WO1993025345A2 - Process and device for cooling micro-drills - Google Patents

Process and device for cooling micro-drills Download PDF

Info

Publication number
WO1993025345A2
WO1993025345A2 PCT/DE1993/000511 DE9300511W WO9325345A2 WO 1993025345 A2 WO1993025345 A2 WO 1993025345A2 DE 9300511 W DE9300511 W DE 9300511W WO 9325345 A2 WO9325345 A2 WO 9325345A2
Authority
WO
WIPO (PCT)
Prior art keywords
micro
drill
coolant
jet
drilling
Prior art date
Application number
PCT/DE1993/000511
Other languages
German (de)
French (fr)
Other versions
WO1993025345A3 (en
Inventor
Harry Züst
Walter Striedieck
Norbert Preussler
Jean-Claude Knaff
Original Assignee
Atotech Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland Gmbh filed Critical Atotech Deutschland Gmbh
Publication of WO1993025345A2 publication Critical patent/WO1993025345A2/en
Publication of WO1993025345A3 publication Critical patent/WO1993025345A3/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0042Devices for removing chips
    • B23Q11/006Devices for removing chips by sucking and blowing simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1076Arrangements for cooling or lubricating tools or work with a cutting liquid nozzle specially adaptable to different kinds of machining operations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/36Polyoxyalkylenes etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/042Sulfate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/082Suction, e.g. for holding solder balls or components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1121Cooling, e.g. specific areas of a PCB being cooled during reflow soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/127Lubricants, e.g. during drilling of holes

Definitions

  • the invention relates to a method and an associated device for cooling micro-drills, which are used in boring machines for the production of small holes in printed circuit boards, and for removing the drilling excavation from the narrower drill environment, in which a coolant flows against the micro-drill from a supply line.
  • the transfer holes In order to be able to connect the conductor tracks of different wiring levels with each other, the transfer holes must be provided with an electrically conductive coating. In order to make optimal use of the available space on a board, the changeover bores should have the smallest possible diameter. The smaller the
  • Hole diameter the smaller the diameter of the pads can be, which serve as landing sites for the transfer drilling. Small solder eyes allow a higher conductor density, which means that one or the other wiring level can be saved in a multilayer circuit board.
  • the quality of the borehole wall plays an important role for later plated-through holes.
  • a faulty through-connection affects the reliability of the circuit.
  • the quality largely depends on the structure of the board and the state of wear of the drilling tool.
  • the majority of the multilayer boards used today consist of multilayer epoxy glass fabric layers.
  • the poor thermal conductivity of the composite of epoxy resin and glass fabric is a major problem.
  • the drilling tool heats up due to the poor heat dissipation through the board material.
  • the temperature at the tip of the drilling tool reaches values that are higher than the pressing temperature during the manufacture of the blanks.
  • the resin softens in the immediate vicinity of the tool.
  • the glued flutes of the drilling tool prevent effective removal of the machined material.
  • the congestion effect further increases the Borehole temperature. This means that the viscous epoxy resin that is not discharged is lubricated along the drill wall. In this way, the metallic contact areas can be insulated with epoxy resin in already drilled soldering eyes of the upper interconnect layers. It is no longer possible to make a through-connection at a later point without high hole cleaning efforts.
  • the metal residues to be re-drilled are no longer cut and / or transported out of the borehole, but are displaced into the drill wall.
  • this can lead to undesired contacts with conductor tracks that are in the immediate vicinity of a - possibly running - hole.
  • This displacement and smearing effect additionally causes a loosening of the board material, for example fraying of the glass fibers or the like in the vicinity of the borehole.
  • a loosening of the board material for example fraying of the glass fibers or the like in the vicinity of the borehole.
  • the surface of the board can be affected by the contact to the components that will later be attached to the board.
  • the breakouts and capillaries created in the intermediate layers also usually fill with liquid, which then evaporates suddenly during the soldering process and leads to the known tin eruptions from the holes.
  • the disadvantage here is insufficient wetting of the drilling tool with drilling milk.
  • the drilling tool e.g. a micro drill of the type used in the present invention with a drill diameter of 0.3 mm, in order to achieve a cutting speed of 100 m / min, must be driven at a speed which is greater than 100,000 revolutions / min.
  • the micro drill heats up to approx. 280 ° C.
  • An annular, circumferential boundary layer flow of evaporated coolant is created around the drill casing protruding from the borehole.
  • the steam cushion prevents effective drilling of the micro-drill with drilling milk.
  • a machine tool for drilling circuit boards is also known, in which an air-liquid mixture is sprayed onto the processing point, that is to say the workpiece surface, possibly with the aid of compressed air, in a suction chamber at the borehole in order to wash away chips , whereby the tool is also said to be cooled.
  • this type of coolant supply also does not allow sufficient cooling of the micro drill.
  • the object of the present invention is to provide a method and a device suitable for carrying it out, with which the service life of a tool for the mechanical production of, for example, micro-bores is considerably improved. The disadvantages known from the prior art for this problem are also to be avoided.
  • the solution to the problem is achieved by a method for cooling micro-drills, which are used in boring machines for the production of very small holes in printed circuit boards, and for removing the drilling excavation from the closer drill environment, in which the micro-drill flows with cooling liquid from a supply line ending in a nozzle becomes.
  • the cooling liquid is included
  • Boundary layer flow The energy of the coolant jet is so great that it breaks up the boundary layer flow.
  • the coolant droplets bundled into the jet thus come into contact with the micro-drill and cool the hot drill.
  • the drill temperature drops below that
  • a further advantageous embodiment of the invention is that the imaginary center line of the coolant jet tangentially touches the microbore casing above - the side facing the microbore - the circuit board surface at the point where the horizontal component of the coolant jet hits the boundary layer flow surrounding the microbore.
  • Boundary layer flow is broken up very effectively, since here the coolant jet is aimed directly at the flow surrounding it and surrounding the drill.
  • the speed of the horizontal component of the coolant jet is much greater than the maximum peripheral speed of the boundary layer flow.
  • the boundary layer flow breaks off in the initial area of the collision with the coolant jet, which increases the effective drill wetting area.
  • the method can be optimized in that the incident angle between the imaginary center line of the coolant jet and the circuit board surface is 5 to 45 °, preferably between 15 to 35 °.
  • a drill bend due to the coolant jet can be reduced in relation to a horizontal inflow, so that the coolant jet can be switched on before the drill is placed on the circuit board without fear of the drill running.
  • By selecting a suitable angle of incidence it can be prevented that excavated drilling, which is still between the jet nozzle and the drill, is blown into the drilling zone.
  • an aqueous solution is used as the cooling liquid which contains 0.1 to 1.0% by weight of tetraethylammonium perfluoro-octane sulfonate, 0.05 to 1.0% by weight.
  • % Polyvinyl-3-methylimi-dazolinium methosulfate and 0.4 ... 2.0% by weight para-n-nonylphenyl nonyl ethoxy polyether.
  • This aqueous solution shows particularly good wetting behavior. This promotes the heat given off by the drill to the coolant droplets touching it, which leads to a further reduction in the drill temperature. In addition, this drilling solution has no skin irritating properties.
  • aminocarboxylates or their betaines as ingredients of drilling solutions, as are known from DE-OS 41 26 513 and DE-OS 41 27 441.
  • the proportion of aminocarboxylates and / or their betaines in a drilling solution can be 0.01 ... 10% by weight.
  • the concentration of these proportions is preferably from 0.5 to 3% by weight.
  • a proportion of 0.3 to 5% by weight is also conceivable.
  • the compounds can each be used alone or as a mixture with several compounds or as a mixture with solvents be used.
  • Suitable solvents include water, alcohols, ketones or esters. Particularly preferred alcohols are methanol, ethanol, propanol or isopropanol.
  • suitable additives can be added to the drilling solutions in order to give the drilling solution the desired viscosity.
  • Compressed air should preferably be used as the gas.
  • the drill can be supplied from the standard compressed air network via a pressure reducer.
  • the gas speed and thus the coolant jet speed can be controlled in a simple manner with the pressure reducer.
  • the use of other, but more expensive gases is possible if the physical properties of the gases are taken into account accordingly.
  • a jet pump is provided, with which the cooling liquid and the gas under pressure are mixed and discharged.
  • a jet pump also called an injector pump, has a comparable design with a Bunsen burner or a water jet pump. Without moving parts, it pumps liquids or gases with an efficiency of 20 ... 25%.
  • Jet pump with the help of compressed air, the coolant to be conveyed to the drill - possibly even under pressure -.
  • the cooling liquid is atomized.
  • Atomizers and / or carburettors have small dimensions and are also maintenance-free.
  • the entire device can be improved in that, in addition to that which emits the coolant jet,
  • Jet pump at least one auxiliary jet pump and / or auxiliary nozzle is provided.
  • the auxiliary nozzles blow during the drilling process continuously or intermittently compressed air into the hold-down chamber. They are arranged almost parallel to the surface of the circuit board in order to feed the drilling excavation not captured by the coolant jet to a suction device as completely as possible. It is not your job to blow or cool the drill.
  • Figure 1 Section through the lower part of a high-speed drilling machine with workpiece holder and coolant supply and a workpiece to be drilled;
  • Figure 2 Bottom view of Figure 1.
  • FIG. 1 shows the lower part of a high-speed drilling machine.
  • a micro drill 1 is received by a drilling spindle 3 via a clamping device 2.
  • the drilling spindle 3 is in a (not shown) bearing plate of a spindle bell
  • Multi-spindle automatics rotatably supported.
  • the spindle bell is in relative to the multi-spindle machine
  • the drilling spindle 3, the clamping device 2 and the micro drill 1 are surrounded by a tubular workpiece hold-down device 4.
  • the workpiece hold-down device 4 presses the workpiece, e.g. a multilayer circuit board 5 via an elastic ring 8 against a drilling plate 7.
  • Figure 1 shows the workpiece holder 4 in the working position.
  • the workpiece hold-down device 4 includes, among other things, a multi-part coolant supply in the form of a jet pump 9.
  • the jet pump 9 consists of a driving nozzle 10, a collecting nozzle 11 with the suction area 12 and a coolant line 13.
  • the jet pump 9 is supplied with gas via a hose line (15), preferably with compressed air, which is under a pressure of about 3 bar.
  • the gas flows out of the driving nozzle 10 at high speed and mixes in the collecting nozzle 11 with the cooling liquid supplied in the suction region 12 via the bore 14 from the cooling liquid line 13 with a pressure of 0.3 to 0.6.
  • the coolant jet bundles out of the collecting nozzle 11 in order to cool and lubricate the micro-drill, which has a diameter of approximately 0.3 mm and cuts into the workpiece at 100,000 revolutions / min, in the region of the borehole.
  • the coolant jet flushes the drilling excavation, consisting of drilling dust of the basic board material and drilling chips of the metallic board coating (conductor tracks), on the side facing away from the jet pump 9.
  • the jet pump it is conceivable to design the jet pump in such a way that the catching nozzle 11 and the driving nozzle 10 consist of spaced cylindrical tubes.
  • Hose line 19 is connected to a suction pump, not shown.
  • the suction pipe 18 receives the drilling excavation washed away from the surroundings of the micro-drill 1.
  • Figure 2 shows the workpiece holder 4 with the
  • the jet pump 9 is not centered on the axis of the micro-drill 1.
  • the jet pump 9 is arranged so that its imaginary center line 16 just touches the jacket of the micro drill 1.
  • the boundary layer flow surrounding the microbore 1 rotates towards the coolant jet and becomes from the coolant jet torn open.
  • the jet pump 9 is flanked by two compressed air pipes 20, 20 ⁇ . Compressed air flows into them via lines 21, 21. Both compressed air pipes are oriented so that the projections of their center lines on the
  • PCB surface 6, cf. Figure 1 cut before the inlet of the suction pipe 18.
  • the service life of the micro drill can be increased by 6 - 15 times compared to a dry drilling process, while significantly increasing the quality of the drilling.

