WO1993026057A1 - Materiau a conduction ionique, comportant comme solvant un copolymere bloc - Google Patents

Materiau a conduction ionique, comportant comme solvant un copolymere bloc Download PDF

Info

Publication number
WO1993026057A1
WO1993026057A1 PCT/FR1992/000542 FR9200542W WO9326057A1 WO 1993026057 A1 WO1993026057 A1 WO 1993026057A1 FR 9200542 W FR9200542 W FR 9200542W WO 9326057 A1 WO9326057 A1 WO 9326057A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
material according
radical
block copolymer
group
Prior art date
Application number
PCT/FR1992/000542
Other languages
English (en)
Inventor
Michel Armand
Jean-Yves Sanchez
Fannie Alloin
Original Assignee
Centre National De La Recherche Scientifique
Hydro-Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9425786&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1993026057(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Centre National De La Recherche Scientifique, Hydro-Quebec filed Critical Centre National De La Recherche Scientifique
Priority to CA002138372A priority Critical patent/CA2138372C/fr
Priority to US08/351,312 priority patent/US5523180A/en
Priority to PCT/FR1992/000542 priority patent/WO1993026057A1/fr
Publication of WO1993026057A1 publication Critical patent/WO1993026057A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Ionically conductive material comprising as solvent a block copolymer.
  • the present invention relates to ionically conductive materials and their uses.
  • the polymer electrolytes obtained by dissolving a salt in a solvating polymer comprising heteroatoms are known.
  • Such electrolytes, the solvent of which is a polyethylene oxide or a copolymer of ethylene oxide are described for example in EP 13199 (M. Armand, M. Duclot).
  • These polymer electrolytes have numerous applications, in particular in the field of electrochemical generators, light modulation systems (M. Armand et al, EP-87401555), sensors, for example for selective or reference membranes.
  • ⁇ rence A. Hammou et al, FR-86.09602.
  • Polyethylene oxide is a semi-crystalline polymer which forms with salts stoechio etric complexes.
  • the conductive amorphous phases of these complexes only exist above a eutectic temperature generally between 40 "C and 65 ° C depending on the nature of the complexed salts.
  • Good conductivities at ordinary temperature are only obtained with macromolecular systems with little or no crystallinity. Numerous studies have been carried out to improve the conduction properties of these materials. They have resulted, for example, in the formation of copolymers based on ethylene oxide (M. Armand et al, FR-83.09886).
  • REPLACEMENT SHEET amorphous with good conductivity, but poor mechanical strength [CV Nicholas, DJ ilson, C. Booth & RJM Gilles, Brit. Polym. J. ⁇ > 289 (1988)].
  • these materials do not have reactive functions and therefore cannot be crosslinked.
  • they are easily degraded in an acid medium.
  • the present invention aims to provide ionically conductive materials comprising a solid electrolyte and having both good conductivity and good mechanical strength.
  • the subject of the invention is an ionically conductive material comprising a salt in solution in a solid polymer electrolyte.
  • the invention also relates to various uses of said material.
  • the ionically conductive material according to the present inven ⁇ tion comprises at least one salt dissolved in a polymer solvent. It is characterized in that the polymer solvent consists essentially of a block copolymer comprising at least one solvating segment A and at least one segment B having good intrinsic mechanical properties or after crosslinking between several segments B.
  • the block copolymer constituting the solvent for a material according to the present invention can have different shapes.
  • the segment A of the block copolymer is a solvating segment which gives the material its conductivity properties.
  • the mass of the polymer segment is preferably between 150 and 20,000, more particularly between 150 and 10,000.
  • the segment A consists of units deriving from monomers of the ether, ester or amine type.
  • the segment A is derived from a homopolymer of ethylene oxide or from a statistical or trendy copolymer consisting essentially of ethylene oxide units.
  • the copolymers those which contain at least 70% of ethylene oxide units, relative to the total number of monomer units, are particularly preferred.
  • the comonomers are chosen from the monomers which retain the solvating nature of the segment A. By way of example, mention may be made of propylene oxide, oxymethylene, oxetane, tetrahydrofuran, dioxolane and glycidyl alkyl ethers.
  • Segment B is intended to give the material the mechanical properties required for the use of said material as a solid electrolyte in the form of thin films. These properties are obtained either by the rigidity of the chain constituting the segment B, or by the functional groups present on B and allowing the crosslinking or crystallization of the segments B with one another.
  • a segment B can consist of a mainly hydrocarbon radical.
  • a polyene an alkyl group CpH 2 p + ⁇ , an acyl group Cp_ _H 2 p- ⁇ CO, an alkylaryl group CpH 2 p- ⁇ - ⁇ , an alkylaroyl group CpH2p + ⁇ , a alkenyl group CpH 2 p--, an alkenoyl group Cp __. 1H2p-.3CO, p being an integer less than 31, q being an odd integer less than p.
  • Segment B can also be derived from a polymer of at least one monomer chosen from styrene, ⁇ -methylstyrene and their derivatives, styrene oxide, exo-2,3 epoxynorbornane, phenylglycidyl ether, 1-epoxy-3-phenoxypropane, ethylene sulfide, 1 allyl-glycidyl ether, acrylate or glycidyl methacrylate, epoxyalkenes, furfuryl-glycidyl ether, 1 acrylonitrile, methacrylonitrile, acrylates and ionic methacrylates or precursors of ionic groups corresponding respectively to the formulas below in which X represents an alkyl radical, an alkenyl radical, a metal or a radical -SiR ⁇ ,
  • R represents an alkyl radical having a number of carbon atoms less than 6.
  • R ' represents a methyl radical.
  • Particularly preferred epoxyalkenes are butadiene monoxide, 1,2 epoxy-5-hexene, 1,2 epoxy-7-octene.
  • Exo-2,3 epoxynorbornane the formula of which is given below, styrene oxide and phenylglycidyl ether are particularly preferred monomers for the preparation of segment B.
  • R represents an organic radical having from 1 to 10 atoms of carbon.
  • the radical R is advantageously a trimethylene methane radical, a trimethylene ethane radical, a trimethylene propane radical or a pentaerythrityl radical whose formulas are given below in order, or a glyceryl radical.
  • the materials of the present invention are particularly advantageous when the solvent is a branched polymer.
  • This particular structure of the copolymer makes it possible to simultaneously increase the local concentration in solvating segments at several points in space, and the probability of good crosslinking between several segments B when these are either derived from crosslinkable monomers, either represent a mainly unsaturated hydrocarbon radical.
  • the structure of these branched polymers promotes crystallization between them of the B segments when these represent mainly saturated hydrocarbon radicals.
