EP0398405B1 - Méthode à deux jets - Google Patents

Méthode à deux jets Download PDF

Info

Publication number
EP0398405B1
EP0398405B1 EP90200978A EP90200978A EP0398405B1 EP 0398405 B1 EP0398405 B1 EP 0398405B1 EP 90200978 A EP90200978 A EP 90200978A EP 90200978 A EP90200978 A EP 90200978A EP 0398405 B1 EP0398405 B1 EP 0398405B1
Authority
EP
European Patent Office
Prior art keywords
pressure medium
jet
jets
medium
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90200978A
Other languages
German (de)
English (en)
Other versions
EP0398405A1 (fr
Inventor
Charles Loegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Loegel Patrick
Reichert Sylvie
Schneider Francine
Original Assignee
Loegel Patrick
Reichert Sylvie
Schneider Francine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6380752&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0398405(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Loegel Patrick, Reichert Sylvie, Schneider Francine filed Critical Loegel Patrick
Publication of EP0398405A1 publication Critical patent/EP0398405A1/fr
Application granted granted Critical
Publication of EP0398405B1 publication Critical patent/EP0398405B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/14Drilling by use of heat, e.g. flame drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/0036Cutting means, e.g. water jets

Definitions

  • the invention relates to a method and an apparatus for cutting, drilling and the like material-removing processing of rock, ores, coal seams, concrete or other hard objects by means of a pressure medium according to the types mentioned in claims 1 and 11.
  • the invention has for its object to improve the processing of hard objects in particular by clearing groove or groove-shaped slots with a high clearance rate without bulky additional units; above all, the "advance" when slitting the hard material is to be increased.
  • the inventive Method in which at least one jet of a coolant is directed onto the clearing point of the object with at least one jet of the pressure medium, and a cooling effect is exerted on the object, by means of which a significantly higher clearing rate can be achieved than if this cooling medium is missing.
  • the cooling medium itself does not necessarily have to be cooler than the pressure medium; it suffices if it has a strongly cooling effect at the point of impact on the object to be slit in the area of the impact of the pressure medium jet.
  • the clearance rate is improved by a factor of 3 ⁇ 4 compared to a lack of cooling medium even if water is used as the pressure medium and air is used as the cooling medium, provided the pressure of the water is at least 1500 bar.
  • the object of the invention is particularly well achieved when the pressure medium in the form of several narrow individual jets is ejected from a nozzle head under the high pressure of up to and above 2000 bar and when the individual narrow jets are not parallel but in the form of an increasing Distance from the end face of the nozzle head diverging beams are arranged. It is particularly expedient if the density (per unit area) of rays in the central area of the bundle is significantly greater than in the edge area.
  • directional jets of the cooling medium are directed onto the jets of the pressure medium in such a way that directional jets and individual jets of the pressure medium intersect. Even if the jet of the cooling medium is deflected from the original direction of the directional jet by individual jets of the pressure medium under high pressure, there are strong cooling effects since the speed of the pressure medium jets is very high and is up to over 2000 km / h. If air is used as the cooling medium, an air pressure in the order of magnitude between 1 and 10 bar is sufficient. Icing effects promote the destruction in the impact area on the rock.
  • a cool liquid gas can also be used instead of air, which improves the results even more, but which also increases the process costs considerably.
  • abrasive particles in particular the cooling medium and / or the pressure medium, can also be added.
  • the problem is particularly preferably solved by a Device in which the nozzle head for the pressure medium and a straightening head for the cooling medium are arranged side by side so that the above-mentioned effect occurs. It is particularly recommended if at least the nozzle head of the pressure medium exerts an oscillating movement in an oscillating plane which corresponds to the longitudinal direction of the groove-shaped slot to be cleared out of rock or the like.
  • the individual jets of the pressure medium are arranged at different angles of attack in relation to this pendulum plane. It is also advisable to use nozzles that prevent the individual jets from spreading out shortly after leaving the nozzle head.
  • the individual jets should strike the object essentially in a point-like manner - in the form of a line when commuting, unless the cooling medium exerts an "icing" effect on the pressure medium jets.
  • the angles of attack are in particular up to 25 degrees with respect to the pendulum plane.