Abstract

The invention concerns a process and a device for cooling micro-drills (1) used in boring machines for producing micro-bores in printed circuit boards (5), as well as for removing the waste material from the close neighbourhood of the bore. A cooling fluid from a supply line (11) flows against the micro-drill (1). The cooling fluid is accelerated by a gas under pressure. The thus projected cooling fluid jet cools down and lubricates the micro-borer (1), substantially increasing its service life.

Description

Verfahren und Vorrichtung zur Kühlung von MikrobohrernMethod and device for cooling micro-drills
Beschreibungdescription
Die Erfindung betrifft ein Verfahren und eine dazugehörige Vorrichtung zur Kühlung von Mikrobohrern, die in Bohrwerken zur Herstellung von Kleinstbohrungen in Leiterplatten Verwendung finden, sowie zum Abtransport des Bohraushubs aus der engeren Bohrerumgebung, bei dem der Mikrobohrer aus einer Zuleitung mit einem Kühlmittel angeströmt wird.The invention relates to a method and an associated device for cooling micro-drills, which are used in boring machines for the production of small holes in printed circuit boards, and for removing the drilling excavation from the narrower drill environment, in which a coolant flows against the micro-drill from a supply line.
In der modernen Leiterplattentechnik nehmen die Anforderungen an die Größe und Qualität der Leiterplattenbohrungen ständig zu. Der Bedarf an hochkomplexen elektronischen Schaltungen führt zum vermehrten Einsatz von Leiterplatten in Multilayer-Technik. Durch die Verkleinerung der Leiterbahnbreiten und Lötaugen müssen die Fertigungstoleranzen mit Multilayern immer mehr eingeengt werden. Die Grenze der Verkleinerung wird zu einem erheblichen Teil durch die notwendigen Leiterplattenbohrungen bestimmt. Durch den Einsatz der SMD- Technik (Surface mounted device) werden zwar Durchgangsbohrungen nur noch selten für die Bauteilaufnahme benötigt, dafür vergrößert sich mit der Miniaturisierung der Bauteile die Komplexität der Schaltungen. So können bei gleichbleibender Platinengröße mehr Schaltungen pro Platine untergebracht werden. Das bewirkt jedoch eine Zunahme der sich kreuzenden Leiterbahnen. Diese Kreuzungen umgeht ein Leiterplattenentflechter mit sogenannten Umsteigebohrungen und Leiterbahnen auf anderen Platinenebenen. Um die Leiterbahnen verschiedener Verdrahtungsebenen. Um die Leiterbahnen verschiedener Verdrahtungsebenen miteinander verbinden zu können, müssen die Umsteigerbohrungen nachträglich mit einer elektrisch leitenden Beschichtung versehen werden. Um nun den verfügbaren Platz auf einer Platine optimal zu nutzen, sollten die Umsteigerbohrungen einen möglichst kleinen Durchmesser haben. Je kleiner derIn modern circuit board technology, the requirements for the size and quality of the circuit board holes are constantly increasing. The need for highly complex electronic circuits leads to the increased use of printed circuit boards in multilayer technology. By reducing the track widths and pads, the manufacturing tolerances with multilayers have to be narrowed more and more. The limit of the reduction is determined to a large extent by the necessary PCB holes. Through the use of SMD technology (surface mounted device), through holes are rarely required for component mounting, but the miniaturization of the components increases the complexity of the circuits. This means that more circuits per board can be accommodated with the same board size. However, this causes an increase in the number of crossing conductor tracks. A circuit breaker bypasses these intersections with so-called transfer holes and conductor tracks on other circuit board levels. Around the conductor tracks of different wiring levels. In order to be able to connect the conductor tracks of different wiring levels with each other, the transfer holes must be provided with an electrically conductive coating. In order to make optimal use of the available space on a board, the changeover bores should have the smallest possible diameter. The smaller the
Bohrungsdurchmesser ist, desto kleiner kann der Durchmesser der Lötaugen sein, die als Landeplätze für die Umsteigerbohrung dienen. Kleine Lötaugen erlauben eine höhere Leiterbahndichte, wodurch die eine oder andere Verdrahtungsebene in eine Multilayer-Platine eingespart werden kann.Hole diameter, the smaller the diameter of the pads can be, which serve as landing sites for the transfer drilling. Small solder eyes allow a higher conductor density, which means that one or the other wiring level can be saved in a multilayer circuit board.
Bei mehreren in einem Multilayer in verschiedenen Verdrahtungsebenen übereinander liegenden Lötaugen mit kleinen Durchmessern werden hohe Anforderungen an die Genauigkeit des Bohrwerkes und die Geometrie der Bohrerspitze gestellt. So muß der Bohrer nicht nur genau positioniert werden, sondern er darf weder auf die obersten Metallschichten während des Anbohrvorganges verrutschen, noch darf er in der Bohrung verlaufen.With several soldering eyes with small diameters lying one above the other in a multilayer in different wiring levels, high demands are placed on the accuracy of the boring machine and the geometry of the drill tip. This means that the drill must not only be positioned precisely, it must also not slip on the uppermost metal layers during the drilling process, and it must not run in the hole.
Neben der Lage und Form solcher Bohrungen, spielt die Qualität der Bohrlochwandung für die spätere Durchkontaktierungen eine wesentliche Rolle. Denn eine fehlerhafte Durchkontaktierung beeinträchtigt die Zuverlässigkeit der Schaltung. Die Qualität ist weitgehend abhängig vom Aufbau der Platine und dem Verschleißzustand des Bohrwerkzeugs. Der größere Teil der heute eingesetzten Multilayer-Platinen besteht aus mehrlagigen Epoxid- Glasgewebeschichten. Die schlechte Wärmeleitfähigkeit des Verbundes aus Epoxidharz und Glasgewebe stellt ein großes Problem dar. Das Bohrwerkzeug erhitzt sich aufgrund der mangelhaften Wärmeabfuhr durch den Platinenwerkstoff. Die Temperatur an der Spitze des Bohrwerkzeuges erreicht Werte, die über der Preßtemperatur bei der Platinenherstellung liegen. Folglich erweicht das Harz in der unmittelbaren Umgebung des Werkzeuges. Die dabei verklebenden Spannuten des Bohrwerkzeugs verhindern ein wirkungsvolles Austragen des zerspanten Materials. Die Stauwirkung erhöht weiter die Temperatur im Bohrloch. Somit wird das nicht ausgetragene zähflüssige Epoxidharz an der Bohrwandung entlanggeschmiert. Auf diese Weise können die metallischen Kontaktflächen in schon durchbohrten Lötaugen oberer Leiterbahnschichten mit Epoxidharz isoliert werden. Hier ist ein späteres Durchkontaktieren ohne hohen Lochreinigungsaufwand nicht mehr möglich.In addition to the location and shape of such bores, the quality of the borehole wall plays an important role for later plated-through holes. A faulty through-connection affects the reliability of the circuit. The quality largely depends on the structure of the board and the state of wear of the drilling tool. The majority of the multilayer boards used today consist of multilayer epoxy glass fabric layers. The poor thermal conductivity of the composite of epoxy resin and glass fabric is a major problem. The drilling tool heats up due to the poor heat dissipation through the board material. The temperature at the tip of the drilling tool reaches values that are higher than the pressing temperature during the manufacture of the blanks. As a result, the resin softens in the immediate vicinity of the tool. The glued flutes of the drilling tool prevent effective removal of the machined material. The congestion effect further increases the Borehole temperature. This means that the viscous epoxy resin that is not discharged is lubricated along the drill wall. In this way, the metallic contact areas can be insulated with epoxy resin in already drilled soldering eyes of the upper interconnect layers. It is no longer possible to make a through-connection at a later point without high hole cleaning efforts.