  • These branched copolymers more easily retain the amorphous nature of the segment A favorable to conductivity.
  • a process for the preparation of a type AB or type BAB copolymer consists in first of all preparing a precursor polymer of segment A from the appropriate monomer (s). This preparation can be carried out by anionic or cationic polymerization or by polycondensation, depending on the nature of the reactive functions carried by the monomers. It is also possible to use commercial polymers such as, for example, polyethylene glycols with a mass of 400, 600, 1000, 1500, 2000 or 20000 supplied by Aldrich. Polymers having a mass of about 2000 are particularly preferred.
  • the precursor polymer of segment A carries reactive terminal functions for the grafting of segment B.
  • segment B is fixed on segment A by the reaction appropriate to the reactive functions, according to methods known to those skilled in the art. .
  • segment B is an essentially hydro ⁇ carbon radical such as a polyene, an alkyl group CpH 2 p + ⁇ , an acyl group Cp_ 1 H 2 p- ⁇ CO, an alkylaryl group Cp ⁇ p + i ⁇ , an alkylaroyl group CpH2p + ⁇ , an alkenyl group CpH2p-q, an alkenoyl group Cp_ ⁇ H 2 p-3 c0 il " is fixed on A by a condensation reaction via appropriate reactive functions present at the ends of A.
  • an alkyl group CpH 2 p + ⁇ an acyl group Cp_ 1 H 2 p- ⁇ CO
  • an alkylaryl group Cp ⁇ p + i ⁇ an alkylaroyl group CpH2p + ⁇
  • an alkenyl group CpH2p-q an alkenoyl group Cp_ ⁇ H 2 p-3 c0 il
  • segment B is a radical derived from a polymer of at least one monomer
  • two methods are possible: either segment B is first prepared by polymerization of the chosen onomer (s), then the segment B is grafted onto A by means of appropriate reactive functions present at the ends of A; either segment A is brought into contact with the monomer (s) constituting B, and polymerization is initiated either by the anionic route or by the radical route, depending on the reactive functions present on A. This latter route can also be used when segment B is a polyene radical.
  • the reactive ends of the precursor polymer of segment A can be hydroxyl radicals -OH, amino groups - NHR, carboxylic groups -COOH. These reactive ends, after treatment with a deprotonating base such as NaH, KH, KOC (CH3) 3, KOH , Na + [naphthalene], serve to initiate an anionic polymerization of the reactants constituting B.
  • a deprotonating base such as NaH, KH, KOC (CH3) 3, KOH , Na + [naphthalene
  • groups generating free radicals are grafted to the reactive ends of the precursor polymer of segment A by means of molecules containing for example azo groups, peroxide, disulfide.
  • molecules containing for example azo groups, peroxide, disulfide mention may be made of azobis (cyanovaleric) acid, peroxybenzoic acid, dithiodipropionic acid.
  • azobis (cyanovaleric) acid peroxybenzoic acid, dithiodipropionic acid.
  • These molecules are easily transformed into their corresponding esters or amides by reaction on the OH or RNH functions of the ends of the solvating segment A precursors in the presence of molecular dehydrating agents such as, for example, dicyclohexyl carbodiimide, carbonyl diimidazole, carbonate succinimidyle.
  • the segment A precursor thus functionalized is brought into contact with the monomers intended to constitute segment B at the temperature of dissociation into free radicals, preferably at a temperature between 50 °
  • the triblock copolymers BAB 'in which B is different from B' can be obtained according to different methods. For example, one of the reactive ends of the precursor polymer of segment A is protected; then segment B is grafted by the routes described above, then after deprotection of the second reactive end, segment B 'is grafted. Another method consists in using a preformed segment AB ′ preformed, then in grafting a segment B on the reactive end of A. It is also possible to use a polymer precursor of segment A having two different reactive ends.
  • the monomers which can be used to form segment B by the radical route are advantageously chosen from styrene, 1 '-methylstyrene and their derivatives, acrylonitrile, methacrylonitrile, ionic acrylates and methacrylates or precursors of ionic groups, vinylsulfonates or vinylsulfamates ionic or precursors of ionic groups.
  • a process for the preparation of BA or ABA copolymers consists in first of all preparing a precursor polymer of segment B by polymerization of the monomer (s) constituting it, or else a precursor of a mainly hydro ⁇ carbon radical is used. Then the segment (s) A is added.
  • segment A is first prepared by polymerization of the chosen monomer (s), or else a commercial polymer such as a polyethylene glycol or an ethylene oxide copolymer is used as segment A, then the segment A is grafted onto B by means of appropriate reactive functions present at the ends ⁇ mites of B; either the precursor of segment B, which has reactive ends, is brought into contact with the monomer (s) constituting A, and polymerization is initiated either by an anionic route, or by cationic route, or by polycondensation, according to the reactive functions present on the precursor of segment B and on the monomers intended to constitute A.
  • Block copolymers of the type A'BA when A is different from A ' can be prepared by routes analogous to those which allow the preparation of the copolymers BAB '.
  • a process for the preparation of copolymers of type (AB) n R, or (BA) n R consists in reacting the precursor compound of group R with multiple functionality with the monomer (s) intended to constitute A for prepare a branched polymer A n R or with the monomer (s) intended (s) to constitute B to prepare a branched polymer B n R. Then graft respectively ve the segments B or A by one of the two routes mentioned above: preliminary preparation of the segment to be grafted then grafting; or bringing the entity A n R or the entity B n R into contact respectively with the monomer (s) intended to constitute the segment B or the monomer (s) intended ( s) to constitute segment A.
  • the block copolymers obtained present residual reactive groups. It is preferable to deactivate them by transformation into ether, ester or amide groups in order to avoid the formation of parasitic reactions when using the material of the invention.
  • the materials of the present invention also contain a salt dissolved in the block copolymer.
  • the salt can be chosen from the salts usually used for solid materials with ionic conduction.
  • X representing an anion with delocalized electronic charge, for example Br ⁇ , ClO ⁇ -, R F S0 3 ⁇ or (R F S0 2 ) 2 N;
  • R F representing a perfluoroalkyl or perfluoroaryl group.
  • Mixtures of salts can be used.
  • additives can be added to the material of the present invention to modify the properties of the final material.
  • a plasticizing agent such as ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, dimethylformamide, N-methylpyrrolidone, tetraalkylsulfamide ⁇ , methyl ethers of polyethylene glycols of mass between 200 and 2000 and, in general, derivatives of polar molecules of low volatility.
  • the proportion of these additives can range from 1 to 90% of the total mass.
  • the ion-conducting materials of the present invention are particularly useful as an electrolyte in various electrochemical systems.
