long as they can withstand the processing temperature at which the dispersion containing the particles is dried, generally 100 ° C or higher. .
  • the fluorine-containing resin particles may be stacked.
  • the article having a water-repellent fluorine-containing resin surface of the present invention has a maximum IPA diffusion diameter formed by stacking of the fluorine-containing resin particles having an average particle diameter of 40 ⁇ m or less which do not easily fall off.
  • Amorphous porous with a diameter of 8 mm or more It is composed of a body, and the tangent value of the turning angle is 5Q500 or less.
  • the method for producing an article having a water-repellent fluorine-containing resin surface of the present invention includes the following method.
  • fluorine-containing resin particles having an average particle diameter of 40 m or less or water, an organic liquid containing the fluorine-containing resin particles, or a mixed dispersion thereof is applied to the surface of the article, and the fluorine-containing resin particles are coated.
  • the particles can be produced by a method in which the particles are surface-fused in a state where they can come into contact with each other, a method in which the particles are bonded with a film-forming auxiliary, or a method in which the particles are fixed to the surface of the article in a non-molten state.
  • an optimum method may be selected in consideration of required physical properties such as water repellency and film strength.
  • the first method is that it easily falls off due to the surface fusion of the fluorine-containing resin particles.
  • This is a method for producing the article of the present invention having a water-repellent fluorine-containing resin surface, which comprises fusion-bonding fluorine resin particles to each other. Surface fusion is the partial fusion of particles at the particle surface.
  • the fluorine-containing resin particles are fused together at a temperature at which the particles can substantially maintain the particle shape, that is, at a temperature equal to or higher than the melting start temperature by DSC measurement of the fluorine-containing resin and equal to or lower than the melting end temperature.
  • the voids formed by the resin particles are not lost, and the porous body can be given appropriate strength.
  • the method for bringing the fluorine-containing resin particles into contact with each other is not particularly limited, and water, an organic liquid, or a mixed dispersion thereof containing the fluorine-containing resin particles having an average particle diameter of 40 m or less is used.
  • the fluorine-containing resin particles may be applied to the surface by a method of spray-coating the article with an article or a method of electrostatically coating the fluorine-containing resin particles.
  • Coating is the method used for paints, which involves the use of fluorine-containing resin particles or This refers to attaching a dispersion containing fluororesin particles to the surface of an article.
  • fluorine-containing resin particles having an average particle diameter of 40 m or less As a method of applying fluorine-containing resin particles having an average particle diameter of 40 m or less to the article surface, spray coating, electrostatic coating, immersion, or the like can be used.
  • a method of spray-coating a fluorine-containing resin dispersion obtained from emulsion polymerization having an average particle diameter of about 0.1 In the spray coating process, a porous body is formed by stacking the fluorine-containing resin particles with each other, and the size of the voids can be controlled by the coating conditions. Alternatively, a coagulant such as ethanol may be added to the aqueous dispersion to coagulate the particles, followed by spray coating.
  • Powder coatings of PFA or FEP having an average particle diameter of about 25 m can be electrostatically applied as they are.
  • color particles obtained directly from emulsion polymerization, as well as agglomerated particles obtained by agglomerating them with ethanol or particles obtained from suspension polymerization are pulverized.
  • the used particles are used.
  • the dispersion medium does not contain a surfactant.
  • the dispersion medium does not substantially affect water repellency, it is preferable to use a fluorine-containing dispersion medium.
  • the silicone resin is produced by emulsion polymerization, it may contain a surfactant in an amount used as an emulsifier. .
  • the dispersion medium is preferably water from the viewpoints of nonflammability and environmental hygiene, and the addition of ethanol can aggregate the fluorine-containing resin particles. You.
  • an amorphous porous body that does not easily fall off can be obtained, but the average particle diameter is 40 / m or less. It is necessary to strictly control the heat treatment temperature in order to form a porous body by surface fusion between fluorine-containing resin particles and to increase the strength of the film itself and the adhesion strength of the article. It is.
  • the dispersion medium evaporates and the remaining fluororesin particles accumulate and accumulate on the article.
  • a regular porous body is formed below the melting start temperature determined by the DSC measurement.
  • the particles have not yet been surface-fused and have a high porosity, so the water repellency is high but the strength is low.
  • the temperature exceeds the melting start temperature the surfaces of the particles fuse with each other, the porosity gradually decreases, and the water repellency slightly decreases as compared to before the surface fusion, but the strength increases.
  • the fluorine-containing resin particles are fused over the entire surface, the porous body disappears, the surface becomes smooth, and the water repellency is significantly reduced. Go.
  • the time required for the surface fusion of the particles to each other is usually 10 minutes or more, and it is particularly preferable that the time is about 15 to 20 minutes.
  • the porous body produced by this method is composed of an amorphous fluorine-containing resin structure and voids as shown in electron micrographs (FIGS. 1 and 2). It is a feature of the amorphous porous body of the present invention that individual fluorine-containing resin particles having an average particle diameter of 40 m or less, which do not easily fall off, can be observed in the structure. On the other hand, the surface of the article obtained by fusing at a temperature higher than the melting temperature of the fluororesin is fused over the entire surface as shown in Fig. 6, leaving no voids and forming a porous body. It has not been.
  • PTFE resin can be used as the porous forming particles
  • hot-melt PFA resin or FEP resin can be used as the auxiliary material.
  • the surface fusion is based on the PTFE resin with a high melting end temperature. This is performed at a temperature equal to or higher than the melting start temperature of the PTFE resin and equal to or lower than the melting end temperature.
  • the heat treatment temperature at the time of heat treatment of the fluororesin particles applied to the surface of the article has a great effect on the porosity and strength of the resulting porous body.
  • the first method of performing heat treatment at a temperature equal to or higher than the melting start temperature and equal to or lower than the melting end temperature by DSC measurement is as follows.
  • the surface maintains a sufficient strength, has a moderately high porosity, and has a high porosity.
  • This is an excellent method since an article exhibiting water-based properties can be obtained, but the inventors of the present invention have studied other methods for obtaining an article having a fluorine-containing resin surface having higher water repellency.
  • the dispersion containing the high molecular weight fluorine-containing resin particles having a specific particle diameter is applied and dried in a specific temperature range, whereby the fluorine-containing resin particles are in a non-molten state.
  • An object of this method is to provide a method for producing an article having a fluorine-containing resin surface, with particular emphasis on water repellency.
  • water, an organic liquid, or a mixed dispersion thereof containing fluorine-containing resin particles is applied to an article under a condition where the fluorine-containing resin particles come into contact with each other.
  • a water-repellent fluorine-containing resin comprising drying the dispersion at a temperature equal to or lower than the melting start temperature of the fluorine-containing resin by DSC measurement to fix the fluorine-containing resin particles to each other on the surface of the article in a non-molten state.
  • the method for bringing the fluorine-containing resin particles into contact with each other is not particularly limited, and can be performed in the same manner as in the first method.
  • the coating method can be performed in the same manner as the above method.
  • the drying temperature of the dispersion medium may be any temperature lower than the melting start temperature of the fluororesin by DSC measurement, but the temperature of 50 ° C or higher is the drying time until the fluororesin particles adhere to each other. Desirable in terms of time.
  • the porous body produced by this method is composed of an amorphous fluororesin structure and voids as shown in electron micrographs (Figs. 3 and 4).
  • the feature of the amorphous porous body of the present invention is that individual fluorine-containing resin particles having an average particle diameter of 40 m or less, which do not easily fall into the structure, can be observed.
  • the surface of the article obtained by fusing at a temperature higher than the melting temperature of the fluororesin is fused over the entire surface as shown in Fig. 6, leaving no voids and forming a porous body. It has not been.
  • a porous body two or more types of fluorine-containing resin particles, for example, PTFE resin as the porous forming particles, and heat-meltable PFA resin or FEP resin as the auxiliary material can be used, but drying The drying temperature in the case of the second method is lower than the melting start temperature of the fluorine-containing resin having the higher melting start temperature.
  • a heat-meltable fluororesin when used as an auxiliary material, it acts as a film-forming auxiliary by selecting its type, particle size, and drying temperature, and is applied to the surface of the article in a non-molten state. By adhering the fixed fluorine-containing resin particles to each other, a water-repellent fluorine-containing resin surface having excellent strength can be obtained.
  • the fluororesin particles are fixed to the surface of the article, and the high water repellency is obtained.
  • a film-forming auxiliary agent is contained, and the dispersion is dried at a temperature equal to or lower than the melting start temperature of the fluororesin by DSC measurement, to thereby form a film-forming auxiliary agent.
  • an amorphous porous body is formed in which the fluorine-containing resin particles do not easily fall off due to the accumulation of the fluorine-containing resin particles, and the water repellency is obtained.
  • a porous body having a large porosity can be obtained by setting the heat treatment temperature at a relatively low temperature, so that high water repellency can be imparted to the article, and a film forming auxiliary agent is present. Sufficient strength can be obtained by using the adhesive action.
  • an object of this method is to provide a method for producing an article having a particularly excellent water-repellent property and a high strength.
  • water, an organic liquid, or a mixed dispersion thereof containing fluorine-containing resin particles and a film-forming auxiliary is applied to an article, and then the melting of the fluorine-containing resin is started by DSC measurement. Drying the dispersion at a temperature equal to or lower than the temperature, and adhering the fluororesin particles with a film-forming auxiliary, the method for producing an article of the present invention having a water-repellent fluororesin surface. is there.
  • the amorphous porous material is formed and retained by the cohesive force of the particles, but a film is formed to bond the fluorine-containing resin particles to form a stronger porous material.
  • Auxiliaries are used.
  • the film-forming auxiliary is dissolved or dispersed in water, an organic liquid or a mixture thereof and applied to the article surface together with the fluorine-containing resin particles.
  • the coating can be performed in the same manner as the other manufacturing methods described above.
  • the dispersion applied to the surface of the article is dried at a temperature equal to or lower than the melting start temperature of the fluorine-containing resin by DSC measurement, and gradually becomes smaller.
  • the particles are adhered by a film forming aid.
  • the bonding means that the fluorine-containing resin particles are fixed as a porous structure by a film-forming auxiliary.
  • the film-forming auxiliary there is no particular limitation on the film-forming auxiliary as long as it is capable of forming a film at a temperature equal to or lower than the melting start temperature of the fluororesin that forms the porous body by the DSC measurement.
  • a film-forming compound or an inorganic film-forming compound is used.
  • Organic film-forming compounds include, for example, acrylic resins, polyimide precursors, aminosilanes, tetrafluoroethylene, vinyl acetate copolymers, alkyd resins, and epoxy resins.
  • Organic resins such as polyamide resin, polyimide resin, polysulfone resin, silicone resin, polyurethane resin, acrylic silicone resin, and polyester resin. The system polymer is used.
  • the fluorine-containing resin having a lower melting temperature can be used as a film-forming auxiliary of the present invention.
  • a PTFE resin is used as the porous forming particles and a heat-meltable PFA resin or FEP resin is used as the film-forming auxiliary
  • the type and particle size of the heat-meltable fluorine resin are selected, and the PTFE resin is selected.
  • the heat-meltable fluorinated resin can have a film-forming property at the drying temperature, and can be used as a film-forming auxiliary.
  • inorganic film-forming compound examples include colloidal silica, lithium silicate, alumina sol, and zirconazole. These organic film-forming compounds or inorganic film-forming compounds may be used alone or as a mixture of two or more film-forming auxiliaries.
  • the weight ratio of the porous resin-forming fluororesin particles to the film-forming auxiliary is about 1: 0.01-1: 2 in the case of the organic film-forming auxiliary, and in the case of the inorganic film-forming auxiliary. About 1: 0.1-1: 4 is preferred.