Desweiteren werden bei einem harzverschmierten Bohrer die Metallrückstände neu zu bohrender Lötaugen nicht mehr geschnitten und/oder aus dem Bohrloch transportiert, sondern in die Bohrwandung verdrängt. Das kann aber zu ungewollten Kontaktierungen mit Leiterbahnen führen, die in unmittelbarer Nähe einer - möglicherweise verlaufenden - Bohrung liegen.Furthermore, in the case of a resin-lubricated drill, the metal residues to be re-drilled are no longer cut and / or transported out of the borehole, but are displaced into the drill wall. However, this can lead to undesired contacts with conductor tracks that are in the immediate vicinity of a - possibly running - hole.
Dieser Verdrängungs- und Verschmiereffekt verursacht zusätzlich eine Auflockerung des Platinenmaterials, beispielsweise Ausfransen der Glasfasern oder ähnliches in der Bohrlochumgebung. Durch aufgeworfenen Grat auf derThis displacement and smearing effect additionally causes a loosening of the board material, for example fraying of the glass fibers or the like in the vicinity of the borehole. Through raised ridges on the
Platinenoberfläche kann die Kontaktierung zu den später auf die Platine befestigten Bauteilen beeinträchtigt werden. Auch füllen sich die in den Zwischenlagen entstandenen Ausbrüche und Kapillaren in der Regel mit Flüssigkeit, die dann beim Lötvorgang schlagartig verdampft und zu den bekannten Zinneruptionen aus den Löchern führt.The surface of the board can be affected by the contact to the components that will later be attached to the board. The breakouts and capillaries created in the intermediate layers also usually fill with liquid, which then evaporates suddenly during the soldering process and leads to the known tin eruptions from the holes.
Die genannten Nachteile wie Verrutschen der Bohrerspitze beim Anbohrvorgang, Verlaufen des Bohrers in der Bohrung und das Verschmierungs- und Verdrängungsproblem lassen sich auf die hohe Arbeitstemperatur des im Eingriff befindenden Bohrerteils zurückzuführen. Die hohe Arbeitstemperatur fördert den schnellen Verschleiß des Bohrers. Der Verschleiß zeigt sich am stumpf werden der Quer- und Hauptschneide, sowie der Nebenflächenfase. Mit wachsendem Verschleiß nehmen die oben genannten Probleme solange zu, bis der Mikrobohrer bricht. In der US-PS 4,917,547 wird u.a. eine Bohrmilchzuführung in einer Leiterplattenbohrmaschine beschrieben. Dabei wird die' Bohrmilch über eine im Leiterplattenniederhalter untergebrachten Leitung in Richtung Bohrer abgegeben. Dieses Naßbohrverfahren sorgt für eine Umspülung des Mikrobohrers im Niederhalterraum. Die einströmende Bohrmilch transportiert den Bohraushub aus der unmittelbaren Bohrerumgebung heraus und gibt ihn an eine leistungsfähige Absaugeinrichtung ab.The disadvantages mentioned, such as slipping of the drill tip during the tapping process, running of the drill in the bore and the problem of smearing and displacement, can be attributed to the high working temperature of the engaged drill part. The high working temperature promotes the quick wear of the drill. The wear shows up on the blunt of the cross and main cutting edge as well as the secondary surface chamfer. With increasing wear, the problems mentioned above increase until the micro drill breaks. US Pat. No. 4,917,547 describes, inter alia, a drilling milk supply in a circuit board drilling machine. The 'drilling milk is released in the direction of the drill via a line accommodated in the circuit board hold-down device. This wet drilling process ensures that the micro-drill is flushed around the hold-down chamber. The incoming drilling milk transports the drilling excavation out of the immediate vicinity of the drill and delivers it to a powerful suction device.
Nachteilig ist hier die ungenügende Benetzung des Bohrwerkzeugs mit Bohrmilch. Das Bohrwerkzeug, z.B. ein Mikrobohrer der bei der vorliegenden Erfindung verwendeten Art mit einem Bohrerdurchmesser von 0,3 mm, muß, um eine Schnittgeschwindigkeit von 100 m/min zu erreichen, mit einer Drehzahl angetrieben werden, die über 100000 Umdrehungen/min liegt. Dabei erwärmt sich der Mikrobohrer auf ca. 280 °C. Es entsteht um den aus dem Bohrloch herausragender Bohrermantel eine ringförmige, umlaufende Grenzschichtströmung aus verdampfter Kühlflüssigkeit. Das Dampfpolster verhindert eine wirksame Benetzung des Mikrobohrers mit Bohrmilch. Als Folge hiervon ist die Standzeit der Mikrobohrer und die Qualität der Bohrlochwandungen bei diesem Verfahren nur unwesentlich höher bzw. besser, als bei einem reinen Trockenbohrvorgang,The disadvantage here is insufficient wetting of the drilling tool with drilling milk. The drilling tool, e.g. a micro drill of the type used in the present invention with a drill diameter of 0.3 mm, in order to achieve a cutting speed of 100 m / min, must be driven at a speed which is greater than 100,000 revolutions / min. The micro drill heats up to approx. 280 ° C. An annular, circumferential boundary layer flow of evaporated coolant is created around the drill casing protruding from the borehole. The steam cushion prevents effective drilling of the micro-drill with drilling milk. As a result, the service life of the micro drill and the quality of the borehole walls are only slightly higher or better with this process than with a pure dry drilling process,
Aus der CH 596 946 ist ebenfalls eine Werkzeugmaschine für das Bohren von Leiterplatten bekannt, bei der innerhalb einer Absaugkammer am Bohrloch eine Luft-Flüssigkeits- Mischung auf die Bearbeitungsstelle, das heißt die Werkstückoberfläche, gegebenenfalls mit Hilfe von Druckluft, gespritzt wird, um Späne wegzuspülen, wobei angeblich auch das Werkzeug mitgekühlt wird. In der Praxis wurde festgestellt, daß auch diese Art der Kühlmittelzuführung keine ausreichende Kühlung des Mikrobohrers ermöglicht. Die Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine zu dessen Durchführung geeignete Vorrichtung zur Verfügung zu stellen, mit denen die Standzeit eines Werkzeuges zur mechanischen Herstellung von beispielsweise Mikrobohrungen erheblich verbessert wird. Auch sollen die aus dem Stand der Technik zu dieser Problematik bekannten Nachteile vermieden werden.From CH 596 946 a machine tool for drilling circuit boards is also known, in which an air-liquid mixture is sprayed onto the processing point, that is to say the workpiece surface, possibly with the aid of compressed air, in a suction chamber at the borehole in order to wash away chips , whereby the tool is also said to be cooled. In practice, it was found that this type of coolant supply also does not allow sufficient cooling of the micro drill. The object of the present invention is to provide a method and a device suitable for carrying it out, with which the service life of a tool for the mechanical production of, for example, micro-bores is considerably improved. The disadvantages known from the prior art for this problem are also to be avoided.