  • electrolyte in various electrochemical systems.
  • EXAMPLE 1 To 40 g of commercial poly (ethylene glycol) of mass 1000 (sold by Aldrich under the reference 20,242-8) 5 ml of 2,2-dimethoxypropane are added. Next, the mixture is dried in a rotary evaporator at 60 ° C. to remove the residual water from the polymer. Operating in a glove box under an inert atmosphere, 5 g of the poly (ethylene glycol) thus dehydrated are introduced into solution in 25 ml of anhydrous THF in a container which can be hermetically sealed, and 0.3 g of sodium hydride is added thereto. The end of the evolution of hydrogen indicates that all of the terminal OH groups are metallized. styrene oxide and the mixture is stirred at 55 ° C. for 6 hours in the closed container The block polymer obtained is separated by precipitation in a 50/50 ether / hexane mixture.
  • EXAMPLE 2 A solution of 20 g of commercial polyethylene glycol of mass 2000 (marketed by Aldrich under the reference 29.590-6) in 150 ml of toluene is prepared. The solution obtained is dried by azeotropic dehydration. Then added 5.5 g of palmitoyl chloride and 10 ml of pyridine. The mixture obtained is stirred at ordinary temperature for 3 hours, then the precipitate of pyridinium hydrochloride formed is removed by filtration. The block polymer obtained, which corresponds to the formula C 16 H 33 C0 2 (C 2 H 0) n C0C 16 H 33 > n being of the order of 44, is separated by precipitation in ether.
  • This polymer is in the form of a fusible wax at 45 "C. 5 g of the block copolymer obtained and 1.7 g of lithium salt of bis (trifluoromethanesulfonimide) are dissolved in 10 ml of methyl formate. After evaporation of the solvent , we obtain a material with an ionic conductivity of 2.10 -5 ( ⁇ cm) -1 at 25 ° C.
  • EXAMPLE 3 A block copolymer is prepared according to the procedure of Example 2, but replacing palmitoyl chloride with 6 g of linoleyl chloride.
  • the polymer obtained, after complexation with the lithium salt used in Example 2 is mixed with 0.3% by weight of benzoyl peroxide. After shaping by spreading in a film 30 ⁇ m thick, the material is heated at 80 ° C for 8 hours.
  • the crosslinked product obtained is a material having both good mechanical properties and good ionic conductivity [1.4.10 -5 ( ⁇ cm) -1 at 25 ° C].
  • EXAMPLE 4 60 g of commercial polyethylene glycol of mass 1500 (sold by Aldrich under the reference 20,243-6) are dried with 10 ml of 2,2-dimethoxypropane; the excess dehydrating agent, the methanol and the acetone formed are eliminated under reduced pressure. In a glove box under an inert atmosphere, the polymer is dissolved in 300 ml of anhydrous THF and then 3.9 g of sodium hydride is added with stirring. The metallation reaction is complete in 4 hours, which is indicated by the end of the evolution of hydrogen. The mixture is cooled to 0 ° C. and 40 g of ethylene sulfide are then gradually added while stirring is maintained.
  • the container is hermetically sealed and the polymerization is complete after 2 hours at ordinary temperature.
  • the polymer obtained is precipitated in ether and purified by washing in isopropanol, dissolution in dichloromethane, centrifugation and reprecipitation in hexane.
  • EXAMPLE 5 A random copolymer of ethylene oxide and propylene oxide is obtained by cationic initiation with boron trifluoride. 4 g of this copolymer, having a mass of 1600 and containing 15% of propylene oxide units are metallized under the conditions of Example 1 with 0.6 g of potassium tert-butoxide, instead of sodium hydride. To the reaction mixture, 3.3 g of exo-2, 3-epoxynorbornane are added, and the temperature is maintained at 60 ° C. for 3 hours. The block copolymer obtained is precipitated with ether and washed by trituration in isopropanol containing 1% of acetic acid, then dried under vacuum at 60 ° C.
  • Lithium trifluorosulfonate is dissolved in the block poly ⁇ mother obtained at a concentration corresponding to a ratio of oxygen atoms in the solvating segment / Li atoms of 16/1.
  • the ionic conductivity of the material obtained is 1.1.10 " ⁇ ( ⁇ cm) - 1 at 44 ° C.
  • Example 7 70 g of polyethylene glycol with a mass of 2000 (sold by Aldrich under the reference 29.590-6) are dehydrated according to the procedure of Example 1. To the solution in THF of the dehydrated polyethylene glycol, 3 g of hydride is added. potassium, then 25 ml of allyl glycidyl ether. The mixture is maintained at 50 ° C. for 2 hours, then the polymer is precipitated in ether and purified by dissolution in acetone and precipitation in ether three times.
  • a crosslinked membrane is prepared by dissolving the polymer and 1% by weight of benzoyl peroxide in acetone and spreading using a template. After evaporation of the acetone, the polymer is heated at 80 ° C for 2 hours under an argon atmosphere. An elastic membrane of crosslinked poly ⁇ is obtained. The material becomes ionic conductor after immersion of the membrane in a 1 M solution of the lithium salt of bis (trifluoromethanesulfonimide) in acetone, the volume of the solution being calculated to correspond to an O / Li ratio of 15/1. The membrane obtained has an ionic conductivity of 1.1.10 -4 ( ⁇ cm) -1 at 50 ° C.
  • EXAMPLE 7 10 g of ⁇ , C-diaminopoly (oxypropyleneoxyethylene) of mass 4000 (Jeffamine® ED 4000, Texaco Corporation) are dissolved in 75 ml of 1 acetonitrile and 15 ml of pyridine. 1.2 g of dicyclohexylcarbodii ide and 0.75 g of azobis (cyanovaleric) acid are added. The mixture is stirred for 9 hours at ordinary temperature. The precipitate of dicyclohexylurea formed is removed by centrifugation and a polyamide is obtained by precipitation in ether.
  • EXAMPLE 8 80 g of polybutadiene diol of mass 1000 containing 20% of vinyl groups, 20% of cis double bonds and 60% of trans 1,4 double bonds (marketed by Aldrich under the reference 19.079-9) are dissolved in 500 ml of Anhydrous THF in a sealed reactor and 7 g of potassium hydride are added. After the end of the metallation reaction of the OH ends, 180 g of ethylene oxide are gradually added so as to maintain the temperature below 80 "C. When the polymerization reaction is complete, the polymer is added to the co ⁇ obtained 8% by weight of lithium trifluoromethane sulfonate and 0.5% of benzoyl peroxide After spreading this mixture and heating under argon at 110 ° C. for 2 hours, a crosslinked membrane is obtained which has elasticity. is greater than 10 -4 ( ⁇ cm) -1 at 55 ° C.
  • EXAMPLE 9 11 g of polyoxyethylene 20 monocetyl ether (BRU® 58 from the company ICI) are dried under vacuum at 60 ° C. and then dissolved in a 50/50 toluene / THF mixture. A solution of naphthalene-sodium is added dropwise until the green color characteristic of the anion radical C ⁇ Q H Q ⁇ persists, then 4 g of 1,2-epoxy-5-hexene are added. The polymerization by opening the epoxy cycle is carried out in 1 hour at ordinary temperature. The cetyl-polyethylene oxide-1,2-epoxy-5-hexene block polymer is separated by precipitation in ethyl ether at -10 ° C.
  • BRU® 58 from the company ICI
  • This membrane can be used for the manufacture of electrochromic glazings based on Prussian blue K x Fe (CN) 6 , used to modulate the light fluxes by application of an electrical voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

