EP0398405B1 - Duel jet method - Google Patents

Duel jet method Download PDF

Info

Publication number
EP0398405B1
EP0398405B1 EP90200978A EP90200978A EP0398405B1 EP 0398405 B1 EP0398405 B1 EP 0398405B1 EP 90200978 A EP90200978 A EP 90200978A EP 90200978 A EP90200978 A EP 90200978A EP 0398405 B1 EP0398405 B1 EP 0398405B1
Authority
EP
European Patent Office
Prior art keywords
pressure medium
jet
jets
medium
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90200978A
Other languages
German (de)
French (fr)
Other versions
EP0398405A1 (en
Inventor
Charles Loegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loegel Patrick
Reichert Sylvie
Schneider Francine
Original Assignee
Loegel Patrick
Reichert Sylvie
Schneider Francine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6380752&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0398405(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Loegel Patrick, Reichert Sylvie, Schneider Francine filed Critical Loegel Patrick
Publication of EP0398405A1 publication Critical patent/EP0398405A1/en
Application granted granted Critical
Publication of EP0398405B1 publication Critical patent/EP0398405B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0036Cutting means, e.g. water jets

Definitions

  • the invention relates to a method and an apparatus for cutting, drilling and the like material-removing processing of rock, ores, coal seams, concrete or other hard objects by means of a pressure medium according to the types mentioned in claims 1 and 11.
  • the invention has for its object to improve the processing of hard objects in particular by clearing groove or groove-shaped slots with a high clearance rate without bulky additional units; above all, the "advance" when slitting the hard material is to be increased.
  • the inventive Method in which at least one jet of a coolant is directed onto the clearing point of the object with at least one jet of the pressure medium, and a cooling effect is exerted on the object, by means of which a significantly higher clearing rate can be achieved than if this cooling medium is missing.
  • the cooling medium itself does not necessarily have to be cooler than the pressure medium; it suffices if it has a strongly cooling effect at the point of impact on the object to be slit in the area of the impact of the pressure medium jet.
  • the clearance rate is improved by a factor of 3 ⁇ 4 compared to a lack of cooling medium even if water is used as the pressure medium and air is used as the cooling medium, provided the pressure of the water is at least 1500 bar.
  • the object of the invention is particularly well achieved when the pressure medium in the form of several narrow individual jets is ejected from a nozzle head under the high pressure of up to and above 2000 bar and when the individual narrow jets are not parallel but in the form of an increasing Distance from the end face of the nozzle head diverging beams are arranged. It is particularly expedient if the density (per unit area) of rays in the central area of the bundle is significantly greater than in the edge area.
  • directional jets of the cooling medium are directed onto the jets of the pressure medium in such a way that directional jets and individual jets of the pressure medium intersect. Even if the jet of the cooling medium is deflected from the original direction of the directional jet by individual jets of the pressure medium under high pressure, there are strong cooling effects since the speed of the pressure medium jets is very high and is up to over 2000 km / h. If air is used as the cooling medium, an air pressure in the order of magnitude between 1 and 10 bar is sufficient. Icing effects promote the destruction in the impact area on the rock.
  • a cool liquid gas can also be used instead of air, which improves the results even more, but which also increases the process costs considerably.
  • abrasive particles in particular the cooling medium and / or the pressure medium, can also be added.
  • the problem is particularly preferably solved by a Device in which the nozzle head for the pressure medium and a straightening head for the cooling medium are arranged side by side so that the above-mentioned effect occurs. It is particularly recommended if at least the nozzle head of the pressure medium exerts an oscillating movement in an oscillating plane which corresponds to the longitudinal direction of the groove-shaped slot to be cleared out of rock or the like.
  • the individual jets of the pressure medium are arranged at different angles of attack in relation to this pendulum plane. It is also advisable to use nozzles that prevent the individual jets from spreading out shortly after leaving the nozzle head.
  • the individual jets should strike the object essentially in a point-like manner - in the form of a line when commuting, unless the cooling medium exerts an "icing" effect on the pressure medium jets.
  • the angles of attack are in particular up to 25 degrees with respect to the pendulum plane.
  • the pressure medium supply line is expediently bendable, while the coolant supply line can be rigid.
  • a rigid pressure medium supply line 12 is connected via connecting webs 36 to the likewise rigid supply line 31 for cooling medium. Both the pressure medium supply line 12 and the cooling medium supply line 31 are parallel arranged pipes.
  • a coupling 11 is attached, which connects the pressure medium supply line 30, which is designed as a flexible pendulum tube, to the tube 12 in such a way that the pendulum tube around the articulation point of the coupling 11 in a pendulum movement - as indicated in broken lines - by, for example, the pivoting angle ⁇ is feasible.
  • the coupling 11 for example, according to FIG.
  • a high-pressure hose (HP hose) can also be installed between the tube 12 and the pendulum tube in such a way that the pressure medium flows through the bendable HP hose, which causes the oscillating movement of the pendulum tube, ie the pressure medium Feed line 30, not obstructed in operation.
  • the supply line 30, which oscillates during operation, is supported on a guide 6 which projects laterally from the cooling medium supply line 31.
  • the nozzle head 3 At the free end of the pendulum tube there is the nozzle head 3, on the front or front side 3a of which nozzles (not shown here) are arranged, through which pressure medium can be expelled onto the rock 15 in operation in the form of jets 5b in the form of jets 5b .
  • the oscillating movement to the right and left by the pivoting angle ⁇ oscillating movement of the pendulum tube and therefore also the entrained nozzle head 3 and the jets 5b is caused in this example by a drive unit 32 which is attached to the cooling medium supply line 31 and by an energy source, for example Kinetic, electrical, electromagnetic, pneumatic or hydraulic energy can be driven, which is guided through the feed line 31 to the drive unit 32.
  • a plunger 33 briefly pushes the pendulum tube in the direction facing away from the feed line 31.
  • the spring 34 is tensioned, which on the one hand prevents the pendulum tube from being deflected too far and on the other hand pulls it back in the opposite direction.
  • the straightening head 31a In the vicinity of the nozzle head 3 for the pressure medium under high pressure, the straightening head 31a is located at the free end of the feed line 31, through the straightening beams 5g of air serving as a cooling medium, both in the direction of the rock 15 and in the direction of the individual pressure medium jets 5b are directed.
  • This device is encased in a protective manner by the housing 40 shown schematically here, except for its open end face.
  • a linkage composed of several levers is used, with which the drive unit 32 brings the feed line 30 of the pressure medium into the oscillating movement.
  • the directional jet 5g is inclined at 45 degrees to the main jet direction of the pressure medium, which is illustrated here by the jet 5b of the nozzle head 3; In this embodiment, the other rays of the pressure medium are not specified.
  • Nozzles 5a are located in the nozzle head 3 for the pressure medium, which can optionally also be in the form of jet cones spreading from the nozzle head 3 with increasing direction, although narrow individual jets have proven to be considerably cheaper.
  • the pressure medium emerging from the nozzle head 3 in the form of the narrow individual jets 5b under high pressure serves to automatically drive the bendable pendulum tube or the feed line 30 in the direction which is predetermined by the bow-shaped, in particular linear guide 6.
  • the pendulum plane lies in the drawing plane, that is, in the same plane in which the supply line 12 for the pressure medium on the one hand and the supply line 31 for the coolant on the other hand are located.
  • This embodiment of the invention also ensures that at least one directional jet 5g of the air serving as the cooling medium emerges from the directional head 31a in such a way that an at least fictitious interface 200b with the next adjacent jet 5b of the pressure medium results before the rock (not shown here) is reached .
  • the rectangular nozzle head 3 has on its free front or face 3a a number of nozzles 5a, of which the middle nozzle 5a1 at the interface between the plane of symmetry 25s (simultaneously forms the pendulum plane PE) and the transverse plane 25q running at right angles thereto is arranged. Further nozzles 5a are arranged in the central region 3a1 around the central nozzle 5a1, so that the density, ie the number of nozzles per unit area, in the central region 3a1 is larger than outside it.
  • the outermost nozzles 5a2 are formed by nozzle elements, which are explained in more detail with reference to FIG. 9.
  • Bores with an internal thread 50 are arranged in the nozzle head 3 starting from the end face 3a in such a way that the axes of the bores are inclined at angles of incidence ⁇ and ⁇ with respect to the axis of the central nozzle 5a1 and therefore the main jet direction.
  • the rays 5b2 therefore extend diametrically outwards from the end face 3a of the nozzle head 3. It is recommended if the angle of attack in the pendulum plane PE is significantly larger than the angle of attack ⁇ in the transverse plane 25q running transversely thereto. In this example, the first-mentioned angle of attack ⁇ 2 is 23 degrees, while the second-mentioned angle of attack ⁇ 2 is 6 degrees.
  • the nozzle elements consist of the screw bolts 100 which can be screwed into the internal thread 50 from the end face 3a and the cylindrical projections 101 which expediently protrude into the collecting chamber 7 in the nozzle head 3.
  • the collecting chamber 7 is connected by a passage provided with an internal thread 20 to the feed line 30, not shown in FIG. 7, for the pressure medium.
  • the clear diameter of the nozzles 5a in the area of the passage opening 102a is 0.5-1 mm.
  • the screw bolt 100 made of steel in particular is provided with an annular insert 102 made of sapphire and / or hard metal in particular, the passage opening 102a of which has the smallest flow cross section of all the units involved in the passage of the pressure medium.
  • the approach 101 of the screw bolt 100 has a flow cross section which decreases conically in the flow direction D of the pressure medium. It is at the entrance of the approach 101, a perforated disk 103 is soldered on, for example. The total cross section of all perforation holes 103a in the disk 103 is larger than the flow cross section of the passage opening 102a of the ring-shaped insert 102.
  • One part of the attachment 101 connects to the insert 102, which has a substantially cylindrical bore 101b, to which the conical collecting chamber is attached 101a connects.
  • the perforated disk 103 together with the conically or conically narrowing collecting chamber 101a, reduces pressure surges. This ensures better that the individual jets 5b1, 5b2 of the pressure medium remain narrow up to the point of impact on the object to be processed.
  • the coolant supply line 31 coaxially envelops the pressure medium supply line 30; both supply lines are bendable, the pressure medium supply line 30 consisting of a high-pressure hose, since the pressure medium pressure within it is very high.
  • the pressure medium exits through the nozzles, here the nozzles 5a1 and 5a2, and forms pressure medium jets 5b1, 5b2, 5b3, and the nozzle head 3 swings back and forth very quickly in the pendulum plane PE, ie perpendicular to the plane of the drawing, this becomes bundles of rays formed by the individual, very narrow jets 5b1, 5b2, 5b3 and possibly further individual jets are enveloped by a kind of "curtain" of air which flows as a cooling medium through the annular directional nozzle 201.
  • the axis of the directional nozzle 201 is directed radially inward at the angle of incidence ⁇ of approximately 20 °, with the result that the angle of the beam 5b2 at the angle of incidence ⁇ relative to the central jet 5b1 is at least fictitiously hit or cut at the interface 200b2 by the directional jet 5b .
  • the Directional jet 5g of the negative pressure is deflected around the jet 5b2, which flows out of the nozzle 5a2 at a very high speed of, for example, 2000 km / h.
  • the directional jet 5g does not directly meet the jet 5b of the pressure medium; rather, the directional jet 5g and the pressure medium jet 5b are pivoted essentially parallel to one another during the oscillating oscillating movement of the nozzle head 3 by the pivoting or pendulum angle ⁇ from one position to the other dot-dash position, in which the directional jet with the reference symbol 5g 'and the pressure medium jet are provided with the reference symbol 5b '.
  • the removal or clearing effect in the impact area 209 is therefore many times greater than if only the pressure medium jets 5b, 5b 'would oscillate there and back.
  • the heating without interruption of cooling forms a coating that serves as a heat shield for many types of rock, especially in the area of impact, which shows the effect of the high-energy jets 5b, 5b 'in the case of longer operation compared to the beginning of clearing when the rock is not yet very strong is heated, reduced.
  • the invention can be used particularly advantageously when introducing straight or also arcuate or even circular slots in granite and the like hard rock.
  • the device according to the invention can cut slots up to one meter deep in granite, so that granite blocks can be broken out much more quickly and easily than by introducing boreholes and blasting with explosives in a predetermined cuboid shape.
  • the media used in the invention such as water for the high pressure medium and Air for the cooling medium, cheap and the lance-shaped device offers the possibility of clearing even deep slots in the granite with a narrow design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Forests & Forestry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Polarising Elements (AREA)
  • Earth Drilling (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Paper (AREA)
  • Vehicle Body Suspensions (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Laser Surgery Devices (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Recrystallisation Techniques (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PCT No. PCT/EP90/00557 Sec. 371 Date May 6, 1991 Sec. 102(e) Date May 6, 1991 PCT Filed Apr. 9, 1990 PCT Pub. No. WO90/14200 PCT Pub. Date Nov. 29, 1990.In particular for cutting working of especially hard rock such as granite, an additional cooling medium is supplied to a pressure medium which is at a high pressure of especially more than 1500 bar. The pressure medium is ejected particularly in the form of discrete narrow jets from a nozzle head (5) and the directional jet (5g) of the cooling medium is directed towards at least some of the jets (5b) of the bundle of jets of the pressure medium so that together with the pressure medium a cooling effect is caused on the object to be worked, thus resulting in an improved crushing effect.