  • the dispersion After the dispersion is applied to the article, it may be dried at a temperature equal to or lower than the melting start temperature of the fluororesin by DSC measurement in order to adhere the fluororesin particles with a film forming aid. is necessary.
  • the drying temperature of the dispersion medium may be a temperature equal to or lower than the melting start temperature of the fluororesin by DSC measurement, and is preferably 50 ° C or higher until the fluororesin particles adhere to each other. Desirable in terms of drying time.
  • the temperature may be set at a temperature equal to or lower than the melting start temperature of the PTFE resin based on the PTFE resin having a high melting start temperature.
  • the porous body produced by this method was transformed from the amorphous fluorine-containing resin structure and the voids as shown in the electron micrograph (Fig. 5). It is composed.
  • Fig. 5 the electron micrograph
  • the present invention it is possible to observe individual fluorine-containing resin particles having a fine particle diameter, which are adhered by a film-forming auxiliary agent and do not easily fall off, in the structure. It is a characteristic of the body.
  • the entire surface of the article obtained by fusing at a temperature higher than the melting temperature of the fluorine-containing resin is fused as shown in Fig. 6, leaving no voids and forming a porous body. Being, no. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an electron micrograph of the surface of the water-repellent fluororesin of the article of the present invention obtained in Example 1.
  • FIG. 2 is an electron micrograph of the surface of the water-repellent fluorine-containing resin of the article of the present invention obtained in Example 5.
  • FIG. 3 is an electron micrograph of the surface of the water-repellent fluorine-containing resin of the article of the present invention obtained in Example 6.
  • FIG. 4 is an electron micrograph of the surface of the water-repellent fluorine-containing resin of the article of the present invention obtained in Example 8.
  • FIG. 5 is an electron micrograph of the surface of the water-repellent fluorine-containing resin of the article of the present invention obtained in Example 14.
  • FIG. 6 is an electron micrograph of the surface of the fluorine-containing resin of the article obtained in Comparative Example 2.
  • Table 1 shows the fluororesins used as raw materials.
  • T 1 is the melting start temperature
  • T peak is the melting peak temperature
  • T 2 is the melting end temperature (° C).
  • Microtracking method Measured with a microtrack particle size analyzer, mod 179791-1-01, manufactured by LEDS & N0RTHRUP.
  • Turbidity method Measured with a Toritsu multipurpose self-spectrophotometer (halogen lamp).
  • Electrospray painted Using an electrostatic coating machine (GX-200T made by Onoda Cement Co., Ltd.) and an electrostatic powder coating gun (GX-107 made by Onoda Cement Co., Ltd.), With a coating voltage of 10 Kv (negative) and a discharge rate of about 50 g / min, placed on an aluminum plate 2 mm x 5 mm in width x 100 mm in length, separated by 25 cm at a distance of 25 cm Electrospray painted.
  • GX-200T made by Onoda Cement Co., Ltd.
  • an electrostatic powder coating gun GX-107 made by Onoda Cement Co., Ltd.
  • a bevel is created by raising one of the 55 mm long plates, and an aluminum plate (50 mm wide and 100 mm long) on which a porous body is formed is placed on top of this. Drop 0.05 g of distilled water from the nozzle 8 mm above the surface. The minimum slope at which the water droplet rolls down along the slope without stopping after falling on the surface is expressed as the distance (mm) above the horizontal distance of 50 O mm, that is, the tangent value of the slope angle.
  • Porosity measurement method maximum isopropyl alcohol diffusion diameter test 0.01 ml of IPA was dropped on an amorphous porous body using a micro syringe, and the maximum diffusion diameter of the liquid (mm ) Is measured.
  • IPA penetrates into the coating film and diffuses from the diameter at the time of dropping to a diameter of about 2 Omm, while the initial diameter of the PTFE cutting sheet remains about 5.0 mm. It is.
  • horticultural water sprinklers (0.35 mm x 44.5 nozzles made by TOYOX) are used to dispense water at 150 to 20 ° C for 100 mm. After being allowed to fall for 10 minutes at the same water flow rate, it was air-dried, and the residual weight% of the porous body was calculated from the weight change before and after the shaking, and the water resistance of the porous body was evaluated.
  • the aqueous PFA dispersion (average particle size 0.17 fim) obtained from the emulsion polymerization was spray-coated on an aluminum plate. Apply this at 120 ° C for 20 minutes After drying, heat treatment was performed at 310 ° C. for 20 minutes to obtain an article having a water-repellent PFA resin surface.
  • the electron micrograph of the surface of the obtained article is
  • PFA resin particles with a small particle diameter are stacked on each other, voids are formed between the resin particles, and the porous body has an irregular shape.
  • the water transfer angle of this surface was 1 Z500.
  • the maximum diffusion diameter of isopropyl alcohol was 23 mm.
  • Aqueous PFA dispersion obtained from emulsion polymerization (average particle size 0.17 // m) lg and 1 g of PTFE molding powder (average particle size 26 m) were dispersed and mixed in 5 g of ethanol. Spray painted on aluminum plate. This is dried at 120 ° C for 20 minutes, and then at 350 ° C for 20 minutes. Heat treatment was performed to obtain an article having a water-repellent fluorine-containing resin surface. The diversion angle of this surface was 125,000. The maximum isopropyl alcohol diffusion diameter was 8 mm.
  • PFA powder coating (average particle size 25 m) is electrostatically coated on an aluminum plate.
  • PFA powder coating (average particle size 63 m) was electrostatically coated on an aluminum plate and baked at 310 ° C for 20 minutes. The diversion angle of this surface was 53 to 500. The maximum isopropyl alcohol diffusion diameter was 16 mm.
  • the aqueous PFA dispersion (average particle size 0.17 m) obtained from the emulsion polymerization was spray-coated on an aluminum plate. After drying at 120 ° C. for 20 minutes, heat treatment was performed at 360 ° C. or higher for 20 minutes to obtain an article having a PFA resin surface. As shown in FIG. 6, an electron micrograph of the surface of the obtained article shows that the PFA resin particles were completely melted, and there were no voids between the resin particles, and the article was not porous. The diversion angle of this surface was 150/500. Maximum isopropyl alcohol diffusion diameter is , 5.0 mm.
  • aqueous PTFE dispersion (average particle size: 0.22 m) containing 3.6% surfactant based on particle weight is diluted with water to a solid content of 20 wt% and spray-coated on an aluminum plate did. This was dried at 120 ° C. for 20 minutes to obtain an article having a PTFE resin surface. The angle of ice rotation on this surface could not be measured due to the absorption of water droplets on the film.
  • An aluminum plate was electrostatically coated with a PFA powder coating (average particle size: 25 m) and baked at 360 for 20 minutes to obtain an article having a PFA resin surface.
  • the diversion angle of this surface was 115500.
  • the maximum isopropynole alcohol diffusion diameter was 5.0 mm.
  • Films with a thickness of 0.1 mm were cut from PTFE molded powder (average particle size 26 Vm), which was compression molded and fired. The diversion angle of this surface was 1,200,500. The maximum isopropyl alcohol diffusion diameter was 5.0 mm.
  • Example 7 When water droplets are dropped on the porous body of the present invention having the protrusions manufactured in this way, the water droplets come into contact with the fluorine-containing resin film only at the protrusions of the fluorine-containing resin, and therefore have extremely high water repellency. However, the wetting angle to water was about 150 degrees or more. The results are shown in Table 3 together with Examples 7 to 13. Example 7
  • Aqueous dispersion of PFA obtained from emulsion polymerization (average particle size 0.17
  • Example 3 the heat treatment temperature was 150. And an article having a water-repellent fluorine-containing resin surface was obtained in the same manner as in Example 4 except that the temperature was changed to 250 ° C. Table 3 shows the measurement results of the diversion angle of the surface of the article, the maximum isopropyl alcohol diffusion diameter, and the evaluation results of water resistance.
  • aqueous PTFE dispersion (average particle size: 0.22 ⁇ m) obtained from the emulsion polymerization to dilute to a solid content of 14 wt%. This was spray-painted on an aluminum plate. A dispersion obtained by adding 10 wt% of ethanol to this and coagulating was spray-coated on an aluminum plate. This was heat-treated at the temperature shown in Table 2 for 30 minutes to obtain an article having a water-repellent PTFE resin surface. Table 3 shows the conversion angle of the surface, the measurement result of the maximum isopropyl alcohol diffusion diameter, and the water resistance evaluation result.
  • the weight ratio of the resin of the aqueous dispersion of PFA obtained from emulsion polymerization (average particle diameter 0.17 ⁇ m) and the aqueous dispersion of PTFE obtained from emulsion polymerization (average particle diameter 0.22 ′ m) is 1
  • a water-soluble acrylic resin made by Asahipen: aqueous polishing varnish
  • PFA and PTFE aqueous solution
  • Electron micrographs of the surface of the obtained article are shown in Fig. 5, where fluorine-containing resin particles with very small particle diameters are stacked on each other, voids are formed between the resin particles, and irregular shaped pores are formed. It has become a body.
  • the diversion angle of the surface of this article was 1500.
  • the maximum isopropyl alcohol diffusion diameter was 19 mm.
  • the wetting angle to water was about 150 degrees or more, and the water resistance rating was 52%.
  • the results of Examples 15 to 20 and Comparative Example 7 are shown in Table 4.
  • a dispersion was prepared by adding water to an aqueous PFA dispersion (average particle size 0.17 ⁇ m) obtained from emulsion polymerization to a solid content of 14 wt%, and an aqueous solution diluted to 14 wt% with water was used.
  • Nosilane KBM-603, Shin-Etsu Chemical Co., Ltd.
  • Nosilane was mixed at 80 wt% with respect to the solid content of PFA, and then spray-coated on an aluminum plate.
  • the aluminum plate was heat-treated at 250 ° C. for 30 minutes to obtain an article having a water-repellent fluorine-containing resin surface. The diversion angle on the surface of this article was 1/500.
  • the maximum diffusion diameter of isopropyl alcohol was 20 mm.
  • the water resistance evaluation was 93%.
  • the PFA aqueous dispersion (average particle size: 0.117 m) obtained from the emulsion polymerization is agglomerated with nitric acid, dried at 120 ° C, and washed with ethanol.
  • Polyimide precursor solution manufactured by Toray: “Trenice” PI # 300000
  • diluted to 0 wt% is mixed with 20 wt% of the PFA solids, and then sprayed onto an aluminum plate. Painted. This aluminum plate was heat-treated at 250 ° C. for 30 minutes to obtain an article having a water-repellent fluorine-containing resin surface.
  • the diversion angle on the surface of the article was 1500.
  • the maximum isopropyl alcohol diffusion diameter was 20 mm.
  • the water resistance evaluation was 100%.
  • aqueous PFA dispersion (average particle size 0.17 ⁇ m) obtained from the emulsion polymerization to adjust the solid content to 14 wt%, and ethanol was added to the dispersion to obtain a solid content of 7 wt%. And then add 50 vo 1% water to the mixture.
  • a 0.5 wt% nonionic surfactant, Triton X-100, manufactured by CRohm & Haas) was diluted to 7 t% with an aqueous solution of lithium silicate (Nissan Chemical Industries LSS-1).
  • aqueous FA dispersion (average particle size 0.17 m) obtained from the emulsion polymerization to adjust the solid content to 14 wt%, and ethanol was added to the dispersion to obtain a solid content of 7 wt%. After dilution, add 100 vol% water to the mixture. This was solidified with a 0.5 wt% aqueous solution of nonionic yarn surfactant (Triton X-100 from Rohm & Haas). . Min was diluted to 1 4 W t% colloidal Shi Li Ca (manufactured by Nissan Chemical Industries scan node on Te click scan K:.
  • Total solid 2 8 wt% S i 0 2 / K 2 0 molar ratio 3 3 ⁇ 4.0) was mixed at 150 wt% with respect to the PFA solid content, and then this was spray-coated on an aluminum plate.
  • the aluminum plate was heat-treated at 150 ° C. for 30 minutes to obtain an article having a water-repellent fluorine-containing resin surface. The diversion angle of this surface was 1500.
  • the maximum isopropyl alcohol diffusion diameter was 22 mm.
  • the water resistance evaluation was 77%.
  • Aqueous PFA dispersion obtained from emulsion polymerization (dispersion adjusted to a solid content of 14 wt% by adding water to an average particle size of 0.17 ⁇ , and a tetral diluted to a solid content of 14 wt% with water
  • Aqueous ethylene / vinyl acetate copolymer (TFE / VA) aqueous dispersion was mixed with 100 wt% based on the solid content of PFA, and then spray-coated on an aluminum plate.
  • the maximum isopropyl alcohol diffusion diameter was 20 mm.
  • the water resistance evaluation was 98%.
  • Comparative Example 7 In the same manner as in Example 4, the aqueous mixture of PFA aqueous dispersion was spray-coated on an aluminum plate. The aluminum plate was dried at 120 ° C. for 20 minutes, and then heat-treated at 360 ° C. which is higher than the melting end temperature of PFA for 20 minutes to obtain an article having a PFA resin surface. The diversion angle of this surface was 120/500. The maximum isoprosole alcohol diffusion diameter was 5.0 mm.
  • Articles having a water-repellent fluorine-containing resin surface made of the amorphous porous body of the present invention exhibit high water repellency, so that they can be used for industrial applications such as water repellency of electrodes, and for antifouling of electric wires, insulators and building tiles. Widely used for construction and civil engineering to prevent snow damage, icing and salt damage.
  • the water-repellent article of the present invention can be manufactured by various methods, and can be arbitrarily selected in consideration of required properties such as water repellency and film strength according to the purpose of use.
  • the manufacturing method can form a fluorine-containing resin layer having high water repellency and high fusion strength on the surface of the article by simple equipment and operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

明 糸田 書
撥水性含フ ッ素樹脂表面を有する物品及びその製造方法 枝術分野
本発明は、 撥水性に優れ、 水滴やそれに付随する汚れなどが付着 しに く ぃ含フ ッ素樹脂表面を有する物品及びその製造方法に関する ものである。 背景技術
産業機器や家庭用機器等の表面に、 撥水性、 耐侯性や防汚性等の 特性を付与することが要求されている。 このような表面特性を持た せるために、 従来物品表面をブラス トやエッチングで粗面化しさ ら にプライマ一等で処理した後、 非粘着性に優れたポリ テ ト ラ フルォ 口エチ レ ン ( P T F E ) 等の含フ ッ素樹脂粒子を含有したエナメ 等の塗料を塗装し、 乾燥後 3 5 0 〜 4 0 0 °Cで焼成処理を行い、 物 品表面に含フ ッ素樹脂を塗装する方法が多く用いられてきた。
とこ ろで物品の撥水性は形成材質の撥水特性のみな らず表面状態 によっても大き く影響されるこ とが知られている。 そ こで近年物品 のよ り高い撥水性を求めて、 物品表面に存在する微小突起によ って 実際の表面積を見かけの表面積よ り大き く して水との見かけの接触 角を大き く する試みがなされている。
例えぱ特開平 4 - 2 3 9 6 3 3号公報には、 微粒子及びシ リ ケ一 ト グラスが混合された凹凸を有する層とフロロカーボン基及びシロ キサン基を含むポリ マー膜層をシロキサン結合によって化学結合ざ せて、 表面が凹凸の撥水撥油性の膜を形成する方法が開示されてい る。
ま た特開平 4 一 2 8 3 2 6 8号公報には、 分子量 8 0 0 0 〜 1 0 0 0 0程度のポ リ テ トラフルォロエチレンォ リ ゴマ—をメ ッキ 液中に分散して、 オ リ ゴマーをメ ツキ膜に共析させて撥水性の金属 複合体を形成するこ とが記されている。
特開平 6 - 1 2 2 8 3 8号公報では、 分子量 5 0 0 〜 2 0 0 0 0 程度の低分子量ポリ テ トラフルォロェチレン粉末をァク リ ルシ リ コ ン樹脂に混入分散させた撥水性塗料及び塗装方法が開示されてい る
しかしシロキサン結合による方法では一度凹凸な層を形成した後 にシロキサン結合によ り撥水膜を形成する工程が必要となり、 また メ ッキ法では撥水膜を形成する物品と してメ ッキ作業のできるもの に限定される欠点があつた。 更にァク リ ルシ リ コン樹脂に低分子量 P T F Eを混入分散させる方法も末端までフ ッ素化された特殊な低 分子量 P T F Eが必要であった。
このような状況に鑑み、 本発明の発明者らは特定の粒子径を有す る高分子量含フ ッ素樹脂粒子相互の容易に粒子が脱落しない積み重 なりにより非定形多孔質体を形成させるこ とにより優れた撥水性が 付与されるこ とを見出し、 またこのような撥水性物品を得るための 種々 の方法を見出し、 本発明を完成した。
従って本発明は、 撥水性及び防汚性を従来技術より飛躍的に高め た含フ ッ素樹脂表面を有する物品およびその製造方法を提供するこ とを目的とする。 発明の開示
本発明の撥水性含フ ッ素樹脂表面を有する物品は平均粒子径 4 0 / m以下の含フ ッ素樹脂粒子相互の積み重なりにより形成された最 大 I P A拡散径が 8 m m以上である非定形多孔質体からなり、 且つ 転水角の正接値が 5 0 5 0 0以下であるこ とを特徴とする。
上記撥水性含フ ッ素樹脂表面を有する物品は、 例えば平均粒子径 4 0 / m以下の含フ ッ素樹脂粒子又は該含フ ッ素樹脂粒子を含有す る水、 有機液体又はその混合分散液を物品に塗着し、 含フ ッ素樹脂 粒子が互いに接触しう る状態のも とで該粒子を表面融着させる方 法、 膜形成補助剤によ り表面接着させる方法又は非溶融状態で固定 させる方法等によって製造する こ とができる。
(含フ ッ素樹脂粒子)
本発明の含フ ッ素樹脂と しては、 分子内に少な ぐと も 1以上のフ ッ素原子を含んだ熱可塑性樹脂であり、 例えばポ リ テ トラフルォロ エチレン ( P T F E ) 樹脂、 テ トラフルォロエチレン ' へキサフル ォロプロ ピレン共重合体 ( F E P ) 樹脂ゃテ トラフルォロエチレン ' パーフルォロ (アルキルビニルエーテル) 共重合体 ( P F A : ノヽ0 一フルォロアルキル基と して C , 〜 C 5 ) 樹脂などのパーフルォロ 樹脂が好ま しい。
パーフルォロ樹脂の中でも 1 0万以上の分子量を有する樹脂がよ り好ま しい。 これらの樹脂と して市販されている汎用品樹脂を使用 するこ とが経済的に有利である。
(非定形多孔質体)
含フ ッ素樹脂表面が、 形成物質である含フ ッ素樹脂固有の撥水性 よ り高い撥水性を発揮するためには、 水滴との接触面積をより小ざ ぐするような表面構造をとるこ とが好ま しい。 このために本発明の 物品は、 平均粒子径 4 0 / m以下の含フ ッ素樹脂粒子が積み重なつ て形成された ミ ク 口 ンオーダーの空隙を有する多孔質体に物品表面 が覆われていることが必要である。
本発明の多孔質体は、 定ま つた形状を持つものではな く 、 含フ ッ 素樹脂粒子が不規則に積み重なった結果、 電子顕微鏡写真 (第 1 図 〜第 5図) に示すよう に非定形な含フ ッ素樹脂構造体と空隙から構 成される ものである。 そ してその構造体中には容易に脱落レない平 均粒子径 4 0 / m以下の個々の含フ ッ素樹脂粒子が観察できるこ と が本発明非定形多孔質体の特徴である。 これに対し本発明とは異な る含フ ッ素樹脂表面を有する物品は第 6図のよう に全面が融着して 、 空隙が存在せず、 多孔質体が形成されていない。
(平均粒子径) このような含フ ッ素樹脂の多孔質体は、 これを形成する含フ ッ素 樹脂粒子の平均粒子径 ( d 5 0 ) が 4 0 ^ m以下であるこ とが必要で ある。 つま り含フ ッ素樹脂の平均粒子径が 4 0 / m以下である一次 粒子又はこれらの一次粒子の凝集粒子であつても良い。 これ以上の 一次粒子径では形成される多孔質体の空隙が大きいため、 該空隙内 に水が浸透しゃすく 、 空気と水が置換されてしま うため撥水性に適 した多孔質体とはならない。 また積み重なりに適したよ り好ま しい 粒子径は塗着方法によっても相違するが、 スプレー塗装では 0 . 1 〜 2 0 i mの粒子径が、 また静電塗装においては 2 0〜 3 0 mの 粒子径が好適である。 用いる含フ ッ素樹脂粒子径ゃ凝集粒子径の選 択によ り多孔質体の空隙の大きさを制御するこ とができる。
具体的に用いる粒子と しては、 乳化重合から直接得られた平均粒 子径 0 . 2 i m程度のコロイ ド粒子、 コロイ ド粒子をエタ ノ ール等 で凝集させたいわゆる二次粒子である凝集粒子、 この凝集粒子を乾 燥して再度粉砕した粒子や懸濁重合から得られた 4 0 μ πιを越える 粒子を粉砕しても、 一次粒子径が 4 0 / m以下であればよい。
(厚さ)
物品表面に存在する多孔質体があま り薄ければ水滴が基材表面に 接触してしまい撥水性が発揮ざれないおそれがあり、 また多孔質体 があま り厚ければ物品表面の強度が低く なり物品と しての実用上望 ま し く ない。 従って非定形多孔質体と して通常 0 . 5 ^ π!〜 5 0 0 mの厚みが適当である。
(最大】 P A拡散径)
本発明物品の多孔質性は含フ ッ素樹脂表面にィ ソプロ ピルアルコ —ル ( I P A ) を一滴落と し、 その I P Aが多孔質体に拡散浸透し た最大径を測定する こ とによ り比較することができる。 多孔質では ない P T F Eの切削シ一トでは滴下時の径がそのままであるのに対 して、 本発明のような多孔質体では I P Aが多孔質体内に浸透する こ とによつて滴下時よ り も I P Aの径が拡大する。 本発明の撥水性 物品は、 最大 I P A拡散径が 8 m m以上であるこ とで特徴づけられ るが、 好ま し く は 1 6 m m以上よ り好ま し く は 2 0 m m以上であ
■■■■ 'る。..
: (撥水性)
本発明の物品表面は多孔質体に覆われているため優れた撥水性を 示す。 例えば撥水性の素材である P T F Eでも切削フ ィ ルムの場合 は水との接触角が約 1 1 0度であるのに対して、 本発明の撥水性物 品は水との接触角が通常 1 5 0度以上である。
(転水角度)
本発明のような高撥水性の物品表面においては従来の接触角測定 では撥水性の比較が困難である。 そこで後述する方法で転水角度つ 'ま り水滴を物品表面に滴下した時に表面に付着せずに表面上を水滴 が転がる物品表面の最小角度を測定し、 これを転水角度と してその 正接値 (tangent ) で表し、 撥水性の尺度と した。 例えば P T F E の切削フィ ルムは、 接触角法では約 1 1 0度が測定されているが転 水角度では約 1 2 0 / 5 0 0の値を示す。 本発明の物品表面の転水 角は 5 0ン 5 0 0以下を示すこ とによ り特徵づけられる。
(基材物品)
本発明の撥水性含フ ッ素樹脂表面を形成する場合、 基材物品と し ては従来含フ ッ素樹脂塗装が行われている鉄、 アルミ等の金属板の 他、 含フ ッ素樹脂粒子を含む分散液を乾燥させる処理温度、 一般的 には 1 0 0 °c以上の温度に耐える材料であれば、 各種プラスチ ッ ク、 木材、 紙その他の材料も選択するこ とが可能である。
そしてこれらの基材に前処理と して接着層やプライマ ー層を形成 させた後に含フ ッ素樹脂粒子を積み重ねてもよい。
(製造方法) ,
本発明の撥水性含フ ッ素樹脂表面を有する物品は平均粒子径 4 0 μ m以下の含フ ッ素樹脂粒子相互の容易に脱落しない積み重な りに よ り形成された最大 I P A拡散径が 8 m m以上である非定形多孔質 体からなり、 且つ転水角の正接値が 5 Q 5 0 0以下を示す。 そ し て本発明の撥水性含フ ッ素樹脂表面を有する物品を製造する方法と しては、 次のような方法が挙げられる。
例えば平均粒子径 4 0 m以下の含フ ッ素樹脂粒子又は該含フ ッ 素樹脂粒子を含有する水、 有機液体又はその混合分散液を物品表面 に塗着し、 含フ ッ素榭脂粒子が互いに接触しう る状態のもとで該粒 子を表面融着させる方法、 膜形成補助剤によ り接着させる方法又は 非溶融状態で物品表面に固定させる方法等によって製造するこ とが でき、 本発明の撥水性物品の使用目的、 分野によ り撥水性や膜強度 の所要物性を考慮して最適な方法を選択すれば良い。
第 1 の方法は含フ ッ素樹脂粒子の表面融着によ り容易に脱落しな ぃ含フ ッ素樹脂粒子相互の積み重なりを形成ざせた撥水性含フ ッ素 樹脂表面を有する物品を製造する方法であり、 具体的には含フ ッ素 樹脂粒子が互いに接触しう る状態のもとで該フ ッ素樹脂の D S C測 定による融解開始温度以上、 かつ融解終了温度以下の温度で含フ ッ 素樹脂粒子相互を表面融着させることからなる、 撥水性含フ ッ素樹 脂表面を有する本発明物品の製造方法である。 表面融着とは、 粒子 表面における部分的な粒子同志の融着である。 粒子が実質的に粒子 形状を保持し得る温度つま り該含フ ッ素樹脂の D S C測定による融 解開始温度以上、 かつ融解終了温度以下の温度で含フ ッ素樹脂粒子 相互を融着させると、 樹脂粒子により形成された空隙が消失せずか つ多孔質体に適当な強度を与えることができる。
含フ ッ素樹脂粒子が互いに接触しう る状態にする方法は、 特に限 定されず平均粒子径 4 0 m以下の含フ ッ素樹脂粒子を含んだ水、 有機液体又はそれらの混合分散液を物品にスプレー塗装する方法や 含フ ッ素樹脂粒子を静電塗装する方法等によ り含フ ッ素樹脂粒子を 表面に塗着すればよい。
(塗着)
塗着とは、 塗料に用いられる方法にて、 含フ ッ素樹脂粒子又は含 フ ッ素樹脂粒子を含有する分散液を物品表面上に付着させる こ とを いう 。