  • the pressure medium supply line is expediently bendable, while the coolant supply line can be rigid.
  • a rigid pressure medium supply line 12 is connected via connecting webs 36 to the likewise rigid supply line 31 for cooling medium. Both the pressure medium supply line 12 and the cooling medium supply line 31 are parallel arranged pipes.
  • a coupling 11 is attached, which connects the pressure medium supply line 30, which is designed as a flexible pendulum tube, to the tube 12 in such a way that the pendulum tube around the articulation point of the coupling 11 in a pendulum movement - as indicated in broken lines - by, for example, the pivoting angle ⁇ is feasible.
  • the coupling 11 for example, according to FIG.
  • a high-pressure hose (HP hose) can also be installed between the tube 12 and the pendulum tube in such a way that the pressure medium flows through the bendable HP hose, which causes the oscillating movement of the pendulum tube, ie the pressure medium Feed line 30, not obstructed in operation.
  • the supply line 30, which oscillates during operation, is supported on a guide 6 which projects laterally from the cooling medium supply line 31.
  • the nozzle head 3 At the free end of the pendulum tube there is the nozzle head 3, on the front or front side 3a of which nozzles (not shown here) are arranged, through which pressure medium can be expelled onto the rock 15 in operation in the form of jets 5b in the form of jets 5b .
  • the oscillating movement to the right and left by the pivoting angle ⁇ oscillating movement of the pendulum tube and therefore also the entrained nozzle head 3 and the jets 5b is caused in this example by a drive unit 32 which is attached to the cooling medium supply line 31 and by an energy source, for example Kinetic, electrical, electromagnetic, pneumatic or hydraulic energy can be driven, which is guided through the feed line 31 to the drive unit 32.
  • a plunger 33 briefly pushes the pendulum tube in the direction facing away from the feed line 31.
  • the spring 34 is tensioned, which on the one hand prevents the pendulum tube from being deflected too far and on the other hand pulls it back in the opposite direction.
  • the straightening head 31a In the vicinity of the nozzle head 3 for the pressure medium under high pressure, the straightening head 31a is located at the free end of the feed line 31, through the straightening beams 5g of air serving as a cooling medium, both in the direction of the rock 15 and in the direction of the individual pressure medium jets 5b are directed.
  • This device is encased in a protective manner by the housing 40 shown schematically here, except for its open end face.
  • a linkage composed of several levers is used, with which the drive unit 32 brings the feed line 30 of the pressure medium into the oscillating movement.
  • the directional jet 5g is inclined at 45 degrees to the main jet direction of the pressure medium, which is illustrated here by the jet 5b of the nozzle head 3; In this embodiment, the other rays of the pressure medium are not specified.
  • Nozzles 5a are located in the nozzle head 3 for the pressure medium, which can optionally also be in the form of jet cones spreading from the nozzle head 3 with increasing direction, although narrow individual jets have proven to be considerably cheaper.
  • the pressure medium emerging from the nozzle head 3 in the form of the narrow individual jets 5b under high pressure serves to automatically drive the bendable pendulum tube or the feed line 30 in the direction which is predetermined by the bow-shaped, in particular linear guide 6.
  • the pendulum plane lies in the drawing plane, that is, in the same plane in which the supply line 12 for the pressure medium on the one hand and the supply line 31 for the coolant on the other hand are located.
  • This embodiment of the invention also ensures that at least one directional jet 5g of the air serving as the cooling medium emerges from the directional head 31a in such a way that an at least fictitious interface 200b with the next adjacent jet 5b of the pressure medium results before the rock (not shown here) is reached .
  • the rectangular nozzle head 3 has on its free front or face 3a a number of nozzles 5a, of which the middle nozzle 5a1 at the interface between the plane of symmetry 25s (simultaneously forms the pendulum plane PE) and the transverse plane 25q running at right angles thereto is arranged. Further nozzles 5a are arranged in the central region 3a1 around the central nozzle 5a1, so that the density, ie the number of nozzles per unit area, in the central region 3a1 is larger than outside it.
  • the outermost nozzles 5a2 are formed by nozzle elements, which are explained in more detail with reference to FIG. 9.
  • Bores with an internal thread 50 are arranged in the nozzle head 3 starting from the end face 3a in such a way that the axes of the bores are inclined at angles of incidence ⁇ and ⁇ with respect to the axis of the central nozzle 5a1 and therefore the main jet direction.