Description

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Schneiden, Bohren und dergleichen Material abtragenden Bearbeiten von Gestein, Erzen, Kohleflözen, Beton oder anderen harten Gegenständen mittels eines Druckmittels nach den in den Patentansprüchen 1 und 11 genannten Gattungen.The invention relates to a method and an apparatus for cutting, drilling and the like material-removing processing of rock, ores, coal seams, concrete or other hard objects by means of a pressure medium according to the types mentioned in claims 1 and 11.

Ein derartiges Verfahren und eine derartige Vorrichtung sind bereits bekannt (DE-A-3 739 825). Bei dem Düsenkopf der vorgenannten Vorrichtung sind Einzeldüsen unter einem Anstellwinkel in Bezug zur Hauptstrahlrichtung des Düsenkopfes angeordnet, um eine verhältnismäßig breite "Streuung" des Bündels der Einzelstrahlen zu erreichen, ehe diese so weit "Auffächern", daß sich die Randbereiche der Einzelstrahlen überlappen.Such a method and such a device are already known (DE-A-3 739 825). In the nozzle head of the aforementioned device, individual nozzles are arranged at an angle of attack with respect to the main jet direction of the nozzle head, in order to achieve a relatively wide “spread” of the bundle of the individual jets before they “fan out” so far that the edge regions of the individual jets overlap.

Dabei ist es auch schon bei anderen gattungsähnlichen Vorrichtungen (DE-B-3 410 981 und 3 516 572) bekannt, für die Düsen aus Hartmetall bestehende Einsätze zu verwenden und diese im Düsenkopf durch Schrauben oder Einstecken zu verankern.It is also known in other generic devices (DE-B-3 410 981 and 3 516 572) to use inserts made of hard metal for the nozzles and to anchor them in the nozzle head by means of screws or insertion.

Aus der Einsatz von Kühlmedium ist bereits bekannt. Bei der US-A-3 526 162 wird Kryogas über eine Düse auf das zu schneidende nichtmetallische Material geleitet. Durch eine zweite Düse wird anschließend ein das Material schneidender Druckmittelstrahl auf die unterkühlte Stelle gerichtet.It is already known from the use of cooling medium. In US-A-3 526 162 cryogas is passed through a nozzle onto the non-metallic material to be cut. A pressure medium jet cutting the material is then directed through a second nozzle onto the supercooled area.

Ferner sind Vorrichtungen zum Bohren von Löchern in Beton und Fels bekannt (MACHINE DESIGN 57/1985, Seiten 114 - 117), bei denen mit abrasiven Partikeln versetzte Wasserstrahlen unter hohen Druck gesetzt werden und mittels eines rotierenden Düsenkopfes zum Bohren dienen. Dabei wird mit einem Wasserdruck bis zu etwa 100 bar gearbeitet.Devices for drilling holes in concrete and rock are also known (MACHINE DESIGN 57/1985, pages 114-117), in which water jets mixed with abrasive particles are placed under high pressure and are used for drilling by means of a rotating nozzle head. A water pressure of up to about 100 bar is used.

Schließlich ist es auch bekannt (CH-A-370 717 und GB-A-718 735), Flüssigkeit durch Luft zu zerstäuben, um Oberflächen zu behandeln; dabei werden auch Drehdüsen verwendet, mit deren Hilfe die Innenwand der Bohrung eines Werkstücks bestrichen wird, um diese in den endgültigen Feinbearbeitungszustand zu bringen. Eine regelrecht Material abtragende ausfräsende Wirkung wird daher nicht erzielt.Finally, it is also known (CH-A-370 717 and GB-A-718 735) to atomize liquid by air to treat surfaces; rotary nozzles are also used, with the help of which the inner wall of the bore of a workpiece is coated in order to bring it into the final fine machining state. A routing material-removing effect is therefore not achieved.

