WO1995016726A1 - Verfahren zur herstellung von polymerisaten des maleinimids und ihre verwendung - Google Patents

Verfahren zur herstellung von polymerisaten des maleinimids und ihre verwendung Download PDF

Info

Publication number
WO1995016726A1
WO1995016726A1 PCT/EP1994/004056 EP9404056W WO9516726A1 WO 1995016726 A1 WO1995016726 A1 WO 1995016726A1 EP 9404056 W EP9404056 W EP 9404056W WO 9516726 A1 WO9516726 A1 WO 9516726A1
Authority
WO
WIPO (PCT)
Prior art keywords
maleimide
polymers
polymerization
sodium
anionic
Prior art date
Application number
PCT/EP1994/004056
Other languages
English (en)
French (fr)
Inventor
Matthias Kroner
Dieter Boeckh
Gunnar Schornick
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO1995016726A1 publication Critical patent/WO1995016726A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/121Preparatory processes from unsaturated precursors and polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam

Definitions

  • the invention relates to a process for the production of polymers of maleimide by anionic or thermal polymerization of maleimide and the use of the hydrolyzed polymers in detergents and cleaning agents.
  • the object of the invention is to provide processes for the production of higher molecular weight polymers of maleimide than are available according to the prior art.
  • the object is achieved according to the invention with processes for the preparation of polymers of maleimide by anionic or thermal polymerization of maleimide, if the polymerization is carried out in the absence of solvents and diluents.
  • the anionic polymerization of maleimide can be initiated by the process according to the invention with the aid of all basic catalysts which catalyze the polymerization of maleimide in water or in non-aqueous solvents and diluents.
  • the bases can be inorganic or organic in nature.
  • tertiary nitrogen atoms such as triethylamine, tributylamine, N, N-dicyclohexylethylamine, N-ethyldiisopropylamine, trioctylamine, tribenzylamine, tridodecylamine, triallylamine, N-benzyl-N-ethylaniline, N, N-diethylaniline, are suitable.
  • alkali metal and alkaline earth metal salts of carboxylic acids such as sodium acetate, sodium oleate, sodium oxalate, potassium oleate, potassium stearate and sodium stearate, oxides, 'hydroxides, carbonates or bicarbonates of alkali and alkaline earth metals such as sodium carbonate, sodium hydrogen carbonate,
  • Basic catalysts which are preferably used are triethylamine, calcium oxide, sodium carbonate, sodium stearate and sodium acetate. A single basic compound or a mixture of two or more basic compounds can be used as the catalyst. The amount of catalyst is not critical. Amounts of 0.0001 to 10, preferably 0.001 to 0.05, moles of base per mole of maleimide are generally used.
  • the monomer / initiator ratio determines the molecular weight of the polymerate.
  • the average degree of polymerization P n is the quotient of the molar amount of monomer and initiator
  • the anionic polymerization of maleimide takes place, for example, in the temperature range from 0 to 240 ° C. and is preferably carried out at temperatures above the melting point of maleimide, ie at about 90 to 170 ° C.
  • the anionic polymerization of maleimide in the presence of tertiary amines as a catalyst is particularly easy to carry out industrially.
  • Polymerization is preferably carried out in the presence of triethylamine if the reaction is carried out at temperatures below the melting point of maleimide. If the polymerization is carried out in molten maleimide, sodium acetate, sodium carbonate, triethylamine and / or calcium oxide are preferably used as catalysts. gate.
  • Tertiary amines are particularly suitable since they are soluble in molten maleimide.
  • the polymerization takes place in the absence of solvents and diluents.
  • maleimide is brought into contact with a basic compound which acts as a catalyst.
  • a basic compound which acts as a catalyst.
  • a volatile tertiary amine can be passed through or through a powdered maleimide using an inert gas stream.
  • the polymerization can be carried out in all reactors which are suitable for working with solids or melts, e.g. in extruders, kneaders, stirred tanks, dryers or heating tapes.
  • Maleimide can be used in the form of a powder, as granules or in the form of coarser pieces in the polymerization.
  • the thermal polymerization of maleimide is carried out at temperatures above 250 ° C., preferably at temperatures of at least 270 ° C. It runs in the absence of catalysts as well as solvents and diluents. For example, molten maleimide is heated to temperatures of 270 to 350 ° C.
  • the polymerization can be carried out in the usual devices, e.g. in a fluidized bed, on a heated belt or in an extruder.
  • the anionic and thermal polymerization takes about 5 seconds to 120 minutes.
  • maleinimide (I) can exist in the tautomeric form as 2-hydroxy-5-oxopyrrole (II):