Die Lösung der Aufgabe wird erzielt durch ein Verfahren zur Kühlung von Mikrobohrern, die in Bohrwerken zur Herstellung von Kleinstbohrungen in Leiterplatten Verwendung finden, sowie zum Abtransport des Bohraushubs aus der engeren Bohrerumgebung, bei dem der Mikrobohrer aus einer in einer Düse endenden Zuleitung mit Kühlflüssigkeit angeströmt wird. Dabei wird erfindungsgemäß die Kühlflüssigkeit mitThe solution to the problem is achieved by a method for cooling micro-drills, which are used in boring machines for the production of very small holes in printed circuit boards, and for removing the drilling excavation from the closer drill environment, in which the micro-drill flows with cooling liquid from a supply line ending in a nozzle becomes. According to the invention, the cooling liquid is included
Hilfe eines unter Druck stehenden Gases im Innenbereich vor der Düsenöffnung beschleunigt. Die Austragung der Kühlflüssigkeit mit unter Druck stehendem Gas erzeugt am Ausgang der Kühlmittelzuführung einen sehr schnell strömenden Kühlmittelstrahl. Dieser Kühlmittelstrahl trifft auf die den Mikrobohrer umgebende - aus verdampfter Kühlflüssigkeit (Bohrmilch) gebildet -Accelerated with the help of a gas under pressure inside the nozzle opening. The discharge of the coolant with pressurized gas produces a very fast flowing coolant jet at the outlet of the coolant supply. This coolant jet strikes the one surrounding the micro-drill - formed from evaporated coolant (drilling milk) -
Grenzschichtströmung. Die Energie des Kühlmittelstrahls ist so groß, daß sie die Grenzschichtströmung aufreißt. Somit kommen die zum Strahl gebündelten Kühlmitteltröpfchen mit dem Mikrobohrer in Kontakt und kühlen den heißen Bohrer. Die Bohrertemperatur sinkt unter dieBoundary layer flow. The energy of the coolant jet is so great that it breaks up the boundary layer flow. The coolant droplets bundled into the jet thus come into contact with the micro-drill and cool the hot drill. The drill temperature drops below that
Platinenpreßtemperatur. Folglich wird das Epoxidharz im Bohrloch nicht mehr zähflüssig. Harz und Glasgewebe werden zerspant und in Form von Bohrmehl über die nicht mehr verklebenden Spannuten aus der Bohrung ausgetragen. Dieser Bohraushub, einschließlich der zerspanten Leiterplattenreste, wird zugleich von diesem Kühlmittelstrahl oder ergänzenden Kühlmittelstrahlen aus der Bohrerumgebung entfernt.Board press temperature. As a result, the epoxy in the borehole no longer becomes viscous. Resin and glass fabric are machined and discharged from the hole in the form of drilling dust via the chip grooves, which are no longer sticky. This drilling excavation, including the machined remains of the printed circuit board, is simultaneously removed from the drilling environment by this coolant jet or additional coolant jets.
Bei dem erfindungsgemäßen Verfahren wirken auf die Bohreroberfläche bei aufgerissener Grenzschichtstromung noch die folgenden positiven physikalischen Effekte: Wärmeaufnahme durch Expansion des auf den Bohrer auftreffenden Gases und Wärmeentzug am Bohrer durch Verdampfungswärme für verdampfendes Kühlmittel.In the method according to the invention act on the Drill surface when the boundary layer flow is torn open still the following positive physical effects: heat absorption by expansion of the gas hitting the drill and heat removal at the drill by heat of vaporization for evaporating coolant.
Die Absenkung der Bohrertemperatur hemmt den Verschleiß der Bohrerschneiden. Der weitgehende Erhalt der Schneidengeometrie garantiert über die Bohrerstandzeit die Qualität der Bohrung. So ist die Gefahr des Abrutschens mit scharfer Querschneide beim Anbohrvorgang gering. Das Verlaufen des Bohrers ist unwahrscheinlich, solange die Hauptschneiden weder stumpf noch ausgebrochen sind. Auch kann sich der Bohraushub nicht zwischen Bohrer und Bohrlochwand zwängen, solange die Nebenschneiden nicht verschlissen sind. Folglich wird ein Verschmieren der Bohrungswand und ein Auflockern der einzelnen Platinenlagen vermieden.Lowering the drill temperature inhibits wear on the cutting edges. The extensive preservation of the cutting edge geometry guarantees the quality of the drilling over the life of the drill. The risk of slipping with a sharp chisel edge is low during the tapping process. The drill is unlikely to run as long as the main cutting edges are neither blunt nor broken. Also, the excavation can not force itself between the drill and the borehole wall as long as the minor cutting edges are not worn out. As a result, smearing of the bore wall and loosening of the individual circuit board layers is avoided.
Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, daß die gedachte Mittellinie des Kühlmittelstrahls tangential den Mikrobohrermantel oberhalb - der dem Mikrobohrer zugewandten Seite - der Leiterplattenoberfläche an der Stelle berührt, an der die Horizontalkomponente des Kühlmittelstrahls frontal auf die den Mikrobohrer umgebende Grenzschichtstromung trifft. Unter dieser Anstrahlbedingung wird dieA further advantageous embodiment of the invention is that the imaginary center line of the coolant jet tangentially touches the microbore casing above - the side facing the microbore - the circuit board surface at the point where the horizontal component of the coolant jet hits the boundary layer flow surrounding the microbore. Under this lighting condition, the
Grenzschichtstromung sehr wirkungsvoll aufgerissen, da hier der Kühlmittelstrahl direkt auf die ihm entgegenkommende den Bohrer umgebende Strömung ausgerichtet ist. Die Geschwindigkeit der horizontalen Komponente des Kühlmittelstrahls ist wesentlich größer, als die maximale Umfangsgeschwindigkeit der Grenzschichtstromung. Folglich reißt die Grenzschichtstromung schon im Anfangsbereich der Kollision mit dem Kühlmittelstrahl ab, womit die effektive Bohrerbenetzungsflache größer wird. Desweiteren läßt sich das Verfahren dadurch optimieren, daß der Anströmwinkel zwischen der gedachten Mittellinie des Kühlmittelstrahls und der Leiterplattenoberfläche bei 5 bis 45°, vorzugsweise zwischen 15 bis 35°, liegt. Mit zunehmendem Anströmwinkel kann eine Bohrerbiegung durch den Kühlmittelstrahl - im Verhältnis zu einer horinzontalen Anströmung - verringert werden, so daß der Kühlmittelstrahl schon vor dem Aufsetzen des Bohrers auf die Platine eingeschaltet werden kann, ohne daß ein Verlaufen des Bohrers zu befürchten ist. Durch Wahl eines geeigneten Anstrahlwinkels kann verhindert werden, daß Bohraushub, der noch zwischen der Strahldüse und dem Bohrer liegt, in die Bohrzone geblasen wird.Boundary layer flow is broken up very effectively, since here the coolant jet is aimed directly at the flow surrounding it and surrounding the drill. The speed of the horizontal component of the coolant jet is much greater than the maximum peripheral speed of the boundary layer flow. As a result, the boundary layer flow breaks off in the initial area of the collision with the coolant jet, which increases the effective drill wetting area. Furthermore, the method can be optimized in that the incident angle between the imaginary center line of the coolant jet and the circuit board surface is 5 to 45 °, preferably between 15 to 35 °. With increasing angle of attack, a drill bend due to the coolant jet can be reduced in relation to a horizontal inflow, so that the coolant jet can be switched on before the drill is placed on the circuit board without fear of the drill running. By selecting a suitable angle of incidence, it can be prevented that excavated drilling, which is still between the jet nozzle and the drill, is blown into the drilling zone.