La présente invention concerne un matériau à conduction ionique et ses utilisations. Le matériau selon l'invention comporte au moins un sel dissous dans un solvant polymère. Il est caractérisé en ce que le solvant polymère est constitué essentiellement par un copolymère bloc comportant au moins un segment (A) solvatant et au moins un segment (B) ayant de bonnes propriétés mécaniques intrinsèques ou après réticulation entre plusieurs segments (B). Le matériau peut être utilisé comme électrolyte dans divers systèmes électrochimiques.

Description

Matériau à conduction ionique comportant comme solvant un copolymère bloc. La présente invention concerne des matériaux à conduction ionique et leurs utilisations. On connaît les électrolytes polymères obtenus par dissolu¬ tion d'un sel dans un polymère solvatant comportant des hété- roatomes. De tels électrolytes dont le solvant est un polyoxyde d'éthylene ou un copolymère d'oxyde d'éthylene, sont décrits par exemple dans EP 13199 (M. Armand, M. Duclot) . Ces électro- lytes polymères ont de nombreuses applications, en particulier dans le domaine des générateurs électrochimiques, des systèmes de modulation de la lumière (M. Armand et al, EP-87401555) , des capteurs, par exemple pour des membranes sélectives ou de réfé¬ rence (A. Hammou et al, FR-86.09602) . Le polyoxyde d'éthylene est un polymère semi-cristallin qui forme avec les sels des complexes stoechio étriques. Les phases amorphes conductrices de ces complexes n'existent qu'au- dessus d'une température eutectique comprise en général entre 40"C et 65°C selon la nature des sels complexés. De bonnes conductivités à température ordinaire ne sont obtenues qu'avec des systèmes macromoléculaires ne présentant pas ou peu de cristallinité. De nombreux travaux ont été effectués pour l'amélioration des propriétés de conduction de ces matériaux. Ils ont abouti par exemple à la formation de copolymères à base d'oxyde d'éthylene (M. Armand et al, FR-83.09886) . La copoly é- risation d'oxyde d'éthylene avec d'autres époxydes tels que l'oxyde de propylène ou le méthylglycidyl éther diminue sensi¬ blement la cristallinité du matériau. Toutefois, l'introduction statistique de défauts se traduit par une perte notable du pouvoir solvatant et dissociant de la séquence régulière polyoxyde d'éthylene. La préparation de copolymères ayant des masses macromoléculaires élevées, supérieures à 105, et de bonnes propriétés mécaniques, exige des réactifs de grande pureté et le contrôle reproductible du taux de co-monomères introduits est difficile du fait de la différence de réactivité entre l'oxyde d'éthylene et ses homologues.
Par polycondensation des oligooxyéthylène glycols (Mw ≈ 200 - 1000) avec le dichlorométhane, on a obtenu des polymères
FEUILLE DE REMPLACEMENT amorphes ayant une bonne conductivité, mais une tenue mécanique médiocre [C.V. Nicholas, D.J. ilson, C. Booth & R.J.M. Gilles, Brit. Polym. J. Ç> 289 (1988)]. En outre, ces matériaux ne présentent pas de fonctions réactives et ne peuvent donc pas être réticulés. En outre, ils sont facilement dégradés en milieu acide.
On connaît également la formation de réseaux réticulés par des isocyanates (H. Chérada e et al, FR-8007135, US-4357401) . L'introduction de ponts uréthanes dans les électrolytes rend ceux-ci réactifs, en particulier vis-à-vis du lithium.
La présente invention a pour but de fournir des matériaux à conduction ionique comportant un électrolyte solide et présentant à la fois une bonne conductivité et une bonne tenue mécanique. A cet effet, l'invention a pour objet un matériau à conduction ionique comportant un sel en solution dans un élec¬ trolyte solide polymère.
L'invention a également pour objet diverses utilisations du dit matériau. Le matériau à conduction ionique selon la présente inven¬ tion comporte au moins un sel dissous dans un solvant polymère. Il est caractérisé en ce que le solvant polymère est constitué essentiellement par un copolymère bloc comportant au moins un segment A solvatant et au moins un segment B ayant de bonnes propriétés mécaniques intrinsèques ou après reticulation entre plusieurs segments B.
Le copolymère bloc constituant le solvant d'un matériau selon la présente invention peut présenter différentes formes. Parmi les formes préférées, on peut citer la forme copolymère dibloc AB ; la forme copolymère tribloc BAB, dans laquelle les deux segments B peuvent être identiques ou différents ; la forme copolymère tribloc ABA, dans laquelle les deux segments A peuvent être identiques ou différents ; la forme polymère ramifié du type (AB)nR ou (BA)nR, R représentant un radical organique ayant une fonctionnalité multiple n.
Le segment A du copolymère bloc est un segment solvatant qui confère au matériau ses propriétés de conductivité. La masse du segment polymerique est comprise de préférence entre 150 et 20000, plus particulièrement entre 150 et 10000. Le segment A est constitué d'unités dérivant de monomères du type éther, ester ou aminé. De préférence, le segment A est issu d'un homopolymère d'oxyde d'éthylene ou d'un copolymère statis- tique ou à tendance statistique constitué essentiellement d'unités oxyde d'éthylene. Parmi les copolymères, ceux qui comportent au moins 70% d'unités oxyde d'éthylene, rapporté au nombre total d'unités monomères, sont particulièrement préférés. Les comonomères sont choisis parmi les monomères qui conservent le caractère solvatant du segment A. A titre d'exemple, on peut citer l'oxyde de propylène, 1 'oxyméthylène, l'oxétane, le tétrahydrofurane, le dioxolane et les alkyléthers de glycidyle.
Le segment B est destiné à conférer au matériau les propriétés mécaniques requises pour l'utilisation du dit matériau comme électrolyte solide sous forme de films minces. Ces propriétés sont obtenues soit par la rigidité de la chaîne constituant le segment B, soit par les groupes fonctionnels présents sur B et permettant la reticulation ou la cristalli- sation des segments B entre eux. Ainsi, un segment B peut être constitué par un radical principalement hydrocarboné. A titre d'exemple, on peut citer un polyène, un groupe alkyle CpH2p+ι, un groupe acyle Cp_ _H2p-ιCO, un groupe alkylaryle CpH2p-ι-ι , un groupe alkylaroyle CpH2p+ι , un groupe alkényle CpH2p-- , un groupe alkénoyle Cp__.1H2p-.3CO, p étant un nombre entier infé¬ rieur à 31, q étant un nombre entier impair inférieur à p. Le segment B peut également être issu d'un polymère d'au moins un monomère choisi parmi le styrène, 1 'α-méthylstyrène et leurs dérivés, l'oxyde de styrène, l'exo-2,3 époxynorbornane, le phénylglycidyl éther, 1 'époxy-3-phénoxypropane, le sulfure d'éthylene, 1 'allyl-glycidyl éther, l'acrylate ou le méthacry- late de glycidyle, les époxyalcènes, le furfuryl-glycidyl éther, 1 'acrylonitrile, le méthacrylonitrile, les acrylates et méthacrylates ioniques ou précurseurs de groupements ioniques répondant respectivement aux formules ci-dessous dans lesquelles X représente un radical alkyle, un radical alkényle, un métal ou un radical -SiRβ,
Figure imgf000006_0001
les vinylsulfonates ou les vinylsulfamates ioniques ou précur¬ seurs de groupements ioniques répondant respectivement aux formules ci-dessous dans lesquelles M représente un métal ou un radical -SiRβ
==\
S03M /N-∞3M
Dans les deux groupes de formules ci-dessus, R représente un radical alkyle ayant un nombre d'atomes de carbone inférieur à 6. De préférence, R' représente un radical méthyle.
Des époxyalcènes particulièrement préférés sont le monoxyde de butadiène, le 1,2 époxy-5-hexène, le 1,2 époxy-7- octène.
L'exo-2,3 époxynorbornane dont la formule est donnée ci- dessous, l'oxyde de styrène et le phénylglycidyl éther sont des monomères particulièrement préférés pour la préparation du segment B.
Figure imgf000006_0002
Lorsque le copolymère bloc constituant le solvant du maté¬ riau à conduction ionique de la présente invention est un poly¬ mère ramifié du type (AB)nR ou (BA)nR, R représente un radical organique ayant de 1 à 10 atomes de carbone. Le radical R est avantageusement un radical triméthylène méthane, un radical triméthylène éthane, un radical triméthylène propane ou un radical pentaérythrityle dont les formules sont données ci- dessous dans l'ordre, ou un radical glycéryle.
Figure imgf000006_0003