物品表面に平均粒子径 4 0 m以下の含フ ッ素樹脂粒子を塗着す る方法としては、 スプレー塗装、 静電塗装または浸漬などが挙げら れる。
よ り具体的な方法を述べれば、 平均粒子径 0 . 程度の乳化 重合から得らた含フ ッ素樹脂分散液をスプレー塗装する方法が挙げ られる。 このスプレー塗装の過程において含フ ッ素樹脂粒子相互の 積み重なり によ り多孔質体が形成される し、 この塗着条件によ り空 隙の大きさを制御するこ とができ る。 また水性分散液にエタ ノ ール 等の凝集剤を加えて粒子を凝集させた後、 スプレー塗装してもよ 'い。
平均粒子径が 2 5 m程度である P F A又は F E Pの粉体塗料は そのまま静電塗装するこ とができる。
(分散媒)
本発明の撥水性物品の製造には、 乳化重合から直接得られたコロ ィ ド粒子、 さ らにはこれをエタ ノ ールで凝集させた凝集粒子や懸濁 重合から得られた粒子を粉砕した粒子が使用される。 これらの粒子 を用いて非定形多孔質体を形成するためには、 粒子が物品に塗着す る時点では液体中に分散していることが好ま しい。
含フ ッ素樹脂粒子で形成された非定形多孔質体に多量の界面活性 剤が含まれる場合は、 多孔質体中に水滴が吸収されやすい状態とな り、 撥水性が発現されない。 そのためスプレー塗装等によって含フ ッ素樹脂粒子を含む分散液を塗装する場合分散媒は界面活性剤を含 まないものが好ま しいが、 実質的に撥水性に影響を与え いので、 含フ ッ素樹脂を乳化重合で製造する場合に乳化剤と して用いられる 量程度の界面活性剤を含むこ とができ る。 .
分散媒は非引火性及び環境衛生の面から水が好ま し く、 この場舍 エタ ノ ールの添加によ り含フ ッ素樹脂粒子を凝集する こ とができ る。
(表面融着温度)
物品表面に塗着させた含フ ッ素樹脂粒子を相互に表面融着させる こ とによつて容易に粒子が脱落しない非定形多孔質体が得られるが 、 平均粒子径 4 0 / m以下の含フ ッ素樹脂粒子相互の表面融着によ り多孔質体を形成させて、 かつ膜自体の強度及び物品どの付着強度 を増加させるためには、 熱処理温度を厳密に調節するこ とが必要で ある。
物品に含フ ッ素樹脂粒子を含んだ分散液を塗着した後、 温度を上 昇させていく と、 分散媒が蒸発して残留した含フ ッ素樹脂粒子が積 み重なり物品上に非定形多孔質体が形成される。 D S C測定による 融解開始温度以下では、 粒子相互はまだ表面融着していないので空 隙率が大きいため、 撥水性は高いが強度が弱い。 融解開始温度以上 になると粒子相互の表面が融着し、 空隙率は徐々に低下し、 撥水性 も表面融着前に比べると若干低下するが、 強度は増大する。 しかし さ らに温度をあげ、 融解終了温度以上で長時間加熱すると含フ ッ素 樹脂粒子は全面融着して多孔質体は消滅し、 表面は平滑となり、 撥 水性は著し く低下していく。 粒子相互の表面融着を行う時間は通常 1 0分以上あれば充分であ り、 特に 1 5 〜 2 0分間程度が望ま し い。
この方法によつて製造された多孔質体は、 電子顕微鏡写真 (第 1 図、 第 2図) に示すよう に非定形な含フ ッ素樹脂構造体と空隙から 構成される ものである。 そ してその構造体中には容易に脱落しない 平均粒子径 4 0 m以下の個々の含フ ッ素樹脂粒子が観察できるこ とが本発明非定形多孔質体の特徴である。 これに対し含フ ッ素樹脂 の融解温度以上の温度で融着させて得られた物品の表面は第 6図の ように全面が融着して、 空隙が存在せず、 多孔質体が形成されてい ない。
多孔質体を保持するために 2種以上の含フ ッ素樹脂粒子、 例えば 多孔質形成粒子と して P T F E樹脂、 補助材と して熱溶融性の P F A樹脂や F E P樹脂を用いるこ ともできるが、 その場合の表面融着 は、 融解終了温度の高い P T F E樹脂を基準と して、 P T F E樹脂 の融解開始温度以上、 かつ融解終了温度以下の温度で行われる。 物品表面に塗着させたフ ッ素樹脂粒子を熱処理する際の熱処理温 度は、 生成する多孔質体の空隙率および強度に大き く影響を与える 。 D S C測定による融解開始温度以上、 かつ融解終了温度以下の温 度で熱処理する上記第 1 の方法は、 表面が十分な強度を保ち、 し力、 , も適度に高い空隙率を有し、 高い撥水性を示す物品が得られるので 優れた方法であるが、 さ らに本発明の発明者はよ り高度の撥水性を 有する含フ ッ素樹脂表面を有する物品を得る方法について他の方法 を検討した結果、 特定の粒子径を有する高分子量含フ ッ素樹脂粒子 を含有する分散液を塗着して特定の温度範囲で乾燥するこ とによ り 含フ ッ素樹脂粒子が非溶融状態で物品表面に固定され、 該含フッ素 樹脂粒子相互の積み重なりによ り空隙率の高い非定形多孔質体が形 成され、 優れた撥水性を有する物品が得られるこ とを見いだした。 この方法の目的は、 特に撥水性に重点を置いた含フ ッ素樹脂表面 を有する物品の製造方法を提供するこ とにある。
この第 2の方法は、 含フ ッ素樹脂粒子を含んだ水、 有機液体又ば その混合分散液を物品に塗着して含フ ッ素樹脂粒子が互いに接触し う る状態のもとで該含フ ッ素樹脂の D S C測定による融解開始温度 以下の温度で分散液を乾燥させて含フ ッ素樹脂粒子相互を非溶融状 態で物品表面に固定させることからなる、 撥水性含フ ッ素樹脂表面 を有する本発明物品の製造方法である。
含フ ッ素樹脂粒子が互いに接触しう る状態にする方法は特に限定 ざれず、 第 1 の方法と同様に行なう こ とができる。 また塗着方法も 前記方法と同様に行なう こ とができ る。
(処理温度) 分散液は物品に塗着された後、 含フ ッ素樹脂粒子を非溶融状態で 付着させ、 容易には粒子が脱落しない空隙率の高い多孔質体を形成 させるために該含フ ッ素樹脂の D S C測定による融解開始温度以下 の温度で乾燥させる こ とが必要である。 分散媒の乾燥温度は該含フ ッ素樹脂の D S C測定による融解開始温度以下の温度であればよい が、 5 0 °C以上であるこ とが含フ ッ素樹脂粒子相互が付着するまで の乾燥時間の点から望ま しい。
この方法によって製造された多孔質体は、 電子顕微鏡写真 (第 3 図、 第 4図) に示すよう に非定形な含フ ッ素樹脂構造体と空隙から 構成される ものである。 そ してその構造体中には容易に脱落しない 平均粒子径 4 0 m以下の個々 の含フ ッ素樹脂粒子が観察できるこ とが本発明非定形多孔質体の特徴である。 これに対し含フ ッ素樹脂 の融解温度以上の温度で融着させて得られた物品の表面は第 6図の ように全面が融着して、 空隙が存在せず、 多孔質体が形成されてい ない。
多孔質体を形成するために 2種以上の含フ ッ素樹脂粒子、 例えば 多孔質形成粒子と して P T F E樹脂、 補助材として熱溶融性の P F A樹脂や F E P樹脂を用いること もできるが、 乾燥によるこの第 2 の方法の場合の乾燥温度は、 融解開始温度の高い方の含フ ッ素樹脂 の融解開始温度以下の温度で行われる。 熱溶融性の含フ ッ素樹脂を 補助材と して用いた場合、 その種類、 粒子径、 乾燥温度を選択する こ とにより膜形成補助剤と して作用し、 非溶融状態で物品表面に固 定させた含フ ッ素樹脂粒子相互を接着させ、 強度の優れた撥水性含 フ ッ素樹脂表面を得るこ とができる。
上記第 2の方法、 即ち該含フ ッ素樹脂の D S C測定による融解開 始温度以下の温度で該分散液を乾燥させる方法では含フ ッ素樹脂粒 子を物品表面に固定させ、 高撥水性の含フ ッ素樹脂表面を有する物 品を得るこ とができるが、 高度の撥水性を有し、 更に強度の高い含 フ ッ素樹脂表面を有する物品を必要とするときは、 含フ ッ素樹脂粒 子分散液を物品に塗着させる際に、 膜形成補助剤を含有させ、 これ を該含フ ッ素樹脂の D S C測定による融解開始温度以下の温度で該 分散液を乾燥させて膜形成補助剤によ り含フ ッ素樹脂粒子を接着さ せるこ とによ り、 該含フ ッ素樹脂粒子相互の積み重な り により容易 に粒子が脱落しない非定形多孔質体が形成され、 撥水性が高ぐ、 し かも強度に優れた含フ ッ素樹脂表面を有する物品が得られるこ とを 見出 し /、。 '
この方法によれば熱処理温度を比較的低く設定することによ り空 隙率の大きい多孔質体が得られ、 そのため高い撥水性を物品に付与 するこ とができ、 しかも膜形成補助剤を存在させ、 その接着作用を 利用するこ とにより十分な強度が得られる。
従ってこの方法の目的は、 特に撥水性が優れ、 しかも強度も大き ぃ含フ ッ素樹脂表面を有する物品の製造方法を提供するこ とにある o . ■
この第 3の方法は、 含フ ッ素樹脂粒子及び膜形成補助剤を含んだ 水、 有機液体又はその混合分散液を物品に塗着させ、 次いで該含フ ッ素樹脂の D S C測定による融解開始温度以下の温度で該分散液を 乾燥させて膜形成補助剤によ り含フ ッ素樹脂粒子を接着させるこ と からなる、 撥水性含フ ッ素樹脂表面を有する本発明物品の製造方法 である。
(膜形成補助剤)
含フ ッ素樹脂粒子が積み重なるときに粒子の凝集力で非定形多孔 質体が形成保持されるが、 よ り強固な多孔質体を形成するために含 フ ッ素樹脂粒子を接着する膜形成補助剤が使用される。 膜形成補助 剤は水、 有機液体又はそれらの混合液中に溶解または分散させて含 フ ッ素樹脂粒子と一緒に物品表面に塗着される。 塗着は前記した他 の製造方法と周様に行なゔこ とができる。
物品表面に塗着された分散液は該含フ ッ素樹脂の D S C測定によ る融解開始温度以下の温度で乾燥させられて、 次第に含フ ッ素樹脂 粒子が膜形成補助剤により接着させられる。 この場合接着どは含フ ッ素樹脂粒子が膜形成補助剤によ り多孔質体の構造体と して固定さ れる こ とである。
膜形成補助剤と して用いるものは、 多孔質体を形成する含フ ッ素 樹脂の D S C測定による融解開始温度以下の温度で成膜性があれば 特に制限はな く 、 各種の有機系成膜性化合物又は無機系成膜性化合 物が用いられる。
有機系成膜性化合物と しては、 例えばァク リ ル樹脂、 ポ リ イ ミ ド 前駆体、 ア ミ ノ シラ ン、 テ ト ラ フルォロエチ レン . 酢酸ビニル共重 合体、 アルキ ド樹脂、 エポキシ樹脂、 ポ リ ア ミ ド樹脂、 ポ リ イ ミ ド 樹脂、 ポ リ スルフ ォ ン樹脂、 シ リ コ ン樹脂、 ポ リ ウ レタ ン樹脂、 ァ ク リ ルシ リ コ ン樹脂、 ポ リエステル樹脂等の有機系ポ リ マ一が用い られる。
また含フ ッ素樹脂の種類の相違したものを 2種以上混合して用い た場合、 融解温度の低い方の含フ ッ素樹脂を本発明の膜形成補助剤 と して利用することができる。 例えば 多孔質形成粒子と して P T F E樹脂、 膜形成補助剤と して熱溶融性の P F A樹脂や F E P樹脂 を用いた場合、 熱溶融性フ ッ素樹脂の種類、 粒子径を選択し、 P T F E樹脂の融解開始温度以下の温度で乾燥した場合、 その乾燥温度 において熱溶融性含フ ッ素樹脂に成膜性を持たせるこ とができるの で、 膜形成補助剤と して利用できる。
無機系成膜性化合物と してはコロイダルシ リ カ、 リ チウムシ リ ケ — ト、 アルミ ナゾル、 ジルコ二ァゾル等が挙げられる。 これら有機 系成膜性化合物又は無機系成膜性化合物は単独で用いてもよいが 2 種以上の膜形成補助剤を混合して用いることもできる。
多孔質体形成フ ッ素樹脂粒子と膜形成補助剤との重量比は、 有機 系膜形成補助剤の場合で約 1 : 0 . 0 1 - 1 : 2、 無機系膜形成補 助剤の場合で約 1 : 0 . 1 — 1 : 4程度が好ま しい。
(分散媒) この方法による撥水性物品の製造には、 乳化重合から直接得られ たコロイ ド粒子、 さ らにはこれをエタ ノ ールで凝集させた凝集粒子 や懸濁重合から得られた粒子を粉砕した粒子が使用される。 これら の粒子を用いて非定形多孔質体を形成するためには、 粒子が物品に 塗着する時点で膜形成補助剤ど接触している こ とが必要である。 こ のため粒子は液体中に分散していることが好ま し く膜形成補助剤を 含む分散媒が用いられる。
分散液は物品に塗着された後、 含フ ッ素樹脂粒子を膜形成補助剤 で接着させるために該含フ ッ素樹脂の D S C測定による融解開始温 度以下の温度で乾燥させるこ とが必要である。 分散媒の乾燥温度は 該含フ ッ素樹脂の D S C測定による融解開始温度以下の温度であれ ばよいが、 5 0 °C以上であることが含フ ッ素樹脂粒子相互が付着す るまでの乾燥時間の点から望ま しい。
多孔質体を保持するために 2種以上の含フ ッ素樹脂粒子、 例えば 多孔質形成粒子と して P T F E樹脂、 補助材と して熱溶融性の P F A樹脂や F E P樹脂を用いた場合の熱処理温度は、 融解開始温度の 高い P T F E樹脂を基準と して、 P T F E樹脂の融解開始温度以下 の温度で行えぱよい。
この方法によって製造された多孔質体は、 含フ ッ素樹脂粒子が不 規則に積み重なった結果、 電子顕微鏡写真 (第 5図) に示すよう に 非定形な含フ ッ素樹脂構造体と空隙から構成されるものである。 そ してその構造体中には膜形成補助剤によ り接着され、 容易に脱落し ない状態にある微小粒子径の個々の含フ ッ素樹脂粒子が観察できる こ とが本発明非定形多孔質体の特徴である。 これに対し含フ ッ素樹 脂の融解温度以上の温度で融着させて得られた物品の表面は第 6図 のよう に全面が融着して、 空隙が存在せず、 多孔質体が形成されて 、ない。 図面の簡単な説明
第 1 図は実施例 1 で得られた本発明物品の撥水性含フ ッ素樹脂表 面の電子顕微鏡写真である。
第 2図は実施例 5で得られた本発明物品の撥水性含フ ッ素樹脂表 面の電子顕微鏡写真である。
第 3図は実施例 6で得られた本発明物品の撥水性含フ ッ素樹脂表 面の電子顕微鏡写真である。
第 4図は実施例 8で得られた本発明物品の撥水性含フ ッ素樹脂表 面の電子顕微鏡写真である。
第 5図は実施例 1 4で得られた本発明物品の撥水性含フ ッ素樹脂 表面の電子顕微鏡写真である。
第 6図は比較例 2で得られた物品の含フ ッ素樹脂表面の電子顕微 鏡写真である。
発明を実施するための最良の形態
以下に実施例及び比較例を示し、 本発明を具体的に説明する。 なお実施例に用いた原料含フ ッ素樹脂粒子の種類、 温度測定法、 塗 装法、 製品の物性測定法等は以下のとおりである。
( 1 ) 原料含フ ッ素樹脂粒子
原料と して用いた含フ ッ素樹脂を表 1 に示す。
こ こで T 1 : 融解開始温度, T peak : 融解ピーク温度, T 2 : 融解 終了温度 (°C ) である。
[表 1 ]
Figure imgf000017_0001
く平均粒子径測定法〉
' 平均粒子径 5 ~ 3 0 0 mの粉末については
マイ ク ロ トラ ッ ク法 : L E E D S & N 0 R T H R U P社製 マィ ク ロ トラ ッ ク粒度分析計 m o d e 1 7 9 9 1 — 0 1 によ り測定。
• 平均粒子径 0 . 5 2 m以下の粒子については
濁度法 : 鳥津マルチパーパス自己分光光度計 (ハロゲンラ ンプ) により測定。
( 2 ) D S C融解温度測定法
ノ、。—キンエルマ一社製 D S C 7型示差走查熱量計を使用 した。 試 料 5 m gをひよ う量して専用のアルミパンに入れ、 専用のク リ ンパ 一によつてク リ ンブした後 D S C本体に収納し昇温を開始する。 2 0 0 から 3 8 0 °Cまで 1 0 °C /分で昇温し、 この時得られる融 解曲線から融解開始温度 (T 1 ) 、 融解ピーク温度 (T peak) そ じ て融解終了温度 (T 2 ) を求めた。
( 3 ) 塗装法
くスプレ一塗装 >
口径 0 . 6 m mのソ ズルにて 3 kg/ cm 2 Gの空気圧で厚み 2 m m X 幅 5 0 m m x長さ 1 0 0 m mのアルミ板にスプレー塗装した。 く静電塗装〉
静電塗装機 (小野田セメ ン ト (株) 製 G X- 2 0 0 T) と静電粉 体塗装ガン (小野田セメ ン ド (株) 製 G X- 1 0 7 ) を用いて、 粉 体を塗装電圧 1 0 Kv (負) 、 吐出量約 5 0 g/min にて 2 5 cm離れて いるアースされた厚み 2 mm x幅 5 O mm x長さ 1 0 0 mmのアル ミ板に静電吹き付け塗装した。
( 4 ) 転水角測定法
長さ 5 5 O mmの板の一方を上げるこ とによつて 斜をつく り、 この上に多孔質体を形成したアルミ板 (幅 5 0 m m長さ 1 0 0 mm) を置いて、 この表面 8 mm上のノ ズルから蒸留水の 0. 0 5 gの水滴を落とす。 この水滴が表面に落ちた後止ま らずにその傾斜 に沿って転がり落ちる最小の傾斜を水平距離 5 0 O mmに対し上が つた距離 (mm) 即ち、 傾斜角の正接値で表す。
( 5 ) 多孔性測定法 (最大ィ ソプロ ピルアルコール拡散径テス ト) 非定形多孔質体に I P Aをマイ ク ロ シ リ ンジを用いて 0. 0 1 m l 滴下し、 液の最大拡散径 (mm) を測定する。 多孔質のもの は、 I P Aが塗膜内に浸透し滴下時の直径から直径 2 O mm程度ま で拡散するのに対して、 P T F Eの切削シ一 トでは初期の直径約 5. 0 m mのままである。
( 6 ) 多孔質体の耐水性評価
1. 5 mの高さから園芸用散水器 ( ト ヨ ッ クス製ノ ズル 孔直径 0. 3 mm X 4 4 5個) にて 1 5〜 2 0 °Cの水を 1 0 0 m mノ分の降 水量で 1 0分間降らせた後風乾し、 シャ ヮー前後の重量変化から多 孔質体の残存重量%を算出し多孔質体の耐水性と して評価した。
[実施例 1〜 5 ] (表面融着による方法)
実施例 1
乳化重合から得られた P F A水性分散液 (平均粒子径 0. 1 7 fi m) をアルミ板にスプレー塗装した。 これを 1 2 0 °Cで 2 0分間 乾燥した後、 3 1 0 °Cにて 2 0分間熱処理して撥水性 P F A樹脂表 面を有する物品を得た。 得られた物品の表面の電子顕微鏡写真は第
1図に示すとおり、 微小粒子径の P F A樹脂粒子が相互に積み重な り、 樹脂粒子間に空隙が形成され、 不規則な形状の多孔質体となつ ている。 またこの表面の転水角度は 1 Z 5 0 0であつた。 なお最大 ィソプロ ピルアルコール拡散径は、 2 3 mmであった。
このような非定形多孔質体に水滴を滴下した場合、 水滴は非定形 多孔質体の突起部分のみで含フ ッ素樹脂と接触するので、 極めて撥 水性が高く、 水に対する濡れ角度はおよそ 1 5 0度以上であった。 実施例 2〜 5、 比較例 1〜 6の結果と共に表 2に示す。
実施例 2
乳化重合から得られた F E P水性分散液 (平均粒子径 0. 1 6 i m) 3 gに水 2 gとエタノ ール 2 gを加え超音波にて混合凝集し た後、 アルミ板にスプレー塗装した。 これを 1 2 0 °Cにて 2 0分間 乾燥した後 2 6 0 °Cにて 2 0分間熱処理して撥水性 F E P樹脂表面 を有する物品を得た。 この表面の転水角度は 3 5 0 0であった。 最大イ ソプロ ピルアルコール拡散径は、 2 0 mmであった。
実施例 3
乳化重合から得られた P T F E水性分散液 (平均粒子径 0. 2 2 rn) に水を加えて固形分 2 3 wt¾ に希釈した。 これをアルミ板に スプレー塗装した。 これを 1 2 0 °Cにて 2 0分間乾燥した後更に 3 4 0 °Cにて 2 0分間熱処理して撥水性 P T F E樹脂表面を有する 物品を得た。 この表面の転水角度は 1 / 5 0 0であった。 最大ィ ソ プロ ピルアルコール拡散径は、 1 6 mmであった。
実施例 4
乳化重合から得られた P F A水性分散液 (平均粒子径 0. 1 7 // m) l gと P T F Eモールディ ングパウダー (平均粒径 2 6 m ) 1 gをエタ ノ ール 5 gに分散混合し、 アルミ板にスプレー塗装し た。 これを 1 2 0 °Cにて 2 0分間乾燥した後、 3 5 0 °Cにて 2 0分 間熱処理して撥水性含フ ッ素樹脂表面を有する物品を得た。 この表 面の転水角度は 1 2 5 0 0であった。 最大イ ソプロ ピルアルコー ル拡散径は、 8 m mであった。
本実験においては融点の異なる 2種類の含フ ッ素樹脂粒子を原料 と して用い、 3 5 0 °Cにて熱処理したため、 P F A樹脂は溶融した が、 高融点の P T F E樹脂の融解終了温度以下であったため、 P T F Eの多孔質体が形成され、 強度、 撥水性ともに優れた表面を有す る物品が得られた。
実施例 5
P F A粉体塗料 (平均粒径 2 5 m ) をアルミ板に静電塗装して
3 1 0 °Cで 2 0分間焼成して撥水性 P F A樹脂表面を有する物品を 得た。 得られた物品の表面の電子顕微鏡写真は第 2図に示すとお り、 微小粒子径の P F A樹脂粒子が相互に積み重なり、 樹脂粒子間 に空隙を有する、 多孔質体を形成している。 この表面の転水角度は 7 Z 5 0 0であった。 最大イ ソプロピルアルコール拡散径は、 2 0 m mであった。
[比較例 1 ]
P F A粉体塗料 (平均粒径 6 3 m ) をアルミ板に静電塗装して 3 1 0 °Cで 2 0分間焼成した。 この表面の転水角度は 5 3ノ 5 0 0 であつた。 最大ィ ソプロ ピルアルコール拡散径は、 1 6 m mであつ た。
[比較例 2 ]
乳化重合から得られた P F A水性分散液 (平均粒子径 0 . 1 7 m ) をアルミ板にスプレー塗装した。 1 2 0 °Cで 2 0分間乾燥し た後、 融解終了温度以上の 3 6 0てで 2 0分間熱処理して P F A樹 脂表面を有する物品を得た。 得られた物品の表面の電子顕微鏡写真 は第 6図に示すとおり、 P F A樹脂粒子が全面融解して樹脂粒子間 には空隙がな く 、 多孔質体になっていない。 この表面の転水角度は 1 5 0 / 5 0 0 であった。 最大イ ソプロ ピルアルコール拡散径は , 5 · 0 mmであった。
[比較例 3 ]
界面活性剤を粒子重量に対して 3. 6 %含有した P T F E水性分 散液 (平均粒子径 0. 2 2 m) を水にて固形分 2 0 wt% まで希釈 してアルミ板にスプレ一塗装した。 これを 1 2 0 °Cにて 2 0分間乾 燥して P T F E樹脂表面を有する物品を得た。 この表面の転氷角度 は、 膜に水滴が吸収されて測定不能であった。
[比較例 4 ]
乳化重合から得られた P F A水性分散液 (平均粒子径 0. 1 7 μ m) 3 gに水 2 gとエタ ノ ール 2 gを混合し凝集させた後、 アル ミ 板にスプレー塗装した。 これを 1 2 0 °Cにて 2 0分間乾燥した 後、 3 6 0 °Cにて 2 0分間焼成して P F A樹脂表面を有する物品を 得た。 この表面の転水角度は 1 1 5 5 0 0であつた。 最大イ ソプ 口 ピルァノレコール拡散径は、 5. O mmであっ た。
[比較例 5 ]
P F A粉体塗料 (平均粒径 2 5 m) をアルミ板に静電塗装して 3 6 0 で 2 0分間焼成して P F A樹脂表面を有する物品を得た。 こ の表面の転水角度は 1 1 5 5 0 0であった。 最大イ ソプロ ピノレ アルコール拡散径は、 5. 0 mmであった。
[比較例 6 ]
P T F Eモールディ ングパウダー (平均粒径 2 6 V m) を圧縮成 形し焼成したビレ ツ トから厚み 0 · 1 mmのフ ィ ルムを切削した。 この表面の転水角度は 1 2 0 5 0 0であった。 最大イ ソプロ ピル アルコール拡散径は、 5. 0 mmであ った。
■■ ■ [表 2 ]
CO
o
Figure imgf000022_0001
*含フ ッ素樹脂重量に対する W«
[実施例 6 〜 1 3 ] (非溶融状態乾燥.によ る方法)
実施例 6
乳化重合から得られた P T F E水性分散液 (平均粒子径 0 . 2 2 μ τη ) に水を加えて固形分 2 3 wt % に希釈した分散液をアルミ板に スプレー塗装した。 これを 1 2 0 °Cにて 2 0分間乾燥して撥水性 P T F E樹脂表面を有する物品を得た。 得られた物品の表面の電子 顕微鏡写真は第 3図に示すとおり、 微小粒子径の P T F E樹脂粒子 が非溶融状態で相互に積み重なり、 樹脂粒子間に空隙が形成され、 不規則な形状の多孔質体となっている。 この表面の転水角度は 1 Z 5 0 0 であった。 また最大ィ ソプロ ピルアルコール拡散径は 2 0 ■ . m mであった。 ·
このよう に製造された突起がある本発明の多孔質体に水滴を滴下 した場合、 水滴は含フ ッ素樹脂の突起部分のみで含フ ッ素樹脂膜と 接触するので、 極めて撥水性が高く、 水に対する濡れ角度はおよそ 1 5 0度以上であつた。 実施例 7 〜 1 3 と共に結果を表 3 に示す。 実施例 7
乳化重合から得られた F E P水性分散液 (平均粒子径 0 . 1 6 m ) 3 gに水 2 g とエタノ ール 2 gを加え超音波にて混合凝集し た後、 アルミ板にスプレー塗装した。 これを 1 2 0 °Cにて 2 0分間 乾燥して撥水性 F E P樹脂表面を有する物品を得た。 この表面の転 水角度は 1 5 0 0であった。 最大イソプロ ピルアルコール拡散径 は 2 0 m mであった。
実施例 8
乳化重合から得られた P F A水性分散液 (平均粒子径 0 . 1 7
〃 m ) に水を加えて固形分 1 4 wt % に希釈した。 これにエタノ ール 1 O w t % を加えて凝集させた分散液をアル ミ板にスプ レー塗装し た。 これを 1 0 0 °Cにて 3 0分間熱処理して撥水性 P F A樹脂表面 を有する物品を得た。 得られた物品の表面の電子顕微鏡写真は第 4 図に示すとおり、 微小粒子径の P F A樹脂粒子が非溶融状態で相互 に積み重なり、 樹脂粒子間に空隙が形成され、 不規則な形状の多孔 質体となっている。 この物品の表面の転水角度、 最大ィ ソプロ ピル アルコール拡散径の測定結果および耐水性評価結果は表 3のとう り である。
実施例 9 ~ 1 0
実施例 3 において熱処理温度を 1 5 0。 および 2 5 0 °Cに変えた 以外は実施例 4 と同様に して撥水性含フ ッ素樹脂表面を有する物品 を得た。 この物品の表面の転水角度、 最大イ ソプロ ピルアルコール 拡散径の測定結果および耐水性評価結果は表 3のとう りである。
実施例 1 1 〜 : 1 3
乳化重合から得られた P T F E水性分散液 (平均粒子径 0 . 2 2 β m ) に水を加えて固形分 1 4 wt% に希釈した。 これをアルミ板に スプレー塗装した。 これにエタノ ール 1 0 wt¾ を加えて凝集させた 分散液をアルミ板にスプレー塗装した。 これを表 2に示す温度にて 3 0分間熱処理して撥水性 P T F E樹脂表面を有する物品を得た。 この表面の転水角度、 最大ィ ソプロ ピルアルコール拡散径の測定結 果および耐水性評価結果は表 3 のと う り である。
[表 3 ]
t
00
Figure imgf000025_0001
*含フ ッ素樹脂重量に対する Wt¾
[実施例 1 4 〜 2 0 ] (膜形成補助剤による方法
実施例 1 4
乳化重合から得られた P F A水性分散液 (平均粒子径 0 . 1 7 μ m ) と乳化重合から得られた P T F E水性分散液 (平均粒子径 0 . 2 2' m ) の樹脂の重量比で 1 : 1 の混合液に、 水を加えて 1 4 %の有効成分に調整した水溶性ァク リ ル樹脂 (アサヒペン製 : 水性つやだしニス) 水溶液を ( P F Aと P T F E ) 固形分に対して 1 0 1^ %加えた。 これをアルミ板にスプレー塗装した。 このアルミ 板を 5 0 °Cにて 3 0分間熱処理して撥水性含フ ッ素樹脂表面を有す る物品を得た。
得られた物品の表面の電子顕微鏡写真は第 5図に示すとおり、 微 小粒子径の含フ ッ素樹脂粒子が相互に積み重なり、 樹脂粒子間に空 隙が形成され、 不規則な形状の多孔質体となっている。 この物品の 表面の転水角度は 1 5 0 0であった。
なお最大イ ソプロ ピルアルコール拡散径は 1 9 m mであった。 水に 対する濡れ角度はおよそ 1 5 0度以上で、 耐水性評価は 5 2 %であ つた。 実施例 1 5 〜 2 0、 比較例 7の結果と共に表 4 に示す。
実施例 1 5
乳化重合から得られた P F A水性分散液 (平均粒子径 0 . 1 7 μ m ) に水を加えて固形分 1 4 w t %に調整した分散液と、 水で 1 4 w t %に希釈したア ミ ノ シラ ン (信越化学製 : K B M— 6 0 3 ) を P F A固形分に対して 8 0 wt %混合した後、 これをアルミ板に スプレー塗装した。 このアルミ板を 2 5 0 °Cにて 3 0分間熱処理し て撥水性含フ ッ素樹脂表面を有する物品を得た。 この物品の表面の 転水角度は 1 / 5 0 0 であった。 なお最大イ ソプロ ピルアルコール 拡散径は 2 0 m mであった。 耐水性評価は 9 3 %であった。
実施例 1 6
乳化重合から得られた P F A水性分散液 (平均粒子径 0 · 1 7 m ) を硝酸で凝集させた後、 1 2 0 °Cで乾燥させてこれをェタ ノ ール中で超音波分散したオルガノ ゾル Jこ N - メ チルー 2 — ピロ リ ド ンを加えて固形分 1 0 w t %に調整した分散液と、 N- メ チルー 2 — ピ口 リ ドンで 1 0 w t %に希釈したポ リ イ ミ ド前駆体溶液 (東レ 製 : " ト レニース" P I # 3 0 0 0 ) を P F A固形分に対して 2 0 w t %混合した後、 これをアルミ板にスプレー塗装した。 このアル ミ板を 2 5 0 °Cにて 3 0分間熱処理して撥水性含フ ッ素樹脂表面を 有する物品を得た。 の物品の表面の転水角度は 1 5 0 0であつ た。 なお最大イ ソプロ ピルアルコール拡散径は 2 0 mmであった。 耐水性評価は 1 0 0 %であった。
実施例 1 7
乳化重合から得られた P F A水性分散液 (平均粒子径 0. 1 7 β m) に水を加えて固形分 1 4 w t %に調整した分散液にエタ ノ一 ルを加えて固形分 7 w t %に希釈した後、 この混合液に対して 5 0 v o 1 %の水を加える。 これに 0. 5 w t %のノニオ ン系界面活性 剤 CRohm & Haas 製 トライ ト ン X- 1 0 0 ) 水溶液で固形分を 7 t %に希釈したリ チウムシ リ ゲー ト (日産化学工業製 L S S一 3 5 : S i 02 固形分 2 0〜 2 1 w t % S i 02 /L i 2 0モル 比 3. 3〜 4. 0 ) を P F A固形分に対して 1 5 0 w t %混合した 後、 これをアルミ板にスプレー塗装した。 この了ソレミ板を 5 0。Cに て 6 0分間熱処理して撥水性含フッ素樹脂表面を有する物品を得た 。 この表面の転水角度は 1 / 5 0 0であった。 なお最大ィ ソプロ ピ ルアルコール拡散径は 2 2 mmであった。 耐水性評価は 8 4 %であ
'つた。 ■■
実施例 1 8 ,
乳化重合から得られた .F A水性分散液 (平均粒子径 0. 1 7 m) に水を加えて固形分 1 4 w t %に調整した分散液にエタ ノ ールを加えて固形分 7 w.t %に希釈した後、 こ の混合液に対して 1 0 0 V o l %の水を加える。 これに 0. 5 w t %の ノ ニオン糸界 面活性剤 (Rohm & Haas 製 トライ ト ン X- 1 0 0 ) 水溶液で固形 分を 1 4 W t %に希釈したコロイダル.シ リ カ (日産化学工業製 ス ノ ーテ ッ ク ス K : 全固形分 2 8 w t % S i 0 2 / K 2 0 モ ル比 3 . 3 〜 4 . 0 ) を P F A固形分に対して 1 5 0 w t %混合した 後、 これをアルミ板にスプレー塗装した。 このアルミ板を 1 5 0 °C にて 3 0分間熱処理して撥水性含フ ッ素樹脂表面を有する物品を得 た。 この表面の転水角度は 1 5 0 0 であった。 なお最大イ ソプロ ピルアルコール拡散径は 2 2 m mであマた。 耐水性評価は 7 7 %で あった
実施例 1 9
乳化重合から得られた P F A水性分散液 (平均粒子径 0 . 1 7 m ) に水を加えて固形分 1 4 w t %に調整した分散液にエタ ノ ールを加えて固形分 7 w t %に希釈した後、 こ の混合液に対して 1 0 0 V o 1 %の水を加える。 これに 0. 5 w t %のノ ニオン系界 面活性剤 (Rohm & Haas 製 ト ライ ト ン X- 1 0 0 ) 水溶液で固形 分を 1 0 w t %に希釈したコロイダルシ リ カ (日産化学工業製 ス ノ ーテ ッ ク ス N : S i 02 固形分 2 0. 5 t % ) を P F A固形分 に対して 7 0 wt%混合した後、 これをアル ミ 板にスプレー塗装し た。 このアルミ板を 1 0 0 °Cにて 6 0分間熱処理して撥水性含フ ッ 素樹脂表面を有する物品を得た。 この表面の転水角度は 1 / 5 0 0 であった。 なお最大イ ソプロ ピルアルコ —ル拡散径は 2 0 m mであ つた。 耐水性評価は 8 5 %であった。 '
実施例 2 0
乳化重合から得られた P F A水性分散液 (平均粒子径 0 . 1 7 τα に水を加えて固形分 1 4 w t %に調整した分散液と水で固形 分 1 4 w t %に希釈したテ ト ラ フ,ルォ口エチ レ ン · 酢酸ビニル共重 合体 ( T F E · V A ) 水性分散液を P F A固形分に対して 1 0 0 w t %混合した後、 これをアルミ板にスプレー塗装した。 このアル ミ板を 1 5 0 °Cにて 3 0分間熱処理して撥水性含フ ッ素樹脂表面を 有する物品を得た。 この表面の転水角度は 1 5 0 0であった。 な お最大ィ ソプロ ピルアルコ ール拡散径は 2 0 m mであつた。 耐水性 評価は 9 8 %であった。
ヒ較例 7 ] ' 実施例 4 と同様にして P F A水性分散液混合液をアルミ板にスプ レー塗装した。 このアルミ板を 1 2 0 °Cで 2 0分間乾燥した後、 P F Aの融解終了温度以上の 3 6 0 °Cにて 2 0分間熱処理して P F A樹脂表面を有する物品を得た。 この表面の転水角度は 1 2 0 / 5 0 0であった。 なお最大イ ソプロゼルアルコ ール拡散径は 5 . 0 ■ m mであった o
[表 4 ] t
00
Figure imgf000030_0001
* テ ト ラ フルォ ロエチ レン · 酢酸ビニル共重合体
: 產業上の利用可能性
本発明の非定形多孔質体からなる撥水性含フ ッ素樹脂表面を有す る物品は高い撥水性を示すので電極の撥水等の工業用途及び電線、 碍子や建築用タイルの防汚、 雪害 · 着氷 · 塩害防止のため建築や土 木用途に広く利用できる。
また本発明の撥水性物品は種々の方法によ り製造するこ とができ 、 使用目的に応じて撥水性や膜強度の所要物性を考慮して任意に選 択することができるが、 いずれの製造方法も簡単な設備や操作によ つて物品表面に高い撥水性を有し、 しかも融着強度の大きい含フ ッ 素樹脂層を形成させるこ とができる。

Claims

言青求の章 ¾囲 ( 1 ) 平均粒子径 40 以下の含フッ素樹脂粒子相互の積み重な りにより形成された最大 I P A拡散径が 8 mm以上である非定形多 孔質体からなり、 且つ転水角の正接値が 50 500以下であるこ とを特徴とする撥水性含フッ素樹脂表面を有する物品。
(2) 含フッ素樹脂粒子がポリテトラフルォロエチレン (PTFE ) 樹脂、 テ トラフルォロェチレン 'パーフルォロ (アルキルビニル エーテル) 共重合体 (P F A) 樹脂又はテトラフルォロェチレン · へキサフルォロプロピレン共重合体 (F E P) 樹脂である請求の範 囲第 1項記載の撥水性含フッ素樹脂表面を有する物品
(3) 含フッ素樹脂粒子の分子量が 1 0万以上である請求の範囲第 1項または第 2項記載の撥水性物品。
(4) 含フッ素樹脂粒子が互いに接触しうる状態のもとで、 該含フ ッ素樹脂の D S C測定による融解開始温度以上、 かつ融解終了温度 以下の温度で含フッ素樹脂粒子相互を表面融着させることからなる 、 請求の範囲第 1項〜第 3項に記載の撥水性含フッ素樹脂表面を有 する物品の製造方法。
(5) 平均粒子径 40 m以下の含フッ素樹脂粒子を含んだ水、 有 機液体又はそれらの混合分散液を物品に塗着し、 含フッ素樹脂粒子 相互を表面融着させることを特徴とする請求の範囲第 4項記載の撥 水性含フッ素樹脂表面を有する物品の製造方法
(6) 平均粒子径 40 /zm以下の含フッ素樹脂粒子を凝集させた後 、 該含フッ素樹脂凝集粒子を含んだ水、 有機液体又はその混合分散 液を物品に塗着し、 含フッ素樹脂粒子相互を表面融着させることを 特徴とする請求の範囲第 4項または第 5項記載の撥水性含フッ素樹 脂表面を有する物品の製造方法
(7) 平均粒子径 40 //m以下の含フッ素樹脂粒子を静電塗装し、 含フッ素樹脂粒子相互を表面融着させることを特徴とする請求の範 囲第 4項〜第 6項記載の撥水性含フッ素樹脂表面を有する物品の製 造方法
(8) 含フッ素樹脂粒子を含んだ水、 有機液体又はその混合分散液 物品に塗着して含フッ素樹脂粒子が互いに接触しうる状態のもと で該含フッ素樹脂の DS C測定による融解開始温度以下の温度で分 散液を乾燥させて含フッ素樹脂粒子相互を非溶融状態で物品表面に 固定させることからなる、 請求の範囲第 1項〜第 3項記載の撥水性 含フッ素樹脂表面を有する物品の製造方法
(9) 平均粒子径 4 0 m以下の含フッ素樹脂粒子を凝集させた後 、 該含フッ素樹脂凝集粒子を含んだ水、 有機液体又はその混合分散 液を物品に塗着することを特徴とする請求の範囲第 8項記載の撥水 性含フッ素樹脂表面を有する物品の製造方法
( 1 0) 含フッ素樹脂粒子及び膜形成補助剤を含んだ水、 有機液体 又はその混合分散液を物品に塗着させ、 次いで該含フッ素樹脂の D S C測定による融解開始温度以下の温度で該分散液を乾燥させて膜 形成補助剤により含フッ素樹脂粒子を接着させることからなる、 請 求の範囲第 1項〜第 3項記載の撥水性含フッ素樹脂表面を有する物 品の製造方法。
(1 1 ) 膜形成補助剤が、 1種または 2種以上の有機系成膜性化合 物である請求の範囲第 1 0項記載の撥水性含フッ素樹脂表面を有す る物品の製造方法。
(1 2) 有機系成膜性化合物が、 熱溶融性フッ素樹脂、 アク リル樹 脂、 ポリイ ミ ド前駆体、 アミ ノ シラン、 テ トラフルォロェチレン ' 酢酸ビ ル共重合体、 アルキド樹脂、 エポキシ樹脂、 ポリアミ ド樹 脂、 ポリイ ミ ド樹脂、 ポリスルフォ ン樹脂、 シリコン樹脂、 ポリ ウ レタン樹脂、 アク リルシリ コン樹脂又はポリエステル樹脂である請 求の範囲第 1 1項記載の撥水性含フッ素樹脂表面を有する物品の製 造方法。,
( 1 3) 膜形成補助剤が、 1種または 2種以上の無機系成膜性化合 物である請求の範囲第 1 0項記載の撥水性含フッ素樹脂表面を有す る物品の製造方法。
( 1 4 ) 無機系成膜性化合物が、 コロイダルシリカ、 リチウムシリ ケート、 アルミナゾル又はジルコ二ァゾルである請求の範囲第 1 3 項記載の撥水性含フッ素樹脂表面を有する物品の製造方法。
PCT/JP1994/002163 1993-12-22 1994-12-21 Article dote d'une surface en fluororesine hydrophobe et procede de production dudit article WO1995017477A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95903914A EP0696623A4 (en) 1993-12-22 1994-12-21 ARTICLE HAVING A HYDROPHOBIC FLUORORESIN SURFACE AND PROCESS FOR PRODUCING THE SAME
US08/507,228 US5968642A (en) 1993-12-22 1994-12-21 Article having a water-repellent fluororesin surface, and method for manufacturing the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP34549793 1993-12-22
JP5/345497 1993-12-22
JP26612494A JPH07228821A (ja) 1993-12-22 1994-10-06 撥水性含フッ素樹脂表面を有する物品
JP6266125A JPH07228822A (ja) 1993-12-22 1994-10-06 撥水性含フッ素樹脂表面を有する物品の製造方法
JP6/266124 1994-10-06
JP6/266125 1994-10-06
JP6/273136 1994-10-13
JP27313694A JPH08108139A (ja) 1994-10-13 1994-10-13 撥水性含フッ素樹脂表面を有する物品の製造方法
JP6/275600 1994-10-14
JP6275600A JPH08113756A (ja) 1994-10-14 1994-10-14 撥水性含フッ素樹脂表面を有する物品の製造方法