  • the rays 5b2 therefore extend diametrically outwards from the end face 3a of the nozzle head 3. It is recommended if the angle of attack in the pendulum plane PE is significantly larger than the angle of attack ⁇ in the transverse plane 25q running transversely thereto. In this example, the first-mentioned angle of attack ⁇ 2 is 23 degrees, while the second-mentioned angle of attack ⁇ 2 is 6 degrees.
  • the nozzle elements consist of the screw bolts 100 which can be screwed into the internal thread 50 from the end face 3a and the cylindrical projections 101 which expediently protrude into the collecting chamber 7 in the nozzle head 3.
  • the collecting chamber 7 is connected by a passage provided with an internal thread 20 to the feed line 30, not shown in FIG. 7, for the pressure medium.
  • the clear diameter of the nozzles 5a in the area of the passage opening 102a is 0.5-1 mm.
  • the screw bolt 100 made of steel in particular is provided with an annular insert 102 made of sapphire and / or hard metal in particular, the passage opening 102a of which has the smallest flow cross section of all the units involved in the passage of the pressure medium.
  • the approach 101 of the screw bolt 100 has a flow cross section which decreases conically in the flow direction D of the pressure medium. It is at the entrance of the approach 101, a perforated disk 103 is soldered on, for example. The total cross section of all perforation holes 103a in the disk 103 is larger than the flow cross section of the passage opening 102a of the ring-shaped insert 102.
  • One part of the attachment 101 connects to the insert 102, which has a substantially cylindrical bore 101b, to which the conical collecting chamber is attached 101a connects.
  • the perforated disk 103 together with the conically or conically narrowing collecting chamber 101a, reduces pressure surges. This ensures better that the individual jets 5b1, 5b2 of the pressure medium remain narrow up to the point of impact on the object to be processed.
  • the coolant supply line 31 coaxially envelops the pressure medium supply line 30; both supply lines are bendable, the pressure medium supply line 30 consisting of a high-pressure hose, since the pressure medium pressure within it is very high.
  • the pressure medium exits through the nozzles, here the nozzles 5a1 and 5a2, and forms pressure medium jets 5b1, 5b2, 5b3, and the nozzle head 3 swings back and forth very quickly in the pendulum plane PE, ie perpendicular to the plane of the drawing, this becomes bundles of rays formed by the individual, very narrow jets 5b1, 5b2, 5b3 and possibly further individual jets are enveloped by a kind of "curtain" of air which flows as a cooling medium through the annular directional nozzle 201.
  • the axis of the directional nozzle 201 is directed radially inward at the angle of incidence ⁇ of approximately 20 °, with the result that the angle of the beam 5b2 at the angle of incidence ⁇ relative to the central jet 5b1 is at least fictitiously hit or cut at the interface 200b2 by the directional jet 5b .
  • the Directional jet 5g of the negative pressure is deflected around the jet 5b2, which flows out of the nozzle 5a2 at a very high speed of, for example, 2000 km / h.
  • the directional jet 5g does not directly meet the jet 5b of the pressure medium; rather, the directional jet 5g and the pressure medium jet 5b are pivoted essentially parallel to one another during the oscillating oscillating movement of the nozzle head 3 by the pivoting or pendulum angle ⁇ from one position to the other dot-dash position, in which the directional jet with the reference symbol 5g 'and the pressure medium jet are provided with the reference symbol 5b '.
  • the removal or clearing effect in the impact area 209 is therefore many times greater than if only the pressure medium jets 5b, 5b 'would oscillate there and back.
  • the heating without interruption of cooling forms a coating that serves as a heat shield for many types of rock, especially in the area of impact, which shows the effect of the high-energy jets 5b, 5b 'in the case of longer operation compared to the beginning of clearing when the rock is not yet very strong is heated, reduced.
  • the invention can be used particularly advantageously when introducing straight or also arcuate or even circular slots in granite and the like hard rock.
  • the device according to the invention can cut slots up to one meter deep in granite, so that granite blocks can be broken out much more quickly and easily than by introducing boreholes and blasting with explosives in a predetermined cuboid shape.
  • the media used in the invention such as water for the high pressure medium and Air for the cooling medium, cheap and the lance-shaped device offers the possibility of clearing even deep slots in the granite with a narrow design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Forests & Forestry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polarising Elements (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Vehicle Body Suspensions (AREA)
  • Paper (AREA)
  • Laser Surgery Devices (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Recrystallisation Techniques (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Claims (19)

  1. Procédé pour l'enlèvement de matière, tel que découpage de roche, minerai, charbon, béton ou d'autres matériaux durs, à l'aide d'un fluide sous pression qui sous forme de jets fins sous haute pression (5b) ordonnés les uns par rapport aux autres selon un angle (β), sont dirigés sur la matière (15) de telle façon qu'une saignée (16) se forme par enlèvement de particules dans la matière (15)
    caractérisé par le fait que la matière (15) dans la zône d'impact (209 à 211) des jets (5b) du fluide sous pression est refroidie par au minimum un faisceau (5g) d'un fluide refroidissant et que le (ou les) faisceau(x) (5g) soi(en)t orienté(s) par rapport à au moins un jet (5b) du fluide sous pression, de telle façon que le (les) faisceau(x) et le jet (5b) du fluide sous pression se rencontre(nt) dans la zône d'impact (205 à 211).
  2. Procédé selon la revendication 1,
    caractérisé par le fait que la concentration en jets 5b (nombre de buses par unité de surface) du faisceau constitué par les jets fins (5b) est plus importante dans la partie centrale (3a1) que sur les bords.
  3. Procédé selon les revendications 1 ou 2,
    caractérisé par le fait que le/les faisceau(x) (5g) sont dirigés sur les jets fins du fluide sous pression, de telle façon que les points d'intersection, respectivement la ligne d'intersection (200b2) entre le faisceau (5g) avec au minimum le jet (5b) le plus à l'extérieur du fluide sous pression, soient situés avant la zône d'impact (210,211) sur la matériau (15).
  4. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé par le fait que un faisceau de fluide de refroidissement (5g) en forme d'anneau soit dirigé sur le faisceau constitué par les différents jets (5b).
  5. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé par le fait que le fluide est utilisé à une pression minimum de 1500 bars.
  6. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé par le fait que de l'eau froide est utilisée comme fluide sous pression.
  7. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé par le fait que l'air est utilisé comme fluide de refroidissement.
  8. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé par le fait qu' un gaz liquide froid peut être utilisé comme fluide de refroidissement.
  9. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé par le fait qu' on rajoute des particules abrasives au fluide sous pression.
  10. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé par le fait que le fluide sous pression ou/et le fluide de refroidissement est/sont soumis à des pulsations.
  11. Procédé selon l'une des revendications 1 à 10 dans lequel le fluide sous pression est amené par une conduite (30) à une tête porte-buses (3) et éjecté à travers au moins deux buses (5a) de la tête sous forme de jets minces (5b) sur la matière à travailler (15),
    caractérisé par le fait que le dispositif comporte une conduite (31) pour fluide de refroidissement, relié à une tête directionnelle (31a) munie au minimum d'une buse (201), la buse étant positionnée par rapport à au moins un jet (5b) du fluide sous pression, de telle façon que le faisceau (5g) du fluide de refroidissement se recoupe avec le jet (5b) dans la zône d'impact (209-211).
  12. Procédé selon la revendication 11
    caractérisé par le fait que l'angle d'orientation (β) de la plupart des buses (5) se situe entre 10° et 25°.
  13. Procédé selon les revendications 11 ou 12
    caractérisé par le fait que la conduite (30) du fluide sous pression est plutôt flexible.
  14. Procédé selon les revendications 11 à 13,
    caractérisé par le fait que la conduite (30) du fluide sous pression est guidée dans le plan d'oscillation PE par un bâti (6) qui est relié à la conduite rigide (31) du fluide de refroidissement.
  15. Procédé selon les revendications 11 à 14
    caractérisé par le fait que la tête porte-buses (3) est munie de canaux reliant les buses (5a) d'une part avec la chambre (7) dans laquelle arrive le fluide sous pression par la conduite (30) et d'autre part avec la face avant (3a) de la tête porte-buses (3).
  16. Procédé selon la revendication 15
    caractérisé par le fait que les buses (5a) sont constituées par des boulons (100) percés tel un tube que l'on peut visser dans un filtage intérieur faisant canal intérieur (50) dans la tête porte-buses (3).
  17. Procédé selon la revendication 16
    caractérisé par le fait que dans le boulon (100) est placé un insert en forme cylindrique percé (102) en saphir et/ou en carbure de tungstène dont le diamètre de passage (102a) est le plus petit de tous les diamètres des parties concernées par le passage du fluide sous pression.
  18. Procédé selon les revendications 16 ou 17
    caractérisé par le fait qu' après le boulon (100) est placé une pièce rapportée (101) dont la coupe fait apparaître un cône dont le diamètre va en diminuant, dans le sens D de l'écoulement du fluide sous pression.
  19. Procédé selon la revendication 18
    caractérisé par le fait que l'entrée de la pièce rapportée (101) est fermée par un disque perforé (103) et dont la somme de toutes les perforations (103a) est plus grande que la section du passage (102a) de l'insert (102).
EP90200978A 1989-05-16 1990-04-09 Méthode à deux jets Expired - Lifetime EP0398405B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3915933 1989-05-16
DE3915933A DE3915933C1 (fr) 1989-05-16 1989-05-16

Publications (2)

Publication Number Publication Date
EP0398405A1 EP0398405A1 (fr) 1990-11-22
EP0398405B1 true EP0398405B1 (fr) 1992-12-16

Family

ID=6380752

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90905515A Pending EP0456768A1 (fr) 1989-05-16 1990-04-09 Procede a double jet
EP90200978A Expired - Lifetime EP0398405B1 (fr) 1989-05-16 1990-04-09 Méthode à deux jets

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP90905515A Pending EP0456768A1 (fr) 1989-05-16 1990-04-09 Procede a double jet

Country Status (13)

Country Link
US (1) US5255959A (fr)
EP (2) EP0456768A1 (fr)
AT (1) ATE83421T1 (fr)
AU (1) AU632325B2 (fr)
BR (1) BR9006867A (fr)
CA (1) CA2042046C (fr)
DE (2) DE3915933C1 (fr)
DK (1) DK0398405T3 (fr)
ES (1) ES2037518T3 (fr)
GR (1) GR3006737T3 (fr)
TR (1) TR25327A (fr)
WO (1) WO1990014200A1 (fr)
ZA (1) ZA903356B (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128422C2 (de) * 1991-08-27 1994-04-21 Schneider Geb Loegel Vorrichtung und Verwendung der Vorrichtung zum Abtragen von Material
DE4306333C2 (de) * 1993-02-24 1996-01-18 I B I S Gmbh Vorrichtung zum Herstellen von standfesten Schlitzen im Erdreich und Lockergestein
US5498068A (en) * 1995-02-14 1996-03-12 Ingersoll-Rand Company Non-entry mining method equipment
DE19917611A1 (de) * 1999-04-19 2000-10-26 Abb Alstom Power Ch Ag Verfahren zur Herstellung von Kühlluftbohrungen und Schlitzen an mit Heissgas beaufschlagten Teilen thermischer Turbomaschinen
CA2271371C (fr) * 1999-05-10 2002-01-01 Mac & Mac Hydrodemolition Inc. Methode et appareil d'hydrodemolition a multiple jets
US6435620B2 (en) 1999-07-27 2002-08-20 Mac & Mac Hydrodemolition, Inc. Multiple jet hydrodemolition apparatus and method
US6273512B1 (en) 1999-09-09 2001-08-14 Robert C. Rajewski Hydrovac excavating blast wand
CN1225380C (zh) * 2000-09-01 2005-11-02 富士胶片株式会社 感光材料卷的包装方法和装置以及流体加热和供应装置
US8814274B2 (en) * 2004-10-27 2014-08-26 Gerard J. MacNeil Machine and method for deconstructing a vertical wall
US8191972B2 (en) * 2004-10-27 2012-06-05 Mac & Mac Hydrodemolition Inc. Hydrodemolition machine for inclined surfaces
US8485279B2 (en) * 2009-04-08 2013-07-16 Pdti Holdings, Llc Impactor excavation system having a drill bit discharging in a cross-over pattern
US8827373B2 (en) * 2010-02-03 2014-09-09 Mac & Mac Hydrodemolition Inc. Top-down hydro-demolition system with rigid support frame

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548463A (en) * 1947-12-13 1951-04-10 Standard Oil Dev Co Thermal shock drilling bit
DE842333C (de) * 1951-01-04 1952-06-26 Rolf Huebner Verfahren und Vorrichtung zum thermischen Bohren
GB718735A (en) * 1952-04-30 1954-11-17 Victor Donald Grant Liquid-discharge nozzles
US2985050A (en) * 1958-10-13 1961-05-23 North American Aviation Inc Liquid cutting of hard materials
FR1257707A (fr) * 1960-02-22 1961-04-07 Appareil pulvérisateur perfectionné
US3526162A (en) * 1968-05-21 1970-09-01 Rogers Freels & Associates Inc Process and apparatus for cutting of non-metallic materials
US3704914A (en) * 1970-11-27 1972-12-05 Fletcher Co H E Method of fluid jet cutting for materials including rock and compositions containing rock aggregates
US4073351A (en) * 1976-06-10 1978-02-14 Pei, Inc. Burners for flame jet drill
SE7607337L (sv) * 1976-06-28 1977-12-29 Atlas Copco Ab Sett och anordning for brytning av ett fast material
US4074858A (en) * 1976-11-01 1978-02-21 Institute Of Gas Technology High pressure pulsed water jet apparatus and process
US4226475A (en) * 1978-04-19 1980-10-07 Frosch Robert A Underground mineral extraction
DE3315124A1 (de) * 1983-04-27 1984-10-31 Fried. Krupp Gmbh, 4300 Essen Vorrichtung zur erzeugung pulsierend einwirkender mechanischer und hydraulischer energie zum zerkleinern von gestein
EP0146252B1 (fr) * 1983-11-08 1989-04-19 Flow Industries Inc. Montage d'une buse de coupe à jet de fluide, à haute pression et grande vitesse, sans fuite
DE3516572A1 (de) * 1984-03-16 1986-11-20 Charles Lichtenberg Loegel jun. Verbesserte vorrichtung zum schneiden von gestein und weitere verwendungen derselben
DE3410981C1 (de) * 1984-03-16 1985-05-09 Charles Ingwiller Loegel jun. Verfahren und Vorrichtung zum Schneiden von Gestein
US4708214A (en) * 1985-02-06 1987-11-24 The United States Of America As Represented By The Secretary Of The Interior Rotatable end deflector for abrasive water jet drill
US4795217A (en) * 1986-03-07 1989-01-03 Hydro-Ergon Corporation System for removing material with a high velocity jet of working fluid
DE3739825A1 (de) * 1987-08-11 1989-02-23 Ciwj Co Int Water Jet Vorrichtung zum schneiden, bohren oder dergleichen bearbeiten von gestein, erzen, beton oder dergleichen
JP2668696B2 (ja) * 1988-03-04 1997-10-27 大成建設株式会社 アスベスト含有物の剥離・飛散防止方法

Also Published As

Publication number Publication date
US5255959A (en) 1993-10-26
DE3915933C1 (fr) 1990-11-29
ATE83421T1 (de) 1993-01-15
DK0398405T3 (da) 1993-02-01
CA2042046A1 (fr) 1990-11-17
AU632325B2 (en) 1992-12-24
ZA903356B (en) 1991-01-30
CA2042046C (fr) 1994-10-18
EP0398405A1 (fr) 1990-11-22
AU5403890A (en) 1990-12-18
TR25327A (tr) 1993-01-01
ES2037518T3 (es) 1993-06-16
DE59000596D1 (de) 1993-01-28
WO1990014200A1 (fr) 1990-11-29
BR9006867A (pt) 1991-08-06
GR3006737T3 (fr) 1993-06-30
EP0456768A1 (fr) 1991-11-21

Similar Documents

Publication Publication Date Title
DE60028949T2 (de) Verfahren und vorrichtung zur flüssigkeitsstrahl- formung
EP0398405B1 (fr) Méthode à deux jets
EP0582191B1 (fr) Dispositif et procédé pour le traitement de surfaces sensibles, notamment de sculptures
DE1949315A1 (de) Verfahren und Vorrichtung zum Kuehlen eines Schneidwerkzeugs durch Nebel
DE4341869A1 (de) Entfernung von harten Überzügen mit Ultrahochdruck-Flachstrahlen
DE3739825C2 (fr)
DE3410981C1 (de) Verfahren und Vorrichtung zum Schneiden von Gestein
DE4341870B4 (de) Ultrahochdruck-Flachstrahl-Düse
DE3844344C2 (fr)
DE102007018338B4 (de) Vorrichtung und Verfahren zum Partikelstrahlen mittels gefrorener Gaspartikel
DE602004009212T2 (de) Fluidstrahlbohrwerkzeug
DE20300883U1 (de) Vorrichtung zur Erzeugung eines Gas-Flüssigkeits-Gemisches im Bereich von Schrämwerkzeugen
DE4128422C2 (de) Vorrichtung und Verwendung der Vorrichtung zum Abtragen von Material
DE69001442T2 (de) Zerstaeubungsvorrichtung und verfahren fuer zahnaerztliche handstuecke.
DE3443289C1 (de) Verfahren zur Verminderung der Zuendung von Grubengas beim Arbeiten einer Teilschnitt-Streckenvortiebsmaschine
DE3334031C2 (fr)
DE19529589C1 (de) Sicherheitsvorrichtung für Hochdruckflüssigkeitsstrahlanlagen
WO1989012530A1 (fr) Ensemble d'ajutage a grand debit
DE102008008701A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Wasser-Abrasivstrahls
DE4431085C1 (de) Verfahren und Schneidkopf zum Abrasiv-Wasserstrahlschneiden
AT511284A1 (de) Einrichtung zum kühlen von meisseln
DE3433745C2 (de) Vorrichtung zum Bearbeiten von Material mit einem Flüssigkeitsstrahl hoher Geschwindigkeit
EP1098728B1 (fr) Procede et dispositif pour guider et soutenir une fine tole ou un mince ruban de metal
DE2641251A1 (de) Verfahren und vorrichtung zum brechen von hartem material, wie z.b. gestein
DE19622241A1 (de) Verfahren und Vorrichtung zum Schneiden oder flächigen Abtragen von festen Materialien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 90905515.4/0456768 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 24.03.92.

17Q First examination report despatched

Effective date: 19920518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19921216

REF Corresponds to:

Ref document number: 83421

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: VERBUNDEN MIT 90905515.4/0456768 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 24.03.92.

ITF It: translation for a ep patent filed

Owner name: STUDIO FERRARIO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921215

REF Corresponds to:

Ref document number: 59000596

Country of ref document: DE

Date of ref document: 19930128

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3006737

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2037518

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19930915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940321

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940331

Year of fee payment: 5

Ref country code: DK

Payment date: 19940331

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19940428

Year of fee payment: 5

EPTA Lu: last paid annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

EAL Se: european patent in force in sweden

Ref document number: 90200978.6

27O Opposition rejected

Effective date: 19940923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950409

Ref country code: GB

Effective date: 19950409

Ref country code: DK

Effective date: 19950409

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951010

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951012

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951013

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19951016

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951025

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951102

Year of fee payment: 6

Ref country code: BE

Payment date: 19951102

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950409

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3006737

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960410

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960430

Ref country code: CH

Effective date: 19960430

Ref country code: BE

Effective date: 19960430

BERE Be: lapsed

Owner name: LOEGEL CHARLES

Effective date: 19960430

Owner name: DURR ISABELLE

Effective date: 19960430

Owner name: REICHERT SYLVIE

Effective date: 19960430

Owner name: LOEGEL PATRICK

Effective date: 19960430

Owner name: SCHNEIDER FRANCINE

Effective date: 19960430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970101

EUG Se: european patent has lapsed

Ref document number: 90200978.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050409