Weiterhin ist es von Vorteil, wenn bei diesem Verfahren als Kühlflüssigkeit eine wäßrige Lösung verwendet wird, die 0,1 ...1,0 Gew.-% Tetra-ethylammoniumperfluoro-octansulfonat, 0,05 ... 1,0 Gew.-% Polyvinyl-3-methylimi-dazo- liniummethosulfat und 0,4 ... 2,0 Gew.-% para-n-Nonyl- phenyl-nonyl-ethoxy-polyether enthält.Furthermore, it is advantageous if, in this process, an aqueous solution is used as the cooling liquid which contains 0.1 to 1.0% by weight of tetraethylammonium perfluoro-octane sulfonate, 0.05 to 1.0% by weight. % Polyvinyl-3-methylimi-dazolinium methosulfate and 0.4 ... 2.0% by weight para-n-nonylphenyl nonyl ethoxy polyether.
Diese wäßrige Lösung zeigt ein besonders gutes Benetzungsverhalten. Dadurch wird die Wärmeabgabe des Bohrers an die ihn berührenden Kühlmitteltröpfchen gefördert, was zu einer weiteren Absenkung der Bohrertemperatur führt. Außerdem weist diese Bohrlösung keine hautreizenden Eigenschaften auf.This aqueous solution shows particularly good wetting behavior. This promotes the heat given off by the drill to the coolant droplets touching it, which leads to a further reduction in the drill temperature. In addition, this drilling solution has no skin irritating properties.
Vergleichbares gilt für die Verwendung von Aminocarboxylaten oder deren Betaine als Inhaltsstoffe von Bohrlösungen, wie sie aus der DE-OS 41 26 513 und der DE-OS 41 27 441 bekannt sind. Der Anteil an Aminocarboxylaten und/oder deren Betaine kann in einer Bohrlösung 0,01 ... 10 Gew.-% betragen. Vorzugsweise liegt die Konzentration dieser Anteile bei 0,5 ... 3 Gew.-%. Es ist auch ein Anteil von 0,3 ... 5 Gew.-% denkbar.The same applies to the use of aminocarboxylates or their betaines as ingredients of drilling solutions, as are known from DE-OS 41 26 513 and DE-OS 41 27 441. The proportion of aminocarboxylates and / or their betaines in a drilling solution can be 0.01 ... 10% by weight. The concentration of these proportions is preferably from 0.5 to 3% by weight. A proportion of 0.3 to 5% by weight is also conceivable.
Die Verbindungen können jeweils allein oder im Gemisch mit mehreren Verbindungen oder im Gemisch mit Lösungsmitteln verwendet werden. Geeignete Lösungsmittel sind u.a. Wasser, Alkohole, Ketone oder Ester. Als Alkohole werden besonders Methanol, Äthanol, Propanol oder Isopropanol bevorzugt.The compounds can each be used alone or as a mixture with several compounds or as a mixture with solvents be used. Suitable solvents include water, alcohols, ketones or esters. Particularly preferred alcohols are methanol, ethanol, propanol or isopropanol.
Desweiteren können der Bohrlösungen geeignete Zusatzstoffe hinzugefügt werden, um der Bohrlösung die gewünschte Viskosität zu geben.Furthermore, suitable additives can be added to the drilling solutions in order to give the drilling solution the desired viscosity.
Bevorzugt soll als Gas Druckluft verwendet werden. So kann die Bohrmaschine über einen Druckminderer aus dem Standarddruckluftnetz versorgt werden. Mit dem Druckminderer kann die Gasgeschwindigkeit und damit die Kühlmittelstrahlgeschwindigkeit auf einfache Weise gesteuert werden. Die Verwendung anderer, aber teureren Gase ist möglich, wenn die physikalischen Eigenschaften der Gase entsprechend berücksichtigt werden.Compressed air should preferably be used as the gas. The drill can be supplied from the standard compressed air network via a pressure reducer. The gas speed and thus the coolant jet speed can be controlled in a simple manner with the pressure reducer. The use of other, but more expensive gases is possible if the physical properties of the gases are taken into account accordingly.
Zur Durchführung des Verfahrens ist eine Strahlpumpe vorgesehen, mit der die Kühlflüssigkeit und das unter Druck stehende Gas gemischt und ausgetragen wird. Eine solche Strahlpumpe, auch Injektorpumpe genannt, hat einen vergleichbaren Aufbau mit einem Bunsenbrenner oder einer Wasserstrahlpumpe. Ohne bewegliche Teile zu haben, fördert sie Flüssigkeit oder Gase mit einem Wirkungsgrad von 20 ... 25%. Bei der vorliegenden Vorrichtung beschleunigt dieTo carry out the method, a jet pump is provided, with which the cooling liquid and the gas under pressure are mixed and discharged. Such a jet pump, also called an injector pump, has a comparable design with a Bunsen burner or a water jet pump. Without moving parts, it pumps liquids or gases with an efficiency of 20 ... 25%. In the present device, the
Strahlpumpe mit Hilfe von Druckluft die an den Bohrer zu fördernde - gegebenenfalls selbst unter Druck stehende - Kühlflüssigkeit. Neben einer erheblichen Geschwindigkeitszunahme des Kühlmittelstrahls wird die Kühlflussigkeit fein zerstäubt. Gegenüber anderenJet pump with the help of compressed air, the coolant to be conveyed to the drill - possibly even under pressure -. In addition to a significant increase in the speed of the coolant jet, the cooling liquid is atomized. Over other
Zerstäubern und/oder Vergasern hat die Strahlpumpe kleine Bauabmessungen und ist zudem wartungsfrei.Atomizers and / or carburettors have small dimensions and are also maintenance-free.
Die gesamte Vorrichtung kann dadurch verbessert werden, daß zusätzlich zu der, den Kühlmittelstrahl abgebenden,The entire device can be improved in that, in addition to that which emits the coolant jet,
Strahlpumpe mindestens eine Hilfsstrahlpumpe und/oder Hilfsdüse vorgesehen wird. Die Hilfsdüsen blasen während des Bohrvorganges kontinuierlich oder stoßweise Druckluft in den Niederhalterraum. Sie sind nahezu parallel zur Platinenoberfläche angeordnet, um so möglichst vollständig den nicht von dem Kühlmittelstrahl erfaßten Bohraushub einer Absaugvorrichtung zuzuführen. Ihre Aufgabe ist es nicht, den Bohrer anzublasen oder zu kühlen.Jet pump at least one auxiliary jet pump and / or auxiliary nozzle is provided. The auxiliary nozzles blow during the drilling process continuously or intermittently compressed air into the hold-down chamber. They are arranged almost parallel to the surface of the circuit board in order to feed the drilling excavation not captured by the coolant jet to a suction device as completely as possible. It is not your job to blow or cool the drill.
Weitere Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der teilweise schematisch dargestellten Ausführungsformen. Es zeigen:Further details of the invention result from the following description of the partially schematically illustrated embodiments. Show it:
Figur 1: Schnitt durch den unteren Teil einer Hochgeschwindigkeitsbohrmaschine mit Werkstückniederhalter und Kühlmittelzufuhr sowie ein zu bohrendes Werkstück;Figure 1: Section through the lower part of a high-speed drilling machine with workpiece holder and coolant supply and a workpiece to be drilled;
Figur 2: Unteransicht zu Figur 1.Figure 2: Bottom view of Figure 1.
Der in Figur 1 dargestellte Schnitt zeigt den unteren Teil einer Hochgeschwindigkeitsbohrmaschine. Ein Mikrobohrer 1 ist über eine Spannvorrichtung 2 von einer Bohrspindel 3 aufgenommen. Die Bohrspindel 3 ist in einer (nicht dargestellten) Lagerplatte einer Spindelglocke einesThe section shown in Figure 1 shows the lower part of a high-speed drilling machine. A micro drill 1 is received by a drilling spindle 3 via a clamping device 2. The drilling spindle 3 is in a (not shown) bearing plate of a spindle bell
Mehrspindel automaten drehbar gelagert.Multi-spindle automatics rotatably supported.
Für die Zustellung und den Vorschub des Mikrobohrers 1 wird die Spindelglocke relativ zum Mehrspindelautomat inFor the infeed and the feed of the micro drill 1, the spindle bell is in relative to the multi-spindle machine
Richtung der Bohrachse bewegt.Moved in the direction of the drilling axis.
Die Bohrspindel 3, die Spannvorrichtung 2 und der Mikrobohrer 1 werden von einem rohrförmigen Werkstückniederhalter 4 umgeben. Der Werkstückniederhalter 4 drückt das Werkstück, z.B. eine mehrlagige Leiterplatte 5 über einen elastischen Ring 8 gegen eine Bohrplatte 7. Figur 1 zeigt den Werkstückniederhalter 4 in Arbeitsposition.The drilling spindle 3, the clamping device 2 and the micro drill 1 are surrounded by a tubular workpiece hold-down device 4. The workpiece hold-down device 4 presses the workpiece, e.g. a multilayer circuit board 5 via an elastic ring 8 against a drilling plate 7. Figure 1 shows the workpiece holder 4 in the working position.
Der Werkstückniederhalter 4 beinhaltet u.a. eine mehrteilige Kühlmittelzufuhr in Form einer Strahlpumpe 9. Die Strahlpumpe 9 besteht aus einer Treibdüse 10, einer Fangdüse 11 mit dem Saugbereich 12 und einer Kühlflüssigkeitsleitung 13. Die Strahlpumpe 9 wird über eine Schlauchleitung (15) mit Gas versorgt, vorzugsweise mit Druckluft, die unter einem Druck von etwa 3 bar steht. Das Gas strömt mit großer Geschwindigkeit aus der Treibdüse 10 und mischt sich in der Fangdüse 11 mit der im Saugbereich 12 über die Bohrung 14 aus der Kühlflüssigkeitsleitung 13 mit einem Druck von 0,3 bis 0,6 zugeführten Kühlflüssigkeit. Der Kühlmittelstrahl verläßt gebündelt die Fangdüse 11, um so den Mikrobohrer, der etwa 0,3 mm Durchmesser hat und mit 100000 Umdrehungen/min in das Werkstück schneidet, im Bereich des Bohrloches zu kühlen und zu schmieren. Gleichzeitig spült der Kühlmittelstrahl den Bohraushub, bestehend aus Bohrmehl des Platinengrundmaterials und Bohrspänen der metallischen Platinenbeschichtung (Leiterbahnen) , auf die der Strahlpumpe 9 abgewandten Seite. Es ist denkbar, die Strahlpumpe aus Gründen der Vereinfachung so auszulegen, daß die Fangdüse 11 und die Treibdüse 10 aus beabstandeten zylindrischen Rohren besteht.The workpiece hold-down device 4 includes, among other things, a multi-part coolant supply in the form of a jet pump 9. The jet pump 9 consists of a driving nozzle 10, a collecting nozzle 11 with the suction area 12 and a coolant line 13. The jet pump 9 is supplied with gas via a hose line (15), preferably with compressed air, which is under a pressure of about 3 bar. The gas flows out of the driving nozzle 10 at high speed and mixes in the collecting nozzle 11 with the cooling liquid supplied in the suction region 12 via the bore 14 from the cooling liquid line 13 with a pressure of 0.3 to 0.6. The coolant jet bundles out of the collecting nozzle 11 in order to cool and lubricate the micro-drill, which has a diameter of approximately 0.3 mm and cuts into the workpiece at 100,000 revolutions / min, in the region of the borehole. At the same time, the coolant jet flushes the drilling excavation, consisting of drilling dust of the basic board material and drilling chips of the metallic board coating (conductor tracks), on the side facing away from the jet pump 9. For reasons of simplification, it is conceivable to design the jet pump in such a way that the catching nozzle 11 and the driving nozzle 10 consist of spaced cylindrical tubes.
Gegenüber der Strahlpumpe 9 befindet sich ein Saugrohr 18, das in eine Schlauchleitung 19 übergeht. DieOpposite the jet pump 9 there is a suction pipe 18 which merges into a hose line 19. The
Schlauchleitung 19 ist mit einer nicht dargestellten Saugpumpe verbunden. Das Saugrohr 18 nimmt den aus der Umgebung des Mikrobohrers 1 weggespülten Bohraushub auf.Hose line 19 is connected to a suction pump, not shown. The suction pipe 18 receives the drilling excavation washed away from the surroundings of the micro-drill 1.
Figur 2 zeigt den Werkstückniederhalter 4 mit denFigure 2 shows the workpiece holder 4 with the
Kühlmittel- und Saugleitungen. Dieser Darstellung ist zu entnehmen, daß die Strahlpumpe 9 nicht mittig auf die Achse des Mikrobohrers 1 gerichtet ist. Die Strahlpumpe 9 ist so versetzt angeordnet, daß ihre gedachte Mittellinie 16 den Mantel des Mikrobohrers 1 gerade berührt. Dabei dreht sich die den Mikrobohrer 1 umgebende Grenzschichtstromung dem Kühlmittelstrahl entgegen und wird von dem Kühlmittelstrahl aufgerissen.Coolant and suction lines. It can be seen from this illustration that the jet pump 9 is not centered on the axis of the micro-drill 1. The jet pump 9 is arranged so that its imaginary center line 16 just touches the jacket of the micro drill 1. The boundary layer flow surrounding the microbore 1 rotates towards the coolant jet and becomes from the coolant jet torn open.
Zur verbesserten Spanabfuhr und Reinigung wird die Strahlpumpe 9 flankiert von zwei Druckluftrohren 20, 20Λ. In sie strömt über die Leitungen 21, 21 Druckluft ein. Beide Druckluftrohre sind so orientiert, daß sich die Projektionen ihrer Mittellinien auf dieFor improved chip removal and cleaning, the jet pump 9 is flanked by two compressed air pipes 20, 20 Λ . Compressed air flows into them via lines 21, 21. Both compressed air pipes are oriented so that the projections of their center lines on the
Leiterplattenoberfläche 6, vgl. Figur 1, vor dem Einlaß des Saugrohres 18 schneiden. Die Mittellinien der unter dem Winkel von ca. 15 ° zur Leiterplattenoberlfäche 6, vgl. Figur 1, geneigten Druckluftrohre 20, 20'schneiden die Leiterplattenoberfläche beidseitig einige mm neben dem Mikrobohrer 1. Dadurch ist gewährleistet, daß bei einer Druckbeaufschlagung dieser Druckluftrohre der einzelnen Druckluftstrahl Aushubanhäufungen außerhalb desPCB surface 6, cf. Figure 1, cut before the inlet of the suction pipe 18. The center lines of the at an angle of approximately 15 ° to the printed circuit board surface 6, cf. Figure 1, inclined compressed air tubes 20, 20 'cut the circuit board surface on both sides a few mm next to the micro-drill 1. This ensures that when these compressed air tubes are pressurized, the individual compressed air jet piles of excavation outside of
Kühlmittelstrahls erfassen kann, um sie dem Saugrohr 18 zuzuführen.Can detect coolant jet to supply them to the intake manifold 18.
Mit einer Anordnung gemäß den Ausführungsbeispielen unter Verwendung der angegebenen Kühlflüssigkeit konnte dieWith an arrangement according to the exemplary embodiments using the specified cooling liquid, the
Standzeit des Mikrobohrer um das 6 - 15 fache gegenüber einem Trockenbohrverfahren gesteigert werden, bei gleichzeitiger erheblicher Steigerung der Qualität der Bohrungen. The service life of the micro drill can be increased by 6 - 15 times compared to a dry drilling process, while significantly increasing the quality of the drilling.

