WO1995017269A1 - Procede de fabrication de poutres en acier en i - Google Patents

Procede de fabrication de poutres en acier en i Download PDF

Info

Publication number
WO1995017269A1
WO1995017269A1 PCT/JP1994/002123 JP9402123W WO9517269A1 WO 1995017269 A1 WO1995017269 A1 WO 1995017269A1 JP 9402123 W JP9402123 W JP 9402123W WO 9517269 A1 WO9517269 A1 WO 9517269A1
Authority
WO
WIPO (PCT)
Prior art keywords
mill
universal
roll
flange
width
Prior art date
Application number
PCT/JP1994/002123
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Kusaba
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to AU12007/95A priority Critical patent/AU681219B2/en
Priority to EP95902974A priority patent/EP0736341A4/en
Priority to KR1019960703285A priority patent/KR100254493B1/ko
Priority to JP7517313A priority patent/JP2943326B2/ja
Publication of WO1995017269A1 publication Critical patent/WO1995017269A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • B21B1/0886H- or I-sections using variable-width rolls

Definitions

  • the present invention relates to a method for hot rolling of high-dimensional precision H-section steel used for construction, and more particularly to hot rolling of a multi-size H-section by hot rolling using a group of universal mills.
  • the building's steel frame is mainly constructed of H-beams. With the rise of buildings, multi-size H-beams and H-beams with high dimensional accuracy have become necessary. However, the gap between the ridges and flanges of hot-rolled H-section steel specified in JIS (Japanese Industrial Standards) is 25 mm, which is rough, 50 mm, and the rolling dimension tolerance is wide. For this purpose, a welded H-section steel is used.
  • Figure 1 is a diagram showing the cross-sectional shape of the H-section steel and the dimensions of each part.
  • H web height, B is the flange width, the web thickness, t 2 is the length of the flange thickness, l, b 2 from ⁇ Ebb to the flange tip.
  • H 500 indicates a web height of 500 mm
  • B 200 indicates a flange width of 200 mm
  • 10 6 indicates a web thickness of lOmmZ and a flange thickness of 16 mm.
  • the dimensional tolerance of welded H-section steel specified by the Japan Steel Structure Association Standard is stricter than that of hot-rolled H-section steel (hereinafter, hot-rolled H-section steel is simply referred to as “H-section steel”).
  • H-section steel hot-rolled H-section steel
  • the tolerance of the web height is ⁇ 1.5 mm for the welded H-section and ⁇ 3.0 omission for the H-section.
  • the appearance may be impaired when the structure is used, and failure may occur in the joints, etc., causing a decrease in strength.
  • the deviation S from the center of the flange of the web S- ⁇ !-B / S in Fig. 1, hereinafter referred to as “web center deviation”
  • the center deviation of the web is ⁇ 2.5 mm for welded H-beams with a web height of 300 mm or more, and ⁇ 3.5 hidden for H-beams.
  • a ⁇ piece or a slab is converted to a dock bone type by a double hole type roll roughing mill (2 Hi-breakdown mill, hereinafter referred to as “2 Hi-BD mill”).
  • 2 Hi-breakdown mill hereinafter referred to as “2 Hi-BD mill”.
  • UR mill universal rough mill
  • 2 Hi-E mill double roll edge yam mill
  • 2 Hi-E mill universal finishing mill
  • Intermediate rolling is performed by reciprocating rolling between the UR mill and the 2 Hi-E mill, and the H-section is finished by one-pass rolling in a UF mill.
  • Etsuja hole types are provided on the roll of the Hi-E mill in the roll width direction.
  • the edge-ear hole type with different web height and flange width H600X200, H550X200, H500X200, or H200X100, H300X150, H400X200, 3 sizes
  • Etc. are engraved on one roll.
  • FIG. 2 is a diagram showing a cross-section of a plurality of cavities and rolled material engraved on the rolls of the 2 Hi-E mill.
  • 5 is the upper edge roll
  • 6 is the lower edge roll
  • of the engraved holes (A) is the hole for H500X200
  • (B) is the hole for H550X200
  • (C) is the hole for H600X200 This shows the hole type.
  • Fig. 3 shows a front view of a roll and a longitudinal section of a rolled material or H-beam to explain the method of manufacturing an H-beam using a 2Hi-E mill for an edger mill.
  • Fig. 3 (a) is a diagram showing the state of rough rolling by an UR mill having upper horizontal roll 1, lower horizontal roll 2, and vertical rolls 3 and 4.At this stage, first, the rough shape of H-section steel is formed. You.
  • FIG. 3 (b) is a diagram showing the state of rough rolling by a 2Hi-E mill having only the upper and lower eager rolls 5,6.
  • one hole type of the roll of FIG. 2 is taken out and shown.
  • the rolls 5 and 6 lower the flange tip 7 of the rolled material to correct the web center deviation of the rolled material.
  • the inner surface of the rolled material flange is constrained by rolls so that the rolled material does not shift in the left-right direction.
  • FIG. 3 (c) is a view showing a state of finish rolling by a UF mill having an upper horizontal roll 8, a lower horizontal roll 9, and vertical rolls 10 and 11.
  • the horizontal rolls 8 and 9 are brought into contact with the web and the inner surface of the flange
  • the vertical rolls 10 and 11 are brought into contact with the outer surface of the flange to perform finish rolling, thereby obtaining an H-section steel having product dimensions.
  • the width of the flange width of the rolled material is not uniform due to the incomplete positioning of the material and the misalignment of the upper and lower horizontal rolls. If there is any deviation, the next 2 Hi-E mill will attempt to correct this, but some flanges will be subjected to strong pressure, and the flanges will buckle and cannot be corrected.
  • FIG. 4 is a front view of a roll and a longitudinal sectional view of a rolled material showing an example in which buckling has occurred in a flange portion in a 2Hi-E mill. Because some flanges bend, The width of the flange cannot be reduced and the center deviation of the web cannot be corrected, and the finish rolling by the UF mill cannot correct the unevenness of the flange width, and returns to the original rough rolling state. As a result, the web center bias cannot be corrected.
  • FIG. 4 shows 4-roll configuration universal type edger mill (hereinafter referred to as "UE mill"). Is shown in cross section. In this example, buckling of the flange as shown in FIG. 4 can be prevented by the action of the vertical roll, so that the effect of correcting the center deviation of the web increases.
  • UE mill 4-roll configuration universal type edger mill
  • the mill was not used in Europe, the United States, or Japan for the following reasons: In other words, in this UE mill, the rolled material is completely constrained and rolled on two horizontal rolls and two vertical rolls. Therefore, when manufacturing different types of H-section steels of various sizes, horizontal rolls are required for each size. It is necessary to keep it, and when manufacturing H-section steels with a constant outer dimension, there is the disadvantage that the number of portals further increases.
  • H-beams of the size corresponding to the load are used for the steel frame of the high-rise building. Therefore, various types of H-beams with different nominal dimensions are manufactured. However, even in the case of a single nominal size H-section steel, the actual height and flange width are different, and using this not only makes joining difficult but also detracts from aesthetics. Manufacture of various types of H-beams with different nominal dimensions requires hole mills and universal mills according to the web height. Many rolling methods have been proposed to reduce the number of these holes. For example, the inventor has already reduced the height of the web using a UF mill (Japanese Patent Application Laid-Open No. 2-84203, US Patent No.
  • Japanese Patent Application Laid-Open Nos. 59-133902, 60-82201, 60-83702, and 60-83702 disclose methods for reducing the web height in intermediate rolling or finish rolling. JP-A-60-1 18301 and JP-A-62-93008 can be mentioned. In addition, Japanese Patent Application Laid-Open Nos.
  • JP-A-61-262403, JP-A-62-161403, and JP-A-61-262402 and JP-A-61-262404 disclose methods of reducing or enlarging the height of a tube. Gazettes.
  • the flange tip is not constrained by the roll and the flange width can be expanded freely. For this reason, especially when the height of the web is reduced, the material flows from the web to the flange, causing the flange width to expand by about 4% or more, increasing the center deviation of the web, and deviating from the tolerance. .
  • a section steel with a constant outer dimension means, for example, as shown in Fig. 1 (a) and), the section height H and the flange width B of multiple H sections are equal, and the web thickness And a series of H-section steel having different flange thickness t 2.
  • H-section steels with constant external dimensions require hole rolls and universal mills according to the web thickness and flange thickness, and reduces the weight of the product by reducing the thickness of the ribs and flanges. Lighter, but more expensive to manufacture. Therefore, conventionally, welded H-section steel has been used as the H-section steel with a constant outer dimension. Disclosure of the invention
  • An object of the present invention is to provide a method for manufacturing a high-dimensional precision H-section steel by hot rolling, and in particular, to provide a group of universal mills of various types of H-section steels having different nominal sizes and H-section steels having a constant outer dimension.
  • An object of the present invention is to provide a method for hot rolling with a dimensional accuracy comparable to that of a welded H-section steel.
  • the gist of the present invention is a method of manufacturing an H-section steel shown in the following (1) to (5), the contents of which will be described based on the line configuration shown in FIG.
  • One mill group in which a universal roughing mill (UR) consisting of four rolls each and a UNIVA sullet jar mill (UE) are placed in close proximity to each other at least in the final stage of the intermediate rolling process
  • the width of the horizontal roll of the universal edger mill is smaller than the width of the horizontal roll of the universal coarse mill, and the outer surface of the flange of the coarse material is universal.
  • a method of manufacturing H-section steel in which the edge roll is constrained by vertical rolls and the tip of the flange is lowered by horizontal rolls.
  • a universal mill having a variable width horizontal roll may be used as the finishing mill.
  • Universal coarse mill consisting of 4 rolls each
  • UT mill group
  • UE saluette jar mill
  • a method of manufacturing H-section steel in which the width of the horizontal roll of the mill is variable, a hole is formed by the horizontal roll and the vertical roll of the universal edge yard mill, the inner and outer surfaces of the flange are constrained by rolls, and the tip of the flange is lowered by the horizontal roll .
  • a universal mill having a variable width horizontal roll may be used as the finishing mill.
  • Figure 1 shows the dimensions of each section of the H-section.
  • FIG. 2 is a diagram showing a cross section of a plurality of cavities and rolled material engraved on a roll of a 2Hi edge mill (2Hi-E mill).
  • FIG. 3 is a front view of a roll and a longitudinal sectional view of a rolled material for explaining a conventional method for rolling an H-section steel.
  • FIG. 4 is a front view of a roll and a longitudinal sectional view of a rolled material showing examples of buckling of a flange and deviation of the center of a web in a conventional agedger mill.
  • FIG. 5 is a diagram showing an H-section steel production line for explaining the method of the present invention.
  • A shows a H-beam production line with a UR mill and a UE mill placed close to each other, and (b) shows an H-beam with a UR mill and a UE mill and a UF mill with variable width horizontal rolls placed close together.
  • Fig. (C) shows the H-section production line in which a UR mill and a UE mill with variable width horizontal rolls are placed in close proximity, and (d) shows a UR mill, UE mill and UF.
  • FIG. 3 is a view showing a production line for an H-section steel in which mills are arranged close to each other and horizontal rolls of variable width are used for a UE mill and a UF mill.
  • FIG. 6 is a diagram illustrating a universal etching mill used in the rolling method of the present invention.
  • FIG. 3 is a front view of a roll and a longitudinal sectional view of the rolled material, showing the shape and positional relationship between each roll and the rolled material (UE mill).
  • Figure 7 shows an example of rolling using a universal edge yard mill (Fig. (A)) and a universal finishing mill (Fig. (B)) equipped with a variable width two-piece horizontal roll. It is a longitudinal cross-sectional view.
  • Fig. 8 is a front view of a horizontal roll and a vertical roll, and a vertical cross-sectional view of a rolled material, showing an example of a variable width two-split horizontal roll of a universal Etsuger mill (UE mill).
  • UE mill universal Etsuger mill
  • FIG. 9 is a diagram showing a cross section of a rough material subjected to test rolling.
  • Figure 10 shows the longitudinal webs of the H-sections of Fig. 9 and their rolled materials. It is a figure which shows the measured value of center deviation.
  • FIG. 11 is a diagram showing the measurement results of the flange width when the web height is reduced by the method of the present invention.
  • FIG. 12 is a diagram showing the dimensional accuracy of various H-section steels obtained in the examples and the manufacturing tolerances of the hot-rolled H-section steel and the welded H-section steel.
  • FIG. 13 is a view showing a hole shape of a roll for a 2Hi breakdown minole (2Hi-BD mill).
  • Fig. 14 is a diagram showing the pass schedule for rolling H-section steel in a 2Hi breakdown mill (2Hi-BD mill).
  • FIG. 15 is a diagram showing a pass schedule when an H-section steel is rolled along the line shown in FIG. 5 (d).
  • FIG. 16 is a diagram showing a cross section of a grooved die and a rolled material engraved on a roll for a 2Hi edge yaminole (2Hi-E mill).
  • Fig. 17 shows the pass schedule when a conventional 2Hi-E mill is used instead of the universal edger mill (UE mill) in the mill line of Fig. 5 (d) as a comparative example and an H-section steel is rolled.
  • UE mill universal edger mill
  • FIG. 18 is a diagram showing the change in the center deviation of the web of the H-section steel in the longitudinal direction of the rolled material.
  • FIG. 5 is a view showing a production line for an H-section steel according to the method of the present invention.
  • Figure (a) shows a line for producing an H-section steel in which a UR mill and a UE mill are arranged close to each other, and (b) shows a horizontal roll of a UF mill in which a UR mill, a UE mill and a UF mill are arranged close to each other.
  • Fig. 1 shows a line for producing H-section steel using variable width rolls.
  • Fig. 3 (c) shows a UR mill and a UE mill placed close to each other.
  • FIG. 3 is a diagram showing a line for manufacturing an H-section steel using rolls.
  • “disposed close to” means a state in which a table roll does not exist between two stands and these stands are arranged continuously.
  • FIG. 6 is a front view of each roll of the UE mill used in the rolling method of the present invention, a longitudinal sectional view showing the shape of the rolled material, and a diagram showing the positional relationship between them.
  • This UE mill is a universal type having an upper edge yah horizontal roll 12, a lower edge yah horizontal roll 13, and vertical rolls 14 and 15.
  • the roll width L of the horizontal rolls 12 and 13 of the UE mill should be smaller than the width of the horizontal roll of the UR mill in the previous process, and the gap between the body inclined portion 21 of the horizontal roll and the inner surface 22 of the rolled material flange
  • the space 16 of ⁇ is provided, and the horizontal surface of the rolled material is not restrained by the horizontal roll.
  • the vertical rolls 14 and 15 restrain the flange outer surface 23, and the horizontal rolls lower the flange tip 7.
  • the roll does not restrain the inner surface of the rolled material flange but only the outer surface, it can prevent the flange from buckling outward when the flange is pressed down in the width direction, and buckling occurs as shown in Fig. 4.
  • the effect of correcting the center deviation of the web is improved.
  • the height of the web is reduced in the final pass of the UE mill, and the web height is different. Can be manufactured with the same UE mill.
  • the UE mill shown in Fig. 6 is placed on the UE mill on the line shown in Fig. 5 (a). A description will be given of the case in which this is done.
  • a continuous green slab or bloom of the material is heated to about 1250 ° C in a heating furnace (not shown), then rolled by a 2 Hi-BD mill, and the raw material of H-section steel ( Beam blank). Next, it is rolled or straightened to predetermined dimensions by reciprocating rolling (intermediate rolling) of 7 to 15 passes by a universal mill group (UT) consisting of a UR mill and a UE mill, and finally, an H-shape of the target dimensions is produced by a UF mill. Finish to steel.
  • UT universal mill group
  • H-shaped steel of H700 X B200 For example, a case where an H-shaped steel of H700 X B200 is manufactured will be described.
  • the horizontal roll of the UR mill has a roll width L of 676 for H700 X B200, and the horizontal roll of the UE mill uses a smaller roll of 566 faces, the roll of H600 X B200 to H700 x H-beams up to B200 can be manufactured.
  • a space (5 ⁇ 50 sleep) will be provided between the horizontal roll of the UE mill and the inner surface of the rolled material flange, so that the flange does not buckle and the web center is not biased.
  • Steel can be manufactured.
  • an H-section steel having excellent dimensional accuracy at the front and rear ends in the longitudinal direction of the rolled material can be obtained.
  • Fig. 7 (a) is a diagram showing the roll width of the UE mill shown in Fig. 6, and Fig. 7 (b) is a front view and rolled material of each roll of a universal finishing mill (UF mill) with a variable width in the horizontal mouth.
  • FIG. Reference numeral 17 denotes a two-part horizontal roll of variable width, and reference numeral 18 denotes a vertical roll.
  • a UF mill using a variable width roll as the horizontal roll shown in FIG. 7 (b) is arranged close to the UE mill as shown in FIG. 5 (b), for example, the following rolling can be performed.
  • the horizontal roll width of the UR mill is 676 (equivalent to the internal dimensions of the web, for H700 XB200) and the horizontal roll width of the UE mill is 566 mm
  • the horizontal roll width of the UF mill is If the width of the steel is variable from 676 mm to 576 mm, three types of H-sections, H700 X B200, H650 x B200 and H600 x B200, can be rolled.
  • the UR mill and UF mill perform reduction in the thickness direction of the web and flange of the rolled material
  • the UE mill performs reduction in the flange width direction
  • the final pass of the UE mill reduces the rib height by 50IM.
  • H-section of H650 XB 200 can be rolled.
  • the height of the tube is reduced by 100I 1 in the final pass of the UE mill and the width of the horizontal opening is changed from 676 to 576 strokes in the final pass of the UF mill, an H600 x B200 H-section can be rolled. .
  • H-section steel with different rib heights have been described.However, if a line for rolling H-section steels with different flange width, web thickness and flange thickness is used, the above method can be used to keep the outer dimension constant. H-section steel can be manufactured. Also, since the horizontal roll width of the UE mill is smaller than the horizontal roll width of the UR mill and the space is provided, no rolling mill for changing the web height is required. There is also an effect.
  • Fig. 8 shows a front view of the variable width horizontal roll and vertical roll of the UE mill and a cross-sectional view of the rolled material. Since the width of such a variable width horizontal roll 19 can be changed on-line, the space 16 (the space existing in the fixed width horizontal roll, (See Fig. 6). Therefore, a hole shape is formed by the horizontal roll and the vertical roll of the UE mill, and the inner and outer surfaces of the flange can be restrained by the roll, and the tip of the flange can be lowered by the horizontal roll, so that the dimensional accuracy can be further improved. In addition, when producing multi-size H-section steel, the number of horizontal rolls of the UE mill can be reduced, and the time required to change rolling rolls can be reduced.
  • the rolling efficiency when used in a line as shown in Fig. 5 (d), in addition to the above dimensional accuracy improvement, the rolling efficiency can be improved by about 50% as described earlier with reference to Fig. 5 (b). .
  • the roll for a normal 2 Hi-E mill For several types of edge pier holes, for example, when the roll body length is 2500 mm, three rolls of the ezja hole for (A): for H500X200, (B): for H550X200, and (C): for H600x200 as described above. It is engraved on.
  • variable width roll for example, H600X200
  • the roll for a 2 Hi-E mill with a 2500 mm long body weighs 20 tons or more, but the weight of a universal horizontal roll is only about 7 tons, and the price is 2 Hi-E even if a variable width mechanism is adopted. This is about 2/3 of the mill roll.
  • a protrusion is provided on the outer peripheral surface of the movable sleeve roll, and the width of the movable sleeve roll is reduced.
  • a male screw is formed at the base end of the sleeve with a key, and the protrusions provided at equal positions on the nut screwed to this male screw are fitted into the protrusion gaps of the movable sleeve roll. May be fixed in the axial direction with a split key.
  • H-beams can also be manufactured using UF mills.
  • an H-section steel can also be manufactured using a universal mill having a horizontal roll having a variable width as described in the above [5] as the UF mill.
  • a UE mill with a variable horizontal roll width can also roll multi-size H-sections with high dimensional accuracy.
  • the effects of the method for manufacturing an H-section steel according to the present invention will be described based on Preliminary Tests 1 and 2, Examples 1 to 6, and Comparative Examples.
  • FIG. 9 is a view showing a vertical cross-sectional shape of a rolled crude material used in a model mill. Stainless steel that does not generate scale at the rolling temperature was used as the rolled raw material so that the finished rolled dimensions could be measured accurately (0.1 stroke units). Rolled raw material is pre-centered in the web
  • Rolling temperature was 900 ° C, number of passes was 1 and flange width reduction was 6%.
  • Fig. 10 shows the longitudinal center of the rolled material and the rolled material obtained in the above test. It is a figure showing a measured value of bias.
  • the chain line indicated by (E) is the case where the roll is rolled using a universal edger mill of the edge yard type II, and the lobe moves about l mm toward the center of the flange. It was improved from 1 band to 0.01 stroke. Further, in FIG.
  • the solid line indicated by (F) indicates that when the method of the present invention described in (3) above is used, the flange is prevented from buckling outward, so that the web is directed toward the center of the flange. It can be seen that it has moved about one distance, the center deviation has been improved from 1 mm to 0.02 mm, and the same effect as when using the edge yard mill (2) (chain line (E)) is obtained.
  • FIG. 6 is a diagram illustrating a change in the length direction of flange radiance measured before and after passing through a UF mill.
  • the broken line (H) shows the change in the flange width after rolling on the UE mill
  • the solid line (J) shows the change in the flange width after rolling on the UF mill.
  • a UE mill as shown in Fig. 6 was placed on the mill line shown in Fig. 5 (a).
  • the horizontal roll of the U E mill is a roll for H800 X B300, and the roll width (L) is 750mm.
  • a test was conducted to produce three types of H-section steel, H25X and H800XB300x1225.
  • the distance between the UR mill and the UE mill was 3m
  • the distance between the UE mill and the UF mill was 120m.
  • the UR mill and UF mill have a horizontal opening width of 850 mm, two UR mills and a UE mill perform seven passes of tandem reverse rolling, and finally one pass of the UF mill.
  • the UE mill there is a space ⁇ 5 between the inner surface of the rolled material flange and the horizontal roll, which is about 50 hidden.
  • H850 x B300 was completed in one pass of the mill.
  • the UE mill there is a space ⁇ 5 of about 25 between the inner surface of the flange of the rolled material and the horizontal roll.
  • the UR mill and UF mill When manufacturing the H800 X B300, the UR mill and UF mill have a horizontal width of 750 mm, and two UR and UE mills perform tandem reverse rolling of 7 passes, and finally, one pass of the UF mill.
  • H800 x B300 At this time, in the UE mill, there is no space 3 between the inner surface of the flange of the rolled material and the horizontal roll.
  • a single UE mill such as H900 XB 300, H850 x B 300, and H800 x B 300, was used.
  • Various types of H-section steel were manufactured.
  • Fig. 12 is a diagram showing the dimensional accuracy of the various H-sections obtained in Examples (1 to 6) and the manufacturing tolerances of the hot-rolled H-sections and the welded H-sections.
  • the dimensional accuracy of the obtained H-section steel was sufficient for the manufacturing tolerances of the welded H-section steel.
  • a horizontal roll (width: 850 images) for H900 x B300 is used for the UR mill, and a horizontal roll (width (L) for H800 x B300) is used for the UE mill. 750 mm) and a horizontal roll (width: 800 mm) for H850 x B300 in a UF mill, and a test was conducted to produce an H-section steel of H850 x B300 x 1225. Assuming that the space section 5 of the UE mill is 50, the UR mill and the UE mill are used to perform 6-bus evening demembours rolling.
  • the web height can be easily reduced in the final pass of the UE mill, and the dimensions of the obtained H-section steel can be reduced.
  • the accuracy was dimensional accuracy that was well within the manufacturing tolerances of the welded H-section steel.
  • a horizontal roll (roll width 850 mm) for H900 x B300 is used for the UR mill, and a horizontal roll (roll width 750 mm) for H800 x B300 is used for the UE mill. ), H850x for UF mill
  • a horizontal roll (fixed roll having a roll width of 800 mm) of a roll for B300 was incorporated into each of them, and a test was conducted to manufacture an H-shaped H850 XB 300 x 1225.
  • the distance between the UR mill, the UE mill and the UF mill was 3 m.
  • the UF mill pass was set as an empty pass that does not perform rolling, and the space 5 of the UE mill was set to 50 strokes and reciprocated rolling was performed between the UR mill and the UE mill. Intermediate rolling to a shape for use.
  • the web height was reduced by 50 mm in the 7th pass of the UE mill to form a shape for H850 x B300, and the H-shaped steel of H850 X B300 x 12/25 was finished in one pass of the UF mill.
  • the horizontal roll width of the UF mill set to 850 mm five passes of tandem reverse rolling were performed using three mills, the UR mill and the UE mill. In the initial four-pass rolling, the UF mill was used as an empty pass, and H900 X B300 was rolled using the UR mill and UE mill.
  • the height of the web was reduced by 50 in the UE mill and rolled into a shape for the H850 XB 300, and the horizontal roll width of the UF mill was reduced to 800 strokes and the H850 x B 300 X 12Z25 Finished in H-section steel.
  • the dimensional accuracy of the obtained H-section steel was better than that of Example 3 as shown in FIG.
  • H-section steels of H500 ⁇ B200 ⁇ 10/16, H550 ⁇ B200 ⁇ 10/16 and H600 ⁇ B200 ⁇ 1016 were rolled using the mill line shown in FIG. 5 (d).
  • the distance between the UR mill, the UE mill and the UF mill should be 3 m.
  • a continuous structure slab having a thickness of 300 mm and a width of 700 mm was used.
  • Fig. 14 is a diagram showing the pass schedule for rolling the H-section steel in a 2Hi breakdown mill (2Hi-BD mill). After heating to 1250 ° C in a heating furnace, using a 2 Hi-BD mill with the hole arrangement shown in Fig. 13, the web schedule is 720 mm according to the pass schedule shown in Fig. 14. Web thickness 60 mm, flange A beam blank (coarse material of H-section steel) with a width of 250 mm and an average flange thickness of 110 mm was formed.
  • the UE mill having a variable width horizontal roll used in this embodiment has a vertical roll with a width of 190 hiding the convex portion in contact with the outer surface of the flange, and a horizontal roll with a hole depth d. 93.5
  • the roll width was set to 468 mm when the distance D between the left and right sleeve rolls 19 'was 0 mm. This interval D can be changed offline or online as described above.
  • H550 X B200 ⁇ When rolling an H-section steel of 10/6, D is set to 50 and horizontal roll width L is 518 hidden, and for H600 B200 X10-16, 100 rolls are used for horizontal rolls.
  • the width L was 568 mm.
  • the structure can be changed up to 120 times.
  • FIG. 15 is a diagram showing a pass schedule when the H shape is rolled along the line shown in FIG. 5 (d).
  • the horizontal roll width of the UR mill is 468 mm, UE at this time
  • the horizontal roll width of the mill was set to 468 mm, which was the same as the former, and an H-section steel of H500 X B200 X 10/16 was manufactured using the pass schedule shown in Fig. 15.
  • the vertical roll does not reduce the flange portion in the thickness direction, and has the same opening as the thickness of the rolled material entrance side.
  • the main purpose of the vertical roll is to prevent the flange from buckling due to the reduction in the flange width of the horizontal roll and to suppress the wall thickness increase at the center of the flange.
  • the reduction ratio in the thickness direction of the flange and web in the UR mill was adjusted between 1.5: 1.0 and 2.0: 1.0.
  • the H-shaped steel of the target size was manufactured by one-pass light rolling in the UF mill.
  • the horizontal roll width of the UR mill was set to 518, the horizontal width of the UE mill and UF mill was increased by 518, and H-section steel of H550 X B200 x 10 16 was manufactured.
  • the horizontal roll width was 568 mm, and the horizontal roll width of the UE mill and UF mill was increased to 568 mm to produce H600 x B200 x 10/16 H-section steel.
  • Figure 12 shows the dimensional change of each part of the obtained H-section steel.
  • the UE mill and UF mill use variable width horizontal rolls, and the UE mill and UF mill reduce the flange while restraining the flange.As shown in Fig. 12, excellent dimensions equivalent to welded H-section steel are shown in Fig. 12. Accuracy was obtained.
  • H500 X B200, H550 x B200, and H600 X B200 were rolled using the mill line shown in Fig. 5 (c).
  • the distance between the UR mill and the UE mill was 3 m
  • the distance between the UE mill and the UF mill was 120 m.
  • the same horizontal rolls for the UR mill and the UE mill as in Example 5 were used, and for rolling three types of H-section steel, the UF mill used horizontal rolls dedicated to each size.
  • the horizontal roll width of UR mill, UE mill and UF mill is 568 mm, and the pressure of both UE mill and UF mill is No reduction in the web height of the rolled material was performed.
  • the horizontal roll width of the UE mill is reduced from 568 mm to 518 in the final pass of the UR mill and UE mill group of the above H600 x B200 rolling, where the web height of the rolled material is obtained.
  • FIG. 16 is a view showing a roll arrangement of a conventional 2 Hi-E mill and a longitudinal section of a rolled material.
  • FIG. 17 is a diagram showing a pass schedule when a conventional 2 Hi-E mill is used as an edge yard mill of the mill line of FIG. 5 (d) as a comparative example and an H-section steel is rolled.
  • the single-hole type shown in Fig. 16 was placed on the ezger mill of the mill line in Fig. 5 (d), and the H-section steel of H500 x B 200 x 10Z16 was drawn. It was manufactured according to the pass schedule shown in FIG. H600 X B200 X 10/16 H-section steel was manufactured in the same manner.
  • Figure 12 shows the dimensional changes of each part of the obtained H-section steel.
  • FIG. 18 is a diagram showing a change in the web center deviation of the H500 ⁇ B200 ⁇ 1016 H-section steel obtained in Example 5 and Comparative Example in the rolling direction.
  • the solid line (K) indicates the line shown in Fig. 5 (d).
  • the dashed line (M) indicates the case where the conventional 2Hi-E mill is arranged and the dashed line (M) is the case where it is manufactured with three universal mills arranged in close proximity.
  • the part where the center deviation S is more than ⁇ 2 mra (manufacturing tolerance of welded H-section steel) is about 30% or more of the pressure elongation in the conventional method, but is 0% in the method of the present invention. It is important to be able to eliminate defects due to center deviation.
  • buckling can be prevented by restraining both sides of the rolled material flange with both vertical rolls of the UE mill and rolling down the flange tip.
  • the flange central portion is preferentially deformed as the flange width is reduced and stretched in the rolling direction, the flange width at the front and rear ends in the longitudinal direction of the rolled material is equal to the central flange width. it can.
  • the dimensional accuracy is improved and the center deviation of the web can be reduced as compared with the case where the conventional 2Hi edge yarn is used.
  • H-section steel with dimensional accuracy comparable to that of section steel can be manufactured.
  • a plurality of H-section steels having different sizes with a dimensional accuracy comparable to that of the welded H-section steel can be manufactured with one set of mills.
  • a conventional 2 Hi edge mill is used. Dimensional accuracy is improved compared to when used, and ⁇ center deviation can be reduced. Moreover, since the height of the web can be easily reduced during rolling,
  • One group of mills can produce multi-size H-sections by hot rolling with dimensional accuracy comparable to that of welded H-sections.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

明 細 書
発明の名称 H形鋼の製造方法
技術分野
本発明は、 建築に用いられる高寸法精度の H形鋼の熱間圧延による製 造方法に関し、 特に 1群のユニバーサルミルを用いる熱間圧延により多 サイズの H形鋼を溶接 H形鋼に匹敵する寸法精度で製造する方法に関す o 背景技術
建築物の鉄骨は主に H形鋼で組み立てられる。 建築物が高層化される ことに伴って、 多サイズの H形鋼や高寸法精度の H形鋼が必要となって きた。 しかし、 J I S (日本工業規格) で規定された熱間圧延 H形鋼の ゥヱブおよびフランジの寸法間隔は 25mm、 50議と粗く、 また圧延寸法公 差は広いため、 多くの場合、 上記の鉄骨用としては溶接 H形鋼が使用さ れている。
図 1は H形鋼の断面形状と各部の寸法を示す図である。 Hはウェブ高 さ、 Bはフランジ幅、 はウェブ厚さ、 t 2はフランジ厚さ、 l 、 b2はゥ エブからフランジ先端までの長さである。
H形鋼の呼称は H 500 X B 200 X 10Z16のごとく表示される。 H 500 はウェブ高さ 500 mm、 B 200 はフランジ幅 200 mm、 10 6はウェブ厚さ lOmmZフランジ厚さ 16醒であることを示す。 鋼構造協会規格で規定され た溶接 H形鋼の寸法公差は、 熱間圧延 H形鋼 (以下、 熱間圧延 H形鋼を 単に 「H形鋼」 と記載する。 ) に比べて厳しく、 例えばウェブ高さ 500 隱の場合のウェブ高さの公差は、 溶接 H形鋼では ± 1. 5 mmに対し H形鋼 では ± 3. 0 隱となっている。
ウェブやフランジの寸法が異なると構造物としたとき美観を損なうと ともに、 結合部等に不具合を起こし強度低下を引き起こすことがある。 特に、 ゥヱブのフランジ中心からの偏り S (図 1 において S-^!-b /S 、 以下 「ウェブの中心偏り」 と記載する。 ) が大きくなると、 偏り荷重 がかかるので構造物の強度が低下する。 従って、 ウェブの中心偏りは、 ウェブ高さ 300 咖以上の溶接 H形鋼で ±2.5 讓、 H形鋼で ±3.5 隱とな つている。
従来の H形鋼の圧延は、 铸片または鋼片を 2重式孔型ロール粗圧延機 ( 2 Hi-ブレークダウンミル、 以下 「 2 Hi-BDミル」 と記載する。 ) でドックボーン形の粗形材とした後、 ユニバーサル粗ミル (以下、 「URミル」 と記載する。 ) 、 2重式ロールのエッジヤ ーミル (以下、 「 2 Hi-Eミル」 と記載する。 ) およびユニバーサル仕上ミル (以下、 UF ミルと記載する。 ) で構成されるミル群を用いて行われる。 URミ ルから 2 Hi-Eミルまでの間で、 往復圧延による中間圧延が施され、 次 いで U Fミルでの 1パスの圧延により H形鋼に仕上げられる。
2 Hi-E ミルのロールは、 ロール幅方向に数種類のエツジャー孔型が 刻設されている。 例えば、 多サイズの H形鋼を製造する場合には、 ゥェ ブ高さとフランジ幅を変えたエッジヤ ー孔型 (H600X200 、 H550X200 、 H500X200 の 3サイズ、 または H200X 100 、 H300X 150 、 H400X200 の 3サイズなど) が一本のロールに刻設される。
図 2は、 上記 2 Hi- Eミルのロールに刻設された複数の孔型と圧延材 の断面を示す図である。 5は上エッジヤ ーロール、 6は下エッジヤー口 ール、 刻設された孔型のうち(A) は H500X200 用の孔型、 (B) は H550X 200 用の孔型、 (C) は H600X200 用の孔型を示す。
後述する外法寸法一定の H形鐧を製造する場合にはウェブ高さとフラ ンジ幅を同じく してゥヱブ厚さとフランジ厚さを異にしたエッジャ一孔 型を刻設しなければならない。 一般に、 ゥヱブ厚さとフランジ厚さを薄 くすると寸法精度が低下する。 一方、 外法寸法一定の H形鋼の各部寸法 精度は溶接 H形鋼に匹敵する寸法精度を要求されるので、 2 Hi-Eミル のロールを用いる圧延ラインでこれを製造するのは困難であった。
図 3は、 エッジャ一ミルに 2 H i- Eミルを使用した H形鋼の製造方法 を説明するための、 ロールの正面図と圧延材または H形鋼の縦断面図で め 。
図 3 (a) は、 上水平ロール 1 と下水平ロール 2および竪ロール 3、 4 を有する U Rミルによる粗圧延の状況を示す図であり、 この段階でまず H形鋼の粗形状が形成される。
図 3 (b) は、 上ェッジャーロール 5 と下ェッジャーロール 6のみを有 する 2 H i- Eミルによる粗圧延の状況を示す図である。 この図では上記 図 2のロールの 1つの孔型を取り出して示した。 この段階で、 フランジ 幅やゥヱブ中心 (ウェブがフランジ中央部に位置する中心) などの各部 寸法の精度を確保する。 すなわち、 ロール 5、 6で、 圧延材のフランジ 先端 7を圧下し、 圧延材のウェブ中心偏りを矯正する。 このとき、 この 矯正効果を高めるために、 圧延材フランジの内面をロールで拘束し、 圧 延材が左右方向にずれないようにしている。
図 3 (c) は、 上水平ロール 8 と下水平ロール 9および竪ロール 10、 11 を有する U Fミルによる仕上げ圧延の状況を示す図である。 この段階で は、 水平ロール 8、 9をウェブとフランジ内面とに接触させ、 竪ロール 10、 11をフランジ外面に接触させて仕上げ圧延が行われ、 製品寸法の H 形鋼が得られる。
上記の U Rミルの粗圧延 (図 3(a) ) において、 材料の嚙み込み姿勢の 不良、 上下水平ロールの整合不良などにより、 圧延材のフランジ幅拡が りの不均一、 すなわち、 ウェブ中心偏りが生じた場合には、 次の 2 H i- Eミルでこれを矯正しょうとしても、 一部のフランジに強圧下がかかり 、 フランジ部が座屈し、 矯正できなくなる。
図 4は、 2 H i- Eミルでフランジ部に座屈が発生した例を示すロール の正面図と圧延材の縦断面図である。 一部のフランジが曲がるためフラ ンジ幅の圧下およびゥェブの中心偏りの矯正ができず、 次の U Fミルに よる仕上げ圧延を施しても、 フランジ幅拡がりの不均一を矯正すること ができず、 元の粗圧延の状態に戻るだけであり、 結果的にウェブ中心偏 りを矯正することができない。
2 H i _ Eミルではフランジ内面をロールに接触させ、 フランジを外側 に傾斜させているので、 フランジ厚さが薄くなると、 フランジ先端 7を 圧下したとき座屈が発生する。 従って、 2 H i - Eミルを含む H形鋼圧延 ラインでは寸法精度の厳しい H形鋼などを製造することができない。 エッジヤーミルの段階で H形鋼の製品寸法精度を向上させる手段とし ては、 古くから種々の提案がなされている。 例えば、 1934年に発行され た形鋼圧延のハンドブックである WALZWERKSWESEN (J. PUPPE und
G. STAUBER 、 DUESSELDORF VERLAGSTHALE IZEN M . B . H . ) の 304 ぺ ージ、 図 26. a〜c には、 4ロール構成ユニバーサルタイプのエッジャ一 ミル (以下、 「U Eミル」 と記載する。 ) の断面図が示されている。 こ の例では竪ロールの作用により、 前記図 4に示すようなフランジの座屈 が防止できるため、 ウェブ中心偏りの矯正の効果も大きくなる。
しかし、 このミルは、 次の理由で欧州、 米国および日本においても採 用されることがなかった。 すなわち、 この U Eミルでは、 各 2本の水平 ロールと竪ロールに圧延材を完全に拘束して圧延するので、 多サイズの 異なる種類の H形鋼を製造する場合にはサイズ毎に水平ロールを保有し ておく必要があり、 外法寸法一定の H形鋼を製造する場合にはさらに口 ール保有数が増大するという欠点がある。
高層建築物の鉄骨には負荷に応じた寸法の H形鋼を使用する。 従って 呼称寸法の異なる多種類の H形鋼が製造されている。 しかし、 一つの呼 称寸法の H形鋼でも実態としては、 ゥヱブ高さやフランジ幅の異なるも のがあり、 これを使用すると結合を困難とするばかりではなく美観を損 なう。 呼称寸法の異なる多種類の H形鋼を製造するには、 それぞれのウェブ 高さに応じた孔型圧延機やユニバーサルミルを必要とする。 これらの口 ール本数を削減する圧延方法の提案が数多くなされている。 例えば、 本 発明者は既に U Fミルでウェブ高さを縮小する方法 (特開平 2-84203 号 公報、 米国特許 4958509 号、 英国特許 2222796 号、 豪州特許 625679号、 韓国特許 51420 号) 、 U Rミルまたは U Fミルのいずれかでウェブ高さ を縮小する方法 (特開平 4-258301号公報、 米国特許 5287715 号、 豪州特 許 640553号、 欧州公開 0498733 号、 韓国出願番号 92-1775 号) を提案し た。 その外、 中間圧延または仕上げ圧延においてウェブ高さを縮小する 方法を開示するものとして、 特開昭 59-133902 号公報、 特開昭 60-82201 号公報、 特開昭 60-83702号公報、 特開昭 60-1 18301 号公報、 特開昭 62-9 3008号公報があげられる。 また、 中間圧延または仕上げ圧延においてゥ エブ高さを拡大する方法を開示するものとして、 特開昭 63-30102号公報 、 特開昭 63-72402号公報、 特開昭 63- 168204 号公報、 特開昭 61 -262403 号公報、 特開昭 62-161403 号公報、 ゥ ブ高さを縮小または拡大する方 法を開示するものとして、 特開昭 61 -262402 号公報、 特開昭 61 -262404 号公報があげられる。
ウェブ高さ縮小、 拡大のいずれの方法も、 フランジ先端部はロールに よる拘束を受けず、 フランジ幅拡がりは自由である。 このために、 特に ウェブ高さを縮小する場合にはウェブ部からフランジ部へ材料が流れる 現象が発生し、 約 4 %以上のフランジ幅拡がりが生じ、 ウェブ中心偏り が大きくなり、 公差外れとなる。
このように、 従来の方法ではウェブ高さの変更時においても、 ウェブ 中心偏りが大きくなり、 場合によってはエツジャーミルによる矯正効果 が損なわれてしまうという問題がある。
外法寸法一定の Η形鋼とは、 例えば図 1の(a) と ) に示すように複 数の H形鋼のゥヱブ高さ Hおよびフランジ幅 Bが等しく、 ウェブ厚さ およびフランジ厚さ t 2を異にする H形鋼のシリーズである。
外法寸法一定の H形鋼を製造するには、 それぞれのウェブ厚さとフラ ンジ厚さに応じた孔型ロールやユニバーサルミルを必要とし、 ゥヱブ厚 さやフランジ厚さを薄く して製品の重量を軽くすることができるが、 製 造コストは高くなる。 従って、 外法寸法一定の H形鋼としては、 従来溶 接 H形鋼が使用されていた。 発明の開示
本発明の目的は、 高寸法精度の H形鋼を熱間圧延で製造する方法、 特 に呼称サイズの異なる多種類の H形鋼や外法寸法一定の H形鋼を 1群の ユニバーサルミルを用いて溶接 H形鋼に匹敵する寸法精度で熱間圧延す る方法を提供することにある。
本発明の要旨は次の(1) から(5) に示す H形鋼の製造方法であり、 そ の内容を図 5に示すライン構成に基づいて説明する。
(1) それぞれ 4ロールで構成されるユニバーサル粗ミル(UR)とュニバ一 サルエツジャーミル(UE)とが近接配置された 1つのミル群 OJT)を中間圧 延工程の少なく とも最終段に用いて行う H形鋼の製造方法であって、 前 記ユニバーサルェッジャーミルの水平ロールの幅を前記ユニバーサル粗 ミルの水平ロールの幅よりも小さく し、 粗形材のフランジ外面を前記ュ 二バーサルエッジヤーミルの竪ロールで拘束し、 水平ロールでフランジ 先端部を圧下する H形鋼の製造方法。
(2) 上記(1) の中間圧延を行い、 これに続く仕上げ圧延を上記ミル群 (UT)に近接配置されたユニバーサル仕上げミル(UF)を用いて行う H形鋼 の製造方法。
前記仕上げミルとして幅可変の水平ロールを備えたユニバーサルミル を用いてもよい。
(3) それぞれ 4ロールで構成されるユニバーサル粗ミル(UR)とュニバ一 サルエツジャーミル(UE)とが近接配置された 1つのミル群(UT)を中間圧 延工程の少なく とも最終段に用いて行う H形鋼の製造方法であって、 ュ 二バーサルェッジャーミルの水平ロールの幅を可変とし、 ユニバーサル エッジヤーミルの水平ロールと竪ロールとで孔型を形成し、 フランジの 内外面をロールで拘束し、 水平ロールでフランジ先端を圧下する H形鋼 の製造方法。
(4) 上記(3) の中間圧延を行い、 これに続く仕上げ圧延を上記ミル群に 近接配置されたユニバーサル仕上げミル OJF)を用いて行う H形鋼の製造 方法。
前記仕上げミルとして幅可変の水平ロールを備えたユニバーサルミル を用いてもよい。
(5) 上記ユニバーサルエツジャーミルの最終パスでゥヱブ高さを縮小す る上記(1) から(4) までのいずれかに記載の H形鋼の製造方法。
図面の簡単な説明
図 1 は、 H形鋼断面各部の寸法を示す図である。
図 2は、 2 H i エッジヤーミル ( 2 H i- Eミル) のロールに刻設され た複数の孔型と圧延材の断面を示す図である。
図 3は、 従来の H形鋼の圧延方法を説明するロールの正面図と圧延材 の縱断面図である。
図 4は、 従来のェッジャーミルにおけるフランジの座屈とゥエブ中心 偏りの例を示すロールの正面図と圧延材の縱断面図である。
図 5は、 本発明方法を説明するための H形鋼の製造ラインを示す図で ある。 (a) は U Rミルと U Eミルを近接配置した H形鋼の製造ラインを 示す図、 (b) は U Rミルと U Eミルおよび幅可変の水平ロールをもった U Fミルを近接配置した H形鋼の製造ラインを示す図、 (c) は U Rミル と幅可変の水平ロールをもった U Eミルを近接配置した H形鋼の製造ラ インを示す図、 (d) は U Rミル、 U E ミルおよび U Fミルを近接配置し 、 U Eミルと U Fミルに幅可変の水平ロールを使用した H形鋼の製造ラ ィンを示す図である。
図 6は、 本発明の圧延方法で用いるユニバーサルエツジャーミル
( U Eミル) の各ロールと圧延材の形状および位置関係を示すロールの 正面図と圧延材の縦断面図である。
図 7は、 ユニバーサルエッジヤーミル ((a) 図) と幅可変 2分割水平 ロールを備えたユニバーサル仕上ミル ((b) 図) を用いて圧延する例を 示す各ロールの正面図および圧延材の縦断面図である。
図 8は、 ユニバーサルエツジャーミル (U E ミル) の幅可変 2分割水 平ロールの例を示す水平ロールと竪ロールの正面図および圧延材の縦断 面図である。
図 9は、 試験圧延の対象とした粗形材の断面を示す図である。
図 10は、 図 9の H形鋼粗形材とそれらの圧延材の長さ方向のウェブの 中心偏りの測定値を示す図である。
図 11は、 本発明の方法でウェブ高さを縮小した場合のフラ ンジ幅の測 定結果を示す図である。
図 12は、 実施例で得られた各種 H形鋼の寸法精度、 熱間圧延 H形鋼お よび溶接 H形鋼の製造公差を示す図である。
図 13は、 2H iブレークダウンミノレ (2Hi - BDミル) 用のロールの 孔型を示す図である。
図 14は、 2H iブレークダウンミル (2Hi-BDミル) で H形鋼の粗 形材を圧延するパススケジュールを示す図である。
図 15は、 図 5(d)に示すラインで H形鋼を圧延した場合のパススケジュ ールを示す図である。
図 16は、 2 H iエッジヤーミノレ (2 Hi-Eミル) 用のロールに刻設さ れた孔型と圧延材の断面を示す図である。
図 17は、 比較例として図 5(d)のミルラインのユニバーサルェッジャー ミル (UEミル) のかわりに従来の 2Hi-Eミルを使用し、 H形鋼を圧 延したときのパススケジュールを示す図である。
図 18は、 H形鋼のウェブの中心偏りの圧延材長手方向の変化を示す図 である。 発明を実施するための最良の形態
本発明の H形鋼の製造方法を上記のように定めた理由について、 以下 詳細に説明する。
図 5は、 本発明方法による H形鋼の製造ライ ンを示す図で る。 同図 (a) は URミルと UEミルを近接配置した H形鋼を製造するラインを示 す図、 (b) は URミル、 UEミルおよび UFミルを近接配置し、 かつ UFミルの水平ロールに幅可変ロールを使用した H形鋼を製造するライ ンを示す図、 (c) は URミルと UEミルを近接配置し、 かつ UEミルの 水平ロールに幅可変ロールを使用した H形鋼を製造するラインを示す図 、 (d) は U Rミルと U Eミルおよび U Fミルを近接配置し、 かつ U Eミ ルと U Fミルの水平ロールに幅可変ロールを使用した H形鋼を製造する ラインを示す図である。 ここで 「近接配置する」 とは、 2つのスタンド 間にテーブルロールが存在せず、 これらのスタンドが連続して配列され た状態をいう。
I · ユニバーサルェッジャーミル (U Eミル) の水平ロール幅をュニバ 一サル粗ミル (U Rミル) の水平ロール幅よりも小さくすることについ て :
図 6は、 本発明の圧延方法で用いる U Eミルの各ロールの正面図と圧 延材の形状を示す縦断面図およびこれらの位置関係を示す図である。 こ の U Eミルは、 上エッジヤ ー水平ロール 12、 下エッジヤ ー水平ロール 13 と竪ロール 14、 15を有するユニバーサルタイプのものである。
U Eミルの水平ロール 12、 13のロール幅 Lは、 前工程の U Rミルの水 平ロールの幅よりも小さく し、 水平ロールの胴傾斜部 21と圧延材のフラ ンジ内面 22との間に間隔 άの空間部 16を設け、 水平ロールで圧延材のフ ランジ内面を拘束しない。 竪ロール 14、 15はフランジ外面 23を拘束し、 水平ロールでフランジ先端部 7を圧下する。
ロールで圧延材のフランジ内面を拘束せず外面のみを拘束すると、 フ ランジを幅方向に圧下したとき、 フランジが外側へ座屈するのを防止で き、 図 4に示すような座屈が発生せず、 ウェブの中心偏りの矯正効果が 向上する。 また、 水平ロールと圧延材のフランジ内面との間に空間部を 設けることにより、 U Eミルの最終パスでゥヱブ高さを縮小してウェブ 高さの異なる Η形鋼 (多サイズの Η形鋼) が同一 U Eミルで製造可能と なる。
例えば、 図 6に示す U E ミルを図 5(a)に示すラインの U Eミルに配置 した場合について説明する。
図 5(a)において、 素材の連続铸造スラブまたはブルームを加熱炉 (図 示せず) で約 1250°C程度まで加熱した後、 2 Hi-BDミルで圧延し、 H 形鋼の粗形材 (ビームブランク) とする。 次いで、 URミルと UEミル からなるユニバーサルミル群(UT)で 7〜15パスの往復圧延 (中間圧延) により、 所定の各部寸法に圧延または矯正し、 最後に UFミルで目的寸 法の H形鋼に仕上げる。
例えば、 H700 X B200 の H形鋼を製造する場合について説明する。 URミルの水平ロールに H700 X B200 用のロール幅 Lが 676讓のもの を使用し、 UEミルの水平ロールにそれよりも幅の小さい 566顏のロー ルを使用すると、 H600 X B200 から H700 x B200 までの H形鋼が製 造できる。 なお、 この場合の UEミルの水平ロールと圧延材のフランジ 内面との間には空間部 (5^50睡) を設けることになり、 フランジに座 屈が起こらず、 ウェブ中心偏りのない H形鋼を製造することができる。 さらに URミルと UEミルを近接配置すると圧延材の長手方向の先端部 、 後端部も優れた寸法精度を有する H形鋼が得られる。
I. ユニバーサル仕上げミル (UFミル) を近接配置することについて 図 5(b)に示すように水平ロールと圧延材のフランジ内面との間に空間 部をもたせる上記 UEミルを URミルに近接配置し、 さらに UFミルを 近接配置することによって、 圧延材長手方向の先端部および後端部の寸 法精度を向上させることができる。 また、 UFミルを中間圧延に利用で きるので URミルと UFミルとの 1バスで厚さ方向の圧下を 2回行うこ とができ、 図 5(a)に示す方法に比べて、 圧延能率が約 50%以上向上する 。 さらに、 圧延ラインの長さが短縮でき、 圧延棟の建屋長さを短くする ことができる。 I. ユニバーサル仕上げミル (UFミル) の水平ロールを幅可変とする ことについて :
図 7(a)は図 6に示す U Eミルのロール幅を示す図、 図 7(b)は水平口一 ルを幅可変としたユニバーサル仕上ミル (UFミル) の各ロールの正面 図および圧延材の縱断面図である。 17は幅可変の 2分割水平ロール、 18 は竪ロールである。
図 7(b)に示す水平ロールに幅可変ロールを使用した UFミルを、 図 5(b)に示すように U Eミルに近接配置すると、 たとえば次のような圧 延を行うことができる。
図 7(a)に示すように、 URミルの水平ロール幅を 676隨 (ウェブ内法 寸法に等しい、 H700 XB200 用) 、 U Eミルの水平ロールの幅を 566 mmとすると、 UFミルの水平ロールの幅を 676 mmカヽら 576 mmに可変とす れば、 H700 X B200 、 H650 x B200 および H 600 x B200 の 3種類 の H形鋼を圧延することができる。 すなわち、 URミルと UFミルで圧 延材のウェブおよびフランジの厚さ方向の圧下を行い、 UEミルでフラ ンジ幅方向の圧下を行い、 UEミルの最終パスでゥヱブ高さを 50IM縮小 し、 さらに UFミルの最終パスで水平ロール幅を 676mm から 626mm に変 更すると H650 X B 200 の H形鋼が圧延できる。 同様に UEミルの最終 パスでゥヱブ高さを 100I 1 縮小し、 さらに U Fミルの最終パスで水平口 一ル幅を 676誦 から 576画 に変更すると、 H600 x B200 の H形鋼が圧 延できる。
上記はゥヱブ高さの異なる H形鋼の例について述べたが、 フランジ幅 、 ウェブ厚さおよびフランジ厚さの異なる H形鋼を圧延するラインとす れば、 上記の方法で外法寸法一定の H形鋼が製造できる。 また、 UEミ ルの水平ロール幅を URミルの水平ロール幅よりも小さく して空間部を 設けたので、 ウェブ高さを変更するための圧延機を必要としないという 効果もある。
図 5(a)および(b) に示すミル構成を用い、 上記 I、 IIに述べた方法に おいて、 U Eミルの最終パスでウェブ高さを縮小する方法を適用すれば 、 同一のロールで製造可能な製品 H形鋼のサイズの自由度がさらに増す という効果も奏する。
W. ユニバーサルエッジヤーミル (U E ミル) の水平ロールを幅可変と することについて :
図 8は U Eミルの幅可変水平ロールと竪ロールの正面図と圧延材の断 面を示す図である。 このような幅可変水平ロール 19は、 オンラインで幅 変更が可能であるので、 中間圧延の最終パスでゥ ブ高さを縮小するた めの空間部 16 (幅固定水平ロールに存在した空間部、 図 6参照) を必要 としない。 従って、 U Eミルの水平ロールと竪ロールとで孔型を形成し 、 フランジ内外面をロールで拘束し、 水平ロールでフランジ先端を圧下 できるので、 寸法精度の更なる向上が可能となる。 また、 多サイズの H 形鋼を製造する場合には、 U Eミルの水平ロールの保有数が削減でき、 圧延ロール替え時間を減少させることができる。 また、 外法寸法一定の H形鋼等を寸法精度よく製造するラインとして一層好適なものとなる。 図 8に示すような幅可変水平ロールを配置した U E ミルを図 5(c)に示 すようなラインに使用した場合、 U Eミルにおいて、 フランジ先端、 内 面、 外面をロールで拘束できるため、 製品全長にわたってウェブの中心 偏りの矯正効果およびフランジ幅の変動矯正効果が大きくなり、 高寸法 精度の H形鋼の製造が可能となる。
また、 図 5(d)に示すようなラインに使用した場合、 上記寸法精度の向 上に加え、 先に図 5(b)について述べたように圧延能率を約 50%向上させ ることができる。
通常の 2 H i- Eミル用のロールは、 図 2に示すようにロール幅方向に 数種類のエッジヤー孔型、 例えばロール胴長 2500mmの場合、 前記のよう に(A):H500X200 用、 (B):H550X200 用、 (C):H600x200 用の 3サイズ のエツジャー孔型が一本のロールに刻設されている。
仮に、 図 3(b)に示すような 2重式タイプのエッジャ一ミルの場合、 水 平ロール幅が一定であると、 製品の各サイズごとに幅の異なる水平ロー ルを保有しなければならない。 しかし、 水平ロール幅を最大 100mmまで 変更できれば、 1種類の幅可変ロールでたとえば H600X200 、
H550X200 、 H500X200 の 3サイズの圧延が可能となり、 ロールの保有 数は図 2に示した多数の孔型を刻設した 2 Hi-Eミル用のロールと等し くなる。
胴長 2500固の 2 Hi-Eミル用のロールでは重量が 20トン以上となるが 、 ユニバーサル水平ロールの重量は 7 トン程度ですみ、 幅可変機構を採 用した場合でも価格は 2 Hi-Eミル用のロールの約 2/3 となる。
ロールの幅を可変とするには、 例えば実開平 3-111404号公報 (米国特 許 5154074 号、 欧州特許 443725号) に示すように、 可動スリーブロール の外周面に突起を設け、 ァーバに対しすベりキーで連結させ、 スリーブ の基端部に雄ねじを形成し、 この雄ねじに螺合したナツ トの等分位置に 設けた突起を可動スリーブロールの突起部隙間に嵌合させ、 両突起端を 分割キーで軸方向に固定した構造とすればよい。
なお、 上記のように水平ロールの幅を可変とした U Eミルを使用した ミル群で中間圧延を行うこと、 およびこれに続く仕上げ圧延を前記ミル 群に前記 Iに説明したように近接配置された UFミルを用いて H形鋼を 製造することもできる。 また、 上記 UFミルとして前記 Π [に説明したよ うな幅可変の水平ロールを備えたユニバーサルミルを用いて H形鋼を製 造することもできる。
なお、 水平ロールの幅を可変とした UEミルでは、 多サイズの H形鋼 を寸法精度よく圧延することもできる。 本発明の H形鋼の製造方法の効果を、 予備試験 1、 2および実施例 1 から実施例 6まで、 ならびに比較例に基づいて説明する。
(予備試験 1 )
U Eミルの水平ロール幅を U Rミルの水平ロール幅よりも小さく し、 U Eミルの水平ロールで圧延材のフランジ内面を拘束しないようにした 場合の、 ウェブ中心偏りの矯正効果を、 モデルミルを用いて確認した。 図 9は、 モデルミルに用いた圧延粗形材の縦断面形状を示す図である 。 圧延粗形材には、 圧延仕上がり寸法を正確 (0. 1 画単位) に測定でき るように、 圧延温度でスケールの発生しないステンレス鋼を使用した。 圧延粗形材は、 予めウェブ中心偏り
〔 ( b i - b2 ) / 2 = (23. 5-21. 5)/2 = 1〕 が 1 mmになるように、 長さ 500mm のステンレス鋼から切削により製造した。
圧延温度は 900 °Cで、 パス数は 1回、 フランジ幅圧下率は 6 %とした o
エッジヤーミルとして次の 3種類を用いた。
① 2 H i 孔型タイプ;水平ロールがフランジ内面に接触するもの、 水平ロール幅は 84mm
②ユニバーサルタイプ;水平ロールと竪ロールとがフランジ内外面を 拘束するもの、 水平ロール幅は 84mm
(従来の技術の項に記載した 「WALZWERKSWESENJ に示された方法)
③ユニバーサルタイプ;水平ロール幅を 64mmとし、 フランジ内面と 水平ロールとの間に空間幅 5 = 10mmを設けたもの。 上記の圧延後、 さらに水平ロールが幅可変型の U Fミルでウェブおよ びフランジ部の厚さを圧下率 1 %で柽圧下した後、 ウェブ中心偏りを測 定した。
図 10は、 上記の試験で得られた圧延粗形材と圧延材の長さ方向の中心 偏りの測定値を示す図である。
図 10において、 (D) で示す実線は上記エッジヤーミルタイプ①の二重 孔型タイプのロールを用いて圧延した場合で、 フランジ部(b,=23.5画の 方) が外側に座屈し、 エッジングされず、 次の UFミルで元に戻るだけ であったために、 中心偏りの矯正効果はほとんどなく、 (G) で示す実線 (圧延粗形材) として示したものとほぼ同様であった。 また、 図 10にお いて、 (E) で示す鎖線はエッジヤーミルタイプ②のユニバーサルエッジ ャ一ミルを用いて圧延した場合で、 ゥヱブがフランジの中央方向に約 l mm移動し、 中心偏りは 1匪から 0.01画まで改善された。 さらに、 図 10 において、 (F) で示す実線は上記エッジヤーミル夕イブ③の本発明の方 法を用いた場合では、 フランジが外側に座屈するのが防止されるため、 ウェブがフランジの中央方向に約 1隱移動し、 中心偏りは 1 mmから 0.02 mmまで改善され、 ②のエッジヤーミルを使用した場合 ((E) の鎖線) と 同程度の効果が得られていることがわかる。
(予備試験 2 )
予備試験 1で用いた上記③のエツジャーミルタイプと図 9に示す圧延 粗形材を用いてウェブ高さを変更する試験を行った。
ウェブ高さを 100 mmカヽら 88mmまで 12mm縮小し、 かつフランジ幅を 50mm から 47画まで 3隱圧下し、 その後予備試験 1 と同様に UF ミルを通した 図 11は、 上記試験で得られたフランジ輻を UFミルを通す前後で測定 し、 その長さ方向の変化を示す図である。 図において破線(H) は U Eミ ルで圧延した後のフランジ幅の変化を示し、 実線(J) は UFミルで圧延 した後のフランジ幅の変化を示している。 図に示すように、 ゥヱブ高さ を縮小してもフランジ幅の変動は少なく、 UFミル圧延後のフランジ幅 は 47.09〜46.79πιπι (変動幅 ±0.3 %) となり、 溶接 Η形鋼の製造寸法 精度 (±1.5 %) 以上の優れた寸法精度を確保することができる。 これ は、 ウェブ高さを縮小するとき、 フランジ先端部も圧下しているため、 ウェブ高さ縮小に伴うウェブ部からのメタルフローは圧延方向に発生し 、 フランジ幅を変化させないためである。
(実施例 1 )
図 5(a)に示すミルラインに、 図 6に示すような UEミルを配置した。 U Eミルの水平ロールは H800 X B 300 用のロールであり、 ロール幅 (L) が 750mm のものである。 この装置を用いて、 ゥヱブ高さ 900 mm、 フ ランジ幅 300 mm、 ウェブ厚さ 12mm、 フランジ厚さ 25mm (以下これを ΓΗ900 X B 300 xl2/25」 と記載する。 ) と H850 x B300 x 12/25 および H800 X B300 x 12 25の 3種類の H形鋼を製造する試験を行つ た。 図 5(a)のミルラインにおいて、 URミルと UE ミルとの間の距離は 3m、 UEミルと UFミルとの間の距離は 120 mとした。
まず、 H900 X B 300 を製造する場合、 URミルと UFミルの水平口 一ル幅を 850mm とし、 U Rミルと U Eミルの 2台で 7パスのタンデムレ バース圧延を行い、 最後に UFミルの 1パスで H900 X B 300 に仕上げ た。 このとき、 UEミルでは圧延材のフランジ内面と水平ロール間に約 50隱の空間部 <5が存在する。
次に、 H850 X B 300 を製造する場合、 URミルと UF ミルの水平口 一ル幅を 800mm とし、 U Rミルと U Eミルの 2台で 7ノ、'スのタンデムレ バース圧延を行い、 最後に U F ミルの 1パスで H850 x B 300 に仕上げ た。 このとき、 UEミルでは、 圧延材のフランジ内面と水平ロール間に 約 25誦の空間部 <5が存在する。
また、 H800 X B300 を製造する場合、 URミルと UF ミルの水平口 一ル幅を 750mm とし、 U Rミルと U Eミルの 2台で 7パスのタンデムレ バース圧延を行い、 最後に U F ミルの 1パスで H800 x B 300 に仕上げ た。 このとき、 UE ミルでは、 圧延材のフランジ内面と水平ロール間に は空間部 3が存在しない。 このように、 UEミルの水平ロールとして URミルの水平ロール幅よ りも小さな幅のロールを使用したので、 1つの UEミルで、 例えば H900 X B 300 、 H850 x B 300 および H800 x B 300 の 3種類の H形 鋼が製造できた。
図 12は実施例 ( 1〜6 ) で得られた各種 H形鋼の寸法精度、 熱間圧延 H形鋼および溶接 H形鋼の製造公差を示す図であるが、 上記実施例 1の 試験で得られた H形鋼の寸法精度は溶接 H形鋼の製造公差に十分はいる 寸法精度であった。
(実施例 2)
図 5(a)に示すミルライン構成の装置を用いて、 URミルに H900 x B 300 用の水平ロール (幅が 850 画) を、 U Eミルに H800 x B 300 用 の水平ロール (幅(L) が 750 mm) を、 UFミルに H850 x B 300 用の水 平ロール (幅が 800mm ) を組み込み、 H850 x B300 x 12 25の H形鋼 を製造する試験を行った。 UEミルの空間部 5を 50謹として、 URミル と UEミルの 2台のミルで 6バスの夕ンデムレバース圧延を行い、
H900 X B 300 用の粗形状に中間圧延した。 次いで、 UEミルの 7パス 目でゥヱブ高さを 50誦圧下することにより、 H850 X B 300 用の形状に し、 さらに U Fミルの 1パスで H850 X B300 x 12Z25の H形鋼に仕上 げた。
このように、 UEミルで空間部 5を一定に維持しながら圧延すること により、 UEミルの最終パスで容易にウェブ高さを圧下縮小することが でき、 また、 得られた H形鋼の寸法精度は、 図 12に示すように溶接 H形 鋼の製造公差に十分はいる寸法精度であった。
(実施例 3)
図 5(b)に示すミルライン構成の装置を用いて、 URミルには H900 x B 300 用の水平ロール (ロール幅 850mm ) を、 U Eミルには H800 x B 300 用の水平ロール (ロール幅 750mm ) を、 UFミルには H850 x B 300 用のロールの水平ロール (但し、 ロール幅 800mm の幅固定ロール 。 ) をそれぞれ組み込み、 H850 X B 300 x 12 25の H形鐧を製造する 試験を行った。 なお、 図 5(b)のミルラインにおいて、 URミルと UEミ ルおよび UFミルとの間の距離はいずれも 3 mとした。
まず 1パスから 6パスまでの往復圧延では UFミルのパスを圧延を行 わない空パスとし、 UEミルの空間部 5を 50画として URミルと UE ミ ルとで往復圧延して H900 X B 300 用の形状に中間圧延する。 次いで、 UEミルの 7パス目でウェブ高さを 50mm圧下して H850 x B 300 用の形 状にし、 さらに UFミルの 1パスで H850 X B 300 X 12/25の H形鋼に 仕上げた。
このように、 U Fミルを空パスとして U Eミルで空間部 5を一定に維 持しながら圧延することにより、 UE ミルの最終パスで容易にウェブ高 さを圧下縮小することができ、 また、 3つのミルを近接して配置したた め、 得られた H形鋼の寸法精度は、 図 12に示すように実施例 2よりも優 れていた。
(実施例 4 )
図 5(b)に示すミルラインの UF ミルにロール幅を 750〜850 mmの範囲 で変更することができる水平ロールを使用し、 H850 X B300 X 12/25 の H形鋼を製造する試験を行った。 U Fミルの水平ロール幅を 850mm と して URミルと UE ミルとの 3つのミルを使用して 5パスのタンデムレ バース圧延を行った。 初期の 4パスの圧延では UFミルを空パスとし、 URミルと UEミルで H900 X B 300 の圧延を行った。 5パス目におい て、 UEミルでウェブ高さを 50隱縮小して H850 X B 300 用の形状に圧 延し、 さらに U Fミルの水平ロール幅を 800 画に縮小変更して H850 x B 300 X 12Z25の H形鋼に仕上げた。 得られた H形鋼の寸法精度は、 図 12に示すように実施例 3よりも優れた寸法精度であった。
UEミルの最終パスで容易にウェブ高さを圧下縮小し、 UFミルの水 平ロールの幅を縮小変更してフランジを拘束仕上げ圧延することにより
、 図 12に示すように優れた寸法精度が得られた。
(実施例 5 )
図 5(d)に示すミルラインを用いて H500 X B200 x 10/16, H550 x B 200 xlO/16. H600 x B200 x 10 16の 3種類の H形鋼を圧延した 。 なお、 URミルと UEミルおよび UFミルとの間の距離はいずれも 3 mとし rこ。
圧延素材は例えば H500 X B200 の場合、 厚さ 300mm 、 幅 700mm の連 続铸造スラブを用いた。
図 14は、 2 Hi ブレークダウンミル ( 2 Hi- B Dミル) で H形鋼の粗 形材を圧延するパススケジュールを示す図である。 加熱炉で 1250°Cに加 熱後、 図 13に示す孔型配列を有する 2 Hi-BDミルを用いて、 図 14に示 すパススケジュールによりウェブ高さ 720 mm. ウェブ厚さ 60mm、 フラン ジ幅 250 mm、 平均フランジ厚さ 110mm のビームブランク (H形鋼の粗形 材) を造形した。
この実施例に用いた幅可変水平ロールを有する UEミルは、 図 8に示 すようにその竪ロールはフランジの外面に接する凸部の幅を 190 隱とし 、 水平ロールは孔型深さ dを 93.5腿、 左右のスリーブロール 19' の間隔 Dを 0 mmとした場合、 ロール幅が 468 mmとなるようにした。 この間隔 D は、 前述したようにオフラインまたはオンラインで変更可能である。
H550 X B200 Χ 10/ 6の H形鋼を圧延する場合には Dを 50讓として 水平ロールの幅 Lを 518 隱に、 また H600 B200 X 10ノ 16の場合には 、 100 國として水平ロールの幅 Lを 568 mmとした。 ただし、 URミル水 平ロールの摩耗を考慮し、 構造的には最大 120 誦まで変更可能となって いる。
図 15は、 図 5(d)に示すラインで H形鐧を圧延した場合のパススケジュ —ルを示す図である。 URミルの水平ロール幅は 468 mm、 この時の UE ミルの水平ロール幅は前者と一致させ 468 mmとし、 図 15に示すパススケ ジュールで H500 X B200 X 10/16 の H形鋼を製造した。
UEミルでは、 竪ロールによるフランジ部の厚さ方向の圧下は行わず 、 圧延材入側厚さと同じ開度とする。 つまり、 水平ロールのフランジ幅 圧下にともなうフランジ部の座屈防止と、 フランジ中央部の増肉を抑制 することが竪ロールの主目的である。 UEミルでのフランジ幅圧下を 5 %以下に抑えるため、 URミルでのフランジとウェブの厚さ方向の圧 下比率を 1.5: 1.0 から 2.0: 1.0 の間に調整した。 最後に UFミルに おいて 1パスの軽圧下圧延により目的サイズの H形鋼を製造した。 また 、 URミルの水平ロール幅を 518 讓とし、 UE ミルと UFミルの水平口 一ル幅を 518 隨に広げ、 H550 X B200 x 10 16の H形鋼の製造を行い 、 次に、 URミルの水平ロール幅を 568 mmとし、 UEミルと UFミルの 水平ロール幅を 568 mmに広げ、 H600 x B200 x 10/16の H形鋼を製造 した。 得られた H形鋼の各部の寸法変化を図 12に示した。
このように U Eミルと U Fミルに幅可変水平ロールを使用し、 UEミ ルと UFミルでフランジを拘束した状態で圧下したので、 図 12に示すと おり溶接 H形鋼と同等の優れた寸法精度が得られた。
(実施例 6 )
図 5(c)に示すミルラインを用いて H500 X B200 , H550 x B200 、 H600 X B200 の 3種類の H形鋼を圧延した。 なお、 図 5(c)のミルライ ンにおいて、 URミルと UEミルとの間の距離は 3 mとし、 UEミルと UFミルとの間の距離は 120 mとした。
URミルおよび UEミルには実施例 5 と同様の URミル用および UE ミル用の水平ロールを使用し、 3種類の H形鋼の圧延において UFミル では各サイズ専用の水平ロールを使用した。
H600 X B200 の場合は、 URミル、 U Eミルおよび U Fミルの水平 ロール幅はすべて 568 mmとし、 UEミルおよび. UF ミルのいずれでも圧 延材のウェブ高さの縮小は行わなかった。
H550 X B200 の場合は、 上記 H600 x B200 の圧延の URミルおよ び UE ミル群の最終パスにおいて U Eミルの水平ロール幅を 568 mmから 518 匪に小さく し、 ここで圧延材のウェブ高さを 50隱縮小し、 UFミル で仕上げ圧延した。
H500 X B200 の場合も同様で、 上記 H600 x B200 の圧延の URミ ルおよび UEミル群の最終パスにおいて U Eミルの水平ロール幅を 568 mmから 468 画に小さく し、 ここで圧延材のウェブ高さを 100 mm縮小 し、 UFミルで仕上げ圧延した。 得られた H形鋼の各部の寸法変化を図 12に示した。
(比較例)
図 16は従来の 2 Hi-Eミルのロール配置と圧延材の縱断面を示す図で あ 。
図 17は、 比較例として図 5(d)のミルラインのエッジヤーミルに従来の 2 Hi-E ミルを使用し、 H形鋼を圧延したときのパススケジュールを示 す図である。 図 5(d)のミルラインのエツジャーミルに図 16に示すエツジ ャ一孔型の深さ dが 93.5讓の従来の 2 Hi-Eミルを配置し、 H500 x B 200 X 10Z16の H形鋼を図 17に示すパススケジュールで製造した。 ま た、 同様な方法で H600 X B200 X 10/16の H形鋼を製造した。 得られ た H形鋼の各部の寸法変化を図 12に示した。
このように従来の 2 Hi-Eミルを配置した方法では、 H形鋼各部の寸 法変動が大きく、 溶接 H形鋼の寸法公差規格を満足するものが得られな かった。 また、 圧延材先端および後方のフランジ幅が増大し、 溶接 H形 鋼の製造公差外れとなった。
図 18は、 実施例 5と比較例で得られた H500 x B200 X10 16の H形 鋼のウェブ中心偏り量の圧延方向の変化を示す図である。 図において、 実線(K) は図 5(d)に示すライン (UEミルと UFミルの水平ロールを幅 可変とし、 3つのユニバーサルミルを近接配置した) で製造した場合、 破線(M) は従来の 2 H i- Eミルを配置して製造した場合である。
図 18から、 中心偏り量 Sが ± 2 mra (溶接 H形鋼の製造公差) 以上とな つている部分は、 従来方法では圧延長さの約 30%以上であるが、 本発明 方法では 0 %となり、 中心偏りによる不良をなくすことができることが ゎ力ヽる。
これはユニバーサルミルの圧延では、 圧延材の長さ方向の先端、 後端 部には圧延方向に伸びを発生しないため、 中央部に比べフラ ンジ幅が大 きくなる傾向にある。 これを往復圧延のパスごとにエツジャーミルでフ ランジ先端部を圧下して修正するのであるが、 図 16に示すような 2 H i - Eミルでは、 フランジ部が座屈するだけで圧下修正することができず、 次の U Rミルの圧延で元に戻るだけで、 中心偏りの修正は極めて困難な のである。
これに対し、 図 8のように圧延材フランジの両側面を U Eミルの両竪 ロールで拘束しフランジ先端部を圧下すると、 座屈を防止することがで きる。 また、 フランジ幅の圧下に伴いフランジ中央部が優先的に変形し 、 圧延方向に延伸されるため、 圧延材料の長さ方向の先端、 後端部のフ ランジ幅は中央部のフランジ幅と等しくできる。
本発明の H形鋼の熱間圧延方法によれば、 従来の 2 H i エッジヤ ーミ ルを使用した場合に比べ寸法精度が向上し、 ウェブ中心偏りを減少させ ることができるので、 溶接 H形鋼に匹敵する寸法精度をもった H形鋼を 製造することができる。 また、 圧延中にウェブ高さの変更ができるので 、 1組のミル群で溶接 H形鋼に匹敵する寸法精度をもったサイズの異な る複数の H形鋼を製造することができる。 産業上の利用可能性
本発明の H形鋼の製造方法によれば、 従来の 2 H i エッジヤ ーミルを 使用した場合に比べ寸法精度が向上し、 ゥ ブ中心偏りを減少させるこ とができる。 しかも、 圧延中にウェブ高さの縮小が容易にできるので、
1組のミル群で多サイズの H形鋼を溶接 H形鋼に匹敵する寸法精度で熱 間圧延で製造することができる。
建築物の鉄骨として要望されている H形鋼の多品種、 少量生産に利用 できる。

Claims

請 求 の 範 囲
1 . それぞれ 4ロールで構成されるユニバーサル粗ミルとユニバーサル エッジヤーミルとが近接配置されたミル群を中間圧延工程の少なく とも 最終段に用いて行う H形鋼の製造方法であって、 前記ユニバーサルエツ ジャーミルの水平ロールの幅を前記ユニバーサル粗ミルの水平ロールの 幅よりも小さく し、 粗形材のフランジ外面を前記ユニバーサルェッジャ 一ミルの竪ロールで拘束し、 水平ロールでフランジ先端部を圧下するこ とを特徵とする H形鋼の製造方法。
2 . それぞれ 4ロールで構成されるユニバーサル粗ミルとユニバーサル エッジャ一ミルとが近接配置されたミル群を中間圧延工程の少なく とも 最終段に用いて行う H形鋼の圧延方法であって、 前記ユニバーサルエツ ジャーミルの水平ロールの幅を前記ユニバーサル粗ミルの水平ロールの 幅よりも小さく し、 粗形材のフランジ外面を前記ユニバーサルエツジャ 一ミルの竪ロールで拘束し、 水平ロールでフランジ先端部を圧下する中 間圧延を行うこと、 およびこれに続く仕上げ圧延を上記ミル群に近接配 置されたユニバーサル仕上げミルを用いて行うことを特徴とする H形鋼 の圧延方法。
3 . 上記ユニバーサル仕上げミルとして幅可変の水平ロールを備えたュ 二バーサルミルを用いることを特徴とする請求項 2記載の H形鋼の製造 方法。
4 . それぞれ 4ロールで構成されるユニバーサル粗ミルとユニバーサル エッジヤーミルとが近接配置されたミル群を中間圧延工程の少なく とも 最終段に用いて行う H形鋼の圧延方法であって、 ユニバーサルエツジャ 一ミルの水平ロールの幅を可変とし、 ユニバーサルェッジャーミルの水 平ロールと竪ロ一ルとで孔型を形成し、 フランジの内外面をロールで拘 束し、 水平ロールでフランジ先端を圧下することを特徴とする H形鋼の 製造方法。
5 . それぞれ 4ロールで構成されるユニバーサル粗ミルとユニバーサル エッジヤーミルとが近接配置されたミル群を中間圧延工程の少なく とも 最終段に用いて行う H形鋼の圧延方法であって、 ユニバーサルエツジャ 一ミルの水平ロールの幅を可変とし、 ユニバーサルエツジャーミルの水 平ロールと竪ロールとで孔型を形成し、 フランジの内外面をロールで拘 束し、 水平ロールでフランジ先端を圧下する中間圧延を行うこと、 およ びこれに続く仕上げ圧延を上記ミル群に近接配置されたユニバーサル仕 上げミルを用いて行うことを特徴とする H形鋼の製造方法。
6 . 上記ユニバーサル仕上げミルとして幅可変の水平ロールを備えたュ 二バーサルミルを用いることを特徴とする請求項 5記載の H形鋼の製造 方法。
7 . 上記中間圧延工程のユニバーサルェソジャーミルの最終パスでゥェ ブ高さを縮小することを特徵とする請求項 1から 6までのいずれかに記 載の H形鋼の製造方法。
PCT/JP1994/002123 1993-12-20 1994-12-16 Procede de fabrication de poutres en acier en i WO1995017269A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU12007/95A AU681219B2 (en) 1993-12-20 1994-12-16 H-steel manufacturing method
EP95902974A EP0736341A4 (en) 1993-12-20 1994-12-16 PROCESS FOR PRODUCING I-STEEL BEAMS
KR1019960703285A KR100254493B1 (ko) 1993-12-20 1994-12-16 H형강의 제조방법
JP7517313A JP2943326B2 (ja) 1993-12-20 1994-12-16 H型鋼の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/319567 1993-12-20
JP31956793 1993-12-20

Publications (1)

Publication Number Publication Date
WO1995017269A1 true WO1995017269A1 (fr) 1995-06-29

Family

ID=18111713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002123 WO1995017269A1 (fr) 1993-12-20 1994-12-16 Procede de fabrication de poutres en acier en i

Country Status (5)

Country Link
EP (1) EP0736341A4 (ja)
JP (1) JP2943326B2 (ja)
KR (1) KR100254493B1 (ja)
AU (1) AU681219B2 (ja)
WO (1) WO1995017269A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760263A1 (en) * 1995-03-17 1997-03-05 Sumitomo Metal Industries, Ltd. Method of and apparatus for hot rolling h-steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862227A (zh) * 2012-12-10 2014-06-18 烟台新科钢结构有限公司 一种波纹腹板h型钢生产的工艺方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564905A (en) * 1978-11-07 1980-05-16 Sumitomo Metal Ind Ltd Rolling method for wide flange beam using flat billet as blank
JPS574401B2 (ja) * 1976-01-21 1982-01-26
JPS61137601A (ja) * 1984-12-07 1986-06-25 Kawasaki Steel Corp H形鋼の熱間圧延方法
JPH0364201B2 (ja) * 1983-10-11 1991-10-04 Kawasaki Steel Co

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550903A (en) * 1978-10-06 1980-04-14 Sumitomo Metal Ind Ltd Rolling method for wide flange beam
JPS5890301A (ja) * 1981-11-24 1983-05-30 Hitachi Zosen Corp 圧延方法
JPS61135404A (ja) * 1984-12-04 1986-06-23 Kawasaki Steel Corp H形鋼の熱間圧延方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574401B2 (ja) * 1976-01-21 1982-01-26
JPS5564905A (en) * 1978-11-07 1980-05-16 Sumitomo Metal Ind Ltd Rolling method for wide flange beam using flat billet as blank
JPH0364201B2 (ja) * 1983-10-11 1991-10-04 Kawasaki Steel Co
JPS61137601A (ja) * 1984-12-07 1986-06-25 Kawasaki Steel Corp H形鋼の熱間圧延方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0736341A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760263A1 (en) * 1995-03-17 1997-03-05 Sumitomo Metal Industries, Ltd. Method of and apparatus for hot rolling h-steel
EP0760263A4 (en) * 1995-03-17 1999-03-03 Sumitomo Metal Ind METHOD AND DEVICE FOR HOT ROLLING H-STEEL BEAMS

Also Published As

Publication number Publication date
AU1200795A (en) 1995-07-10
EP0736341A1 (en) 1996-10-09
JP2943326B2 (ja) 1999-08-30
AU681219B2 (en) 1997-08-21
EP0736341A4 (en) 1998-09-30
KR100254493B1 (ko) 2000-05-01

Similar Documents

Publication Publication Date Title
JPH08215702A (ja) フランジおよびウェブを有する形鋼の圧延方法および圧延装置列
WO1995017269A1 (fr) Procede de fabrication de poutres en acier en i
US4367642A (en) Method of producing H-beams
JP2738280B2 (ja) 外法一定平行フランジ溝形鋼の製造方法
JP3211331B2 (ja) H形鋼の熱間圧延方法
RU2088355C1 (ru) Способ изготовления гнутых гофрированных профилей
JP3339466B2 (ja) H形鋼とその圧延方法
JPH0364201B2 (ja)
JP3339457B2 (ja) H形鋼の高精度圧延方法
US4393679A (en) Method for producing blank for wide flange beam
JP2681536B2 (ja) 溝形鋼の圧延装置列
JP2861831B2 (ja) 外法一定平行フランジ溝形鋼の圧延方法
JPH091203A (ja) 形鋼の圧延装置およびその装置を用いた形鋼の圧延方法
JPH0824926B2 (ja) フランジを有する形材の圧延方法
JP2508873B2 (ja) フランジを有する形材の熱間圧延方法
JPS5893501A (ja) H形粗形鋼片の圧延方法
JP2663806B2 (ja) H形鋼圧延用エッジャーミルとその圧延方法
JPH0481201A (ja) フランジを有する形材の熱間圧延方法
JPS6293008A (ja) ウエブ高さの調整可能なh形鋼の圧延方法
JP2005028442A (ja) コルゲートh形鋼、その製造方法及びユニバーサル圧延機
JP3272879B2 (ja) フランジを有する形鋼の圧延方法
JP2002035802A (ja) H形鋼の圧延方法
JP2520528B2 (ja) 連続継手型形鋼の圧延方法
JPH0775724B2 (ja) フランジを有する形材の熱間圧延方法
JPH0985303A (ja) 連続継手型形鋼およびその圧延方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 648199

Date of ref document: 19960524

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1995902974

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995902974

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995902974

Country of ref document: EP