Der Erfindung liegt die Aufgabe zugrunde, das Bearbeiten insbesondere harter Gegenstände durch Ausräumen rillen- oder rinnenförmiger Schlitze mit einer hohen Räumrate ohne sperrige Zusatzaggregate zu verbessern; so soll vor allem der "Vortrieb" beim Aufschlitzen des Hartmaterials vergrößert werden.The invention has for its object to improve the processing of hard objects in particular by clearing groove or groove-shaped slots with a high clearance rate without bulky additional units; above all, the "advance" when slitting the hard material is to be increased.

Die Erfindung ist in den Patentansprüchen 1 und 11 gekennzeichnet und in Unteransprüchen sind weitere Ausbildungen derselben beschrieben.The invention is characterized in claims 1 and 11 and further embodiments of the same are described in subclaims.

Überraschenderweise hat sich gezeigt, daß durch das erfindungsgemäße Verfahren, bei dem mit mindestens einem Strahl des Druckmittels mindestens ein Richtstrahl eines Kühlmittels auf die Ausräumstelle des Gegenstands gerichtet wird, auf den Gegenstand eine Kühlwirkung ausgeübt wird, durch die eine wesentlich größere Räumrate erzielbar ist, als wenn dieses Kühlmedium fehlt. Das Kühlmedium muß selbst nicht unbedingt kühler als das Druckmittel sein; es genügt, wenn es an der Auftreffstelle am zu schlitzenden Gegenstand im Bereich des Auftreffens des Druckmittelstrahls eine stark kühlende Wirkung ausübt. So wird die Räumrate um beispielsweise den Faktor³⁻⁴ gegenüber fehlendem Kühlmedium sogar dann verbessert, wenn als Druckmittel Wasser und als Kühlmedium Luft verwendet wird, sofern der Druck des Wassers mindestens 1500 bar beträgt. Es wird vermutet, daß durch das Zusammentreffen des Hochdruck-Wassers mit dem Richtstrahl bzw. mit mehreren Richtstrahlen der Luft dem Wasser noch vor dem Auftreffen auf beispielsweise harten Granit so viel Wärme entzogen wird, daß eine wesentliche Erwärmung des Granits vermieden werden kann. Untersuchungen haben nämlich gezeigt, daß beim Fehlen des Kühlmediums der Granit am Grund bzw. Boden des rillenförmigen Schlitzes so stark erwärmt wird, daß sich dort eine glasige bzw. keramikartige Überzugsschicht bildet, welche die Räumrate stark herabsetzt. Durch die Erfindung wird die Ausbildung einer solchen dem Bearbeiten einen hohen Widerstand entgegensetzenden Überzugsschicht über dem Granit vermieden. Darüber hinaus wirkt das Wechselspiel der das Gestein beim Auftreffen der punktförmigen Druckmittelstrahlen erheblich erhitzenden Strahlen mit dem diesselbe Gesteinsstelle beim pendelnden Bestreichen kühlenden Richtstrahl begünstigend auf Rissebildungen im Gestein und zu dessen Aufbrechen und partikelmäßigen Zertrümmern.Surprisingly, it has been shown that the inventive Method in which at least one jet of a coolant is directed onto the clearing point of the object with at least one jet of the pressure medium, and a cooling effect is exerted on the object, by means of which a significantly higher clearing rate can be achieved than if this cooling medium is missing. The cooling medium itself does not necessarily have to be cooler than the pressure medium; it suffices if it has a strongly cooling effect at the point of impact on the object to be slit in the area of the impact of the pressure medium jet. For example, the clearance rate is improved by a factor of ³⁻⁴ compared to a lack of cooling medium even if water is used as the pressure medium and air is used as the cooling medium, provided the pressure of the water is at least 1500 bar. It is assumed that by the coincidence of the high-pressure water with the directional jet or with several directional jets of the air, so much heat is removed from the water before it hits hard granite, for example, that substantial heating of the granite can be avoided. Investigations have shown that, in the absence of the cooling medium, the granite at the base or bottom of the groove-shaped slot is heated so strongly that a glassy or ceramic-like coating layer forms there, which greatly reduces the clearing rate. The invention avoids the formation of such a coating layer, which offers high resistance to machining, above the granite. In addition, the interplay of the rays, which heat up the rock considerably when the punctiform pressure medium jets strike it, with the same rock location when the brush beam is oscillating, has a favorable effect on crack formation in the rock and on its breaking up and particle-like destruction.

Die Aufgabe der Erfindung wird dann besonders gut gelöst, wenn das Druckmittel in Form mehrerer schmaler Einzelstrahlen aus einem Düsenkopf unter dem hohen Druck von bis zu und über 2000 bar ausgestoßen wird und wenn die einzelnen schmalen Strahlen nicht parallel, sondern in Form eines sich mit zunehmendem Abstand von der Stirnfläche des Düsenkopfen divergierenden Strahlenbündels angeordnet sind. Dabei ist es besonders zweckmäßig, wenn die Dichte (pro Flächeneinheit) an Strahlen im Zentralbereich des Bündels wesentlich größer ist als im Randbereich.The object of the invention is particularly well achieved when the pressure medium in the form of several narrow individual jets is ejected from a nozzle head under the high pressure of up to and above 2000 bar and when the individual narrow jets are not parallel but in the form of an increasing Distance from the end face of the nozzle head diverging beams are arranged. It is particularly expedient if the density (per unit area) of rays in the central area of the bundle is significantly greater than in the edge area.

Darüber hinaus empfiehlt es sich, wenn Richtstrahlen des Kühlmediums so auf die Strahlen des Druckmittels gerichtet werden, daß sich Richtstrahlen und Einzelstrahlen des Druckmittels schneiden. Selbst wenn der Strahl des Kühlmediums durch Einzelstrahlen des unter hohen Druck stehenden Druckmittels aus der ursprünglichen Richtung des Richtstrahles abgelenkt werden, ergeben sich starke Kühleffekte, da die Geschwindigkeit der Druckmittelstrahlen sehr hoch ist und bis über 2000 km/h beträgt. Wird Luft als Kühlmedium verwendet, so genügt ein Luftdruck in der Größenordnung zwischen 1 und 10 bar. Vereisungseffekte begünstigen die Zertrümmerung im Auftreffbereich am Gestein.In addition, it is advisable if directional jets of the cooling medium are directed onto the jets of the pressure medium in such a way that directional jets and individual jets of the pressure medium intersect. Even if the jet of the cooling medium is deflected from the original direction of the directional jet by individual jets of the pressure medium under high pressure, there are strong cooling effects since the speed of the pressure medium jets is very high and is up to over 2000 km / h. If air is used as the cooling medium, an air pressure in the order of magnitude between 1 and 10 bar is sufficient. Icing effects promote the destruction in the impact area on the rock.

Mindestens teilweise kann anstelle von Luft auch ein kühles Flüssiggas verwendet werden, wodurch die Ergebnisse noch verbessert werden, wodurch sich allerdings auch die Verfahrenskosten erheblich vergrößern.At least in part, a cool liquid gas can also be used instead of air, which improves the results even more, but which also increases the process costs considerably.

Im übrigen können auch abrasive Partikel insbesondere dem Kühlmedium und/oder dem Druckmittel zugesetzt werden.In addition, abrasive particles, in particular the cooling medium and / or the pressure medium, can also be added.

Besonders bevorzugt wird die Aufgabe gelöst durch eine Vorrichtung, bei der der Düsenkopf für das Druckmittel und ein Richtkopf für das Kühlmedium so nebeneinander angeordnet sind, daß die oben erwähnte Wirkung eintritt. Dabei ist es besonders empfehlenswert, wenn zumindest der Düsenkopf des Druckmittels eine pendelnde Bewegung in einer Pendelebene ausübt, die der Längsrichtung des im Gestein oder dergleichen harten Gegenstand auszuräumenden rillenförmigen Schlitzes entspricht. Die einzelnen Strahlen des Druckmittels sind unter unterschiedlichen Anstellwinkeln in Bezug zu dieser Pendelebene angeordnet. Außerdem empfiehlt es sich, wenn solche Düsen verwendet werden, die verhindern, daß sich die Einzelstrahlen schon kurz nach Verlassen des Düsenkopfes aufspreizen. Vielmehr sollten die einzelnen Strahlen im wesentlichen punktförmig - beim Pendeln linienförmig - auf den Gegenstand auftreffen, sofern nicht das Kühlmedium eine "vereisende" Wirkung auf die Druckmittelstrahlen ausübt. Die Anstellwinkel betragen insbesondere bis zu 25 Grad gegenüber der Pendelebene. Die Druckmittelzuleitung ist zweckmäßigerweise biegbar, während die Kühlmedium-Zuleitung starr ausgebildet sein kann.The problem is particularly preferably solved by a Device in which the nozzle head for the pressure medium and a straightening head for the cooling medium are arranged side by side so that the above-mentioned effect occurs. It is particularly recommended if at least the nozzle head of the pressure medium exerts an oscillating movement in an oscillating plane which corresponds to the longitudinal direction of the groove-shaped slot to be cleared out of rock or the like. The individual jets of the pressure medium are arranged at different angles of attack in relation to this pendulum plane. It is also advisable to use nozzles that prevent the individual jets from spreading out shortly after leaving the nozzle head. Rather, the individual jets should strike the object essentially in a point-like manner - in the form of a line when commuting, unless the cooling medium exerts an "icing" effect on the pressure medium jets. The angles of attack are in particular up to 25 degrees with respect to the pendulum plane. The pressure medium supply line is expediently bendable, while the coolant supply line can be rigid.

Die Erfindung und besonders bevorzugte Ausbildungen derselben werden im folgenden anhand der Zeichnungen näher erläutert.The invention and particularly preferred embodiments thereof are explained in more detail below with reference to the drawings.

Dabei zeigen:

  • Fig. 1 eine schematische Ansicht auf eine Vorrichtung nach der Erfindung;
  • Fig. 2 einen schematsichen Schnitt II-II durch die in Fig. 1 dargestellte Vorrichtung;
  • Fig. 3 eine schematische Ansicht gemäß Fig. 1 einer anderen Ausbildung der Vorrichtung;
  • Fig. 4 eine teilweise Querschnittsansicht durch eine Vorrichtung gemäß der Erfindung - hier ohne Richtkopf für das Kühlmedium - und zwar mit einem Querschnitt durch den rinnenförmigen Schlitz in Granit;
  • Fig. 5 eine schematische Ansicht einer anderen Ausbildung der Erfindung;
  • Fig. 6 eine Ansicht der Stirnseite eines Düsenkopfes;
  • Fig. 7 einen Querschnitt A-B von Fig. 6 und
  • Fig. 8 einen Querschnitt A-C von Fig. 6 des Düsenkopf;
  • Fig. 9 einen teilweisen Querschnitt einer Düse;
  • Fig. 10 eine aufgebrochene Seitenansicht eines anderen Düsenkopfes und
  • Fig. 11 eine schematische Erläuterung des Gesteinszertrümmerns.
Show:
  • Figure 1 is a schematic view of a device according to the invention.
  • Fig. 2 is a schematic section II-II through the device shown in Fig. 1;
  • FIG. 3 shows a schematic view according to FIG. 1 of another embodiment of the device;
  • Figure 4 is a partial cross-sectional view through a device according to the invention - here without a straightening head for the cooling medium - with a cross-section through the channel-shaped slot in granite;
  • Fig. 5 is a schematic view of another embodiment of the invention;
  • 6 shows a view of the end face of a nozzle head;
  • Fig. 7 shows a cross section AB of Fig. 6 and
  • 8 shows a cross section AC of FIG. 6 of the nozzle head;
  • 9 is a partial cross section of a nozzle;
  • Fig. 10 is a broken side view of another nozzle head and
  • 11 is a schematic explanation of the rock crushing.

Gemäß Fig. 1 ist eine starre Druckmittelzuleitung 12 über Verbindungsstege 36 mit der ebenfalls starren Zuleitung 31 für Kühlmedium verbunden. Sowohl die Druckmittelzuleitung 12 als auch die Kühlmedium-Zuleitung 31 sind parallel angeordnete Rohre. Am freien Ende des Rohres 12 ist eine Kupplung 11 angebracht, die die als biegbares Pendelrohr ausgebildete Druckmittelzuleitung 30 mit dem Rohr 12 so verbindet, daß das Pendelrohr um die Anlenkstelle der Kupplung 11 in Pendelbewegung - wie in unterbrochenen Linien angedeutet - um beispielsweise den Schwenkwinkel α bringbar ist. Anstelle der Kupplung 11 kann beispielsweise gemäß Fig. 3 auch ein Hochdruckschlauch (HD-Schlauch) zwischen das Rohr 12 und das Pendelrohr so eingebaut sein, daß das Druckmittel durch den biegbaren HD-Schlauch strömt, der die pendelnde Bewegung des Pendelrohrs, d.h. der Druckmittel-Zuleitung 30, im Betrieb nicht behindert.1, a rigid pressure medium supply line 12 is connected via connecting webs 36 to the likewise rigid supply line 31 for cooling medium. Both the pressure medium supply line 12 and the cooling medium supply line 31 are parallel arranged pipes. At the free end of the tube 12, a coupling 11 is attached, which connects the pressure medium supply line 30, which is designed as a flexible pendulum tube, to the tube 12 in such a way that the pendulum tube around the articulation point of the coupling 11 in a pendulum movement - as indicated in broken lines - by, for example, the pivoting angle α is feasible. Instead of the coupling 11, for example, according to FIG. 3, a high-pressure hose (HP hose) can also be installed between the tube 12 and the pendulum tube in such a way that the pressure medium flows through the bendable HP hose, which causes the oscillating movement of the pendulum tube, ie the pressure medium Feed line 30, not obstructed in operation.

Die im Betrieb oszillierende Zuleitung 30 stützt sich auf einer Führung 6 ab, welche seitlich von der Kühlmedium-Zuleitung 31 absteht. Am freien Ende des Pendelrohrs befindet sich der Düsenkopf 3, an dessen Front- bzw. Stirnseite 3a hier nicht gezeigte Düsen angeordnet sind, durch welche im Betrieb Druckmittel unter hohem Druck von beispeilsweise 2000 bar in Form der Strahlen 5b auf das Gestein 15 ausgestoßen werden kann. Die pendelnde bzw. nach rechts und links um den Schwenkwinkel α oszillierende Bewegung des Pendelrohrs und daher auch des mitgeführten Düsenkopfes 3 und der Strahlen 5b wird bei diesem Beispiel durch ein Antriebsaggregat 32 veranlaßt, das an der Kühlmedienzuleitung 31 angebaut ist und durch einen Energieträger, beispielsweise kinetische, elektrische, elektromagnetische, pneumatische oder hydraulische Energie antreibbar ist, welche durch die Zuleitung 31 zum Antriebsaggregat 32 geführt wird. Ein Stößel 33 stößt das Pendelrohr kurzzeitig in die von der Zuleitung 31 abgewandte Richtung. Hierdurch wird die Feder 34 gespannt, die einerseits das zu weite Auslenken des Pendelrohrs verhindert und andererseits dasselbe wieder in die entgegengesetzte Richtung zurückzieht. Durch die Kombinationswirkung des Antriebsaggregats 32 und der Feder 34 mit dem Pendelrohr schwingt dieses zwischen den unterbrochenen Linien hin und her. Die schmalen Strahlen 5b treffen auf das Gestein 15 auf und räumen dort einen rinnenförmigen Schlitz 16 aus, wenn die Vorrichtung allmählich in Pfeilrichtung P an der Frontseite des Gesteins 15 entlang geführt wird.The supply line 30, which oscillates during operation, is supported on a guide 6 which projects laterally from the cooling medium supply line 31. At the free end of the pendulum tube there is the nozzle head 3, on the front or front side 3a of which nozzles (not shown here) are arranged, through which pressure medium can be expelled onto the rock 15 in operation in the form of jets 5b in the form of jets 5b . The oscillating movement to the right and left by the pivoting angle α oscillating movement of the pendulum tube and therefore also the entrained nozzle head 3 and the jets 5b is caused in this example by a drive unit 32 which is attached to the cooling medium supply line 31 and by an energy source, for example Kinetic, electrical, electromagnetic, pneumatic or hydraulic energy can be driven, which is guided through the feed line 31 to the drive unit 32. A plunger 33 briefly pushes the pendulum tube in the direction facing away from the feed line 31. As a result, the spring 34 is tensioned, which on the one hand prevents the pendulum tube from being deflected too far and on the other hand pulls it back in the opposite direction. Due to the combination effect of the drive unit 32 and the spring 34 with the pendulum tube, the latter swings back and forth between the broken lines. The narrow rays 5b strike the rock 15 and clear a channel-shaped slot 16 there when the device is gradually guided in the direction of the arrow P along the front of the rock 15.

In der Nähe des Düsenkopfes 3 für das unter hohem Druck stehende Druckmittel befindet sich am freien Ende der Zuleitung 31 der Richtkopf 31a, durch den Richtstahlen 5g von als Kühlmedium dienender Luft sowohl in Richtung auf das Gestein 15 als auch in Richtung auf die einzelnen Druckmittelstrahlen 5b gerichtet sind.In the vicinity of the nozzle head 3 for the pressure medium under high pressure, the straightening head 31a is located at the free end of the feed line 31, through the straightening beams 5g of air serving as a cooling medium, both in the direction of the rock 15 and in the direction of the individual pressure medium jets 5b are directed.

Diese Vorrichtung wird durch das hier schematisch dargestellte Gehäuse 40 bis auf dessen offene Stirnseite schützend umhüllt.This device is encased in a protective manner by the housing 40 shown schematically here, except for its open end face.

Bei der in Fig. 3 dargestellten Alternative der Vorrichtung wird anstelle des Stößels 33 ein aus mehreren Hebeln zusammengesetztes Gestänge verwendet, mit dem das Antriebsaggregat 32 die Zuleitung 30 des Druckmittels in die pendelnde Bewegung bringt. Der Richtstrahl 5g ist unter 45 Grad auf die Hauptstrahlrichtung des Druckmittels geneigt, die hier durch den Strahl 5b des Düsenkopfes 3 veranschaulicht ist; Bei diesem Ausführungsbeispiel sind die anderen Strahlen des Druckmittels nicht angegeben.In the alternative of the device shown in FIG. 3, instead of the tappet 33, a linkage composed of several levers is used, with which the drive unit 32 brings the feed line 30 of the pressure medium into the oscillating movement. The directional jet 5g is inclined at 45 degrees to the main jet direction of the pressure medium, which is illustrated here by the jet 5b of the nozzle head 3; In this embodiment, the other rays of the pressure medium are not specified.

Gemäß Fig. 4 ist schematisch die Breite C des aus dem Gestein 15 auszuräumenden rinnenförmigen Schlitzes 16 veranschaulicht. Im Düsenkopf 3 befinden sich Düsen 5a für das Druckmittel, das gegebenenfalls auch in Form von sich vom Düsenkopf 3 mit zunehmender Richtung aufspreizenden Strahlenkegeln ausgebildet sein kann, obwohl sich schmale Einzelstrahlen als wesentlich günstiger erwiesen haben.4 schematically illustrates the width C of the channel-shaped slot 16 to be cleared from the rock 15. Nozzles 5a are located in the nozzle head 3 for the pressure medium, which can optionally also be in the form of jet cones spreading from the nozzle head 3 with increasing direction, although narrow individual jets have proven to be considerably cheaper.

Die Ausbildungsform nach Fig. 5 ist die bevorzugteste; dabei dient das unter hohem Druck aus dem Düsenkopf 3 in Form der schmalen Einzelstrahlen 5b austretende Druckmittel zum selbstätigen Antreiben des biegbaren Pendelrohrs bzw. der Zuleitung 30 in der Richtung, die durch die bügelförmige insbesondere geradlinige Führung 6 vorgegeben ist. Hier liegt die Pendelebene in der Zeichnungsebene, das heißt in der gleichen Ebene, in der sich die Zuleitung 12 für das Druckmittel einerseits und die Zuleitung 31 für das Kühlmittel andererseits befinden. Auch bei dieser Ausbildung der Erfindung wird dafür gesorgt, daß mindestens ein Richtstrahl 5g der als Kühlmedium dienenden Luft derart aus dem Richtkopf 31a austritt, daß sich eine zumindest fiktive Schnittstelle 200b mit dem nächstbenachbarten Strahl 5b des Druckmittels noch vor Erreichen des hier nicht dargestellten Gesteins ergibt.5 is the most preferred; the pressure medium emerging from the nozzle head 3 in the form of the narrow individual jets 5b under high pressure serves to automatically drive the bendable pendulum tube or the feed line 30 in the direction which is predetermined by the bow-shaped, in particular linear guide 6. Here the pendulum plane lies in the drawing plane, that is, in the same plane in which the supply line 12 for the pressure medium on the one hand and the supply line 31 for the coolant on the other hand are located. This embodiment of the invention also ensures that at least one directional jet 5g of the air serving as the cooling medium emerges from the directional head 31a in such a way that an at least fictitious interface 200b with the next adjacent jet 5b of the pressure medium results before the rock (not shown here) is reached .

In den Fig. 6, 7 und 8 wird eine besonders bevorzugte Ausbildung eines Düsenkopfs demonstriert. Der rechteckförmige Düsenkopf 3 weist an seiner freien Front - bzw. Stirnseite 3a eine Anzahl von Düsen 5a auf, von denen die mittlere Düse 5a1 an der Schnittstelle zwischen der Symmetrieebene 25s (bildet gleichzeitig die Pendelebene PE) und der dazu unter rechtem Winkel verlaufenden Querebene 25q angeordnet ist. In dem Zentralbereich 3a1 um die Mitteldüse 5a1 sind weitere Düsen 5a angeordnet, so daß die Dichte, d.h. die Anzahl von Düsen pro Flächeneinheit, im Zentralbereich 3a1 größer ist als außerhalb desselben. Die äußersten Düsen 5a2 werden von Düsenelementen gebildet, welche noch näher anhand der Fig. 9 erläutert werden.6, 7 and 8, a particularly preferred embodiment of a nozzle head is demonstrated. The rectangular nozzle head 3 has on its free front or face 3a a number of nozzles 5a, of which the middle nozzle 5a1 at the interface between the plane of symmetry 25s (simultaneously forms the pendulum plane PE) and the transverse plane 25q running at right angles thereto is arranged. Further nozzles 5a are arranged in the central region 3a1 around the central nozzle 5a1, so that the density, ie the number of nozzles per unit area, in the central region 3a1 is larger than outside it. The outermost nozzles 5a2 are formed by nozzle elements, which are explained in more detail with reference to FIG. 9.

Im Düsenkopf 3 sind von der Stirnseite 3a ausgehend Bohrungen mit Innengewinde 50 so angeordnet, daß die Achsen der Bohrungen unter Anstellwinkeln β und δ in Bezug zur Achse der mittleren Düse 5a1 und daher der Hauptstrahlrichtung geneigt sind. Die Strahlen 5b2 verlaufen daher von der Stirnfläche 3a des Düsenkopfes 3 ausgehend diametral nach außen. Dabei empfiehlt es sich, wenn der Anstellwinkel in der Pendelebene PE deutlich größer ist als der Anstellwinkel β in der quer dazu verlaufenden Querebene 25q. Bei diesem Beispiel beträgt der erstgenannte Anstellwinkel δ₂ 23 Grad, während der zweitgenannte Anstellwinkel β₂ 6 Grad beträgt. Die Düsenelemente bestehen aus den in die Innengewinde 50 von der Stirnseite 3a aus einschraubbaren Schraubbolzen 100 und den zylindrischen Ansätzen 101 die zweckmäßigerweise bis in die Sammelkammer 7 im Düsenkopf 3 ragen. Die Sammelkammer 7 ist durch einen mit Innengewinde 20 versehenen Durchgang mit der in Fig. 7 nicht dargestellten Zuleitung 30 für das Druckmittel verbunden. Der lichte Durchmesser der Düsen 5a im Bereich der Durchtrittsöffnung 102a beträgt 0,5 - 1 mm.Bores with an internal thread 50 are arranged in the nozzle head 3 starting from the end face 3a in such a way that the axes of the bores are inclined at angles of incidence β and δ with respect to the axis of the central nozzle 5a1 and therefore the main jet direction. The rays 5b2 therefore extend diametrically outwards from the end face 3a of the nozzle head 3. It is recommended if the angle of attack in the pendulum plane PE is significantly larger than the angle of attack β in the transverse plane 25q running transversely thereto. In this example, the first-mentioned angle of attack δ₂ is 23 degrees, while the second-mentioned angle of attack β₂ is 6 degrees. The nozzle elements consist of the screw bolts 100 which can be screwed into the internal thread 50 from the end face 3a and the cylindrical projections 101 which expediently protrude into the collecting chamber 7 in the nozzle head 3. The collecting chamber 7 is connected by a passage provided with an internal thread 20 to the feed line 30, not shown in FIG. 7, for the pressure medium. The clear diameter of the nozzles 5a in the area of the passage opening 102a is 0.5-1 mm.

Es empfiehlt sich, wenn der Schraubbolzen 100 aus insbesondere Stahl mit einem ringförmigen Einsatz 102 aus insbesondere Saphir und/oder Hartmetall versehen ist, dessen Durchtrittsöffnung 102a den kleinsten Durchflußquerschnitt aller am Durchleiten des Druckmittels beteiligten Aggregate aufweist. Der Ansatz 101 des Schraubbolzens 100 weist einen in Durchflußrichtung D des Druckmittels konisch abnehmenden Durchflußquerschnitt auf. Dabei ist am Eingang des Ansatzes 101 eine perforierte Scheibe 103 beispielsweise aufgelötet. Der Gesamtquerschnitt aller Perforationslöcher 103a in der Scheibe 103 ist größer als der Durchflußquerschnitt der Durchtrittsöffnung 102a des ringförmigen Einsatzes 102. Der Ansatz 101 schließt mit einem Teil an den Einsatz 102 an, der eine im wesentlichen zylindrische Bohrung 101b aufweist, an die sich die konische Sammelkammer 101a anschließt. Die perforierte Scheibe 103 vermindert insbesondere zusammen mit der sich konisch bzw. kegelig verengenden Sammelkammer 101a Druckstöße. Hierdurch wird besser gewährleistet, daß die einzelnen Strahlen 5b1, 5b2 des Druckmittels bis zur Auftreffstelle auf dem zu bearbeitenden Gegenstand schmal bleiben.It is advisable if the screw bolt 100 made of steel in particular is provided with an annular insert 102 made of sapphire and / or hard metal in particular, the passage opening 102a of which has the smallest flow cross section of all the units involved in the passage of the pressure medium. The approach 101 of the screw bolt 100 has a flow cross section which decreases conically in the flow direction D of the pressure medium. It is at the entrance of the approach 101, a perforated disk 103 is soldered on, for example. The total cross section of all perforation holes 103a in the disk 103 is larger than the flow cross section of the passage opening 102a of the ring-shaped insert 102. One part of the attachment 101 connects to the insert 102, which has a substantially cylindrical bore 101b, to which the conical collecting chamber is attached 101a connects. The perforated disk 103, together with the conically or conically narrowing collecting chamber 101a, reduces pressure surges. This ensures better that the individual jets 5b1, 5b2 of the pressure medium remain narrow up to the point of impact on the object to be processed.

Bei der besonderen Ausbildung von Figur 10 umhüllt die Kühlmittel-Zuleitung 31 die Druckmittel-Zuleitung 30 koaxial; beide Zuleitungen sind biegbar, wobei die Druckmittel-Zuleitung 30 aus einem Hochdruckschlauch besteht, da der Druckmitteldruck innerhalb derselben sehr groß ist. Während das Druckmittel durch die Düsen, hier die Düsen 5a1 und 5a2, austritt und Druckmittel-Strahlen 5b1, 5b2, 5b3 bildet, und der Düsenkopf 3 in der Pendelebene PE, d.h. senkrecht auf die Zeichnungsebene, sehr schnell hin und her pendelt, wird das von den einzelnen sehr schmalen Strahlen 5b1, 5b2, 5b3 und gegebenenfalls weiteren Einzelstrahlen gebildete Strahlenbündel umhüllt von einer Art "Vorhang" aus Luft, welches als Kühlmedium durch die ringförmige Richtdüse 201 strömt. Dabei ist die Achse der Richtdüse 201 unter dem Anstellwinkel γ von etwa 20° radial nach innen gerichtet mit der Folge, daß der unter dem Anstellwinkel β zum mittleren Strahl 5b1 angestellte Strahl 5b2 jedenfalls fiktiv an der Schnittstelle 200b2 vom Richtstrahl 5b getroffen bzw. geschnitten wird. Tatsächlich wird der Richtstrahl 5g des Unterdrucks um den Strahl 5b2 abgelenkt, der mit sehr großer Geschwindigkeit von beispielsweise 2000 km/h aus der Düse 5a2 ausströmt.In the special embodiment of FIG. 10, the coolant supply line 31 coaxially envelops the pressure medium supply line 30; both supply lines are bendable, the pressure medium supply line 30 consisting of a high-pressure hose, since the pressure medium pressure within it is very high. While the pressure medium exits through the nozzles, here the nozzles 5a1 and 5a2, and forms pressure medium jets 5b1, 5b2, 5b3, and the nozzle head 3 swings back and forth very quickly in the pendulum plane PE, ie perpendicular to the plane of the drawing, this becomes bundles of rays formed by the individual, very narrow jets 5b1, 5b2, 5b3 and possibly further individual jets are enveloped by a kind of "curtain" of air which flows as a cooling medium through the annular directional nozzle 201. The axis of the directional nozzle 201 is directed radially inward at the angle of incidence γ of approximately 20 °, with the result that the angle of the beam 5b2 at the angle of incidence β relative to the central jet 5b1 is at least fictitiously hit or cut at the interface 200b2 by the directional jet 5b . In fact, the Directional jet 5g of the negative pressure is deflected around the jet 5b2, which flows out of the nozzle 5a2 at a very high speed of, for example, 2000 km / h.

Im übrigen wurde festgestellt, daß es nicht immer erforderlich ist, daß Richtstrahlen 5g schon vor dem Auftreffen von Druckmittelstrahlen 5b auf den Gegenstand 15 solche Strahlen 5b schneiden, obwohl dieses "Berühren" des Kühlmediums, beispielsweise der Luft des Richtstrahls 5g, mit dem Hochdruck-Druckmittel zu einem starken Abkühlen schon vor dem Auftreffen auf dem Gestein 15 führt.In addition, it was found that it is not always necessary for the directional jets 5g to intersect such jets 5b even before the pressure medium jets 5b strike the object 15, although this "touching" of the cooling medium, for example the air of the directional jet 5g, with the high pressure Pressure medium leads to a strong cooling even before hitting the rock 15.

Gemäß Figur 11 trifft der Richtstrahl 5g nicht unmittelbar mit dem Strahl 5b des Druckmittels zusammen; vielmehr werden der Richtstrahl 5g und der Druckmittelstrahl 5b im wesentlichen parallel nebeneinander bei der pendelnd oszillierenden Bewegung des Düsenkopfs 3 um den Schwenk- bzw. Pendelwinkel α aus der einen Stellung in die andere strichpunktierte Stellung verschwenkt, in der der Richtstrahl mit dem Bezugszeichen 5g′ und der Druckmittelstrahl mit dem Bezugszeichen 5b′ versehen sind. Aufgrund der hohen Energie, mit der der Strahl 5b, 5b′ des Druckmittels, beispielsweise Wasser, mit dem Druck von 2000 bar im Auftreffbereich 209 am Anfang des Schlitzes 16 auf der Granit-Gestein 15 an den Auftreffstellen 210 - und kurz danach 210′ - auftrifft, findet eine plötzliche Erhitzung des Granits durch die hochenergetischen Druckmittelstrahlen 5b, 5b′ statt. Kurze Zeit später berühren Richtstrahlen 5g′ der Luft denselben Auftreffbereich 209 beispielsweise an der Auftreffstelle 211′ mit einer plötzlichen erheblichen Temperaturverminderung. Dieses schnelle Wechselspiel von Erhitzen und Abkühlen innerhalb kurzer Zeit von weniger als einer Sekunde und innerhalb kurzer Bereiche führt zur geradezu explosionsartigen Rissebildung im Gestein, so daß Partikel geradezu ab- bzw. ausplatzen. Der Abtrag- bzw. Ausräumeffekt im Auftreffbereich 209 ist daher um ein Vielfaches größer als wenn nur die Druckmittelstrahlen 5b, 5b′ dort hin und her pendeln würden. Das ohne Abkühlungsunterbrechungen erfolgende Erwärmen (ohne Anwendung der kühlenden Richtstrahlen) bildet bei vielen Gesteinssorten einen als Hitzeschild dienenden Überzug gerade im Auftreffbereich, was die Wirkung der hochenergetischen Strahlen 5b, 5b′ bei längerem Betrieb gegenüber dem beginnenden Ausräumen, wenn das Gestein noch nicht sehr stark erwärmt ist, reduziert.According to FIG. 11, the directional jet 5g does not directly meet the jet 5b of the pressure medium; rather, the directional jet 5g and the pressure medium jet 5b are pivoted essentially parallel to one another during the oscillating oscillating movement of the nozzle head 3 by the pivoting or pendulum angle α from one position to the other dot-dash position, in which the directional jet with the reference symbol 5g 'and the pressure medium jet are provided with the reference symbol 5b '. Due to the high energy with which the jet 5b, 5b 'of the pressure medium, for example water, with the pressure of 2000 bar in the impact area 209 at the beginning of the slot 16 on the granite rock 15 at the impact points 210 - and shortly afterwards 210' - strikes, there is a sudden heating of the granite by the high-energy pressure medium jets 5b, 5b '. A short time later, directional rays 5g 'of the air touch the same impingement area 209, for example at the impingement point 211' with a sudden, significant temperature reduction. This rapid interplay of heating and cooling within a short time of less than a second and within short ranges leads to downright explosive crack formation in the rock, so that particles flake off or burst off. The removal or clearing effect in the impact area 209 is therefore many times greater than if only the pressure medium jets 5b, 5b 'would oscillate there and back. The heating without interruption of cooling (without the use of the cooling directional jets) forms a coating that serves as a heat shield for many types of rock, especially in the area of impact, which shows the effect of the high-energy jets 5b, 5b 'in the case of longer operation compared to the beginning of clearing when the rock is not yet very strong is heated, reduced.

Die Erfindung ist besonders vorteilhaft anwendbar beim Einbringen von geraden oder auch bogenförmigen oder gar kreisförmigen Schlitzen in Granit und dergleichen hartem Gestein. So kann die erfindungsgemäße Vorrichtung bis zu metertiefe Schlitze in Granit einschneiden, so daß Granitblöcke wesentlich schneller und einfacher als durch Einbringen von Bohrlöchern und Absprengen mittels Sprengstoff in vorgegebener Quaderform ausgebrochen werden können Dabei sind die bei der Erfindung benutzten Medien, wie Wasser für das Hochdruckmittel und Luft für das Kühlmedium, wohlfeil und bietet die lanzenförmige Vorrichtung die Möglichkeit bei schmaler Ausbildung auch tiefe Schlitze im Granit auszuräumen. Die Wechselbeanspruchung zwischen Erhitzungseffekten beim Auftreffen der punktförmigen Einzelstrahlen des Druckmittels auf das Gestein und der Kühlwirkung dort auftreffender kühler Medien führt zu einer "Versprödung" des Gesteins im Gegensatz zu bisher bekannten Verfahren, bei denen ohne Verwendung des Kühlmediums sich ein dem Ausräumen von Granit entgegenstellender Hartstoff-Überzug ergab.The invention can be used particularly advantageously when introducing straight or also arcuate or even circular slots in granite and the like hard rock. Thus, the device according to the invention can cut slots up to one meter deep in granite, so that granite blocks can be broken out much more quickly and easily than by introducing boreholes and blasting with explosives in a predetermined cuboid shape. The media used in the invention, such as water for the high pressure medium and Air for the cooling medium, cheap and the lance-shaped device offers the possibility of clearing even deep slots in the granite with a narrow design. The alternating stress between heating effects when the punctiform individual jets of the pressure medium strike the rock and the cooling effect of cool media there leads to "brittleness" of the rock in contrast to previously known methods in which, without using the cooling medium, a hard material opposing the removal of granite - plating revealed.

Claims (19)

  1. A method of material-removing working such as cutting of rock, ore, coal, concrete or other hard objects with the aid of a pressure medium which in the form of narrow jets (5b) oriented at angles of incidence (β) to each other is directed at high pressure towards the object (15) such that particles thereof will be removed to form a slot (16) in said object (15),
    characterized in that the object (15) in the area of impact (209 to 211) of the jets (5b) of pressure medium is cooled by at least one directional jet (5g) of a cooling medium and that the directional jet(s) (5g) is (are) oriented relative to at least one jet (5b) of pressure medium such that the directional jet(s) (5g) will strike the area of impact (205 to 211) together with the jet (5b) of pressure medium.
  2. The method as claimed in claim 1, characterized in that the density (number of jet nozzles per unit of area) of the jets (5b) is selected to be substantially greater in the central area (3a1) of the bundle of jets composed of the discrete narrow jets (5b) than outside of said central area (3a1).
  3. The method as claimed in claim 1 or claim 2, characterized in that the directional jet(s) (5g) are directed towards narrow jets (5b) of pressure medium such that the points of intersection or the line of intersection (200b2) of the directional jet (5g) with at least the outermost narrow jet (5b) of pressure medium is (are) at a distance from the point of impact (210, 211) on the object (15).
  4. The method as claimed in any of the preceding claims, characterized in that an annular directional jet (5g) of the cooling medium is directed towards the bundle of jets composed of said discrete jets (5b).
  5. The method as claimed in any of the preceding claims, characterized in that pressure medium at a high pressure of at least 1500 bar is employed.
  6. The method as claimed in any of the preceding claims, characterized in that cool water is used as said pressure medium.
  7. The method as claimed in any of the preceding claims, characterized in that air is used as the cooling medium.
  8. The method as claimed in any of the preceding claims, characterized in that cold liquefied gas is used as the cooling medium.
  9. The method as claimed in any of the preceding claims, characterized in that abrasive particles are added to the pressure medium.
  10. The method as claimed in any of the preceding claims, characterized in that the pressure medium and/or the cooling medium is pressurized in pulsating fashion.
  11. An apparatus for carrying out the method as claimed in any of the claims 1 to 10, in which the pressure medium is supplied through a supply line (30) to a nozzle head (3) and is adapted to be directed in the form of narrow jets (5b) through at least two nozzles (5a) thereof towards the object (15) to be worked, characterized in that said apparatus comprises a directional head (31a) which is connected to a supply line (31) for cooling medium and includes at least a directional nozzle (201) the jet orientation of which is positioned relative to at least one jet (5b) of pressure medium so that the directional jet (5g) of cooling medium strikes the impacting area (209-211) together with the jet (5b).
  12. The apparatus as claimed in claim 11, characterized in that the angle of incidence (β) of the plurality of nozzles (5) is selected to be between about 10 and 25°.
  13. The apparatus as claimed in claim 11 or claim 12, characterized in that the pressure-medium supply line (30) is substantially flexible.
  14. The apparatus as claimed in any of the claims 1 to 13, characterized in that the pressure-medium supply line (20) is guided by guide means (6) in the plane of oscillation (PE), said guide means being connected to the substantially rigid cooling-medium supply line (31).
  15. The apparatus as claimed in any of the claims 11 to 14, characterized in that within the nozzle head (3) communicating passages are provided for communicating the nozzles (5a) on one side with a manifold chamber (7) into which the pressure medium flows via the supply line (30) and on the other side with the end face (3a) of the nozzle head (3).
  16. The apparatus as claimed in claim 15, characterized in that each nozzle (5a) comprises a tubular bolt (100) adapted to be screwed into internal threads (50) of the nozzle head (3) leading to a communicating passage.
  17. The apparatus as claimed in claim 16, characterized in that an annular insert (102) made from sapphire and/or cutting metal is fitted in said bolt (100), the flow port (102a) of said insert having the smallest flow cross-section of all members participating in the passage of pressure medium.
  18. The apparatus as claimed in claim 16 or claim 17, characterized in that the bolt (100) is provided with an extension (101) the flow cross-section of which decreases conically in the direction (D) of flow of the pressure medium.
  19. The apparatus as claimed in claim 18, characterized in that the inlet to the extension (101) is covered by a perforated disk (103) the clear overall flow cross-section of all perforations (103a) thereof being greater than the flow cross-section of the flow port (102a) of the insert (102).
EP90200978A 1989-05-16 1990-04-09 Duel jet method Expired - Lifetime EP0398405B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3915933A DE3915933C1 (en) 1989-05-16 1989-05-16
DE3915933 1989-05-16

Publications (2)

Publication Number Publication Date
EP0398405A1 EP0398405A1 (en) 1990-11-22
EP0398405B1 true EP0398405B1 (en) 1992-12-16

Family

ID=6380752

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90200978A Expired - Lifetime EP0398405B1 (en) 1989-05-16 1990-04-09 Duel jet method
EP90905515A Pending EP0456768A1 (en) 1989-05-16 1990-04-09 Twin-jet process

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP90905515A Pending EP0456768A1 (en) 1989-05-16 1990-04-09 Twin-jet process

Country Status (13)

Country Link
US (1) US5255959A (en)
EP (2) EP0398405B1 (en)
AT (1) ATE83421T1 (en)
AU (1) AU632325B2 (en)
BR (1) BR9006867A (en)
CA (1) CA2042046C (en)
DE (2) DE3915933C1 (en)
DK (1) DK0398405T3 (en)
ES (1) ES2037518T3 (en)
GR (1) GR3006737T3 (en)
TR (1) TR25327A (en)
WO (1) WO1990014200A1 (en)
ZA (1) ZA903356B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128422C2 (en) * 1991-08-27 1994-04-21 Schneider Geb Loegel Device and use of the device for removing material
DE4306333C2 (en) * 1993-02-24 1996-01-18 I B I S Gmbh Device for making stable slots in the ground and loose rock
US5498068A (en) * 1995-02-14 1996-03-12 Ingersoll-Rand Company Non-entry mining method equipment
DE19917611A1 (en) * 1999-04-19 2000-10-26 Abb Alstom Power Ch Ag Process for the production of cooling air bores and slots on parts of thermal turbomachinery which are exposed to hot gas
CA2271371C (en) * 1999-05-10 2002-01-01 Mac & Mac Hydrodemolition Inc. Multiple jet hydrodemolition apparatus and method
US6435620B2 (en) 1999-07-27 2002-08-20 Mac & Mac Hydrodemolition, Inc. Multiple jet hydrodemolition apparatus and method
US6273512B1 (en) 1999-09-09 2001-08-14 Robert C. Rajewski Hydrovac excavating blast wand
CN1225380C (en) * 2000-09-01 2005-11-02 富士胶片株式会社 Packaging method and device for photosensitive material coil and fluid heating and supplying device
US8814274B2 (en) * 2004-10-27 2014-08-26 Gerard J. MacNeil Machine and method for deconstructing a vertical wall
US8191972B2 (en) * 2004-10-27 2012-06-05 Mac & Mac Hydrodemolition Inc. Hydrodemolition machine for inclined surfaces
US8485279B2 (en) * 2009-04-08 2013-07-16 Pdti Holdings, Llc Impactor excavation system having a drill bit discharging in a cross-over pattern
US8827373B2 (en) * 2010-02-03 2014-09-09 Mac & Mac Hydrodemolition Inc. Top-down hydro-demolition system with rigid support frame

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548463A (en) * 1947-12-13 1951-04-10 Standard Oil Dev Co Thermal shock drilling bit
DE842333C (en) * 1951-01-04 1952-06-26 Rolf Huebner Method and device for thermal drilling
GB718735A (en) * 1952-04-30 1954-11-17 Victor Donald Grant Liquid-discharge nozzles
US2985050A (en) * 1958-10-13 1961-05-23 North American Aviation Inc Liquid cutting of hard materials
FR1257707A (en) * 1960-02-22 1961-04-07 Advanced spray device
US3526162A (en) * 1968-05-21 1970-09-01 Rogers Freels & Associates Inc Process and apparatus for cutting of non-metallic materials
US3704914A (en) * 1970-11-27 1972-12-05 Fletcher Co H E Method of fluid jet cutting for materials including rock and compositions containing rock aggregates
US4073351A (en) * 1976-06-10 1978-02-14 Pei, Inc. Burners for flame jet drill
SE7607337L (en) * 1976-06-28 1977-12-29 Atlas Copco Ab KIT AND DEVICE FOR BREAKING A SOLID MATERIAL
US4074858A (en) * 1976-11-01 1978-02-21 Institute Of Gas Technology High pressure pulsed water jet apparatus and process
US4226475A (en) * 1978-04-19 1980-10-07 Frosch Robert A Underground mineral extraction
DE3315124A1 (en) * 1983-04-27 1984-10-31 Fried. Krupp Gmbh, 4300 Essen DEVICE FOR PRODUCING PULSING ACTION MECHANICAL AND HYDRAULIC ENERGY FOR CRUSHING STONE
ZA848626B (en) * 1983-11-08 1985-06-26 Flow Ind Inc Leakproof,high pressure,high velocity,fluid jet cutting nozzle assembly
DE3410981C1 (en) * 1984-03-16 1985-05-09 Charles Ingwiller Loegel jun. Method and device for cutting rock
DE3516572A1 (en) * 1984-03-16 1986-11-20 Charles Lichtenberg Loegel jun. Improved device for cutting rock and further uses thereof
US4708214A (en) * 1985-02-06 1987-11-24 The United States Of America As Represented By The Secretary Of The Interior Rotatable end deflector for abrasive water jet drill
US4795217A (en) * 1986-03-07 1989-01-03 Hydro-Ergon Corporation System for removing material with a high velocity jet of working fluid
DE3739825A1 (en) * 1987-08-11 1989-02-23 Ciwj Co Int Water Jet DEVICE FOR CUTTING, DRILLING OR SIMILAR WORKING ON STONE, ORE, CONCRETE OR THE LIKE
JP2668696B2 (en) * 1988-03-04 1997-10-27 大成建設株式会社 Method to prevent peeling and scattering of asbestos-containing substances

Also Published As

Publication number Publication date
DK0398405T3 (en) 1993-02-01
ATE83421T1 (en) 1993-01-15
DE59000596D1 (en) 1993-01-28
CA2042046A1 (en) 1990-11-17
AU5403890A (en) 1990-12-18
GR3006737T3 (en) 1993-06-30
EP0456768A1 (en) 1991-11-21
ZA903356B (en) 1991-01-30
ES2037518T3 (en) 1993-06-16
US5255959A (en) 1993-10-26
DE3915933C1 (en) 1990-11-29
TR25327A (en) 1993-01-01
EP0398405A1 (en) 1990-11-22
CA2042046C (en) 1994-10-18
BR9006867A (en) 1991-08-06
WO1990014200A1 (en) 1990-11-29
AU632325B2 (en) 1992-12-24

Similar Documents

Publication Publication Date Title
DE60028949T2 (en) METHOD AND DEVICE FOR LIQUID BEAM MOLDING
EP0398405B1 (en) Duel jet method
EP0582191B1 (en) Apparatus and method for the treatment of sensitive surfaces, especially sculptures
DE1949315A1 (en) Method and apparatus for cooling a cutting tool by mist
DE4341869A1 (en) Removal of hard coatings by ultra high pressure jets - involves nozzle set at certain distance from surface and producing flat pressurised jet
DE3739825C2 (en)
DE3410981C1 (en) Method and device for cutting rock
DE4341870B4 (en) Ultra high-pressure flat-jet nozzle
EP0375887B1 (en) Method and device for cutting and cleaning objects, and for controlled material removal by means of a water-abrasive mixture
DE102007018338B4 (en) Apparatus and method for particle blasting using frozen gas particles
DE19821449A1 (en) High pressure jet nozzle to generate high pressure fluid jet
DE4128422C2 (en) Device and use of the device for removing material
WO2004029412A1 (en) Device for producing a gas-liquid mixture in the vicinity of cutting tools
DE3334031C2 (en)
DE19529589C1 (en) Safety device for high pressure jet stream appliance
DD220770A3 (en) DEVICE FOR PRESSURE AIR RADIATION
WO1989012530A1 (en) Sprinkler nozzle arrangement
DE4431085C1 (en) Abrasive water jet cutting process
AT511284A1 (en) DEVICE FOR COOLING CHISELS
EP1098728B1 (en) Method and device for guiding and supporting a thin sheet or metal strip
DE2641251A1 (en) METHOD AND DEVICE FOR BREAKING HARD MATERIAL, SUCH AS E. ROCK
DE19622241A1 (en) Method for breaking up hard materials by jets of fluid in tunnelling or mining by galleries
DE4009771C2 (en) End piece for a device for cooling elongated rolling stock and for stripping the coolant
DE102010022113A1 (en) Nozzle for water mist spraying
WO2023031193A1 (en) Device and method for deburring a workpiece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 90905515.4/0456768 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 24.03.92.

17Q First examination report despatched

Effective date: 19920518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921216

REF Corresponds to:

Ref document number: 83421

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 90905515.4/0456768 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 24.03.92.

ITF It: translation for a ep patent filed

Owner name: STUDIO FERRARIO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921215

REF Corresponds to:

Ref document number: 59000596

Country of ref document: DE

Date of ref document: 19930128

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3006737

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2037518

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19930915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940321

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940331

Year of fee payment: 5

Ref country code: DK

Payment date: 19940331

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940428

Year of fee payment: 5

EPTA Lu: last paid annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

EAL Se: european patent in force in sweden

Ref document number: 90200978.6

27O Opposition rejected

Effective date: 19940923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950409

Ref country code: GB

Effective date: 19950409

Ref country code: DK

Effective date: 19950409

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951010

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951012

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951013

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951016

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951025

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951102

Year of fee payment: 6

Ref country code: BE

Payment date: 19951102

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950409

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3006737

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960410

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960430

Ref country code: CH

Effective date: 19960430

Ref country code: BE

Effective date: 19960430

BERE Be: lapsed

Owner name: LOEGEL CHARLES

Effective date: 19960430

Owner name: DURR ISABELLE

Effective date: 19960430

Owner name: REICHERT SYLVIE

Effective date: 19960430

Owner name: LOEGEL PATRICK

Effective date: 19960430

Owner name: SCHNEIDER FRANCINE

Effective date: 19960430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970101

EUG Se: european patent has lapsed

Ref document number: 90200978.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050409