Claims

Patentansprüche Claims
1. Verfahren zur Kühlung von Mikrobohrern, die in1. Method for cooling micro-drills, which in
Bohrwerken zur Herstellung von Kleinstbohrungen in Leiterplatten Verwendung finden, sowie zum Abtransport des Bohraushubs aus der engeren Bohrerumgebung, bei dem der Mikrobohrer aus einer in einer Düse endenden Zuleitung mit Kühlflüssigkeit angeströmt wird, wobei die Kühlflüssigkeit mit Hilfe eines unter Druck stehenden Gases im Innenbereich (11) vor der Düsenöffnung vermischt und beschleunigt wird.Boring mills are used for the production of very small holes in printed circuit boards, as well as for the removal of the drilling excavation from the closer surrounding of the drill, in which the microbore is blown with cooling liquid from a supply line ending in a nozzle, the cooling liquid using a gas under pressure inside (11 ) is mixed and accelerated in front of the nozzle opening.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die gedachte Mittellinie (16) des aus Kühlflüssigkeit und Gas gebildeten Kühlmittelstrahls etwa tangential den Mikrobohrermantel oberhalb der Leiterplattenoberfläche 6 an der Stelle berührt, an der die Horizontalkomponente des Kühlmittelstrahls frontal auf eine den Mikrobohrer 1 umgebende Grenzschichtstromung trifft.2. The method according to claim 1, characterized in that the imaginary center line (16) of the coolant jet formed from coolant and gas touches approximately tangentially the micro drill shell above the circuit board surface 6 at the point at which the horizontal component of the coolant jet frontally on one surrounding the micro drill 1 Boundary layer flow meets.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anströmwinkel zwischen der gedachten Mittellinie (16) des Kühlmittelstrahls und der Leiterplattenoberfläche (6) etwa 5 bis 45° vorzugsweise 15 bis 35° beträgt.3. The method according to claim 1 or 2, characterized in that the incident angle between the imaginary center line (16) of the coolant jet and the circuit board surface (6) is about 5 to 45 °, preferably 15 to 35 °.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei als Kühlflüssigkeit eine wäßrige Lösung, 0,1 ... 1,0 Gew.- % Tetra-ethylammoniumperfluoro-octansulfonat, 0,05 ... 1,0 Gew.- % 1 Polyvinyl-3- methylimidazoliniummethosulfat und 0,4 ... 2,0 Gew.% para-n-nonyl-phenyl-nonyl-ethoxy-polyether enthaltend, verwendet wird.4. The method according to any one of claims 1 to 3, wherein the cooling liquid is an aqueous solution, 0.1 ... 1.0 wt .-% tetra-ethylammonium perfluoro-octane sulfonate, 0.05 ... Containing 1.0% by weight of 1 polyvinyl 3-methylimidazolinium methosulfate and 0.4 ... 2.0% by weight of para-n-nonyl-phenyl-nonyl-ethoxy-polyether.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei als Gas Druckluft verwendet wird.5. The method according to any one of claims 1 to 4, wherein compressed air is used as gas.
6. Vorrichtung zur Durchführung des Verfahrens nach mindestens einem der vorgenannten Ansprüche mit einem Bohrwerk für Kleinstbohrungen, einer Führung und einem Niederhalter für Werkstücke sowie einer Kühleinrichtung für einzusetzende Mikrobohrer (1) , dadurch gekennzeichnet, daß die Kühleinrichtung eine Düsenkombination (10 - 12) für das Mischen und Austragen einer Kühlflüssigkeit und unter Druck stehenden Gasen mittels einer Strahlpumpe 9 umfaßt.6. Device for carrying out the method according to at least one of the preceding claims with a boring machine for small bores, a guide and a hold-down device for workpieces and a cooling device for micro-drills (1), characterized in that the cooling device for a nozzle combination (10 - 12) for the mixing and discharge of a cooling liquid and pressurized gases by means of a jet pump 9.
7. Vorrichtung gemäß Anspruch 6, dadurch gekennzeichnet, daß zusätzlich zu der, den Kühlmittelstrahl abgebenden, Strahlpumpe (9) mindestens eine Hilfsstrahlpumpe und/oder Hilfsdüse (20, 20') zur Abfuhr von Spänen und Kühlmittel aus dem Bereich des Bohrloches vorgesehen ist.7. The device according to claim 6, characterized in that in addition to the, the coolant jet emitting jet pump (9) at least one auxiliary jet pump and / or auxiliary nozzle (20, 20 ') is provided for removing chips and coolant from the area of the borehole.
8. Verfahren zur Kühlung von Mikrobohrern, umfassend alle offenbarten neuen Merkmale und Kombinationen von Merkmalen. 8. A method of cooling micro-drills comprising all of the disclosed new features and combinations of features.
PCT/DE1993/000511 1992-06-05 1993-06-07 Process and device for cooling micro-drills WO1993025345A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4219045.2 1992-06-05
DE4219045A DE4219045A1 (en) 1992-06-05 1992-06-05 Method and device for cooling micro-drills

Publications (2)