Publications (1)

Publication Number Publication Date
WO1995017477A1 true WO1995017477A1 (fr) 1995-06-29

Family

ID=27530464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002163 WO1995017477A1 (fr) 1993-12-22 1994-12-21 Article dote d'une surface en fluororesine hydrophobe et procede de production dudit article

Country Status (3)

Country Link
US (1) US5968642A (ja)
EP (1) EP0696623A4 (ja)
WO (1) WO1995017477A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518349B1 (en) * 1999-03-31 2003-02-11 E. I. Du Pont De Nemours And Company Sprayable powder of non-fibrillatable fluoropolymer
US6420047B2 (en) 2000-01-21 2002-07-16 Cyclics Corporation Macrocyclic polyester oligomers and processes for polymerizing the same
US6369157B1 (en) 2000-01-21 2002-04-09 Cyclics Corporation Blend material including macrocyclic polyester oligomers and processes for polymerizing the same
US7151143B2 (en) * 2000-01-21 2006-12-19 Cyclics Corporation Blends containing macrocyclic polyester oligomer and high molecular weight polymer
US6960626B2 (en) * 2000-01-21 2005-11-01 Cyclics Corporation Intimate physical mixtures containing macrocyclic polyester oligomer and filler
US6521541B2 (en) * 2000-08-23 2003-02-18 California Institute Of Technology Surface preparation of substances for continuous convective assembly of fine particles
US7750109B2 (en) 2000-09-01 2010-07-06 Cyclics Corporation Use of a residual oligomer recyclate in the production of macrocyclic polyester oligomer
US7767781B2 (en) 2000-09-01 2010-08-03 Cyclics Corporation Preparation of low-acid polyalkylene terephthalate and preparation of macrocyclic polyester oligomer therefrom
US6525164B2 (en) * 2000-09-01 2003-02-25 Cyclics Corporation Methods for converting linear polyesters to macrocyclic oligoester compositions and macrocyclic oligoesters
US6436548B1 (en) 2000-09-12 2002-08-20 Cyclics Corporation Species modification in macrocyclic polyester oligomers, and compositions prepared thereby
US6420048B1 (en) 2001-06-05 2002-07-16 Cyclics Corporation High molecular weight copolyesters from macrocyclic oligoesters and cyclic esters
DE60226789D1 (de) 2001-06-27 2008-07-03 Cyclics Corp Formgebende Verarbeitung von makrozyklischen Oligoestern
US6436549B1 (en) 2001-07-16 2002-08-20 Cyclics Corporation Block copolymers from macrocyclic oligoesters and dihydroxyl-functionalized polymers
US6787632B2 (en) 2001-10-09 2004-09-07 Cyclics Corporation Organo-titanate catalysts for preparing pure macrocyclic oligoesters
CA2409087A1 (en) * 2001-10-25 2003-04-25 Armstrong World Industries, Inc. Low-temperature coalescing fluoropolymer coatings
US6831138B2 (en) 2002-01-07 2004-12-14 Cyclics Corporation Polymer-containing organo-metal catalysts
US7213309B2 (en) * 2004-02-24 2007-05-08 Yunzhang Wang Treated textile substrate and method for making a textile substrate
DE102005017112A1 (de) * 2005-04-13 2006-10-26 Siemens Ag Feuchtigkeitsabweisende Schutzschicht für einen Wickelkopf einer elektrischen Maschine
KR101451634B1 (ko) * 2006-08-09 2014-10-16 스미토모덴코파인폴리머 가부시키가이샤 불소 수지 박막, 불소 수지 복합체 및 다공질 불소 수지 복합체, 그리고 이들의 제조 방법, 불소 수지 디스퍼젼 및 분리막 엘리먼트
JP2009235338A (ja) * 2008-03-28 2009-10-15 Mitsubishi Electric Corp コーティング組成物、熱交換器、空気調和機
JP4608629B2 (ja) * 2008-07-18 2011-01-12 セイコーエプソン株式会社 ノズルプレート、ノズルプレートの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法および液滴吐出装置
JP4674619B2 (ja) * 2008-07-29 2011-04-20 セイコーエプソン株式会社 ノズルプレート、ノズルプレートの製造方法、液滴吐出ヘッドおよび液滴吐出装置
WO2010106581A1 (ja) * 2009-03-19 2010-09-23 三菱電機株式会社 コーティング組成物およびそのコーティング方法
US8808848B2 (en) 2010-09-10 2014-08-19 W. L. Gore & Associates, Inc. Porous article
CN102477534B (zh) * 2010-11-29 2015-09-09 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
JP5830782B2 (ja) 2012-01-27 2015-12-09 住友電工ファインポリマー株式会社 変性ポリテトラフルオロエチレン製微細孔径膜の製造方法、及び変性ポリテトラフルオロエチレン製多孔質樹脂膜複合体の製造方法
CN103865341B (zh) * 2012-12-18 2017-07-07 东莞东阳光科研发有限公司 一种水性feve氟碳涂料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715607B2 (ja) * 1975-04-21 1982-03-31
JPS6363584B2 (ja) * 1985-11-06 1988-12-07
JPH01132670A (ja) * 1987-11-17 1989-05-25 Shigeru Murayama 三層コート用樹脂粉末組成物
JPH02140239A (ja) * 1988-11-18 1990-05-29 Daikin Ind Ltd ポリテトラフルオロエチレン多孔膜およびその製法
JPH02286743A (ja) * 1989-04-28 1990-11-26 Ube Ind Ltd フッ素樹脂含有ポリイミド組成物及びその調製法
JPH05185557A (ja) * 1991-11-11 1993-07-27 Sumitomo Metal Ind Ltd 樹脂被覆金属材とその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864322A (en) * 1973-04-12 1975-02-04 Du Pont Perfluorocarbon copolymer powders and preparation by spray drying
US4051275A (en) * 1974-06-21 1977-09-27 Forestek Clarence W Embedding and compacting particles in porous surfaces
DE2843681B1 (de) * 1978-10-06 1979-12-20 Limburg Ohg Metallwaren O Verfahren zur Beschichtung von Stahlgeschirren mit einer Polytetrafluoraethylen-Antihaftschicht
US4256845A (en) * 1979-02-15 1981-03-17 Glasrock Products, Inc. Porous sheets and method of manufacture
DE2906787A1 (de) * 1979-02-22 1980-09-04 Hoechst Ag Ueberzugsmittel auf basis eines copolymeren aus tetrafluorethylen und einem perfluor(alkylvinyl)-ether
US4460530A (en) * 1979-07-09 1984-07-17 Teledyne Industries, Inc. Method for producing porous shaped products
DE2947025A1 (de) * 1979-11-22 1981-06-04 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden Zwei- oder mehrschicht-verbundwerkstoff
US4622036A (en) * 1982-04-05 1986-11-11 Ethyl Corporation Porous film and absorptive structure
JPS6166730A (ja) * 1984-09-07 1986-04-05 Chuko Kasei Kogyo Kk ポリテトラフルオロエチレン樹脂多孔質体の製造方法
JPH075743B2 (ja) * 1986-12-22 1995-01-25 ダイキン工業株式会社 テトラフルオロエチレン系共重合体粉末およびその製造法
US4855162A (en) * 1987-07-17 1989-08-08 Memtec North America Corp. Polytetrafluoroethylene coating of polymer surfaces
US5164426A (en) * 1989-04-15 1992-11-17 Daikin Industries Ltd. Aqueous dispersion, composite powder and organosol of fluorine-containing polymer
DE3941849A1 (de) * 1989-12-19 1991-06-20 Hoechst Ag Verfahren zur pulverbeschichtung mit fluorthermoplasten
JPH0774318B2 (ja) * 1990-10-30 1995-08-09 住友電気工業株式会社 弗素樹脂塗料組成物
JPH0532810A (ja) * 1991-07-29 1993-02-09 Nitto Denko Corp 多孔質体の製造法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715607B2 (ja) * 1975-04-21 1982-03-31
JPS6363584B2 (ja) * 1985-11-06 1988-12-07
JPH01132670A (ja) * 1987-11-17 1989-05-25 Shigeru Murayama 三層コート用樹脂粉末組成物
JPH02140239A (ja) * 1988-11-18 1990-05-29 Daikin Ind Ltd ポリテトラフルオロエチレン多孔膜およびその製法
JPH02286743A (ja) * 1989-04-28 1990-11-26 Ube Ind Ltd フッ素樹脂含有ポリイミド組成物及びその調製法
JPH05185557A (ja) * 1991-11-11 1993-07-27 Sumitomo Metal Ind Ltd 樹脂被覆金属材とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0696623A4 *

Also Published As

Publication number Publication date
EP0696623A4 (en) 1998-12-16
US5968642A (en) 1999-10-19
EP0696623A1 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
WO1995017477A1 (fr) Article dote d'une surface en fluororesine hydrophobe et procede de production dudit article
JP6616395B2 (ja) 撥性表面を含むスプレー塗布システム構成要素及び方法
JP3340798B2 (ja) フッ素樹脂粉末分散液
JP4956467B2 (ja) 超疎水性のセルフクリーニング粉体ならびにその製造方法
JP2593094B2 (ja) ポリマー表面のポリテトラフルオロエチレン被覆
JPH08113756A (ja) 撥水性含フッ素樹脂表面を有する物品の製造方法
US5972494A (en) Filled fluoropolymer composition for corrosion resistance
CA1153485A (en) Coating and primer formulation on the basis of a copolymer of tetrafluoroethylene and a perfluoro(alkylvinyl) ether, and use thereof
CA1185731A (en) Fluorocarbon compositions and method of spray coating
US20010053408A1 (en) Casting mixtures comprising granular and dispersion fluoropolymers
US6228932B1 (en) Fluororesin powder liquid dispersion capable of forming thick coatings
EP1394229A4 (en) FLUOROINT PAINT, PRIMER FOR ETFE PAINTING AND PAINTED ARTICLES
WO2020205879A1 (en) Coating compositions for hydrophobic films and articles having hydrophobic surfaces
JP4996013B2 (ja) 低mfiエチレンアクリル酸コポリマーを含むコーティング組成物
JP3430482B2 (ja) 熱交換材
TWI579041B (zh) 塗料與塗膜的形成方法
JP2939422B2 (ja) 含フッ素樹脂親水性構造物及びその製造方法
JPH04131167A (ja) 弗素化された熱可塑性樹脂を用いた粉末被覆法
JP3156860B2 (ja) 親水性フッ素樹脂粉体
RU2693724C1 (ru) Добавка для лакокрасочных материалов (варианты)
JPH07228822A (ja) 撥水性含フッ素樹脂表面を有する物品の製造方法
JP6832816B2 (ja) 撥水撥油性塗膜形成用複合粒子及びその製造方法並びに該複合粒子を用いた撥水撥油性塗膜の形成方法
JPH07228821A (ja) 撥水性含フッ素樹脂表面を有する物品
JPH08108139A (ja) 撥水性含フッ素樹脂表面を有する物品の製造方法
JP2013235103A (ja) ローラーの最表面用組成物、並びにそれを用いたローラーの最表面用部材及びローラー

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08507228

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995903914

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995903914

Country of ref document: EP

ENP Entry into the national phase

Ref country code: CA

Ref document number: 2179408

Kind code of ref document: A

Format of ref document f/p: F

WWR Wipo information: refused in national office

Ref document number: 1995903914

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995903914

Country of ref document: EP