Les matériaux de la présente invention sont particulière¬ ment intéressants lorsque le solvant est un polymère ramifié. En effet, cette structure particulière du copolymère permet d'augmenter simultanément la concentration locale en segments solvatants en plusieurs points de l'espace, et la probabilité d'une bonne reticulation entre plusieurs segments B lorsque ceux-ci sont soit issus de monomères réticulables, soit repré¬ sentent un radical principalement hydrocarboné insaturé. De même, la structure de ces polymères ramifiés favorise la cristallisation entre eux des segments B lorsque ceux-ci repré¬ sentent des radicaux principalement hydrocarbonés saturés. Ces copolymères ramifiés conservent plus facilement le caractère amorphe du segment A favorable à la conductivité.
Différents procédés peuvent être mis en oeuvre pour préparer les copolymères bloc, suivant la structure du copoly¬ mère souhaité et la nature des monomères choisis.
Un procédé de préparation d'un copolymère du type AB ou du type BAB consiste à préparer d'abord un polymère précurseur du segment A à partir du (des) monomère(s) appropriés. Cette préparation peut être effectuée par une polymérisation anionique ou cationique ou par polycondensation, suivant la nature des fonctions réactives portées par les monomères. Il est également possible d'utiliser des polymères du commerce tels que par exemple des polyéthylène glycols de masse 400, 600, 1000, 1500, 2000 ou 20000 fourni par Aldrich. Les polymères ayant une masse d'environ 2000 sont particulièrement préférés. De préférence, le polymère précurseur du segment A porte des fonctions terminales réactives en vue du greffage du segment B. Ensuite on fixe le segment B sur le segment A par la réaction appropriée aux fonctions réactives, suivant des procédés connus par l'homme de métier.
Lorsque le segment B est un radical essentiellement hydro¬ carboné tel qu'un polyène, un groupe alkyle CpH2p+ι, un groupe acyle Cp_1H2p-ιCO, un groupe alkylaryle Cp^p+iΦ, un groupe alkylaroyle CpH2p+ι , un groupe alkényle CpH2p-q, un groupe alkénoyle Cp_ιH2p-3c0 il"est fixé sur A par une réaction de condensation par l'intermédiaire de fonctions réactives appro¬ priées présentes aux extrémités de A. Lorsque le segment B est un radical issu d'un polymère d'au moins un monomère, deux procédés sont possibles : soit on prépare d'abord le segment B par polymérisation du (des) ono- mère(s) choisi(s), puis l'on greffe le segment B sur A par l'intermédiaire de fonctions réactives appropriées présentes aux extrémités de A ; soit le segment A est mis en contact avec le(s) monomère(s) constituant B, et l'on amorce une polymérisa¬ tion soit par voie anionique, soit par voie radicalaire, suivant les fonctions réactives présentes sur A. Cette dernière voie peut également être utilisée lorsque le segment B est un radical polyène.
Les extrémités réactives du polymère précurseur du segment A peuvent être des radicaux hydroxyl -OH, des groupes aminé - NHR, des groupes carboxyliques -COOH. Ces extrémités réactives, après traitement par une base déprotonante telle NaH, KH, KOC(CH3)3, K0H, Na+[naphtalène] , servent à amorcer une polymé¬ risation anionique des réactifs constituant B.
Si l'on souhaite effectuer un greffage par voie radica¬ laire, des groupements générateurs de radicaux libres sont greffés aux extrémités réactives du polymère précurseur du segment A par 1 ' intermédiaire de molécules contenant par exemple des groupements azoiques, peroxyde, disulfure. Parmi ces molécules on peut citer l'acide azobis(cyanovalérique) , l'acide peroxybenzoïque, l'acide dithiodipropionique. Ces molé- cules sont aisément transformées en leurs esters ou amides correspondants par réaction sur les fonctions OH ou RNH des extrémités des précurseurs de segments solvatants A en présence de déshydratants moléculaires tels que par exemple le dicyclo- hexyle carbodiimide, la carbonyle diimidazole, le carbonate de succinimidyle. Le précurseur de segment A ainsi fonctionnalisé est mis en présence des monomères destinés à constituer le segment B à la température de dissociation en radicaux libres, de préférence à une température entre 50°C et 180"C.
Les copolymères tribloc BAB' dans lesquels B est différent de B' peuvent être obtenus suivant différents procédés. Par exemple, l'une des extrémités réactives du polymère précurseur du segment A est protégée ; ensuite le segment B est greffé par les voies décrites ci-dessus, puis après déprotection de la seconde extrémité réactive, le segment B' est greffé. Un autre procédé consiste à utiliser un précurseur de segment AB' préformé, puis à greffer un segment B sur l'extrémité réactive de A. On peut également utiliser un polymère précurseur de segment A ayant deux extrémités réactives différentes.
Les monomères utilisables pour former le segment B par voie radicalaire sont avantageusement choisis parmi le styrène, 1 ' -méthylstyrène et leurs dérivés, 1 'acrylonitrile, le métha- crylonitrile, les acrylates et méthacrylates ioniques ou précurseurs de groupements ioniques, les vinylsulfonates ou vinylsulfamates ioniques ou précurseurs de groupements ioniques.
Un procédé de préparation de copolymères BA ou ABA consiste à préparer d'abord un polymère précurseur du segment B par polymérisation du (des) monomère(s) le constituant ou bien l'on utilise un précurseur d'un radical principalement hydro¬ carboné. Ensuite on ajoute le(s) segment(s) A. Deux procédés peuvent être mis en oeuvre à cet effet : soit on prépare d'abord le segment A par polymérisation du (des) monomère(s) choisi(s), ou bien l'on utilise comme segment A un polymère du commerce tel qu'un polyéthylène glycol ou un copolymère d'oxyde d'éthylene, puis l'on greffe le segment A sur B par l'intermé¬ diaire de fonctions réactives appropriées présentes aux extré¬ mités de B ; soit le précurseur du segment B, qui comporte des extrémités réactives, est mis en contact avec le(s) monomère(s) constituant A, et l'on amorce une polymérisation soit par voie anionique, soit par voie cationique, soit par polycondensation, suivant les fonctions réactives présentes sur le précurseur du segment B et sur les monomères destinés à constituer A. Les copolymères blocs du type A'BA lorsque A est différent de A' peuvent être préparés par des voies analogues à celles qui permettent la préparation des copolymères BAB'.
Un procédé de préparation des copolymères du type (AB)nR, ou (BA)nR consiste à faire réagir le composé précurseur du groupe R à fonctionnalité multiple avec le(s) monomère(s) destiné(s) à constituer A pour préparer un polymère ramifié AnR ou avec le(s) monomère(s) destiné(s) à constituer B pour préparer un polymère ramifié BnR. Ensuite l'on greffe respecti- ve ent les segments B ou A par l'une des deux voies évoquées précédemment : préparation préliminaire du segment à greffer puis greffage ; ou bien mise en contact de l'entité AnR ou de l'entité BnR avec respectivement le(s) monomère(s) destiné(s) à constituer le segment B ou le(s) monomère(s) destiné(s) à cons¬ tituer le segment A.
Il est possible que les copolymères bloc obtenus présen¬ tent des groupements réactifs résiduels. Il est préférable de les désactiver par transformation en groupements éthers, esters ou amide en vue d'éviter la formation de réactions parasites lors de l'utilisation du matériau de l'invention.
Les matériaux de la présente invention contiennent égale¬ ment un sel dissous dans le copolymère bloc. Le sel peut être choisi parmi les sels utilisés habituellement pour les maté- riaux solides à conduction ionique. A titre d'exemple on peut citer les sels M+X~, M+ représentant H+, un cation métallique, un cation organique du type ammonium, amidinium ou guanidinium; X représentant un anion à charge électronique délocalisée, par exemple Br~, ClO^-, RFS03 ~ ou (RFS02)2N ; RF représentant un groupement perfluoroalkyle ou perfluoroaryle. Des mélanges de sels peuvent être utilisés.
Divers additifs peuvent être ajoutés au matériau de la présente invention, pour modifier les propriétés du matériau final. Ainsi, on peut incorporer un agent plastifiant tel que le carbonate d'éthylene, le carbonate de propylène, la γ-buty- rolactone, le diméthylformamide, la N-méthylpyrrolidone, les tétraalkylsulfamideε, les éthers méthyliques des polyéthylènes glycols de masse comprise entre 200 et 2000 et, d'une manière générale, les dérivés de molécules polaires de faible volati- lité. La proportion de ces additifs peut aller de 1 à 90% de la masse totale.
Les matériaux à conduction ionique de la présente inven¬ tion sont particulièrement utiles comme électrolyte dans divers systèmes électrochimiques. A titre d'exemple, on peut citer leur utilisation comme électrolyte dans les générateurs électrochimiques, dans les supercapacités, dans les systèmes électrochromes, dans les systèmes de modulation de lumière, pour l'élaboration de membranes sélectives ou membranes de référence dans les capteurs à membrane.
EXEMPLE 1 A 40 g de poly(éthylène glycol) commercial de masse 1000 (commercialisé par Aldrich sous la référence 20,242-8) on ajoute 5 ml de 2,2-diméthoxypropane. Ensuite, le mélange est séché dans un évaporateur rotatif à 60"C pour éliminer l'eau résiduelle du polymère. En opérant dans une boîte à gants sous atmosphère inerte, on introduit 5 g du poly(éthylène glycol) ainsi déshydraté en solution dans 25 ml de THF anhydre dans un récipient pouvant être hermétiquement bouché, et on y ajoute 0,3 g d'hydrure de sodium. La fin du dégagement d'hydrogène indique que la totalité des groupements terminaux OH sont métallés. On ajoute alors 5 ml d'oxyde de styrène et le mélange est agité à 55°C pendant 6 heures dans le récipient fermé. Le polymère bloc obtenu est séparé par précipitation dans un mélange 50/50 éther/hexane.
5 g du copolymère bloc obtenu et 1,2 g de sel de lithium de bis(trifluorométhanesulfonimide) sont dissous dans 1 'acéto- nitrile. La solution obtenue est coulée sur un support et la couche est séchée. On obtient ainsi un film d'un matériau dont la conductivité ionique est de 5.10-6 (Ωcm)-1 à 25°C.
EXEMPLE 2 On prépare une solution de 20 g de polyéthylène glycol commercial de masse 2000 (commercialisé par Aldrich sous la référence 29,590-6) dans 150 ml de toluène. La solution obtenue est séchée par déshydratation azéotropique. On y ajoute ensuite 5,5 g de chlorure de palmitoyle et 10 ml de pyridine. Le mélange obtenu est agité à température ordinaire pendant 3 heures, puis le précipité de chlorhydrate de pyridinium formé est éliminé par filtration. Le polymère bloc obtenu, qui répond à la formule C16H33C02 (C2H 0)n C0C16H33 > n étant de l'ordre de 44, est séparé par précipitation dans l'éther. Ce polymère se présente sous forme d'une cire fusible à 45"C. 5 g du copolymère bloc obtenu et 1,7 g de sel de lithium de bis(trifluorométhanesulfonimide) sont dissous dans 10 ml de formiate de méthyle. Après évaporation du solvant, on obtient un matériau dont la conductivité ionique est de 2.10-5 (Ωcm)-1 à 25°C.
EXEMPLE 3 Un copolymère bloc est préparé suivant le mode opératoire de l'exemple 2, mais en remplaçant le chlorure de palmitoyle par 6 g de chlorure de linoleyle. Le polymère obtenu, après complexation par le sel de lithium utilisé dans l'exemple 2, est mélangé à 0,3% en poids de peroxyde de benzoyle. Après mise en forme par épandage en film de 30μm d'épaisseur, le matériau est chauffé à 80°C pendant 8 heures. Le produit réticulé obtenu est un matériau présentant à la fois de bonnes propriétés méca¬ niques et une bonne conductivité ionique [1,4.10-5 (Ωcm)-1 à 25°C] .
EXEMPLE 4 60 g de polyéthylène glycol commercial de masse 1500 (commercialisé par Aldrich sous la référence 20,243-6) sont séchés avec 10 ml de 2 , 2-diméthoxypropane ; l'excès d'agent déshydratant, le méthanol et l'acétone formés sont éliminés sous pression réduite. Dans une boîte à gants sous atmosphère inerte, le polymère est dissous dans 300 ml de THF anhydre et l'on ajoute ensuite 3,9 g d'hydrure de sodium sous agitation. La réaction de métallation est complète en 4 heures, ce qui est indiqué par la fin du dégagement d'hydrogène. Le mélange est refroidi à 0°C et l'on ajoute ensuite progressivement 40 g de sulfure d'éthylene en maintenant l'agitation. Le récipient est clos hermétiquement et la polymérisation est complète après 2 heures à température ordinaire. Le polymère obtenu est préci¬ pité dans l'éther et purifié par lavage dans 1 ' isopropanol, dissolution dans le dichlorométhane, centrifugation et repréci- pitation dans l'hexane.
EXEMPLE 5 Un copolymère statistique d'oxyde d'éthylene et d'oxyde de propylène est obtenu par amorçage cationique par le trifluorure de bore. 4 g de ce copolymère, ayant une masse de 1600 et contenant 15% de motifs oxyde de propylène sont métallés dans les conditions de l'exemple 1 par 0,6 g de tertiobutoxyde de potassium, au lieu d'hydrure de sodium. Au mélange réactionnel, on ajoute 3,3 g d'exo-2 , 3-époxynorbornane, et la température est maintenue à 60"C pendant 3 heures. Le copolymère bloc obtenu est précipité par 1 'éther et lavé par trituration dans de 1 ' isopropanol contenant 1% d'acide acétique, puis séché sous vide à 60°C. Du trifluorosulfonate de lithium est dissous dans le poly¬ mère bloc obtenu à une concentration correspondant à un rapport atomes d'oxygène du segment solvatant/atomes de Li de 16/1. La conductivité ionique du matériau obtenu est de 1,1.10"^ (Ωcm) - 1 à 44°C. EXEMPLE 6
70 g de polyéthylène glycol de masse 2000 (commercialisé par Aldrich sous la référence 29,590-6) sont déshydratés selon le mode opératoire de l'exemple 1. A la solution dans le THF du polyéthylène glycol déshydraté, on ajoute 3 g d'hydrure de potassium, puis 25 ml d'allyl glycidyl éther. Le mélange est maintenu à 50"C pendant 2 heures, puis le polymère est préci¬ pité dans l'éther et purifié par dissolution dans l'acétone et précipitation dans l'éther à trois reprises.
Une membrane réticulée est préparée par dissolution du polymère et de 1% en poids de peroxyde de benzoyle dans l'acé¬ tone et épandage à l'aide d'un gabarit. Après évaporation de l'acétone, le polymère est chauffé à 80°C pendant 2 heures sous atmosphère d'argon. On obtient une membrane élastique de poly¬ mère réticulé. Le matériau devient conducteur ionique après immersion de la membrane dans une solution 1 M du sel de lithium du bis(trifluorométhanesulfonimide) dans l'acétone, le volume de la solution étant calculé pour correspondre à un rapport O/Li de 15/1. La membrane obtenue a une conductivité ionique de 1,1.10-4 (Ωcm)-1 à 50°C.
EXEMPLE 7 10 g de α,Cû-diaminopoly(oxypropylèneoxyéthylène) de masse 4000 (Jeffamine® ED 4000, Texaco Corporation) sont dissous dans 75 ml d1acétonitrile et 15 ml de pyridine. On ajoute 1,2 g de dicyclohexylcarbodii ide et 0,75 g d'acide azobis (cyanovalérique) . Le mélange est agité pendant 9 heures à température ordinaire. Le précipité de dicyclohexylurée formé est éliminé par centrifugation et un polyamide est obtenu par précipitation dans l'éther. 6 g de ce polyamide et 2 , 1 g d'acrylate de lithium sont dissous dans 30 ml d'eau et la solu¬ tion est désoxygénée par barbotage d'azote et maintenue à 70°C pendant 2 heures. Le copolymère bloc acrylate / polyoxyde d'éthylene /acrylate est précipité dans le dioxane et purifié par dissolution dans un mélange équivolumique éthanol/eau, puis reprécipité dans le THF.
EXEMPLE 8 80 g de polybutadiène diol de masse 1000 contenant 20% de groupements vinyle, 20% de doubles liaisons cis et 60% de doubles liaisons trans 1,4 (commercialisé par Aldrich sous la référence 19,079-9) sont dissous dans 500 ml de THF anhydre dans un réacteur étanche et on ajoute 7 g d'hydrure de potas¬ sium. Après la fin de la réaction de métallation des extrémités OH, on ajoute progressivement 180 g d'oxyde d'éthylene de manière à maintenir la température en dessous de 80"C. Lorsque la réaction de polymérisation est terminée, on ajoute au co¬ polymère obtenu 8% en poids de trifluorométhane sulfonate de lithium et 0,5% de peroxyde de benzoyle. Après épandage de ce mélange et chauffage sous argon à 110'C pendant 2 heures, on obtient une membrane réticulée qui présente une élasticité. La conductivité ionique est supérieure à 10-4 (Ωcm)-1 à 55°C.
EXEMPLE 9 11 g de polyoxyéthylène 20 monocétyl éther (BRU® 58 de la société ICI) sont séchés sous vide à 60°C puis mis en solu¬ tion dans un mélange 50/50 toluène/THF. On ajoute goutte à goutte une solution de naphtalène-sodium jusqu'à persistance de la coloration verte caractéristique du radical anion C^ QHQ ~ , puis on ajoute 4 g de 1, 2-époxy-5-hexène. La polymérisation par ouverture du cycle époxy s'effectue en 1 heure à température ordinaire. Le polymère bloc cétyl-polyoxyde d'éthylène-1,2- époxy-5-hexène est séparé par précipitation dans l'éther éthy- lique à -10°C. 3 g de ce polymère, 1,3 g du sel de potassium du bis(trifluorométhanesulfonimide) et 20 mg de peroxyde du cumyle sont dissous dans 10 ml d'acétonitrile. Après évapora- tion du solvant, on obtient un film de 80 μm d'épaisseur. Après chauffage sous azote pendant 3 heures à 80"C, le matériau est réticulé et acquiert de bonnes propriétés mécaniques. La conductivité ionique est de 10-5 (Ωcm)-1 à 25°C.
Cette membrane peut être utilisée pour la fabrication de vitrages électrochromes à base de bleu de Prusse KxFe(CN)6, servant à moduler les flux de lumière par application d'une tension électrique.

Claims

Revendications
1. Matériau à conduction ionique comportant un sel dissous dans un solvant polymère solide, caractérisé en ce que le solvant polymère est constitué essentiellement par un copo¬ lymère bloc comportant au moins un segment A solvatant et au moins un segment B conférant de bonnes propriétés mécaniques intrinsèques ou après reticulation entre plusieurs segments B.
2. Matériau selon la revendication 1, caractérisé en ce que le copolymère bloc est un copolymère dibloc AB.
3. Matériau selon la revendication 1, caractérisé en ce que le copolymère bloc est un copolymère tribloc BAB, dans lequel les deux segments B sont identiques ou différents, ou un copolymère tribloc ABA, dans lequel les deux segments A sont identiques ou différents.
4. Matériau selon la revendication 1, caractérisé en ce que le copolymère bloc est un polymère ramifié du type (AB)nR ou (BA)nR, R représentant un radical organique ayant une fonctionnalité multiple n.
5. Matériau selon la revendication 1, caractérisé en ce que le segment A est constitué d'unités dérivant de monomères du type éther, ester ou aminé.
6. Matériau selon la revendication 5, caractérisé en ce que le segment A est un poly oxyde d'éthylene ou un copolymère statistique ou à tendance statistique d'oxyde d'éthylene et d'au moins un comonomère conservant les propriétés solvatantes du segment A.
7. Matériau selon la revendication 6, caractérisé en ce que le comonomère est choisi parmi l'oxyde de propylène, 1 'oxy- méthylène, l'oxétane, le tétrahydrofurane, le dioxolane, les alkyléthers de glycidyle.
8. Matériau selon la revendication 1, caractérisé en ce que le segment B est un radical principalement hydrocarboné.
9. Matériau selon la revendication 8, caractérisé en ce que le segment B est un polyène, un groupe alkyle CpH2p+ι, un groupe acyle Cp_ιH2p_1CO, un groupe alkylaryle CpH2p+1Φ, un groupe alkylaroyle CpH2p+ιΦ, un groupe alkényle CpH2p_q, un groupe alkénoyle Cp_ιH2p_3CO, p étant un nombre entier infé¬ rieur à 31, q étant un nombre entier impair inférieur à p.
10. Matériau selon la revendication 8, caractérisé en ce que le segment B est un issu d'un polymère d'au moins un mono- mère choisi parmi l'oxyde de styrène, l'exo-2,3 époxy- norbornane, le phénylglycidyl éther, 1 'époxy-3-phénoxypropane, le sulfure d'éthylene, 1 'allyl-glycidyl éther, l'acrylate ou le méthacrylate de glycidyle, les époxyalcènes, le furfuryl- glycidyl éther, 1 'acrylonitrile, le méthacrylonitrile, les acrylates et methacrylates ioniques ou précurseurs de groupe¬ ments ioniques, les vinylsulfonates ou les vinylsulfamates ioniques ou précurseurs de groupements ioniques.
11. Matériau selon la revendication 4, caractérisé en ce que le radical R est choisi parmi les radicaux organiques ayant de 1 à 10 atomes de carbone.
12. Matériau selon la revendication 11, caractérisé en ce que le radical R est un radical glycéryle, un radical triméthy¬ lène méthane, un radical triméthylène éthane, un radical trimé¬ thylène propane, un radical pentaérythrityle.
13. Matériau selon la revendication 1, caractérisé en ce le sel est un sel M+X~, M+ représentant H+, un cation métal¬ lique, un cation organique du type ammonium, amidiniu ou guanidinium; X représentant un anion à charge électronique délocalisée, par exemple Br", C104~, RFS03- ou (RFS02)2N ; RF représentant un groupement perfluoroalkyle ou perfluoro- aryle.
14. Application d'un matériau selon la revendication 1 comme électrolyte dans les générateurs électrochimiques, dans les supercapacités, dans les systèmes électrochromes, dans les systèmes de modulation de lumière, pour l'élaboration de membranes sélectives ou de membranes de référence dans les capteurs à membrane.
PCT/FR1992/000542 1992-06-16 1992-06-16 Materiau a conduction ionique, comportant comme solvant un copolymere bloc WO1993026057A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002138372A CA2138372C (fr) 1992-06-16 1992-06-16 Materiau a conduction ionique, comportant comme solvant un copolymere bloc
US08/351,312 US5523180A (en) 1992-06-16 1992-06-16 Ionically conductive material having a block copolymer as the solvent
PCT/FR1992/000542 WO1993026057A1 (fr) 1992-06-16 1992-06-16 Materiau a conduction ionique, comportant comme solvant un copolymere bloc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR1992/000542 WO1993026057A1 (fr) 1992-06-16 1992-06-16 Materiau a conduction ionique, comportant comme solvant un copolymere bloc

Publications (1)

Publication Number Publication Date
WO1993026057A1 true WO1993026057A1 (fr) 1993-12-23

Family

ID=9425786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000542 WO1993026057A1 (fr) 1992-06-16 1992-06-16 Materiau a conduction ionique, comportant comme solvant un copolymere bloc

Country Status (3)

Country Link
US (1) US5523180A (fr)
CA (1) CA2138372C (fr)
WO (1) WO1993026057A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769212A1 (fr) * 1994-07-22 1997-04-23 Motorola, Inc. Electrolytes a base de polyurethane destines a des cellules electrochimiques et cellules electrochimiques employant ces electrolytes
US5916475A (en) * 1994-03-21 1999-06-29 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
FR2781932A1 (fr) * 1998-07-10 2000-02-04 Giat Ind Sa Electrolyte solide polymere et ses procedes de preparation
EP1011165A1 (fr) * 1997-08-22 2000-06-21 Daikin Industries, Ltd. Batterie secondaire au lithium, electrolyte a base de gel polymere et liant pour batteries secondaires au lithium
WO2003098205A1 (fr) * 2002-05-21 2003-11-27 Rhocraft Research And Development Ltd. Membranes echangeuses d'ions et detecteurs de gaz dissous
DE19527362B4 (de) * 1994-07-28 2008-01-10 Centre National De La Recherche Scientifique (C.N.R.S.) Ionenleitendes makromolekulares Material und dessen Verwendung als Elektrolyt in einer aufladbaren Batterie oder als Bindemittel in einer Verbundelektrode

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511179A (ja) * 1996-10-11 2002-04-09 マサチューセッツ・インスティテュート・オブ・テクノロジー 電池のための固体電解質、インターカレーション化合物及び電極
US6165641A (en) * 1997-05-09 2000-12-26 The United States Of America As Represented By The United States Department Of Energy Nanodisperse transition metal electrodes (NTME) for electrochemical cells
WO1999028986A1 (fr) * 1997-11-27 1999-06-10 Yuasa Corporation Pile secondaire mince au lithium
JP4150867B2 (ja) * 1998-05-13 2008-09-17 ダイキン工業株式会社 燃料電池に使用するのに適した固体高分子電解質用材料
EP1693390B1 (fr) * 1998-06-25 2010-10-13 Hydro-Quebec Polymères à base de monomères polymérisables en séquences et leur utilisation dans la production de conducteurs ioniques.
WO2000005774A1 (fr) * 1998-07-23 2000-02-03 Massachusetts Institute Of Technology Electrolyte avec copolymere sequence
US6849702B2 (en) 1999-02-26 2005-02-01 Robert W. Callahan Polymer matrix material
US6605391B2 (en) * 1999-02-26 2003-08-12 Reveo, Inc. Solid gel membrane
US20020012848A1 (en) * 1999-02-26 2002-01-31 Callahan Robert W. Electrochemical cell incorporating polymer matrix material
US6358651B1 (en) * 1999-02-26 2002-03-19 Reveo, Inc. Solid gel membrane separator in rechargeable electrochemical cells
JP4802354B2 (ja) * 1999-12-27 2011-10-26 住友化学株式会社 高分子電解質およびその製造方法
SG103298A1 (en) * 2000-06-16 2004-04-29 Nisshin Spinning Polymer battery and method of manufacture
KR100388563B1 (ko) * 2001-10-11 2003-06-25 에스케이에버텍 주식회사 블록화된 이소시아네이트를 이용한 열경화형 전해질조성물 및 이로부터 폴리우레탄계 고분자 겔 전해질을제조하는 방법
WO2007104144A1 (fr) * 2006-03-10 2007-09-20 Transfert Plus, S.E.C. Composés, liquides ioniques, sels fondus et applications
US8563168B2 (en) 2006-04-04 2013-10-22 The Regents Of The University Of California High elastic modulus polymer electrolytes
US8268197B2 (en) * 2006-04-04 2012-09-18 Seeo, Inc. Solid electrolyte material manufacturable by polymer processing methods
WO2009092058A1 (fr) * 2008-01-16 2009-07-23 Seeo, Inc Electrolytes polymères gélifiés pour batteries
WO2009148977A1 (fr) * 2008-06-04 2009-12-10 Seeo, Inc Supercondensateurs avec électrolytes de copolymère séquencé
US20100227224A1 (en) * 2009-03-06 2010-09-09 Seeo, Inc High performance sulfur-based dry polymer electrodes
KR101309161B1 (ko) * 2009-11-17 2013-09-17 삼성에스디아이 주식회사 리튬 이차 전지용 고분자 조성물, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN103045228B (zh) * 2012-11-28 2015-03-25 宁波祢若电子科技有限公司 电致变色材料及电致变色器件
KR101998693B1 (ko) * 2017-10-11 2019-07-11 광주과학기술원 촉매중합을 이용한 삼중블록 공중합체 및 그 제조 방법
KR102392153B1 (ko) * 2018-09-13 2022-04-28 앰비라이트 인크. 고체상 전기변색 소자를 제조하는 방법, 고체상 전기변색 소자 및 이의 응용
KR102435217B1 (ko) * 2019-04-09 2022-08-24 광주과학기술원 그래프팅된 고분자 및 이를 포함하는 이차전지용 고체 전해질 조성물
DE102021101050A1 (de) 2021-01-19 2022-07-21 Bayerische Motoren Werke Aktiengesellschaft Anodenaktivmaterial und Lithiumionen-Batterie mit dem Anodenaktivmaterial
CN114163589B (zh) * 2021-10-27 2023-03-28 吉林省东驰新能源科技有限公司 一种嵌段聚合物及其制备方法、嵌段聚合物电解质及其制备方法和聚合物锂电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003154A1 (fr) * 1986-10-27 1988-05-05 The Secretary Of State For Defence In Her Britanni Conducteurs ioniques polymeres

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE297281C (fr) *
US4752544A (en) * 1986-10-27 1988-06-21 The Dow Chemical Company Solid polymer electrolyte and production method
JPH02229826A (ja) * 1988-08-26 1990-09-12 Shin Etsu Chem Co Ltd ブロック−グラフト共重合体組成物
JPH03196408A (ja) * 1989-12-26 1991-08-27 Ube Ind Ltd イオン伝導性固体電解質組成物
JP2813834B2 (ja) * 1990-05-31 1998-10-22 第一工業製薬株式会社 イオン導伝性ポリマー電解質
DD297281A5 (de) * 1990-08-14 1992-01-02 Ernst-Moritz-Arndt-Universitaet Greifswald,De Verfahren zur herstellung polymerer festelektrolyte
FR2673769B1 (fr) * 1991-03-07 1993-06-18 Centre Nat Rech Scient Materiaux polymeriques a conduction ionique.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003154A1 (fr) * 1986-10-27 1988-05-05 The Secretary Of State For Defence In Her Britanni Conducteurs ioniques polymeres

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPIL Derwent Publications Ltd., London, GB; AN 90-323713 *
DATABASE WPIL Derwent Publications Ltd., London, GB; AN 91-292874 *
DATABASE WPIL Derwent Publications Ltd., London, GB; AN 92-175868 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916475A (en) * 1994-03-21 1999-06-29 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
US6254797B1 (en) * 1994-03-21 2001-07-03 Centre National De La Recherche Scientifique Ionic conducting material having good anticorrosive properties
EP0769212A1 (fr) * 1994-07-22 1997-04-23 Motorola, Inc. Electrolytes a base de polyurethane destines a des cellules electrochimiques et cellules electrochimiques employant ces electrolytes
EP0769212A4 (fr) * 1994-07-22 1997-10-08 Motorola Inc Electrolytes a base de polyurethane destines a des cellules electrochimiques et cellules electrochimiques employant ces electrolytes
DE19527362B4 (de) * 1994-07-28 2008-01-10 Centre National De La Recherche Scientifique (C.N.R.S.) Ionenleitendes makromolekulares Material und dessen Verwendung als Elektrolyt in einer aufladbaren Batterie oder als Bindemittel in einer Verbundelektrode
EP1011165A1 (fr) * 1997-08-22 2000-06-21 Daikin Industries, Ltd. Batterie secondaire au lithium, electrolyte a base de gel polymere et liant pour batteries secondaires au lithium
EP1011165A4 (fr) * 1997-08-22 2001-01-24 Daikin Ind Ltd Batterie secondaire au lithium, electrolyte a base de gel polymere et liant pour batteries secondaires au lithium
US6387570B1 (en) 1997-08-22 2002-05-14 Daikin Industries, Ltd. Lithium secondary battery, polymer gel electrolyte and binder for use in lithium secondary batteries
FR2781932A1 (fr) * 1998-07-10 2000-02-04 Giat Ind Sa Electrolyte solide polymere et ses procedes de preparation
WO2003098205A1 (fr) * 2002-05-21 2003-11-27 Rhocraft Research And Development Ltd. Membranes echangeuses d'ions et detecteurs de gaz dissous

Also Published As

Publication number Publication date
CA2138372A1 (fr) 1993-12-23
US5523180A (en) 1996-06-04
CA2138372C (fr) 2003-08-19

Similar Documents

Publication Publication Date Title
WO1993026057A1 (fr) Materiau a conduction ionique, comportant comme solvant un copolymere bloc
CA1310366C (fr) Materiau a conduction ionique
JP5775001B2 (ja) 高電導性ポリマー電解質およびそれを含む二次電池
EP2220143B1 (fr) Système polymère conducteur d'ions pouvant être réticulé à température ambiante
US5731104A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
US6727024B2 (en) Polyalkylene oxide polymer composition for solid polymer electrolytes
US6015638A (en) Batteries, conductive compositions, and conductive films containing organic liquid electrolytes and plasticizers
EP0671386B1 (fr) Monomères dérivés de sultones perhalogénées et polymères obtenus à partir de ces monomères
CA2111047C (fr) Copolymere d'oxyde d'ethylene et d'au moins un oxiranne substitue portant une fonction reticulable, procede pour sa preparation, et son utilisation pour l'elaboration de materiauxa conduction ionique
EP0416672B1 (fr) Compositions de polymères conducteurs d'électricité dérivés de pyrrole substitué ou non et procédé pour leur obtention
EP0213985B1 (fr) Matériau macromoléculaire à conduction ionique
JPH10101883A (ja) オリゴマー
JP3384173B2 (ja) 高分子固体電解質
JP3603383B2 (ja) 高分子固体電解質
EP1790030B1 (fr) Materiau a conduction ionique contenant un oligoether sulfate
FR2693731A1 (fr) Copolymères d'oxirane et de dioxolane, leur procédé de préparation et matériaux à conduction ionique les contenant.
JP4155245B2 (ja) 電池
EP3865532A1 (fr) Polymere en peigne
JPH08217869A (ja) 高分子固体電解質
JPH03190960A (ja) リチウムイオン伝導性ポリマー電解質
Monconduit et al. Two Routes for N-Rich Solid Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1992912872

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08351312

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1992912872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2138372

Country of ref document: CA

122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase