WO1994024083A1 - Procede de production d'acide adipique - Google Patents

Procede de production d'acide adipique Download PDF

Info

Publication number
WO1994024083A1
WO1994024083A1 PCT/JP1993/000457 JP9300457W WO9424083A1 WO 1994024083 A1 WO1994024083 A1 WO 1994024083A1 JP 9300457 W JP9300457 W JP 9300457W WO 9424083 A1 WO9424083 A1 WO 9424083A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitric acid
dihydroxycyclohexane
formula
group
reaction
Prior art date
Application number
PCT/JP1993/000457
Other languages
English (en)
French (fr)
Inventor
Tohru Ide
Masahisa Yokota
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to EP93908073A priority Critical patent/EP0645363B1/en
Priority to DE69319343T priority patent/DE69319343T2/de
Priority to PCT/JP1993/000457 priority patent/WO1994024083A1/ja
Priority to US08/190,195 priority patent/US5455375A/en
Priority to CA002114635A priority patent/CA2114635C/en
Priority to KR1019940700366A priority patent/KR0127337B1/ko
Priority to KR1019940700366A priority patent/KR950700870A/ko
Publication of WO1994024083A1 publication Critical patent/WO1994024083A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/14Adipic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/313Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/02Pitching yeast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a conventional technique for producing adipic acid from cyclohexenoxide.
  • Netherlands Patent Application No. 6601148 describes a method for producing adipic acid by oxidizing a 1,2-dioxycyclohexane compound in a nitric acid aqueous solution containing a water-soluble vanadium salt.
  • adipic acid by nitric acid oxidation of cyclohexanol and / or cyclohexanone, the advantage is that nitric acid is less consumed in the form of nitrogen and nitrous oxide. Proposals have been made as an effective method.
  • Example 1 describes an example using cyclohexene oxide as a raw material.However, despite the reaction using nitric acid having a high concentration of 70%, the yield of adipic acid is low. At 94%, 0.16 mol of nitric acid per mol of organic raw material was consumed in the form of nitrous oxide and nitrogen. In Example 4, 1,2-dihydroxycyclohexane was used as a raw material. Although the reaction was also performed using nitric acid at a high concentration of 70%, the yield of adipic acid was 92%, and 0.12 mole of the organic raw material was 0.12 mole. Nitric acid is consumed in the form of nitrous oxide and nitrogen, and although the effect is improved, it is not always satisfactory.
  • a first object of the present invention is to overcome the disadvantages of the above-mentioned Netherlands Patent Application No. 6601148, increase the yield of adipic acid, suppress the production of nitrous oxide and nitrogen, and It is to establish a production method of adipic acid which is highly valuable.
  • the present inventors have conducted intensive studies and have accomplished the present invention. That is, the method comprises the following steps (a) and (b) for producing adipic acid from cyclohexene oxide.
  • the present inventors have conducted intensive studies on the oxidation of 1,2-dihydroxycyclohexane, and have found that, together with vanadium, metals belonging to Group IB, Group EB, Group IV, Group V, Group VIB, Group HB, and Group Corb.
  • adipic acid By oxidizing the diol in an aqueous solution of nitric acid containing one or more of the above, adipic acid can be obtained in high yield, and surprisingly, the production of nitrous oxide and nitrogen is substantially reduced. And found that it could be suppressed to a negligible amount.
  • Examples of the metal used together with vanadium in the present invention include, for example, Cu, Ag and the like as the I group, Zn. Group IV, Sn, Pb, Ti, Zr, etc., Group V, Sb, Pb, Nb, Ta, etc., Group VIB, Cr, Mo, etc., Group WB, Mn etc. Can be exemplified.
  • the metal may be in any form as long as it is soluble in nitric acid, such as simple metals, inorganic salts, organic acid salts, and complexes.
  • the amount of the catalyst used is relatively wide, and the total weight of the metals used can range from 0.01% by weight of the nitric acid aqueous solution used to the reaction to the saturation solubility, but is usually used in the range of 5% by weight or less. .
  • these oligomers of formula (1) are easily oxidized by nitric acid to produce adipic acid in high yield, and in addition to the conventional nitric acid oxidation of cyclohexanol and cyclohexanone.
  • the number n of the oligomer of the formula (1) is particularly preferably in the range of 1 to 5 on average, and if it is larger than this range, the yield of adipic acid is deteriorated.
  • the oxidation of the oligomer of formula (1) with a mixture of 1,2-dihydroxycyclohexane in an aqueous nitric acid solution reduces the nitric acid consumption and increases the amount of adipic acid.
  • the reason is not clear, but it is better to oxidize a mixture of the oligomer of the formula (1) and 1,2-dihydroxycyclohexane in an aqueous nitric acid solution.
  • the amount of generated nitrous oxide is reduced and the adipic acid yield is improved as compared with the arithmetic average value when the reaction is performed alone.
  • the effect is strong at an arbitrary mixing ratio.
  • the weight ratio of the oligomer of the formula (1) to 1,2-dihydroxycyclohexane is 60:40 to 1:99.
  • the range is remarkable.
  • the oligomer of the formula (1) is formed in the step (a) of hydrating cyclohexenoxide, there is no problem with the addition of 1,2-dihydroxycyclohexane or the like.
  • oxidizing nitric acid to nitric acid a technology was established that could convert it to adipic acid in an extremely high yield and minimize the amount of nitric acid that would be lost at that time.
  • the 1,2-dihydroxycyclohexane to be mixed may be either a cis-form or a trans-form, or may be a mixture.
  • the ratio can be arbitrarily set.
  • nitric acid oxidation is carried out by mixing the oligomer of the formula (1) or the oligomer of the formula (1) with 1,2-dihydroxycyclohexane, vanadium or vanadium and a group IB are used as catalysts. It is further preferred to use one or more of the metals H, HB, m, W, V, VIB, ⁇ MB and II.
  • the metal may be in any form as long as it is soluble in nitric acid, such as simple metals, inorganic salts, organic acid salts, and complexes.
  • the amount of catalyst used is relatively wide, and The total weight can be from 0.1% by weight of the nitric acid aqueous solution used for the reaction to the saturation solubility, but is usually used in the range of 5% by weight or less.
  • the oxidation method with less generation of nitrogen and nitrous oxide has a big advantage such as lower consumption of nitric acid, but there are slight inconveniences in industrial implementation. Need to be considered.
  • NOX NO or NO 2
  • the gas volume will increase significantly and large equipment will be required for its recovery.
  • the present inventors have conducted intensive studies on this point, and have studied the reaction of adipic acid by oxidizing 1,2-dihydroxycyclohexane and Z or the oligomer represented by the formula (1) with nitric acid. It has been found that distilling NOx out of the reaction system can be suppressed by reacting while blowing oxygen or an oxygen-containing gas into the system. Further, it was also found that the adipic acid yield was improved at this time.
  • the amount of water to be used may be not less than the theoretical amount, but usually the range of 0.25 to 10 times the weight of cyclohexene oxide is applied. If it is smaller than this range, the reaction will be extremely slow. If it is larger than this range, a large amount of energy will be required to separate the excessively used water.
  • a catalyst that promotes the reaction of hydration of cyclohexenoxide may be used, and a general acid or base catalyst (for example, US Pat. No. 3,576,890, German Patent 1,793,244) No. 7, etc.) and inorganic solid acids such as zeolite and montmorillonite (US Pat. No. 4,011,278, Japanese Patent Application Laid-Open No. 414,449, etc.) Zion exchange resin ( BC Ranu and R. Chakraborty, Synthetic Consicat ions, 20 (12), 1751-1767 (1990), etc.
  • a catalyst having the ability to hydrate epoxides can be used.
  • the amount used depends on the type and conditions of the catalyst, but usually, an amount of 0.1 mol% or more of cyclohexene oxide is used as the acid or base.
  • the temperature of the hydration reaction is not particularly limited, it is usually carried out in the range of normal temperature to 200 ° C.
  • the conversion is usually carried out in a conversion range of 50% or more, more preferably 70% or more.
  • step (a) when the conversion rate of the hexoxenoxide is not 100%, 1,2-dihydroxycyclohexane and the oligomer represented by the formula (1) as well as the cyclohexenoxide can be used. It is obtained as a mixture containing According to the study by the present inventors, even when a mixture of the oligomer of the formula (1), 1,2-dihydroxycyclohexane and cyclohexenoxide is oxidized in an aqueous nitric acid solution, the oligomer of the formula (1) is oxidized.
  • the reaction temperature in the step (b) is low, the reaction rate is slow, and when it is too high, the side reaction increases, so that it is 20 to 120 ° C, and more preferably 30 to 90 ° C.
  • the nitric acid used in the step (b) can be used in a wide range of 10 to 80% by weight, but is more preferably in a range of 30 to 70% by weight.
  • the molar ratio of the cyclo ring and nitric acid in the raw materials used is usually 2 or more, and more preferably 3 or more.
  • the reaction solution obtained in the step (a) can be directly fed into the step (b).
  • excess water in the step (a) is evaporated. And then concentrated and used in step (b).
  • the separated 1,2-dihydroxycyclohexane is separated. Separation residues containing mouth hexane and Z or cyclohexenoxide (1) oligomers
  • by-products other than the oligomer of formula (1) formed in the step (a) for example, 1,2-dihydroxycyclohexane, which is formed by hydration with nitric acid, are used.
  • 1,2-dihydroxycyclohexane and / or cyclohexene oxide and / or the formula (1) may be used in the step (b) as long as the effects of the present invention are not significantly impaired.
  • reaction is carried out by adding a solvent inert to the reaction such as water to the mixture of the raw material of the oligomer (1) of the formula (1) and Z or 1,2-dihydroxycyclohexane and di- or cyclohexenoxide. You can also.
  • a solvent inert such as water
  • the oligomer represented by the formula (1) 1,2-dihydroxycyclohexane, which is produced by a method other than the hydration of cyclohexene oxide, may be added.
  • other methods for preparing the oligomer of the formula (1) include dehydration condensation of 1,2-dihydroxycyclohexane, ring-opening polymerization of cyclohexene oxide, and 1,2-dihydroxycyclohexane and cycle
  • Addition of xenoxide, substitution reaction with OH group such as di (2-chlorocyclohexyl) ether, and hydrogenation of catechol are examples of other methods for producing 2-dihydroxycyclohexane.
  • the reaction can be applied in either a batch system or a continuous system.
  • a type conventionally performed with cyclohexanol and cyclohexanone can be suitably used.
  • the yield of adipic acid in the Examples and Comparative Examples is based on the amount of the silicone contained in the mixture of the oligomer of the formula (1), 1,2-dihydroxycyclohexane and cyclohexenoxide in the raw materials used. It is shown in molar yield based on the ring.
  • Example 1 Hydration of cyclohexenoxide> 100 g of water, 1 g of cation exchange resin (Mitsubishi Kasei, Daiaion SK1BH) 1 O gr is charged into the reactor, and the mixture is stirred at 80 ° C. gr was dropped over about 30 minutes, and then stirring was continued for 30 minutes.
  • ⁇ Oxidation with nitric acid aqueous solution Of this solution obtained by concentrating water to 20% by weight under reduced pressure, 30.Ogr is contained, and 0.230% by weight of ammonium metavanadate is contained. It was added over 30 minutes to 250 gr of 60% nitric acid held in C. After that, the reaction was continued at 80 ° C. for 30 minutes, and the reaction products and released gas components were analyzed. Adipic acid was obtained in a yield of 95.7%, and the amount of nitric acid lost as nitrogen and nitrous oxide was equivalent to 0.039 Kg per 1 Kg of adipic acid produced. Amount. The amount of released NOX was 3.3 times the number of moles of cyclocycle in the raw materials used.
  • Example 2 In the oxidation with a nitric acid aqueous solution, the reaction was carried out in the same manner as in Example 2 except that 60% nitric acid containing only 0.230% by weight of ammonium metavanadate was used. Adipic acid was obtained in a yield of 95.8%, and the amount of nitric acid lost as nitrogen and nitrous oxide was 0.080 kg per 1 kg of adipic acid produced. there were. The amount of released NOX was 3.0 times the number of moles of cyclo ring in the raw materials used.
  • cyclohexenoxide 2 is used as a raw material.
  • Example 2 In the oxidation with an aqueous nitric acid solution, a method similar to that of Example 2 was used except that air was blown into the aqueous nitric acid solution at a rate of 70 N liters / hour through a thin tube at the same time as the addition of 1,2-dihydroxycyclohexane. Was used to carry out the reaction.
  • Adipic acid was obtained in a yield of 96.6%, and the amount of nitric acid lost as nitrogen and nitrous oxide was equivalent to 0.045 kg per 1 kg of adipic acid produced. Amount. Also, the amount of released NO X was equivalent to 1.9 times the number of moles of the cyclo ring in the raw materials used.
  • Adipic acid was obtained in a yield of 94.8%, and the amount of nitric acid lost as nitrogen and nitrous oxide was equivalent to 0.051 Kg for 1 Kg of adipic acid produced Amount.
  • the amount of released NOX was 3.2 times the number of moles of the cyclo ring in the raw materials used.
  • the reaction was carried out in the same manner as in Example 28 except that air was blown into the aqueous nitric acid solution at a rate of 70 N liter / hour through a thin tube.
  • Adipic acid was obtained in a yield of 95.2%, and the amount of nitric acid lost as nitrogen and nitrous oxide was equivalent to 0.052 Kg for 1 Kg of adipic acid produced. Amount.
  • the amount of released NOX was 1.7 times the number of moles of cyclo ring in the raw materials used.
  • the reaction was carried out in the same manner as in Example 33 except that air was blown into the nitric acid aqueous solution at a rate of 70 N liter / hour through a thin tube.
  • Adipic acid was obtained in a yield of 95.9%, and the amount of nitric acid lost as nitrogen and nitrous oxide was equivalent to 0.052 Kg for 1 Kg of adipic acid produced. Amount.
  • the amount of released NOX was equivalent to 1.8 times the number of moles of cyclo ring in the raw materials used.
  • the reaction was carried out in the same manner as in Example 43 except that air was blown into the aqueous nitric acid solution at a rate of 70 N liter / hour through a thin tube.
  • Adipic acid is obtained in a yield of 91.4%, and the amount of nitric acid lost as nitrogen and nitrous oxide is equivalent to 0.096 Kg for 1 Kg of adipic acid produced Quantity.
  • the amount of released NOx was 1.8 times the number of moles of the cyclo ring in the raw materials used.
  • the reaction was carried out in the same manner as in Example 1 except that the reaction temperature for oxidation in a nitric acid aqueous solution was 60. Adipic acid was obtained in a yield of 96.6%, and the amount of nitric acid lost as nitrogen and nitrous oxide was 0.038 Kg for 1 Kg of adipic acid produced. there were. The amount of released NOX was 3.3 times the number of moles of the cyclo ring in the raw materials used.
  • the reaction was carried out in the same manner as in Example 2 except that the reaction temperature for oxidation in a nitric acid aqueous solution was 60. Adipic acid was obtained in a yield of 97.2%, and the amount of nitric acid lost as nitrogen and nitrous oxide was equivalent to 0.038 Kg for 1 Kg of adipic acid produced. Amount. The amount of released NOX was 3.4 times the number of moles of the cyclo ring in the raw materials used. Industrial applicability
  • adipic acid can be obtained in a high yield from cyclohexenoxide, the amount of nitric acid consumed at that time can be extremely small, and inexpensive adipic acid can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
アジピン酸の製造方法 技術分野
本発明はシクロへキセンォキサイ ドからアジピン酸を製造する方法に関す る 従来の技術
オランダ国特許出願番号 6 6 0 1 1 4 8号には、 水溶性バナジウム塩を含 む硝酸水溶液中で 1 , 2—ジォキシシクロへキサン化合物を酸化してアジピ ン酸を製造する方法が記載されており、 現在世界中で行われているシクロへ キサノール及びまたはシクロへキサノ ンの硝酸酸化によるアジピン酸の製造 方法に対し、 硝酸を窒素および亜酸化窒素の形で消耗してしまう割合が少な い有利な方法としての提案がなされている。 しかしながら、 実施例 1 にはシ クロへキセンオキサイ ドを原料とした例が記載されているが 7 0 %という高 濃度の硝酸を用いて反応を行っているにもかかわらず、 ァジピン酸の収率は 9 4 %で有機原料 1モルあたり 0 . 1 6モルの硝酸が亜酸化窒素及び窒素の 形で消費されており、 また実施例 4には 1 , 2 —ジヒ ドロキシシクロへキサ ンを原料とした例が記載されているが、 やはり 7 0 %という高濃度の硝酸を 用いて反応を行っているにもかかわらず、 アジピン酸の収率は 9 2 %で有機 原料 1 モルあたり 0 . 1 2モルの硝酸が亜酸化窒素及び窒素の形で消費され ており、 改良効果はみられるものの必ずしも満足の行く ものとは言い難い。 また、 1 , 2—ジヒ ドロキシシクロへキサンを製造する方法は種々の方法 で可能であるが、 工業的に安価に得る方法の一つとしてシクロへキセンから 誘導されるシクロへキセンォキサイ ドを水和する方法があげられる。 ェポキ サイ ドの水和の方法については、 中西ら訳、 「モリ ソン · ボイ ド有機化学第 4版」 7 2 0〜 7 2 8頁 (東京化学同人刊) 等にも示されているが、 本発明 者らもこの水和反応について検討を加えた結果、 主たる副生物として下記の 式 ( 1 ) で表されるシクロへキセンォキサイ ドの重合物の生成があること、 さ らにこれを最小限に避けるためには水和に使用する水を理論量より も大過 剰に使用しなければならないことが判つた。 式 ( 1 ) H 0
Figure imgf000004_0001
nは 1 から 5の範囲の数を表す。 本発明の第一の目的は、 上記オラ ンダ特許出願番号 6 6 0 1 1 4 8号の欠 点を克服し、 アジピン酸の収率を高め、 亜酸化窒素及び窒素の生成を抑制し て工業的に価値の高いアジピン酸の製造方法を確立することにある。
さらに、 前出のオランダ国特許や従来のシク口へキサノール及びまたはシ クロへキサノ ンの硝酸酸化によるアジピン酸の製造方法に関する提案等から は式 ( 1 ) のオリ ゴマーの取扱に関する具体的な例示は全く無い。 従って従 来技術からは、 大過剰の水を使用してシクロへキセンォキサイ ドの水和を実 施し、 後段の工程でこれを大量のエネルギーを用いて除去するか、 も しく は 生成した式 ( 1 ) のオリ ゴマーを蒸留等の操作で分離する方法を取らざるを 得ず、 工業的な実施に際し工程を複雑にし、 エネルギーを大量に使用するな どの不利を被らざるを得ないように思われる。 これを工業的に有利に解決す る方法を見いだすことが、 本発明の第二の目的である。 発明の開示
本発明者らは鋭意検討を重ね本発明をなすに至った。 すなわち、 下記の ( a ) 、 ( b ) 工程からなる、 シクロへキセンオキサイ ドよりアジピン酸を製 造する方法である。
( a ) シクロへキセンオキサイ ドを水和して、 1 , 2 —ジヒ ドロキシシクロ へキサンと式 ( 1 ) で表されるオリ ゴマーを製造する工程。
( b ) 1 , 2 —ジヒ ドロキシシクロへキサン、 及びノ又はシクロへキセンォ キサイ ド及び/又は式 ( 1 ) で表されるオリゴマーを硝酸水溶液中で酸化し てアジピン酸を製造する工程。
まず、 本発明者らは 1 , 2—ジヒ ドロキシシクロへキサンの酸化に関し鋭 意研究した結果、 バナジウムと共に I B族、 E B族、 族、 IV族、 V族、 VI B族、 HB族および珊族金属の一種または二種以上を溶解して含む硝酸水溶 液中でジオールを酸化することにより、 アジピン酸を高収率で得ることがで きると共に、 驚くべきことに亜酸化窒素及び窒素の生成が実質的に無視でき る量まで抑制できることを見いだした。
本発明においてバナジウムとともに用いられる金属としては、 例えば I Β 族として C u, A g等、 Π Β族として Z n. C d等、 DI族として A l , G a 、 I n、 S c等、 IV族としては S n, P b, T i , Z r等、 V族としては S b, P b, N b, T a等、 VIB族として C r , M o等、 W B族として M n等 が例示できる。 金属の形態は金属単体、 無機塩、 有機酸塩、 錯体等硝酸に溶 解するものであれば良い。 用いる触媒の量は比較的許容範囲が広く、 用いる 金属の合計の重量が反応に用いる硝酸水溶液の 0. 0 1重量%〜飽和溶解度 まで可能であるが、 通常 5重量%以下の範囲で用いられる。
次に、 本発明者らはシクロへキセンォキサイ ドの水和について検討を加え た。 従来から、 シクロへキセンォキサイ ドの水和に触媒を用いることは知ら れており例えば、 一般の酸、 塩基触媒 (例えば米国特許 3 5 7 6 8.9 0号、 ドィッ国特許 1 7 9 3 2 4 7号等) のほか、 ゼォライ ト、 モンモリ ロナイ ト 等の無機固体酸 (米国特許 4 , 0 1 1 2 7 8号、 特開平 4 - 4 1 4 4 9号公 報等) やイオン交換樹脂 (B. C. Ranu and R. Chakraborty, Synthetic Comunic ations, 20(12), 1751-1767(1990)等) 等が例示できる。 本発明者らの検討に よれば、 これら種々の触媒を使用しても、 シクロへキセンオキサイ ドの水和 において式 ( 1 ) で示されるオリゴマーの副生が避けられないことがわかつ た。 さらにこれを最小限に減少するためには水和に使用する水を理論量より も大過剰に使用しなければならないことも明らかになつた。 従来の硝酸酸化 の技術からはこの式 ( 1 ) のオリゴマーについての取扱についての具体的な 例はみられず、 本発明者らはこの点について更に深く検討を試みた。 その結果、 驚くべき事にこれらの式 ( 1 ) のオリ ゴマ一が硝酸により容易 に酸化されアジピン酸を高収率で生成し、 しかも従来のシクロへキサノール 、 シクロへキサノ ンの硝酸酸化の際に較べ、 窒素、 亜酸化窒素と Lて失われ る硝酸の量がはるかに少ない量であることを見いだしたのである。 式 ( 1 ) のォリ ゴマーの nは数平均で 1 から 5の範囲が特に好ま しく 、 この範囲より 大きい場合、 アジピン酸の収率が悪化する。
さ らに驚く べきことに、 式 ( 1 ) のオリ ゴマーを、 1 , 2 —ジヒ ドロキシ シク口へキサンとの混合物を硝酸水溶液中で酸化させることにより、 硝酸消 費量が減少し、 アジピン酸の収率が向上することを見いだした。 発明者らの 検討によると、 理由は定かではないが、 式 ( 1 ) のオ リ ゴマーと 1 , 2 —ジ ヒ ドロキシシク口へキサンの混合物を硝酸水溶液中で酸化した方が、 それぞ れを単独で反応させた場合の相加平均値より も亜酸化窒素の発生量が減少し 、 アジピン酸の収率が向上する。 その効果は任意の混合割合の所で認められ る力く、 特に式 ( 1 ) のオリ ゴマーと 1 , 2 —ジヒ ドロキシシク口へキサンと の重量比が 6 0 : 4 0〜 1 : 9 9の範囲が顕著である。 このことにより、 た とえシクロへキセンォキサイ ドを水和する ( a ) 工程において式 ( 1 ) のォ リ ゴマーが生成するという不都合が生じても、 1 , 2 —ジヒ ドロキシシクロ へキサン等とと もに硝酸酸化させることにより、 極めて高収率でアジピン酸 に変換でき、 その際に消失する硝酸の割合も極めて小さいものとする技術が 確立できたのである。 尚、 この際混合する 1 , 2 —ジヒ ドロキシシクロへキ サンは c i s体、 t r a n s体のいずれでも、 また混合物でもよい。 また 1 , 2 —ジヒ ドロキシシクロへキサン、 シクロへキセンォキサイ ドの二種を選 んで用いる場合、 その割合は任意の範囲で実施できる。
また、 式 ( 1 ) のオリ ゴマー、 または式 ( 1 ) のオリ ゴマーと 1 , 2 —ジ ヒ ドロキシシクロへキサンとを混合して硝酸酸化させる場合、 触媒と してバ ナジゥム、 又はバナジウムおよび I B族、 H B族、 m族、 W族、 V族、 VI B 族、 \M B族および II族金属の一種または二種以上を用いることがさ らに好ま しい。 金属の形態は金属単体、 無機塩、 有機酸塩、 錯体等硝酸に溶解するも のであれば良い。 用いる触媒の量は比較的許容範囲が広く、 用いる金属の合 計の重量が反応に用いる硝酸水溶液の 0. 0 1重量%〜飽和溶解度まで可能 であるが、 通常 5重量%以下の範囲で用いられる。
さて、 窒素や亜酸化窒素の発生が少ない酸化の方法は、 硝酸の消費が少な くなる等の大きなメ リ ッ 卜が存在することは既に述べたが、 わずかな不都合 が工業的実施の際には生じることも考慮する必要がある。 すなわち、 硝酸を N20および N2の形で消耗してしまう割合は大幅に減少するが、 その代わ りに NOまたは N02等 (以下 NOXと称す) の形で反応系外に出て来るガ ス量が大幅に増大し、 その回収に大型の装置が必要となることである。 そこ で、 この点に関し本発明者らは鋭意研究し、 1, 2—ジヒ ドロキシシクロへ キサン及び Z又は式 ( 1 ) で表されるォリゴマーを硝酸で酸化してアジピン 酸の製造する際に、 反応系に酸素または酸素含有ガスを吹き込みながら反応 させることにより、 N 0 Xの反応系外への留出を抑制できることを見いだし た。 さらに、 この際アジピン酸の収率も改善されることも見いだした。
本発明の方法における ( a ) の工程において、 使用する水の量は理論量以 上あればよいが、 通常シクロへキセンオキサイ ドの重量の 0. 2 5〜1 0倍 の範囲が適用される。 この範囲より小さい場合、 反応がきわめて遅くなるし 、 この範囲より大きい場合には、 過剰に使用した水の分離に多大なエネルギ —を必要とすることとなる。
また、 シクロへキセンォキサイ ドの水和の反応を促進する触媒を用いても よく、 一般の酸、 塩基触媒 (例えば米国特許 3 5 7 6 8 9 0号、 ドイツ国特 許 1 7 9 3 2 4 7号等) のほか、 ゼォライ ト、 モンモリロナイ ト等の無機固 体酸 (米国特許 4 , 0 1 1 2 7 8号、 特開平 4一 4 1 4 4 9号公報等) ゃィ オン交換樹脂 (B. C. Ranu and R. Chakraborty, Synthetic Comunicat ions, 20( 12), 1751-1767(1990)等) 等ェポキサイ ドの水和能を持つ触媒が使用できる 。 使用量は触媒の種類や条件によって異なるが、 通常、 酸または塩基として 、 シクロへキセンオキサイ ドの 0. O l m o l %以上の量が使用される。 水和反応の温度は特に制限はないが、 通常常温から 2 0 0 °Cの範囲で実施 される。
シク口へキセンォキサイ ドの水和は完全に行われることは必須ではないが 、 通常は 5 0 %以上さ らに望ま しく は 7 0 %以上の転化率の範囲で行われる c
( a ) の工程でシク口へキセンォキサイ ドの転化率が 1 0 0 %でない場合 には、 1 , 2 —ジヒ ドロキシシクロへキサンと式 ( 1 ) で表されるオリ ゴマ 一のほかシクロへキセンォキサイ ドを含んだ混合物と して得られる。 本発明 者らの検討によれば、 式 ( 1 ) のオリ ゴマー、 1 , 2—ジヒ ドロキシシクロ へキサン、 シクロへキセンォキサイ ドの混合物を硝酸水溶液中で酸化した場 合でも、 式 ( 1 ) のオリ ゴマーと 1 , 2 —ジヒ ドロキシシクロへキサンの混 合物の硝酸水溶液中で酸化を行った場合と同様の効果がみられることがわか つた。 つまり、 式 ( 1 ) のオリ ゴマーと、 1, 2 —ジヒ ドロキシシクロへキ サン及びシクロへキセンォキサイ ドの混合物を硝酸水溶液中で酸化した場合 の方が、 それぞれを単独で反応させた場合の相加平均値より も亜酸化窒素の 発生量が減少し、 アジピン酸の収率が向上する。 その効果は任意の混合割合 の所で認められるが、 特に式 ( 1 ) のオリ ゴマーと 1 , 2 —ジヒ ドロキシシ ク口へキサンとの重量比が 6 0 : 4 0〜 1 : 9 9の範囲が顕著である。
( b ) の工程の反応温度は、 低い場合には反応速度が遅く なり、 高すぎる と副反応が増大するので 2 0〜 1 2 0 °C、 さらに望ま しく は 3 0〜 9 0 で ある。
( b ) の工程に用いる硝酸は 1 0〜 8 0重量%の広い範囲で実施が可能で あるが、 より好ま しく は 3 0〜 7 0重量%の範囲で実施される。
( b ) の工程において、 用いる原料中のシクロ環と硝酸は、 通常、 モル比 で 2以上、 さ らに好ま しく は 3以上の範囲で実施される。
本発明の方法においては、 ( a ) の工程で得られた反応液をそのまま (b ) の工程に投入することができるが、 例えば ( a ) の工程中の過剰の水を蒸 発させるなどして濃縮してから (b ) 工程に用いることも可能である。 また 、 ( a ) 工程で生成した 1 , 2 —ジヒ ドロキシシクロへキサン及び または 未反応のシク口へキセンォキサイ ドの一部または全部を蒸留等の方法で分離 した後、 分離した 1 , 2 —ジヒ ドロキシシク口へキサン及び Zまたはシクロ へキセンォキサイ ドゃ式 ( 1 ) のオリ ゴマーを含有する分離残渣それぞれを
( b ) 工程の反応に用いること も実施可能である。
6
¾4 また、 ( a ) の工程で生成する式 ( 1 ) のオリ ゴマー以外の副生物、 例え ば硝酸を使った水和で生成する二 卜口化された 1 , 2 —ジヒ ドロキシシクロ へキサン等が例示できる、 が生成した場合でも、 本発明の効果を著しく損な わない限り (b ) の工程で 1 , 2 —ジヒ ドロキシシク口へキサン、 及び/又 はシクロへキセンオキサイ ド、 及び/又は式 ( 1 ) で表されるオリ ゴマーと と もに反応に供してもかまわない。
また、 原料である式 ( 1 ) のオリ ゴマー及び Z又は 1 , 2—ジヒ ドロキシ シク口へキサン及びノまたはシクロへキセンォキサイ ドとの混合物に水等の 反応に不活性な溶媒を加えて実施すること もできる。
本発明の方法において、 シクロへキセンオキサイ ドの水和以外の方法で製 造された式 ( 1 ) で示されるオリ ゴマー、 1 , 2 —ジヒ ドロキシシクロへキ サンを加えて実施すること もかまわない。 例えば式 ( 1 ) のオリ ゴマ一の他 の製法と して、 1 , 2 —ジヒ ドロキシシクロへキサンの脱水縮合、 シクロへ キセンオキサイ ドの開環重合、 1 , 2 —ジヒ ドロキシシクロへキサンとシク 口へキセンオキサイ ドの付加、 ジ ( 2 —クロロシクロへキシル) エーテル等 の O H基による置換反応、 また 2 —ジヒ ドロキシシクロへキサンの他の 製法と してカテコールの水添等が例示できる。
本発明の実施に際し反応は、 回分式、 連続式いずれも適用できる。 特に ( b ) の工程の硝酸水溶液中での酸化反応は、 従来シクロへキサノール、 シク 口へキサノ ンで実施されている形式のものも好適に使用出来る。 発明を実施するための最良の形態
以下、 実施例により本発明をさ らに詳細に説明するが、 本発明はこれら実 施例になんら限定されるものではない。 尚、 分析には G P C , L C, G C等 を用いて行った。
尚、 実施例、 比較例中のアジピン酸の収率は、 用いた原料中の式 ( 1 ) の オリ ゴマー、 1 , 2 —ジヒ ドロキシシクロへキサン、 シクロへキセンォキサ ィ ド等の混合物に含まれるシク口環に対するモル収率で示した。
〔実施例 1 〕 くシクロへキセンォキサイ ドの水和 >水 1 0 0 g r、 陽ィォン交換樹脂 ( 三菱化成、 Daiaion SK1BH) 1 O g rを反応器に仕込み、 8 0てにて攪拌下 、 シクロへキセンォキサイ ド 1 0 O g r約 3 0分かけて滴下し、 その後 3 0 分攪拌を続けた。 得られた反応液から陽イオン交換樹脂を濾過分離し、 さ ら に樹脂を 3 0 g rの水で洗浄し、 その洗浄液を炉液に加えた液を分析したと ころ、 シクロへキセンオキサイ ドの転化率 9 9. 7 %、 1 , 2—ジヒ ドロキ シシクロへキサンが 9 0. 2 %、 式 ( 1 ) の n = 1の二量体が 9. 5 %の収 率で得られた。
<硝酸水溶液による酸化 >この液を減圧で水を 2 0重量%まで濃縮した液の うち 3 0. O g rを、 0. 2 3 0重量%のアンモニゥムメ タバナデ一 トを含 み、 温度 8 0 °Cに保持された 6 0 %硝酸 2 5 0 g rに 3 0分かけて添加した 。 その後 3 0分、 8 0 °Cで反応を継続後、 反応生成物及び放出されたガス成 分を分析した。 アジピン酸が 9 5. 7 %の収率で得られ、 窒素及び亜酸化窒 素と して失われた硝酸の量はアジピン酸の生成量 l K gに対し 0. 0 3 9 K gに相当する量であった。 また、 放出された NOXの量は用いた原料中のシ クロ環のモル数に対し 3. 3倍に相当する量であった。
〔実施例 2〕
<シクロへキセンォキサイ ドの水和 >水 1 0 0 g r、 陽ィォン交換樹脂 ( 三菱化成、 Daiaion SK1BH) 1 0 g rを反応器に仕込み、 8 0 °Cにて攪拌下 、 シクロへキセンオキサイ ド 1 0 0 g r約 3 0分かけて滴下し、 その後 3 0 分攪拌を続けた。 得られた反応液から陽イオン交換樹脂を濾過分離し、 さ ら に樹脂を 3 O g rの水で洗浄し、 その洗' 液を炉液に加えた液を分析したと ころ、 シクロへキセンオキサイ ドの転化率 9 9. 7 %、 1 , 2—ジヒ ドロキ シシクロへキサンが 9 0. 2 %、 式 ( 1 ) の n = 1の二量体が 9. 5 %の収 率で得られた。
く硝酸水溶液による酸化 >この液を減圧で蒸留し純度 9 9. 7 %以上の 1
, 2—ジヒ ドロキシシクロへキサンを得た。 このようにして得られた 1. 2
—ジヒ ドロキシシクロへキサン 2 5. O g rを 0. 2 3 0重量%のアンモニ ゥムメ タバナデー ト、 硝酸銅 2. 9 5重量%を含み、 温度 8 0 °Cに保持され た 6 0 %硝酸 2 5 0 g rに 3 0分かけて添加した。 その後 3 0分、 8 0 °Cで 反応を継続後、 反応生成物及び放出されたガス成分を分析した。 アジピン酸 が 9 6. 6 %の収率で得られ、 窒素及び亜酸化窒素として失われた硝酸の量 はアジピン酸の生成量 1 K gに対し 0. 0 3 6 K gに相当する量であった。 また、 放出された N 0 Xの量は用いた原料中のシクロ環のモル数に対し 3. 3倍に相当する量であつた。
〔比較例 1〕
硝酸水溶液による酸化において、 0. 2 3 0重量%のァンモニゥムメタバ ナデー トのみを含む 6 0 %硝酸を用いた以外は実施例 2 と同様の方法を用い て反応を行った。 アジピン酸が 9 5. 8 %の収率で得られ、 窒素及び亜酸化 窒素として失われた硝酸の量はアジピン酸の生成量 1 K gに対し 0. 0 8 0 K gに相当する量であった。 また、 放出された NOXの量は用いた原料中の シクロ環のモル数に対し 3. 0倍に相当する量であった。
〔比較例 2〕
硝酸水溶液による酸化において、 原料としてシクロへキセンォキサイ ド 2
4 g rを、 0. 2 3 0重量%のアンモニゥムメ タバナデー トのみを含む 6 0 %硝酸 2 5 0 g rに 3 0分かけて添加した。 その後 3 0分、 8 0でで反応を 継続後、 反応生成物及び放出されたガス成分を分析した。 アジピン酸が 8 3 . 7 %の収率で得られ、 窒素及び亜酸化窒素として失われた硝酸の量はアジ ピン酸の生成量 1 K gに対し 0. 1 7 2 K gに相当する量であった。 また、 放出された NOXの量は用いた原料中のシクロ環のモル数に対し 2. 6倍に 相当する量であった。
〔参考例 1〕
原料としてシクロへキサノール 2 4 g rを、 0. 2 3 0重量%のアンモニ ゥムメタバナデー 卜のみを含む 6 0 %硝酸 2 5 0 g rに 3 0分かけて添加し た。 その後 3 0分、 8 0 °Cで反応を継続後、 反応生成物及び放出されたガス 成分を分析した。 アジピン酸が 8 8 %の収率で得られ、 窒素及び亜酸化窒素 として失われた硝酸の量はァジピン酸の生成量 1 K gに対し 0. 7 2 4 K g に相当する量であった。 また、 放出された N 0 Xの量は用いた原料中のシク 口環のモル数に対し 0 . 7倍に相当する量であった。
〔実施例 3〜 9〕
硝酸水溶液による酸化において、 表 1 に示す触媒をもちいた以外は実施例 2 と同様の方法を用いて反応を行った。 結果を表 1 に示す。
表 1
Figure imgf000013_0001
*1)謝に含まれるシクロ環に財るモル収率 φ
*2)アジピン酸 1 K あたりの K g
*3)願中に含まれるシク口環のモノ I ^に财る醉
〔実施例 1 0〕
硝酸水溶液による酸化において、 1 , 2 —ジヒ ドロキシシクロへキサンの 添加と同時に、 細管を通して空気を硝酸水溶液中に毎時 7 0 Nリ ッ トルの速 度で吹き込んだ以外は実施例 2と同様の方法を用いて反応を行った。 アジピ ン酸が 9 6 . 6 %の収率で得られ、 窒素及び亜酸化窒素と して失われた硝酸 の量はアジピン酸の生成量 1 K gに対し 0 . 0 4 5 K gに相当する量であつ た。 また、 放出された N O Xの量は用いた原料中のシクロ環のモル数に対し 1 . 9倍に相当する量であった。
〔実施例 1 1 ~ 1 8〕
硝酸水溶液による酸化において、 表 2に示す触媒をもちいた以外は実施例 1 0と同様の方法を用いて反応を行った。 結果を表 2に示す。
表 2
CO
Figure imgf000015_0001
料に含まれるシクロ環に文 るモル収率 C ½)アジピン酸 1 K gM;あたりの K g
*3)願中に含まれるシクロ環のモノ 1 に财る
〔実施例 1 9〕
くシクロへキセンォキサイ ドの水和〉水 6 5 0 g r、 Y型ゼォライ ト 2 5 g rを反応器に仕込み、 8 0 °Cにて攪拌下、 シク口へキセンォキサイ ド 1 0 0 0 g 1-を約 3 0分かけて滴下し、 その後 3 0分攪拌を続けた。 反応液を分 析したところ、 シクロへキセンオキサイ ドの転化率 7 0. 0 %, 1 , 2—ジ ヒ ドロキシシク口へキサンが 6 0. 0 %、 式 ( 1 ) の n = lの二量体が 8. 7 %の収率であつた。
<硝酸水溶液による酸化〉得られた反応液からゼォライ 卜を濾過分離し、 減圧下に蒸留し、 水、 シクロへキセンオキサイ ド、 1, 2—ジヒ ドロキシシ クロへキサンを除去し、 式 ( 1 ) の n = lの二量体 8 5重量%、 n = 2の三 量体 1 4重量%を含む混合物を得た。 この混合物 2 5. 0 2 1"を 0. 2 3 0 重量%のァンモニゥムメタバナデ一 卜を含み、 温度 8 0でに保持された 6 0 %硝酸 2 5 0 g rに 3 0分かけて添加した。 その後 3 0分、 8 0 °Cで反応を 継続後、 反応生成物及び放出されたガス成分を分析した。 アジピン酸が 8 6 . 0 %の収率で得られ、 窒素及び亜酸化窒素として失われた硝酸の量はアジ ピン酸の生成量 1 K gに対し 0. 1 1 0 K gに相当する量であつた。 また、 放出された NO Xの量は用いた原料中のシク口環のモル数に対し 2. 9倍に 相当する量であった。
〔実施例 2 0〜 2 7〕
硝酸水溶液による酸化において、 表 3に示す触媒をもちいた以外は実施例 1 9と同様の方法を用いて反応を行った。 結果を表 3に示す。
表 3
Figure imgf000017_0001
)職に含まれるシクロ環に文 るモル収率 (%)
*2)アジピン酸 1 κ g«あたりの κ g
*3)願中に含まれるシクロ環のモノ H¾に财る
〔実施例 2 8〕
くシク口へキセンォキサイ ドの水和 >水 1 0 0 g r、 陽ィォン交換樹脂 ( 三菱化成、 Daiaion SK1BH) 1 0 g rを反応器に仕込み、 8 0 °Cにて攪拌下 、 シクロへキセンォキサイ ド 1 0 O g r約 3 0分かけて滴下し、 その後 3 0 分攪拌を続けた。 得られた反応液から陽イオン交換樹脂を濾過分離し、 さら に樹脂を 3 0 1-の水で洗浄し、 その洗浄液を炉液に加えた液を分析したと ころ、 シクロへキセンオキサイ ドの転化率 9 9. 7 %、 1 , 2 —ジヒ ドロキ シシクロへキサンが 9 0. 2 %、 式 ( 1 ) の n = 1 の二量体が 9. 5 %の収 率で得られた。
<硝酸水溶液による酸化 >この液を減圧下に蒸留し、 水、 1 , 2 —ジヒ ド 口キシシクロへキサン等を溜去し、 1 , 2 —ジヒ ドロキシシクロへキサンが 7 0. 0重量%、 式 ( 1 ) のオリ ゴマーが 3 0. 0重量%の混合物を得た。 この混合物 2 5. O g rを 0. 2 3 0重量%のアンモニゥムメ タバナデー ト を含み、 温度 8 0 °Cに保持された 6 0 %硝酸 2 5 0 g rに 3 0分かけて添加 した。 その後 3 0分、 8 0 で反応を継続後、 反応生成物及び放出されたガ ス成分を分析した。 アジピン酸が 9 4. 8 %の収率で得られ、 窒素及び亜酸 化窒素と して失われた硝酸の量はアジピン酸の生成量 1 K gに対し 0. 0 5 1 K gに相当する量であった。 また、 放出された N OXの量は用いた原料中 のシクロ環のモル数に対し 3. 2倍に相当する量であった。
〔実施例 2 9〜 3 2〕
水、 1 , 2 —ジヒ ドロキシシクロへキサン等の溜去を調節して、 1, 2 — ジヒ ドロキシシク口へキサンと式 ( 1 ) のオリ ゴマーの割合を表 4 に示した ようにした以外は実施例 2 8 と同様な方法で反応を行った。 結果を表 4 に示 す。 表 4
Figure imgf000019_0001
*i)腿に含まれるシク口環に文 るモル収率 (¾)
*2)アジピン酸 1 κ あたりの κ g
)麟中に含まれるシクロ環の乇ノ に财る
〔実施例 3 3 ~ 4 0〕
硝酸水溶液による酸化において、 表 5に示す触媒をもちいた以外は実施例 8と同様の方法を用いて反応を行った。 結果を表 5に示す。
讓列 33 難例 34 難例 37 難例 38 難例 39 難例 40 赚滅 ( 6 0 %硝酸 NH4V033 NH4VO3 NH4VO3 H4V03 H4V03 H4V03 H4V03 中の重畺 *ι~ί% / υ) / (0 46)
Figure imgf000021_0001
46) (0 46) (0 46) (0 46) (0 46) 46) (0ν · 4 *"!6)
Cu(N03)2 Zn(N03)2 膽 3) 3 Zr(N03)4 Bi(N03)3 Cr(N03)3 瞻 3) 2 Co(N03)2 (2.95) (1.00) (1.00) (1.00) (1.00) (1.00) α οο) (L OO)
アジピン酸収率 * (%) 9 5. 7 9 5. 1 9 5. 0 9 5. 2 9 5. 2 9 5. 4 9 5. 1 9 5. 4 硝酸消籠 *2) 0. 0 4 9 0. 0 4 9 0. 0 5 0 0. 0 5 0 0. 0 5 0 0. 0 4 9 0. 0 4 9 0. 0 4 8 姓 ΝΟΧ量 *3) 3. 4 3. 4 3. 6 3. 5 3. 6 3. 6 3. 5 3. 5
*1) 料に含まれるシク口環に财るモル収率
アジピン酸 1 あたりの K g
*3) 料中に含まれるシク口環のモノ に财る酵
〔実施例 4 1〕
硝酸水溶液による酸化において、 細管を通して空気を硝酸水溶液中に毎時 7 0 Nリ ッ トルの速度で吹き込んだ以外は実施例 2 8と同様の方法で反応を 行った。 アジピン酸が 9 5. 2 %の収率で得られ、 窒素及び亜酸化窒素と し て失われた硝酸の量はアジピン酸の生成量 1 K gに対し 0. 0 5 2 K gに相 当する量であった。 また、 放出された NOXの量は用いた原料中のシクロ環 のモル数に対し 1. 7倍に相当する量であった。
〔実施例 4 2〕
硝酸水溶液による酸化において、 細管を通して空気を硝酸水溶液中に毎時 7 0 Nリ ツ トルの速度で吹き込んだ以外は実施例 3 3と同様の方法で反応を 行った。 アジピン酸が 9 5. 9 %の収率で得られ、 窒素及び亜酸化窒素と し て失われた硝酸の量はアジピン酸の生成量 1 K gに対し 0. 0 5 2 K gに相 当する量であった。 また、 放出された NOXの'量は用いた原料中のシクロ環 のモル数に対し 1. 8倍に相当する量であった。
〔実施例 4 3 ~ 4 6、 参考例 2〕
<シクロへキセンォキサイ ドの水和 >水 6 5 0 g r、 Y型ゼォライ ト 2 5 g rを反応器に仕込み、 8 0 °Cにて攢拌下、 シク口へキセンォキサイ ド 1 0 0 0 g rを約 3 0分かけて滴下し、 その後 3 0分攪拌を続けた。 反応液を分 祈したところ、 シクロへキセンオキサイ ドの転化率 7 0. 0 %, 1 , 2—ジ ヒ ドロキシシクロへキサンが 6 0. 0 %、 式 ( 1 ) の n = 1の二量体が 9. 0 %の収率であった。
<硝酸水溶液による酸化 >得られた反応液からゼォライ トを濾過分離し、 減圧下に蒸留し、 水、 シクロへキセンオキサイ ド、 1 , 2—ジヒ ドロキシシ クロへキサンを除去し、 式 ( 1 ) の n = lの二量体 8 5重量%、 n = 2の三 量体 1 4重量%、 1, 2—ジヒ ドロキシシクロへキサン 1重量%の混合物を 得た。 この混合物と蒸留で除去したシクロへキセンオキサイ ド、 1, 2—ジ ヒ ドロキシシクロへキサンを再度混合して、 表 6に示した組成の混合物を調 整した。
<硝酸水溶液による酸化 >この混合物 2 5. 0 8 1"を 0. 2 3 0重量%の アンモニゥムメタバナデ一卜を含み、 温度 8 0 °Cに保持された 6 0 %硝酸 2 5 0 g rに 3 0分かけて添加した。 その後 3 0分、 8 0 °Cで反応を継続後、 反応生成物及び放出されたガス成分を分析した。 結果を表 6に示す。
表 6
式 α)のオリ - 10 50
Z1, 2-ジヒド πキ'ンシク πへキサン /60
Figure imgf000024_0001
Z33. 3 Ζシク πへキセン才キ講暈比 /30 /\ 6. 7 アジピン酸収率 *D CD 90. 8 90. 4 89. 3 87 硝瞧 m *2) 0. 097 0. 099 0. 102 0. 姓 NOX量 *3) 3. 0 3. 0 2. 9 2
*1)職に含まれるシクロ環に財るモル収率O CO C
*2)アジピン酸 1 K あたりの K g トO C
*3)職中に含まれるシク口環のモノ [に财る酵
\ \ト
〔実施例 4 7 ~ 5 4〕
硝酸水溶液による酸化において、 表 7に示す触媒をもちいた以外は実施例 3 と同様の方法を用いて反応を行った。 結果を表 7に示す。
表 7 謹' J47 難例 48 麵列 50 麵歹051 麵列 52 難節 3 難 « 誦賊 (60%硝酸 H4V03 NH4V03 H4V03 H4V03 甲の 単 CO.4b;
Figure imgf000026_0001
ϋ.4W iS).4b) CO.4b;
Cu(N03)2 Bi(N03)3 Mn(N03)2 Co(N03)2 (2.95) (1.00) (1.00) (1.00)
CO アジピン酸 1|又率 *η (%) 92. 2 91. 6 91. 5 91. 6 91. 4 91. 8 91. 7 91. 5 硝薩籠 *2) 0.094 0.093 0.096 0.094 0.094 0.094 0.093 0.093 ―
胜 Ν0Χ量 *3) 3. 0 3. 0 3. 0 3. 1 3. 0 3. 1 3. 0 3. 0 )驟斗に含まれるシクロ環に财るモル収率
t2)アジピン酸 1 K g生成あたりの K g £C- n O
0— · '
*3)職中に含まれるシクロ環のモノ H¾に财る酵
ス^ 〔実施例 5 5〕
硝酸水溶液による酸化において、 細管を通して空気を硝酸水溶液中に毎時 7 0 N リ ッ トルの速度で吹き込んだ以外は実施例 4 3と同様の方法で反応を 行った。 アジピン酸が 9 1 . 4 %の収率で得られ、 窒素及び亜酸化窒素とし て失われた硝酸の量はァジピン酸の生成量 1 K gに対し 0 . 0 9 6 K gに相 当する量であった。 また、 放出された N 0 Xの量は用いた原料中のシクロ環 のモル数に対し 1 . 8倍に相当する量であった。
〔実施例 5 6〕
硝酸水溶液中での酸化の反応温度を 6 0でとした以外は実施例 1 と同様の 方法で反応を行った。 アジピン酸が 9 6 . 6 %の収率で得られ、 窒素及び亜 酸化窒素として失われた硝酸の量はアジピン酸の生成量 1 K gに対し 0 . 0 3 8 K gに相当する量であった。 また、 放出された N O Xの量は用いた原料 中のシクロ環のモル数に対し 3 . 3倍に相当する量であった。
〔実施例 5 7〕
硝酸水溶液中での酸化の反応温度を 6 0でとした以外は実施例 2と同様の 方法で反応を行った。 アジピン酸が 9 7 . 2 %の収率で得られ、 窣素及び亜 酸化窒素と して失われた硝酸の量はアジピン酸の生成量 1 K gに対し 0 . 0 3 8 K gに相当する量であった。 また、 放出された N O Xの量は用いた原料 中のシクロ環のモル数に対し 3 . 4倍に相当する量であった。 産業上の利用可能性
本発明の方法により、 シクロへキセンォキサイ ドから高収率にアジピン酸 を得られ、 かつその際に消費される硝酸の量を極めてわずかなものにでき、 安価なアジピン酸の製造ができる。

Claims

請 求 の 範 囲
1. 下記の ( a ) 、 ( b ) 工程からなる、 シクロへキセンォキサイ ドより アジピン酸を製造する方法。
( a ) シクロへキセンオキサイ ドを水和して、 1 , 2—ジヒ ドロキシシクロ へキサンと式 ( 1 ) で表されるオリ ゴマーを製造する工程。
( b ) 1 , 2—ジヒ ドロキシシクロへキサン及びノ又はシクロへキセンォキ サイ ド及び/又は式 ( 1 ) で表されるオリ ゴマーを硝酸水溶液中で酸化して アジピン酸を製造する工程。 式 ( 1 ) H
Figure imgf000028_0001
nは 1から 5の範囲の数を表す,
2. 1 , 2—ジヒ ドロキシシクロへキサンを硝酸水溶液中で酸化するに際 して、 酸化の触媒と して溶解したバナジウムおよび I B族、 Π B族、 ΠΙ族、 IV族、 V族、 VIB族、 WB族および珊族金属の一種または二種以上を用いる ことを特徴とする請求の範囲第 1項に記載の製造方法。
3. 1 , 2—ジヒ ドロキシシクロへキサンを硝酸水溶液中で酸化するに際 して、 酸化の触媒と して溶解したバナジウム、 又はバナジウムおよび I B族 、 E B族、 II族、 IV族、 V族、 VIB族、 VHB族および \1族金属の一種または 二種以上を用い、 酸化反応系に酸素または酸素含有ガスを吹き込みながら反 応させることを特徴とする請求の範囲第 1項に記載の製造方法。
4. 式 ( 1 ) で表されるオリ ゴマーを硝酸水溶液中で酸化するに際して、 酸化の触媒と して溶解したバナジウム、 又はバナジウムおよび I B族、 Π B 族、 DI族、 IV族、 V族、 VIB族、 WB族および! [族金属の一種または二種以 上を用いることを特徴とする請求の範囲第 1項に記載の製造方法。
5 . 式 ( 1 ) で表されるオリ ゴマーを硝酸水溶液中で酸化するに際して、 酸化反応系に酸素または酸素含有ガスを吹き込みながら反応させることを特 徵とする請求の範囲第 4項に記載の製造方法。
6 . 式 ( 1 ) で表されるオリ ゴマー及び 1 , 2 —ジヒ ドロキシシクロへキ サンを硝酸水溶液中で酸化するに際して、 酸化の触媒と して溶解したバナジ ゥム、 又はバナジウムおよび I B族、 Π B族、 IE族、 IV族、 V族、 VI B族、 W B族および I族金属の一種または二種以上を用いることを特徵とする請求 の範囲第 1項に記載の製造方法。
7 . 式 ( 1 ) で表されるオリ ゴマー及び 1 , 2 —ジヒ ドロキシシクロへキ° サンを硝酸水溶液中で酸化するに際して、 酸化反応系に酸素または酸素含有 ガスを吹き込みながら反応させることを特徴とする請求の範囲第 6項に記載 の製造方法。
8 . 式 ( 1 ) で表されるオリ ゴマーと 1 , 2 —ジヒ ドロキシシクロへキサ ンの割合が重量で 6 0 : 4 0〜 1 : 9 9である、 請求の範囲第 1項、 第 6項5 または第 7項に記載の製造方法。
9 . 式 ( 1 ) で表されるオリ ゴマー、 1 , 2 —ジヒ ドロキシシクロへキサ ン及びシクロへキセンォキサイ ドを硝酸水溶液中で酸化するに際して、 酸化 の触媒と して溶解したバナジウム、 又はバナジウムおよび I B族、 Π B族、 ΠΙ族、 IV族、 V族、 VI B族、 VII B族および i族金属の一種または二種以上を0 用いることを特徴とする請求の範囲第 1項に記載の製造方法。
1 0 . 式 ( 1 ) で表されるオリ ゴマー、 1 , 2 —ジヒ ドロキシシクロへキ サン及びシクロへキセンォキサイ ドを硝酸水溶液中で酸化するに際して、 酸 化反応系に酸素または酸素含有ガスを吹き込みながら反応させることを特徴 とする請求の範囲第 9項に記載の製造方法。
5 1 1 . 式 ( 1 ) で表されるオリ ゴマーと、 1 , 2 —ジヒ ドロキシシクロへ キサン及びシクロへキセンォキサイ ドの合計との割合が重量で 6 0 : 4 0 - 1 : 9 9である、 請求の範囲第 1項、 第 9項または第 1 0項に記載の製造方 i4
PCT/JP1993/000457 1993-04-09 1993-04-09 Procede de production d'acide adipique WO1994024083A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP93908073A EP0645363B1 (en) 1993-04-09 1993-04-09 Process for producing adipic acid
DE69319343T DE69319343T2 (de) 1993-04-09 1993-04-09 Verfahren zur herstellung von adipinsäure
PCT/JP1993/000457 WO1994024083A1 (fr) 1993-04-09 1993-04-09 Procede de production d'acide adipique
US08/190,195 US5455375A (en) 1993-04-09 1993-04-09 Process for preparing adipic acid
CA002114635A CA2114635C (en) 1993-04-09 1993-04-09 Process for preparing adipic acid
KR1019940700366A KR0127337B1 (ko) 1993-04-09 1993-04-09 아디프산의 제조 방법
KR1019940700366A KR950700870A (ko) 1993-04-09 1994-02-03 아디핀산의 제조 방법(process for preparing adipic acid)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000457 WO1994024083A1 (fr) 1993-04-09 1993-04-09 Procede de production d'acide adipique

Publications (1)

Publication Number Publication Date
WO1994024083A1 true WO1994024083A1 (fr) 1994-10-27

Family

ID=14070217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000457 WO1994024083A1 (fr) 1993-04-09 1993-04-09 Procede de production d'acide adipique

Country Status (6)

Country Link
US (1) US5455375A (ja)
EP (1) EP0645363B1 (ja)
KR (2) KR0127337B1 (ja)
CA (1) CA2114635C (ja)
DE (1) DE69319343T2 (ja)
WO (1) WO1994024083A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241001A (ja) * 2005-02-28 2006-09-14 Nof Corp グリセリンモノ(メタ)アクリレートの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235932B1 (en) 1999-06-18 2001-05-22 Chemintel (India) Private Ltd. Process for preparation of adipic acid
CN102464579B (zh) * 2010-11-05 2014-03-12 中国石油化学工业开发股份有限公司 自环己烷氧化副产物制备己二酸的方法
CN113563176B (zh) * 2021-08-25 2022-12-20 浙江工业大学 一种Cu(II)/硝酸二元催化体系催化O2氧化环己烯一步合成己二酸的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239438A (ja) * 1984-05-15 1985-11-28 Asahi Chem Ind Co Ltd アジピン酸の製造方法
JPS61501630A (ja) * 1984-03-28 1986-08-07 ユニオン、カ−バイド、コ−ポレ−シヨン メタレ−ト含有固形物を使用するアルキレングリコ−ルの製造方法
JPH03236337A (ja) * 1990-02-13 1991-10-22 Daicel Chem Ind Ltd 1,2―シクロヘキサンジオールの製造方法
JPH0446133A (ja) * 1990-06-12 1992-02-17 Daicel Chem Ind Ltd シクロヘキサン―1,2―ジオールの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1518242A1 (de) * 1962-01-24 1969-02-13 Vickers Zimmer Ag Verfahren zur Herstellung von aliphatischen Dicarbonsaeuren
NL6601148A (ja) * 1965-03-26 1966-04-25
BE757061A (fr) * 1969-10-06 1971-04-05 Rhone Poulenc Sa Procede d'obtention d'acide adipique
US4254283A (en) * 1979-06-07 1981-03-03 Monsanto Company Process for preparing adipic acid with recovery of glutaric and succinic acids
US4605790A (en) * 1985-05-21 1986-08-12 E. I. Du Pont De Nemours And Company Phenol from coal and biomass
JP2562150B2 (ja) * 1986-10-23 1996-12-11 バスフ アクチェンゲゼルシャフト シクロヘキシルヒドロペルオキシドを含有する反応混合物の後処理法
JPH0441449A (ja) * 1990-06-07 1992-02-12 Daicel Chem Ind Ltd シクロヘキサン―1,2―ジオールの製造方法
US5321157A (en) * 1992-09-25 1994-06-14 Redox Technologies Inc. Process for the preparation of adipic acid and other aliphatic dibasic acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501630A (ja) * 1984-03-28 1986-08-07 ユニオン、カ−バイド、コ−ポレ−シヨン メタレ−ト含有固形物を使用するアルキレングリコ−ルの製造方法
JPS60239438A (ja) * 1984-05-15 1985-11-28 Asahi Chem Ind Co Ltd アジピン酸の製造方法
JPH03236337A (ja) * 1990-02-13 1991-10-22 Daicel Chem Ind Ltd 1,2―シクロヘキサンジオールの製造方法
JPH0446133A (ja) * 1990-06-12 1992-02-17 Daicel Chem Ind Ltd シクロヘキサン―1,2―ジオールの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0645363A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241001A (ja) * 2005-02-28 2006-09-14 Nof Corp グリセリンモノ(メタ)アクリレートの製造方法

Also Published As

Publication number Publication date
DE69319343T2 (de) 1999-03-25
EP0645363B1 (en) 1998-06-24
US5455375A (en) 1995-10-03
CA2114635A1 (en) 1994-04-26
DE69319343D1 (de) 1998-07-30
EP0645363A4 (en) 1995-11-02
KR950700870A (ko) 1995-02-20
CA2114635C (en) 2000-05-23
EP0645363A1 (en) 1995-03-29
KR0127337B1 (ko) 1998-04-01

Similar Documents

Publication Publication Date Title
JPH0326101B2 (ja)
EP0127942A1 (en) Process for the preparation of acrylonitrile or methacrylonitrile
WO1994024083A1 (fr) Procede de production d&#39;acide adipique
KR100954045B1 (ko) 개선된 아크릴산 제조용 촉매의 합성방법
JP2010163412A (ja) カルボニル化合物の製造方法
JP3086564B2 (ja) アジピン酸の製造方法
CN113956142B (zh) 一种频哪酮的制备方法
CN1446195A (zh) 制备环己酮肟的方法
JP2676895B2 (ja) ε―カプロラクタムの製造法
CN115160127A (zh) 一种共氧化反应制备长碳链二元酸的方法
US4658056A (en) Catalytic oxidation of liquid cycloparaffins
KR20210050924A (ko) 사이클로도데카논 및 이의 제조방법
JP5029162B2 (ja) シクロヘキサノンの製造方法
JP4201497B2 (ja) シクロヘキサノンオキシムを製造する方法
JPH10231266A (ja) 2−メチル−1,4−ベンゾキノンの製造方法
JP3069925B2 (ja) シクロアルカノンの製造方法
US8258348B2 (en) Process for production of carbonyl compound
KR102528919B1 (ko) 사이클로도데카논의 제조방법
US4237314A (en) Phenyl acetic acid preparation
JP3242988B2 (ja) アジピン酸の製造法
US20230002299A1 (en) Cyclododecanone and preparation method therefor
JPH0723332B2 (ja) 1,3−ジクロル−2−プロパノ−ルの製造法
SU1715799A1 (ru) Способ получени 2,2,2,-трифторэтан-1,1-диола
JPS6383041A (ja) グリオキシル酸の製造法
JP2010241690A (ja) カルボニル化合物の製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2114635

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993908073

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019940700366

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08190195

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993908073

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993908073

Country of ref document: EP