Publication Number Publication Date
WO1993025345A2 true WO1993025345A2 (en) 1993-12-23
WO1993025345A3 WO1993025345A3 (en) 1994-03-17

Family

ID=6460742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000511 WO1993025345A2 (en) 1992-06-05 1993-06-07 Process and device for cooling micro-drills

Country Status (2)

Country Link
DE (1) DE4219045A1 (en)
WO (1) WO1993025345A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112091702A (en) * 2020-09-21 2020-12-18 玉环仪表机床制造厂 Machining system for workpiece and machining method thereof
RU202504U1 (en) * 2020-09-14 2021-02-19 Владимир Владимирович Скакун Device for feeding lubricating technological media
RU202898U1 (en) * 2020-09-29 2021-03-12 Владимир Владимирович Скакун Device for supplying lubricating technological media
WO2023247084A1 (en) * 2022-06-21 2023-12-28 Schunk Electronic Solutions Gmbh Method for sucking off particles, in particular when cutting individual printed circuit boards out of a sheet of circuit boards, suction device, suction system and cutting machine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4433306C2 (en) * 1994-09-19 1997-07-03 Mapal Fab Praezision Method and arrangement for the metered supply of lubricant when machining workpieces
DE19720559A1 (en) * 1997-05-16 1998-11-19 Vhf Computer Gmbh Extract for machine
CN107322361A (en) * 2016-04-28 2017-11-07 南京工程学院 A kind of adaptive compression chip removal device and method for airframe laminated construction spiral drilling
RU197266U1 (en) * 2020-01-20 2020-04-16 Владимир Владимирович Скакун Device for supplying lubricating process media
RU200934U1 (en) * 2020-06-02 2020-11-19 Владимир Владимирович Скакун Device for feeding lubricating technological media
RU199706U1 (en) * 2020-06-16 2020-09-15 Владимир Владимирович Скакун Device for feeding lubricating technological media
RU201093U1 (en) * 2020-08-03 2020-11-26 Владимир Владимирович Скакун Device for feeding lubricating technological media
RU202624U1 (en) * 2020-08-12 2021-03-01 Владимир Алексеевич Ким Device for supplying lubricating technological media
DE102021203595A1 (en) * 2021-04-12 2022-10-13 Adolf Würth Gmbh & Co Kg Dust protection device, arrangement with a dust protection device and method for operating a dust protection device
RU208751U1 (en) * 2021-07-26 2022-01-11 Владимир Владимирович Скакун Device for supplying lubricating process media
CN114951756A (en) * 2022-08-02 2022-08-30 江苏神铸智能科技有限公司 Processing equipment of accurate aluminum alloy casting
CN115319851A (en) * 2022-10-10 2022-11-11 南通鑫科智能科技有限公司 Numerical control perforating machine for processing FPC (flexible printed circuit)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763144A (en) * 1954-02-25 1956-12-05 Distillers Co Yeast Ltd Cooling milling cutters with carbon dioxide
FR2508832A1 (en) * 1980-02-29 1983-01-07 Gleitlagertechnik Gmbh Coolant atomiser spray for grinding wheel - has mixing chamber with air pressure nozzle and coolant supply, and supersonic outlet nozzle
DE3426744C1 (en) * 1984-07-20 1985-08-22 Flachglas AG, 8510 Fürth Machine for edge grinding model glass panes
EP0166407A2 (en) * 1984-06-25 1986-01-02 Matsushita Electric Industrial Co., Ltd. Device for supplying grinding fluid
US4778315A (en) * 1986-09-26 1988-10-18 The Boeing Company Chip removal and tool lubricating device and method
EP0321954A2 (en) * 1987-12-23 1989-06-28 Edmar Link Cooling and lubricating device
WO1990013735A1 (en) * 1989-05-12 1990-11-15 Cold Cut, Ltd. Cold lubricant misting device and method
WO1992021481A1 (en) * 1991-05-30 1992-12-10 Hitachi Seiko, Ltd. Pressure foot for perforating machine for printed board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH596946A5 (en) * 1975-09-09 1978-03-31 Infranor Sa

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763144A (en) * 1954-02-25 1956-12-05 Distillers Co Yeast Ltd Cooling milling cutters with carbon dioxide
FR2508832A1 (en) * 1980-02-29 1983-01-07 Gleitlagertechnik Gmbh Coolant atomiser spray for grinding wheel - has mixing chamber with air pressure nozzle and coolant supply, and supersonic outlet nozzle
EP0166407A2 (en) * 1984-06-25 1986-01-02 Matsushita Electric Industrial Co., Ltd. Device for supplying grinding fluid
DE3426744C1 (en) * 1984-07-20 1985-08-22 Flachglas AG, 8510 Fürth Machine for edge grinding model glass panes
US4778315A (en) * 1986-09-26 1988-10-18 The Boeing Company Chip removal and tool lubricating device and method
EP0321954A2 (en) * 1987-12-23 1989-06-28 Edmar Link Cooling and lubricating device
WO1990013735A1 (en) * 1989-05-12 1990-11-15 Cold Cut, Ltd. Cold lubricant misting device and method
WO1992021481A1 (en) * 1991-05-30 1992-12-10 Hitachi Seiko, Ltd. Pressure foot for perforating machine for printed board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Section PQ, Week E41, 24. November 1982 Derwent Publications Ltd., London, GB; Class P56, AN N5277 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU202504U1 (en) * 2020-09-14 2021-02-19 Владимир Владимирович Скакун Device for feeding lubricating technological media
CN112091702A (en) * 2020-09-21 2020-12-18 玉环仪表机床制造厂 Machining system for workpiece and machining method thereof
RU202898U1 (en) * 2020-09-29 2021-03-12 Владимир Владимирович Скакун Device for supplying lubricating technological media
WO2023247084A1 (en) * 2022-06-21 2023-12-28 Schunk Electronic Solutions Gmbh Method for sucking off particles, in particular when cutting individual printed circuit boards out of a sheet of circuit boards, suction device, suction system and cutting machine

Also Published As

Publication number Publication date
DE4219045A1 (en) 1993-12-09
WO1993025345A3 (en) 1994-03-17

Similar Documents

Publication Publication Date Title
WO1993025345A2 (en) Process and device for cooling micro-drills
DE102006012291B4 (en) Drilling device for drilling holes in printed circuit boards for electronic devices, apparatus and equipment
DE102008030079B3 (en) A method for reducing the adhesion of slag when piercing a laser beam into a workpiece and laser processing head
DE930790C (en) Process for cooling and lubricating the cutting edge of a metalworking tool
US4917547A (en) Apparatus and method for dispensing solution to prevent smear in the manufacture of printed circuit boards
DE19713149A1 (en) Device for preventing chip attachment to a drill shank
WO2005110662A1 (en) Laser machining of a workpiece
EP0946305B1 (en) Device for aerosol production
DE60319862T2 (en) TOOL HOLDER FOR TOOL MACHINE
DE1949315A1 (en) Method and apparatus for cooling a cutting tool by mist
DE60122481T2 (en) DROP DISTRIBUTOR FOR THE EQUIVALENT DISTRIBUTION OF A CHEMICAL
DE60122634T2 (en) One using a high density energy beam machining method and apparatus for this method
DE102019127937A1 (en) Chip steering device
DE102006056881A1 (en) Laser machining device
DE1752457A1 (en) Drill bit
EP0398405B1 (en) Duel jet method
EP1495821A1 (en) Turning tool holder
DE60305585T2 (en) Grinding process and grinding machine
DE10152401B4 (en) Milling machine with a chip extraction housing
DE69914879T2 (en) DEVICE FOR GENERATING AN INACTIVE GAS IN A WAVE SOLDERING SYSTEM
CH694551A5 (en) A wire electric discharge machine.
DE102008028009A1 (en) Air jet type laser processing device
EP0929773B1 (en) Lubricator
CH694550A5 (en) Wire electrical discharge machine.
DE19721650C2 (en) Device for aerosol production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: CA