  • the proportion of structures IV can be 0 to 50 mol%.
  • the proportion of structure III is usually 50 to 100 mol%.
  • units V and III are formed in addition to units III and IV, which are formed by polymerizing the double bond to form C-C chains:
  • the polymers which mainly contain the structural units (III), (IV) and (V), are insoluble in water. However, they can be converted into a water-soluble form by hydrolysis, preferably in the presence of a base.
  • Alkali metal, alkaline earth metal or ammonium bases can advantageously be used as the base. Examples of particularly suitable bases are sodium hydroxide solution, potassium hydroxide solution, calcium hydroxide, magnesium hydroxide, ammonia, triethylamine, triethanolamine and morpholine.
  • Mixtures of bases can also be used for the hydrolysis of the polymaleimides. The hydrolysis is carried out, for example, by suspending the polymaleiimides in water and adding at least one base.
  • the base is preferably added under pH control.
  • the hydrolysis can be carried out in a wide temperature range, for example at temperatures from 0 to 100 ° C., preferably from 60 up to 95 ° C.
  • the polymers of maleimide can be partially or completely neutralized.
  • the resulting polycarboxylates have molar masses M of approximately 1,000 to 100,000, preferably 1,200 to 50,000.
  • the non-hydrolyzed polymers of maleimide have K values from 9 to 150 (measured according to H. Fikentscher in dimethylformamide at 25 ° C in 1% solution).
  • the hydrolyzed polymers of maleimide are used in particular as an additive to detergents and cleaning agents, as a scale inhibitor, as a grinding aid and as a dispersant for pigments.
  • the hydrolyzed Polymalein.imide increase the primary washing effect of detergents and cleaning agents and at the same time have a dispersing effect on detached dirt particles in the detergent fleet.
  • the hydrolyzed polymers can be present in the washing and cleaning agents in amounts of 0.1 to 20, preferably 0.2 to 10% by weight.
  • the detergents and cleaning agents can be in powder form or can also be in liquid form.
  • the composition of the detergent and cleaning agent formulations can be very different.
  • Detergent and cleaning agent formulations usually contain 2 to 50% by weight of surfactants and optionally builders. This information usually applies to both liquid and powder detergents. Detergent and cleaning agent formulations which are common in Europe, the USA and Japan can be found, for example, in Chemical and Engn. News, volume 67, 35 (1989). Further information on the composition of detergents and cleaning agents can be found in Ullmann's Encyclopedia of Industrial Chemistry, Verlag Chemie, Weinheim 1983, 4th edition, pages 63 to 160.
  • the detergents may optionally also contain a bleach, e.g. Sodium perborate, which can be used in amounts up to 30% by weight.
  • the detergents and cleaning agents can optionally contain further conventional additives, e.g. Complexing agents, opacifiers, optical brighteners, enzymes, perfume oils, color transfer inhibitors, graying inhibitors and / or bleach activ
  • the hydrolyzed polymers are also suitable as dispersants for the production of pigment slurries, for example for clay and chalk dispersion for the production of highly concentrated pigment slurries for the paper industry, for the production of zeolite slurries for the detergent industry Ore processing, for the production of coal slurries and as a scale inhibitor, for example in seawater desalination.
  • the anionically polymerized polymers are more than 50% biodegradable in the hydrolyzed sodium salt form according to the modified Zahn-Wellens test (OECD Guidelines for Testing Chemicals 302 B (1981)).
  • the K values of the polyimides were determined according to H. Fikentscher, Cellulose-Chemie, Vol. 13, 58-64 and 71-74 (1932) on 1% by weight solutions of the polymers in dimethylformamide at 25 ° C.
  • a 5 ml flask was charged with 2.3 g of powdered maleimide.
  • the flask was sealed airtight and slowly heated on a hot plate. At about 100 ° C, a clear, colorless melt formed. The melt began to boil at around 270 ° C. At the same time, their viscosity slowly increased. After about 30 minutes the contents of the flask solidified to a yellow resin.
  • the polymer was kept at a temperature of 270 ° C. for a further 30 minutes and then cooled.
  • the contents of the flask were dissolved in hot dimethyl sulfoxide and the solution was then added dropwise to 100 ml of water while stirring. The so obtained Slurry was allowed to stand for 20 hours and then the polymer was filtered off. The polymer was washed with 30 ml of water and air dried. 2.1 g of a polymaleimide with a K value of 30. 5 were obtained
  • Example 4 was repeated with the difference that 20 mg of sodium carbonate was added as an initiator.
  • the polymaleimide had a K value of 20.3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Pyrrole Compounds (AREA)

Abstract

Verfahren zur Herstellung von Polymerisaten des Maleinimids durch anionische oder thermische Polymerisation von Maleinimid in Abwesenheit von Löse- und Verdünnungsmitteln und Verwendung von hydrolysierten Polymaleinimiden als Zusatz zu Wasch- und Reinigungsmitteln, als Scaleinhibitor, als Mahlhilfsmittel und als Dispergiermittel für Pigmente.

Description

Verfahren zur Herstellung von Polymerisaten des Maleinimids und ihre Verwendung
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Polyme¬ risaten des Maleinimids durch anionische oder thermische Polyme¬ risation von Maleinimid und die Verwendung der hydrolysiertenPo- lymerisate in Wasch- und Reinigungsmitteln.
Aus Makromol. Chem., Band 168, 51 - 58 (1973) ist die Polymerisa¬ tion von Maleinimid in wäßriger Lösung bei Raumtemperatur unter dem katalytischen Einfluß von Pyridin bekannt. Die dabei entste- henden Polymeren haben Molekulargewichte M bis zu 1 000. Sie enthalten hauptsächlich Succinimid-Einheiten. Aus dieser Literaturstelle ist ebenfalls bekannt, Maleinimid in nicht-wäßri¬ gem Medium mit basischen Katalysatoren zu polymerisieren, z. B. in Dimethylformamid mit Natrium-tert.-butylat als Initiator.
Der Erfindung liegt die Aufgabe zugrunde, Verfahren zur Herstel¬ lung von höhermolekularen Polymerisaten des Maleinimids zur Ver¬ fügung zu stellen, als sie nach dem Stand der Technik erhältlich sind.
Die Aufgabe wird erfindungsgemäß gelöst mit Verfahren zur Her¬ stellung von Polymerisaten des Maleinimids durch anionische oder thermische Polymerisation von.Maleinimid, wenn man die Polymeri¬ sation in Abwesenheit von Löse- und Verdünnungsmitteln vornimmt.
Die anionische Polymerisation des Maleinimids kann nach dem erfindungsgemäßen Verfahren mit Hilfe aller basischen Katalysatoren initiiert werden, die die Polymerisation des Maleinimids in Wasser oder in nicht-wäßrigen Löse- und Verdün- nungsmitteln katalysieren. Die Basen können anorganischer oder organischer Natur sein. Beispielsweise eignen sich sämtliche basischen, tertiäre Stickstoffatome enthaltenen Verbindungen wie Triethylamin, Tributylamin, N,N-Dicyclohexylethylamin, N-Ethyl- diisopropylamin, Trioctylamin, Tribenzylamin, Tridodecylamin, Triallylamin, N-Benzyl-N-ethylanilin, N,N-Diethylanilin,
N,N-Dimethyltoluidin, N,N'-Di-methylpiperazin, Guanidin, Pyridin, N,N-Dimethylaminopyridin, Picolin, Collidin, Imidazol, Indol, Pyrimidin, Diazabicycloundecen, Diazabicyclononen, Diazabicyclo- octan, Triazabicyclodecen und Schiffsche Basen wie Benzylidenben- zylimin. Andere basische Katalysatoren sind Alkali- und Erdalkalisalze von Carbonsäuren wie Natriumacetat, Natriumoleat, Natriumoxalat, Kaliumoleat, Kaliumstearat und Natriumstearat, Oxide,' Hydroxide, Carbonate oder Hydrogencarbonate von Alkali- und Erdalkali- metallen wie Natriumcarbonat, Natriumhydrogencarbonat,
Kaliumcarbonat, Kaliumhydrogencarbonat, Calciumoxid, Calcium- hydroxid, Bariumhydroxid, basisches Aluminiumoxid und Zinkhy¬ droxid, Dinatriumhydrogenphosphat, Natriumfluorid und Alkali- metallalkoholate und -thiolate wie Kalium-tert.-butylat, Natrium- tert.-butylat, Natriummethylat, Natriu -tert.-butylthiolat und Kalium-tert.-butylthiolat. Bevorzugt eingesetzte basische Katalysatoren sind Triethylamin, Calciumoxid, Natriumcarbonat, Natriumstearat und Natriumacetat. Man kann eine einzige basische Verbindung oder eine Mischung aus zwei oder mehreren basischen Verbindungen als Katalysator einsetzen. Die Menge an Katalysator ist nicht kritisch. Man verwendet im allgemeinen Mengen von 0,0001 bis 10, vorzugsweise 0,001 bis 0,05 Mol Base pro Mol Maleinimid.
Das Monomer/Initiatorverhältnis bestimmt das Molekulargewicht des Polymensates.
Der mittlere Polymerisationsgrad Pn ist der Quotient aus molarer Monomer- und Initiatormenge
M
Pn =
I
M, I = molare Monomer- bzw. Initiatormenge
Beispielsweise erhält man bei Verwendung von 0,01 mol Triethyl¬ amin pro 1 mol Maleinimid einen mittleren Polymerisationsgrad Pn = 100.
Die anionische Polymerisation von Maleinimid verläuft beispiels¬ weise in dem Temperaturbereich von 0 bis 240°C und wird vorzugs¬ weise bei Temperaturen oberhalb des Schmelzpunkts von Maleinimid durchgeführt, d.h. bei etwa 90 bis 170°C. Technisch besonders ein¬ fach durchzuführen ist die anionische Polymerisation von Malein- imid in Gegenwart von tertiären Aminen als Katalysator. Hierbei wird bevorzugt in Gegenwart von Triethylamin polymerisiert, wenn man die Reaktion bei Temperaturen unterhalb des Schmelzpunkts von Maleinimid durchführt. Wenn man die Polymerisation in geschmolze¬ nem Maleinimid vornimmt, setzt man vorzugsweise Natriumacetat, Natriumcarbonat, Triethylamin und/oder Calciumoxid als Katalysa- tor ein. Tertiäre Amine eignen sich besonders gut, da sie in ge¬ schmolzenen Maleinimid löslich sind.
Die Polymerisation erfolgt erfindungsgemäß in Abwesenheit von Löse- und Verdünnungsmitteln. Um die anionische Polymerisation zu initiieren, bringt man Maleinimid mit einer als Katalysator wir¬ kenden basischen Verbindung in Kontakt. Beispielsweise kann man ein flüchtiges tertiäres Amin mit Hilfe eines InertgasStroms durch ein oder über ein pulverförmiges Maleinimid leiten. Ebenso ist es möglich, feinteiliges Maleinimid mit dem Katalysator bei Raumtemperatur zu mischen und die Polymerisation bei Raumtempera¬ tur oder durch Erhitzen der Mischung bei höherer Temperatur, z.B. bei 40 bis 240°C ablaufen zu lassen. Die Polymerisation kann in allen Reaktoren durchgeführt werden, die für das Arbeiten mit Feststoffen oder Schmelzen geeignet sind, z.B. in Extrudern, Knetern, Rührkesseln, Trocknern oder Heizbändern.
Maleinimid kann in Form eines Pulvers, als Granulat oder in Form gröberer Stücke bei der Polymerisation eingesetzt werden.
Die thermische Polymerisation von Maleinimid wird bei Temperatu¬ ren oberhalb von 250°C durchgeführt, vorzugsweise bei Temperaturen von mindestens 270°C. Sie verläuft in Abwesenheit von Katalysatoren sowie Löse- und Verdünnungsmitteln. So erhitzt man beispielsweise geschmolzenes Maleinimid auf Temperaturen von 270 bis 350°C. Die Polymerisation kann in den üblichen Vorrichtungen durchgeführt werden, z.B. in einem Wirbelbett, auf einem beheiz¬ tem Band oder in einem Extruder.
Die anionische und thermische Polymerisation dauert etwa 5 Sekun¬ den bis 120 Minuten.
Bei der anionischen und der thermischen Polymerisation von Maleinimid erhält man Polymerisate, die Succinimid-Einheiten ein- polymerisiert enthalten. Die bei der anionischen Polymerisation bis 240°C entstehenden Einheiten III und IV a und b bilden sich durch Addition der H-Gruppe von Maleinimid an die Doppelbindung eines anderen Maleinimidmoleküls. Maleinimid (I) kann in der tau- tomeren Form als 2-Hydroxy-5-oxo-pyrrol (II) vorliegen:
Figure imgf000005_0001
Bei der anionischen Polymerisation kann sich sowohl die OH-Gruppe von (II) oder die NH-Gruppe von (I) an die Doppelbindung von Maleinimid addieren. Dabei entstehen Succinimid-Einheiten der Struktur (III) bzw. Äpfelsäure-Einheiten der Strukturen (IV a und b) :
Figure imgf000006_0001
Der Anteil der Strukturen IV kann 0 bis 50 Mol.-% betragen. Der Anteil der Struktur III beträgt üblicherweise 50 bis 100 Mol.-%.
Bei der thermischen Polymerisation oberhalb 250°C entstehen neben den Einheiten III und IV auch Einheiten V, die durch Polymerisie- ren der Doppelbindung unter Bildung von C-C-Ketten entstanden sind:
Figure imgf000006_0002
(V)
Die Polymeren, die hauptsächlich die Struktureinheiten (III) , (IV) und (V) enthalten, sind in Wasser unlöslich. Sie können aber durch Hydrolyse, vorzugsweise in Gegenwart einer Base, in eine wasserlösliche Form überführt werden. Als Base kann man vorteil¬ haft Alkalimetall-, Erdalkalimetall- oder Ammoniumbasen verwen¬ den. Beispiele für besonders geeignete Basen sind Natronlauge, Kalilauge, Calciumhydroxid, Magnesiumhydroxid, Ammoniak, Tri¬ ethylamin, Triet anolamin und Morpholin. Man kann auch Mischungen von Basen zur Hydrolyse der Polymaleinimide einsetzen. Die Hydro¬ lyse wird beispielsweise so durchgeführt, daß man die Polymalei¬ nimide in Wasser aufschlämmt und mindestens eine Base zufügt. Die Zugabe der Base erfolgt dabei vorzugsweise unter pH-Kontrolle. Die Hydrolyse kann in einem weiten Temperaturbereich durchgeführt wc cden, z.B. bei Temperaturen von 0 bis 100°C, vorzugsweise von 60 bis 95°C. Die Polymerisate des Maleinimids können dabei teilweise oder vollständig neutralisiert werden. Die dabei entstehenden Po- lycarboxylate haben Molmassen M von ca. 1 000 bis 100 000, vor¬ zugsweise von 1 200 bis 50 000.
Die nicht hydrolysierten Polymerisate des Maleinimids haben K- Werte von 9 bis 150 (gemessen nach H. Fikentscher in Dimethyl- formamid bei 25°C in 1 %iger Lösung) .
Die hydrolysierten Polymerisate des Maleinimids werden ins¬ besondere als Zusatz zu Wasch- und Reinigungsmitteln, als Scale- inhibitor, als Mahlhilfsmittel und als Dispergiermittel für Pig¬ mente verwendet. Die hydrolysierten Polymalein.imide erhöhen die Primärwaschwirkung von Wasch- und Reinigungsmitteln und wirken in der Waschmittelflotte gleichzeitig dispergierend auf abgelöste Schmutzteilchen. Die hydrolysierten Polymerisate können in Mengen von 0,1 bis 20, vorzugsweise 0,2 bis 10 Gew.-% in den Wasch- und Reinigungsmitteln enthalten sein.
Die Wasch- und Reinigungsmittel können pulverförmig sein oder auch in flüssiger Einstellung vorliegen. Die Zusammensetzung der Wasch- und Reinigungsmittelformulierungen kann sehr unterschied¬ lich sein. Wasch- und Reinigungsmittelformulierungen enthalten üblicherweise 2 bis 50 Gew.-% Tenside und gegebenenfalls Builder. Diese Angaben gelten üblicherweise sowohl für flüssige als auch für pulverförmige Waschmittel. Wasch- und Reinigungsmittelformu¬ lierungen, die in Europa, in den USA und in Japan gebräuchlich sind, findet man beispielsweise in Chemical and Engn. News, Band 67, 35 (1989) tabellarisch dargestellt. Weitere Angaben über die Zusammenswetzung von Wasch- und Reinigungsmitteln können Ullmanns Encyklopädie der technischen Chemie, Verlag Chemie, Weinheim 1983, 4. Auflage, Seiten 63 bis 160, entnommen werden. Die Wasch¬ mittel können gegebenenfalls noch ein Bleichmittel enthalten, z.B. Natriumperborat, das in Mengen bis zu 30 Gew.-% angewendet werden kann. Die Wasch- und Reinigungsmittel können gegebenen¬ falls weitere übliche Zusätze enthalten, z.B. Komplexbildner, Trübungsmittel, optische Aufheller, Enzyme, Parfümöle, Farbüber- tragungsinhibitoren, Vergrauungsinhibitoren und/oder Bleichakti¬ vatoren.
Die hydrolysierten Polymerisate eignen sich ebenfalls als Dispergiermittel zur Herstellung von Pigmentslurries, z.B. zur Clay- und Kreidedispergierung für die Herstellung von hochkonzen¬ trierten Pigmentanschlämmungen für die Papierindustrie, zur Her- Stellung von Zeolithslurries für die Waschmittelindustrie, zur Erzaufbereitung, zur Herstellung von Kohleslurries und als Scale- inhibitor, z.B. bei der Meerwasserentsalzung.
Die anionisch polymerisierten Polymere sind in der hydrolysierten Na-Salzform zu über 50 % biologisch abbaubar gemäß dem modifi¬ ziertem Zahn-Wellens-Test (OECD Guidelines for Testing Chemicals 302 B (1981)) .
Die K-Werte der Polyimide wurden nach H. Fikentscher, Cellulose- Chemie, Band 13, 58 - 64 und 71 - 74 (1932), an 1 gewl-%igen Lö¬ sungen der Polymeren in Dimethylformamid bei 25°C bestimmt.
Beispiel 1
In einer 20 ml fassenden Schraubdeckelflasche wurde zunächst 1 g pulverförmiges Maleinimid eingefüllt. Dann füllte man ein offenes Glasgefäß mit 20 mg Triethylamin, stellte das Gefäß in die Schraubdeckelflasche, verschloß sie luftdicht und ließ sie drei Tage bei 20°C stehen. Danach wurde der Inhalt der Schraubdeckel- flasche mit 20 ml Wasser aufgenommen, um das nicht polymerisierte Maleinimid zu extrahieren. Die Menge des in Wasser unlöslichen Rückstands betrug 0,2 g. Das Polymer zeigte bei der spektroskopi¬ schen Untersuchung die für Polyasparaginsäureimid typischen Sig¬ nale. Es hatte einen K-Wert von 17.
Beispiel 2
In einem auf 200°C vorgeheizten Ölbad wurde 1 g pulverförmiges Maleinimid aufgeschmolzen und 30 Minuten auf dieser Temperatur gehalten. Die dünnflüssige Schmelze polymerisierte unter diesen Bedingungen nicht. Nach Zugabe von 20 mg Natriumacetat setzte je¬ doch eine stürmisch verlaufende Reaktion ein. Der Inhalt des Rea¬ genzglases erstarrte innerhalb von 20 Sekunden zu einer spröden Masse. Das Polymerisat hatte einen K-Wert von 20,5.
Beispiel 3
In einen 5 ml fassenden Kolben wurden 2,3 g pulverförmiges Maleinimid eingefüllt. Der Kolben wurde luftdicht verschlossen und auf einer Heizplatte langsam aufgeheizt. Bei ca. 100°C bildete sich eine klare, farblose Schmelze. Bei etwa 270°C begann die Schmelze zu sieden. Gleichzeitig stieg ihre Viskosität langsam an. Nach etwa 30 Minuten erstarrte der Kolbeninhalt zu einem gel¬ ben Harz. Das Polymerisat wurde noch 30 Minuten bei einer Temperatur von 270°C gehalten und danach abgekühlt. Man löste den Kolbeninhalt in heißem Dimethylsulfoxid und tropfte die Lösung anschließend unter Rühren in 100 ml Wasser. Die so erhaltene Auf- schlämmung ließ man 20 Stunden stehen und filtrierte danach das Polymer ab. Das Polymer wurde mit 30 ml Wasser gewaschen und an der Luft getrocknet. Man erhielt 2,1 g eines Polymaleinimids vom K-Wert 30. 5
Beispiel 4
1 g Maleinimid wird mit 20 mg Natriumacetat versetzt und bei 110°C in einem Ölbad aufgeschmolzen. Nach 2 Minuten beginnt die Polyme- 10 risation, daran erkennbar, daß die Viskosität der Reaktionsmi¬ schung ansteigt. Man hält weitere 20 Minuten bei 110°C und kühlt ab. Das Polymaleinimid hatte einen K-Wert von 26,1.
Beispiel 5
15
Beispiel 4 wurde mit dem Unterschied wiederholt, daß 20 mg Natriumcarbonat als Initiator zugesetzt wurde. Das Polymaleinimid hatte einen K-Wert von 20,3.
20 Beispiel 6
1 g Maleinimid wurde mit 10 mg Natriumstearat bei 110°C aufge¬ schmolzen und eine Stunde unter gelegentlichem Umrühren bei die¬ ser Temperatur belassen. Der K-Wert des Polymaleinimids betrug 25 21,9.
Beispiel 7
1 g Malein.imid wurde bei 110°C aufgeschmolzen und mit 20 mg Tri- 30 ethylamin versetzt. Es entsteht eine homogene, rötliche Reakti¬ onsmischung. Nach 5 Minuten wird die Reaktionsmischung viskos. Man hält eine weitere halbe Stunde bei 110°C und erhält ein Poly¬ maleinimid mit einem K-Wert von 25,8.
35
40
45

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polymerisaten des Maleinimids durch anionische oder thermische Polymerisation von Malein¬ imid, dadurch gekennzeichnet, daß man die Polymerisation in Abwesenheit von Löse- und Verdünnungsmitteln vornimmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die anionische Polymerisation in Gegenwart von tertiären Ami- nen als Katalysator durchführt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die anionische Polymerisation in Gegenwart von Triethyl- amin als Katalysator durchführt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die anionische Polymerisation in Gegenwart von Natriumacetat, Natriumstearat, Natriumcarbonat und/oder Calciumoxid durch- führt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die thermische Polymerisation bei Temperaturen oberhalb von 250°C durchführt.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die thermische Polymerisation bei Temperaturen von mindestens 270°C durchführt.
7. Verwendung von hydrolysierten Polymerisaten des Maleinimids als Zusatz zu Wasch- und Reinigungsmitteln, als Scale- inhibitor, als Mahlhilfsmittel und als Dispergiermittel für Pigmente.
8. Verwendung nach Anspruch 7, dadurch gekennzeichnet, daß die hydrolysierten Polymerisate des Maleinimids durch Behandlung der nach dem Verfahren der Ansprüche 1 bis 6 erhältlichen Po¬ lymerisate mit Basen in wäßrigem Medium hergestellt werden.
PCT/EP1994/004056 1993-12-16 1994-12-06 Verfahren zur herstellung von polymerisaten des maleinimids und ihre verwendung WO1995016726A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4342930.0 1993-12-16
DE4342930A DE4342930A1 (de) 1993-12-16 1993-12-16 Verfahren zur Herstellung von Polymerisaten des Maleinimids und ihre Verwendung

Publications (1)

Publication Number Publication Date
WO1995016726A1 true WO1995016726A1 (de) 1995-06-22

Family

ID=6505183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/004056 WO1995016726A1 (de) 1993-12-16 1994-12-06 Verfahren zur herstellung von polymerisaten des maleinimids und ihre verwendung

Country Status (2)

Country Link
DE (1) DE4342930A1 (de)
WO (1) WO1995016726A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1497355A1 (de) * 2002-04-19 2005-01-19 Michigan State University Synthese und anwendungen von polymaleinimid
US6986852B2 (en) 2000-08-25 2006-01-17 Bayer Aktiengesellschaft Process for conditioning standing and flowing water systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525365A1 (de) * 1995-07-12 1997-01-16 Bayer Ag Papierhilfsmittel mit wiederkehrenden Succinyleinheiten
ES2367364T3 (es) 2004-12-24 2011-11-02 Basf Se Empleo de agentes tensioactivos no iónicos en la obtención de metales.
RU2542974C2 (ru) 2010-08-03 2015-02-27 Басф Се Жидкости-носители для абразивов
WO2013113859A1 (de) 2012-02-01 2013-08-08 Basf Se Kühl- und/oder schmierflüssigkeiten zur waferherstellung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256366A1 (de) * 1986-08-07 1988-02-24 Bayer Ag Verfahren zur Herstellung von Polyasparaginamidsäure und ihren Salzen
WO1993021556A1 (de) * 1992-04-17 1993-10-28 Hoechst Aktiengesellschaft Maleinimid copolymer als orientierungsschicht für flüssigkristalldisplays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256366A1 (de) * 1986-08-07 1988-02-24 Bayer Ag Verfahren zur Herstellung von Polyasparaginamidsäure und ihren Salzen
WO1993021556A1 (de) * 1992-04-17 1993-10-28 Hoechst Aktiengesellschaft Maleinimid copolymer als orientierungsschicht für flüssigkristalldisplays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DECKER: "Pyridine Catalyzed Polymerization of Maleimide in Water Solution", MAKROMOLEKULARE CHEMIE, RAPID COMMUNICATIONS, vol. 168, 1973, BASEL CH, pages 51 - 58 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986852B2 (en) 2000-08-25 2006-01-17 Bayer Aktiengesellschaft Process for conditioning standing and flowing water systems
EP1497355A1 (de) * 2002-04-19 2005-01-19 Michigan State University Synthese und anwendungen von polymaleinimid
EP1497355A4 (de) * 2002-04-19 2007-03-21 Univ Michigan State Synthese und anwendungen von polymaleinimid

Also Published As

Publication number Publication date
DE4342930A1 (de) 1995-06-22

Similar Documents

Publication Publication Date Title
DE69327085T2 (de) Herstellung von Polysuccinimid durch thermische Polymerisation von Maleamicsäure
DE69124628T2 (de) Verfahren zur herstellung von polyamino-säuren
US5548036A (en) Preparation of polymers of aspartic acid and their use
EP0573463B1 (de) Verwendung von polyacetalen in wasch- und reinigungsmitteln
CA1038523A (en) Methyl acrylate-acrylic acid copolymeric pigment dispersant and method of dispersing therewith
US5047490A (en) High molecular weight copolymers of maleic anhydride and methyl vinyl ether
WO1995016726A1 (de) Verfahren zur herstellung von polymerisaten des maleinimids und ihre verwendung
JPS5964612A (ja) モノエチレン性不飽和のモノ−及びジカルボン酸の共重合物の製法
US5804639A (en) Pigment preparations having a high solids content
DE69513515T2 (de) Herstellung von polysuccinimid
WO1996005241A1 (de) Verfahren zur herstellung von polyasparaginsäure
JPH08507802A (ja) アスパラギン酸を主体とする共重縮合体、その製造方法およびその使用
US3838113A (en) Maleic anhydride copolymer
US3545995A (en) Method of dispersing fine powders
DE19603053A1 (de) Verfahren zur Herstellung von Polymeren mit wiederkehrenden Succinyl-Einheiten
EP0767807B1 (de) Verfahren zur herstellung von polyasparaginsäure und/oder polyasparaginsäureimiden
JPH0623219B2 (ja) 小さいk‐値のポリアクリルニトリル、その製造方法およびその用途
DE19603052A1 (de) Verfahren zur Herstellung von Polymeren mit wiederkehrenden Succinyl-Einheiten
US4357437A (en) Process for the production of water-soluble hydrolyzed products of polyacrylonitrile polymers
EP0113048A1 (de) Verfahren zur Herstellung von pulverförmigen Polymerisaten und deren Verwendung
DE19512898A1 (de) Iminodisuccinat-enthaltende Polymere
EP0927216A1 (de) Verfahren zur herstellung von polymeren mit wiederkehrenden succinyleinheiten
WO1991018932A1 (en) Aqueous solutions of hydrolyzed maleic anhydride copolymers
EP0819145B1 (de) Iminodisuccinat-enthaltende polymere
US3148165A (en) Reaction product of salt of acrolein type polymer and mono primary amine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA