WO1993016023A1 - 1,1,1,2,2,5,5,5-octafluoropentane and production thereof - Google Patents

1,1,1,2,2,5,5,5-octafluoropentane and production thereof Download PDF

Info

Publication number
WO1993016023A1
WO1993016023A1 PCT/JP1993/000116 JP9300116W WO9316023A1 WO 1993016023 A1 WO1993016023 A1 WO 1993016023A1 JP 9300116 W JP9300116 W JP 9300116W WO 9316023 A1 WO9316023 A1 WO 9316023A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
hydrogenation
catalyst
production method
fluoropentanes
Prior art date
Application number
PCT/JP1993/000116
Other languages
English (en)
French (fr)
Inventor
Hirokazu Aoyama
Eiji Seki
Satoshi Koyama
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO1993016023A1 publication Critical patent/WO1993016023A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine

Definitions

  • the present invention relates to CFCs used as refrigerants, blowing agents, and mk solvents.
  • 1,1,1,2,2,5,5,5-tatufloropentane is a new parent compound and its production method is, of course, unknown.
  • 1,1,1,2,2,5,5,5-tactafluoropentane described above, 1,1,1 Since 2,2,3,4,5,5,5-decafluoropentane is obtained as the main product, the yield is low and it is not industrially suitable.
  • An object of the present invention is to provide a novel compound 1,1,1,2,2,5,5,5-octafluoropentane and to provide an efficient production method thereof. Is what you do.
  • the present invention provides a novel 1,1,1,2,2,5,5,5-year-old ketafluoropentane.
  • the present invention also includes a step of reacting decafluoropentene-2 with hydrogen in the presence of a hydrogenation catalyst, for example, a platinum catalyst, to carry out hydrogenation, so that 1,1,1,2,2,5,5,5 —
  • a hydrogenation catalyst for example, a platinum catalyst
  • decafluoropentene-12 is used as a raw material, and the hydrogenation reaction is carried out in the presence of a platinum catalyst at a temperature of from 0 to 500 and further from 30 to 450 ° C.
  • a platinum catalyst at a temperature of from 0 to 500 and further from 30 to 450 ° C.
  • the reaction can be carried out in either a liquid phase or a gas phase.
  • a gas phase reaction method a fixed bed type gas phase reaction, a fluidized bed type gas phase reaction, or the like can be used.
  • the platinum catalyst is preferably used by being supported on at least one carrier selected from activated carbon, alumina, silica gel, titanium oxide (titania), zirconia and the like.
  • the particle size of the carrier has little effect on the reaction, but is preferably 0.1 to 100 fractions.
  • As the loading concentration a wide range of 0.01 to 10% by weight, and even 0.05 to 10% by weight can be used, but 0.5 to 5% by weight is usually recommended.
  • the reaction temperature is usually 0 to 500. C, and even 30-500. C, preferably 200-450.
  • the ratio of hydrogen to feed can vary greatly.
  • hydrogenation is usually carried out using at least a stoichiometric amount of hydrogen.
  • Substantially more than the stoichiometric amount, for example 4 moles or more, of hydrogen can be used, based on the total moles of starting material.
  • the pressure of the reaction is not particularly limited, and the reaction can be performed under increased pressure, reduced pressure, or normal pressure. However, under reduced pressure, the apparatus becomes complicated. Therefore, it is preferable to perform the reaction under increased pressure or normal pressure.
  • the contact time is usually 0.1 to 300 seconds, particularly 0.5 to 30 seconds, and more preferably 1 to 30 seconds.
  • 1,1,1,1,2,2,5,5,5-hydrogenation catalysts used in the production of kutafluoropentane include silver, copper, gold, tellurium, zinc, chromium, molybdenum and A hydrogenation catalyst obtained by adding at least one metal selected from the group consisting of thallium to platinum can be used.
  • the platinum it is important to add other metals to the platinum. It is generally said that the characteristics of the constituent elements of an alloy catalyst appear depending on the alloy, and the amount of the added metal component is 0.01 to 500% by weight based on platinum, particularly 0.1 to 300% by weight. % By weight is preferable in that the properties of platinum are utilized.
  • the concentration of the alloy supported on various carriers a wide range of 0.01 to 10%, and even 0.05 to 5% can be used, but 0.5 to 2% supported products are generally recommended.
  • the carrier of the solvent may have the same particle size as that described above.
  • the proportion of hydrogen used may be at least stoichiometric as described above.
  • the reaction method, reaction pressure, reaction temperature (particularly 50 to 450 ° C), and contact time may be the same as those described above.
  • X is a fluorine atom or a hydrogen atom
  • Y is a fluorine atom or a hydrogen atom
  • the form in which this method is implemented can take various forms.
  • a hydrogenation step of fluoropentenes it is possible to adopt a form in which a noble metal catalyst is provided in a reaction tube, and hydrogen and a raw material are circulated therein at a predetermined ⁇ J ⁇ in a predetermined * and molar ratio.
  • a reaction tube may be filled with a predetermined amount of activated carbon, and a predetermined amount of the raw material may be circulated at a predetermined temperature.
  • the obtained 1,1,1,1,2,2,5,5,5,5-octafluoropentane was fed while the fluoropentenes were supplied to the hydrogenation step and the subsequent dehydrofluorination step. Can be continuously separated from the reaction mixture, and the remaining fluoropentenes and fluorene pentanes can be returned to the hydrogenation step and the hydrofluoric acid step again.
  • the fluoropentenes are supplied to the hydrogenation step and the subsequent dehydrofluoric acid step, and the reaction mixture containing the obtained fluoro ⁇ -pentenes and fluoropentane is again supplied to the hydrogenation step and the dehydrofluoric acid step to be circulated.
  • the circulation can be continued until the reaction mixture is virtually 1,1,1,2,2,5,5,5—5-year-old ktafluoropentane.
  • the hydrogenation of fluoropentenes can be carried out in either the liquid phase or the gas phase, but the gas phase reaction is preferred in view of the easiness of the reaction and the reduction of by-products.
  • At least one noble metal catalyst selected from the group consisting of platinum, palladium, rhodium, ruthenium and the like is preferable, and platinum and palladium are particularly preferable because of their high activity.
  • those noble metal catalysts which are supported on a carrier are usually used, and the carrier and the concentration thereof may be the same as those described above.
  • the reaction temperature for hydrogenation is 0 to 500. C, more preferably a range of 30 to 450, and particularly preferably 50 to 250.
  • the ratio of hydrogen, the reaction method, and the contact time may be the same as described above.
  • the hydrofluoric acid removal of fluoro ⁇ -pentanes in the above can be performed by using an alkali in a liquid phase, but is preferably performed in a gas phase in consideration of a continuous reaction.
  • a method of the gas phase reaction a method such as a fixed bed type gas phase reaction or a fluidized bed type gas phase reaction can be employed.
  • the type of the activated carbon is not particularly limited. Granulated activated carbon, Shirasagi C (manufactured by Takeda Pharmaceutical Co., Ltd.) and coconut shell activated carbon, Yashikoru (manufactured by Taihei Chemical Industry Co., Ltd.) are preferably used.
  • the reaction temperature of hydrofluoric acid is 20 (TC to 600 ° C is better, and more preferably 250 to 450. If the temperature is lower than this, the reaction hardly proceeds, Higher reactions tend to produce large amounts of decomposition by-products.
  • the contact time with activated carbon can vary greatly, but is usually 0.1-200 seconds, more preferably 0.5-120 seconds.
  • Embodiments of this method include the following 1) to 3).
  • nonafluoro ⁇ -pentene 1-2 which is useful as an intermediate in the process of obtaining the target substance or as a monomer of a polymer compound, that is, 1,1,1,2,4,4,5,5,5-
  • a method for producing nonafluoropentene-12 there is a method of reacting pentafluoropentene and tetrafluoroethylene in the presence of antimony pentafluoride as shown in the following formula [Izvestia 'Academy Nauk' S.S.S., Selja'Kimiceskaya (Izv, Akad. Nauk SSSR, Ser. Khim.) 1591, 1982].
  • CFeCF CFH ten CF2 ⁇ CF2 ⁇ CF3CF2CH —CFCFs
  • nonafluoropentene-12 and in particular, hydrogenated easily available decafluoropentene-12 using a noble metal catalyst.
  • Nonafluoropentane by Dehydrofluorination from 1,1,1,2,3,4,5,5,5-Decafluoropentane As a result of the investigation, when 1,1,1,2,3,4,4,5,5,5-decafluoropentane was brought into contact with activated carbon in a gaseous state, dehydrofluorination occurred, and nonafluoro was produced in high yield. It was found that ⁇ -pentene-12 was obtained.
  • a method for producing nonafluoro-2 in which 1,1,1,2,3,4,4,5,5,5-decafluoropentane is dehydrofluorinated by contact with activated carbon in a gaseous state, is also provided herein. Is what you do. In this case, it is important to bring 1,1,1,2,3,4,4,5,5,5-decafluoropentane into contact with activated carbon in a gaseous state.
  • it takes the form of a gas phase reaction in which a reaction tube is filled with activated carbon and the raw material is allowed to flow in a gaseous state at a predetermined temperature.
  • the method of the gas phase reaction may be the same as described above.
  • the type of activated carbon may be the same as described above.
  • the reaction is particularly in the range of 200 to 600, preferably 250 to 450. If the reaction is lower than this, the reaction hardly proceeds, and if the reaction a is higher than this, a large amount of by-products due to decomposition tends to be generated.
  • Contact time can vary widely, but is typically 0.1-200 seconds, preferably 0.5
  • a novel 1,1,1,2,2,5,5 is a useful compound that can be used as a substitute for CFC compounds and HCFC compounds used as refrigerants, blowing agents, detergents, and solvents. It provides I 5-octafluoropentane, which can be produced economically and industrially with high selectivity and high yield.
  • Alumina in a stainless steel SUS316 reaction tube with an inner diameter of 2 ⁇ and a length of 40 ⁇ was filled with 17 cc of a white medium supported at a concentration of 0.5%, and heated to 300 ° C. in an electric furnace while flowing nitrogen gas. After reaching a predetermined temperature, decafluoropentene 12 was vaporized in advance into a gaseous state, and 8.1 CC "min. Of hydrogen and 82 min. Of hydrogen were introduced. The reaction temperature was kept at 300.
  • the resulting gas was washed with water, dried over calcium chloride, and analyzed by gas chromatography.
  • the conversion of the raw material was 99%, and the selectivity of 1,1,1,2,2,5,5,5 one-year-old kutafluoropentane was 90%.
  • the generated gas was collected in a cold trap at -70 ° C, and the product was separated by a 20-stage rectification column to obtain a substance having a boiling point of 50 to 55.
  • NMR nuclear magnetic resonance spectrum
  • Example 2 The same reactor as in Example 1 was charged with 18 cc of a platinum catalyst supported on activated carbon at a concentration of 0.5%, and heated to 350 ° C in an electric furnace while flowing nitrogen gas, and after reaching a predetermined temperature, The decafluo pentene-12 was vaporized and gasified in advance, and 10.5 ccZ of hydrogen and UOccZ of hydrogen were introduced. The reaction temperature was kept at 350 ° C.
  • Example 3 In a similar preparation method as in Example 3, white medium carried in a concentration of 0.5% on activated carbon, to prepare an alloy catalyst carrying silver 0.1% concentration using AgNO 3, in the same manner as in Example 3 The reaction was performed. The results are shown in Table 1.
  • Example 3 Using the same preparation method as in Example 3, an alloy catalyst was prepared in which tellurium was supported at 0.1% concentration using TeCl 2 on a white ⁇ [vehicle] supported on activated carbon at a concentration of 0.5%, and the same as in Example 3. The reaction was carried out according to the following method. The results are shown in Table 1.
  • Example 7 In a similar preparation method as in Example 3, the supported platinum catalyst at a concentration of 0.5% on activated carbon, to prepare an alloy catalyst carrying gold 0.1% concentration using AuCl s, in the same manner as in Example 3 The reaction was performed. The results are shown in Table 1.
  • Example 7 In a similar preparation method as in Example 3, the supported platinum catalyst at a concentration of 0.5% on activated carbon, to prepare an alloy catalyst carrying gold 0.1% concentration using AuCl s, in the same manner as in Example 3 The reaction was performed. The results are shown in Table 1. Example 7
  • Example 3 In the same preparation method as in Example 3, an alloy catalyst was prepared in which zinc was supported at a concentration of 2% using ZnCl 2 in a platinum catalyst supported at a concentration of 0.5% on activated carbon.
  • a 20 cc SUS316 reaction tube having a length of 40 ⁇ was filled with 20 cc and heated to 400 in an electric furnace while flowing nitrogen gas.
  • the supported platinum catalyst at a concentration of 0.5% on activated carbon, Cr (N0 8) 8 ⁇ 9 ⁇ 2 0 to 2% concentration of chromium supported in alloy catalyst was prepared using, This solvent was filled into a SUS316 reaction tube having an inner diameter of 2 ⁇ and a length of 40 cm by 16 cc, and heated to 400 in an electric furnace while flowing nitrogen gas.
  • an alloy catalyst was prepared in which thallium was supported at a concentration of 2% using T1C1 S on a platinum catalyst supported at a concentration of 0.5% on activated carbon, and this alloy catalyst was 2 cm in inner diameter.
  • a 40 cm long SUS316 reaction tube was filled with 13 cc and heated to 350 in an electric furnace while flowing nitrogen gas.
  • Example 1 when a reaction was carried out in the same manner using a hydrogenation catalyst supported on activated carbon at a concentration of 0.5% as a hydrogenation catalyst, the results shown in Table 1 were obtained. Obtained o Table 1
  • a 20 cm inner diameter, 40 cm long SU S316S tube was filled with S20 cc of palladium supported on alumina at a concentration of 0.596, and the mixture was heated to 11 TC in an electric furnace while flowing nitrogen gas. After reaching the predetermined temperature, 40CcZ what you deca full O b pentene one 2 previously vaporizing by gaseous fraction, was introduced 7J element at a rate of 120 cc / min. the reaction temperature was kept 100 e C .
  • a reaction tube made of SUS316 with an inner diameter of 2 ⁇ and a length of 40 ⁇ is filled with 20cc of granular activated carbon (Shirasagi C, manufactured by Takeda Pharmaceutical Co., Ltd.) and heated to 380 in a WM furnace while flowing nitrogen gas. did. After heating at this temperature for 2 hours, nitrogen was passed through at a flow rate of 40 cc Zmin instead of 1,1,1,2,3,4,4,5,5,5-decafluoropentane obtained by the reaction. .
  • the dehydrofluoric acid reaction was similarly carried out by a gas phase reaction with activated carbon. Time went. The amount of collected organic matter was 170 g, and when analyzed by gas chromatography, 1, 1, 1, 4, 4,
  • Ketafluoropentane has not changed at all, the conversion of the above mixture is 100%, 1,1,1,4,4,5,5,5-year-old
  • the selectivity of Kuta Fluoropentene-2 was 94% (1, 1, 1,, 4, 5, 5, 5 1-year-old Kuta Fluoropentane was 5%).
  • a SUS 316 reaction tube is connected to a dehydrofluoric acid reactor (B tube) filled with 20 cc of Yashigara activated carbon (Yashikoru, manufactured by Taihei Chemical Industry Co., Ltd.). Was set to 100 and the temperature of the tube was set to 385 ° C.
  • the supply of perfluoropentene-2 was stopped, and instead, the obtained reaction product was passed from the tank (I) at a supply rate of 20 g / hr together with hydrogen at a flow rate of lOOcc / min to the pipe A.
  • the reaction mixture gas from the outlet of the B pipe was condensed, and the reaction product was stored in the tank (H).
  • the reaction product obtained from the tank (I) was transferred to the tank (I) while the supply of the raw material from the tank (I) to the reactor was continued.
  • the reaction product obtained was returned to the tank (I) through the tank (H).
  • the supply of raw materials from the tank (I) to the reactor was continued at 20 g Zhr, and at the same time, perfluoropentene-2 was supplied to the reactor at 10 g Zhr. I started.
  • a hydrogenation reactor in which a SUS316 reaction tube with an inner diameter of 2 cm and a length of 40 cm is filled with 20 cc of a palladium catalyst supported at 0.5% concentration on alumina, and a SUS316 reaction tube with an inner diameter of 2 cm and a length of 40 ⁇
  • a dehydrofluoric acid reactor ⁇ pipe
  • 20 cc of coconut husk activated carbon Yashikol, manufactured by Taihei Chemical Industry Co., Ltd.
  • reaction product was passed from the tank (I) to the A tube together with hydrogen at a flow rate of lOOccZrain at a supply of 20 gZhr.
  • reaction mixture gas from the outlet of the B pipe was condensed, and the reaction product was stored in the tank (H).
  • reaction product obtained from the tank (H) is charged into the tank (I) while the supply of the raw material from the tank (I) to the reactor is continued, and is obtained thereafter.
  • the reaction product was returned to tank (I) through tank (H).
  • reaction was continued in this state, and the outlet gas from tube B was analyzed by gas chromatography, and 1,1,1,4,4,4,5,5,5-octafluorene was added.
  • the reaction was continued until the selectivity of 9 16023 became 95%.
  • the target 1,1,1,, 4,5,5,5- is separated by rectification, and the 1,1,1,, 4,5,5 boiling point of 45.5-46.5 is obtained. 160 g of 5,5-octafluoropentane were obtained.
  • a reaction tube made of SUS316 having an inner diameter of 2 ⁇ and a length of 40 ⁇ was filled with 20 cc of granular activated carbon (manufactured by Shirasagi Takeda Pharmaceutical Co., Ltd.) and heated to 400 in a mm furnace while flowing nitrogen gas. After heating at this temperature for 2 hours, nitrogen was changed to 1,1,1,2,3,4,4,5,5,5-decafluoropentane and allowed to flow at 200 cc / min S *. The gas at the outlet of the reaction tube was washed with water, dried over calcium chloride, and analyzed by gas chromatography. The results are shown in Table 2.
  • Example 15 The same reaction tube as in Example 15 was filled with 20 cc of coconut shell activated carbon (Yashikol, manufactured by Taihei Chemical Industry Co., Ltd.), and the reaction was carried out in the same manner as in Example 15 except that the reaction temperature was 380. The results are shown in Table 2.
  • Pentin (* 2) 9 0.5 96. 9 * 1: 1, 1, 1, 1, 1,, 4, 5, 5, 5-octafluoropentene 2 * 2: 1, 1, 2, 4, 4, 5, 5, 5-nonafluoropentene Mixture of 1 2 (bodies and mixtures) and 1,1,1,3,4,4,5,5,5-nonafluoropentene-2 (bodies and mixtures)
  • the reaction based on the method of the present invention provides an economically and industrially desirable 1, 1, 1, 2, 2, 5, 5, 5— You can get Kuta Fluoropentane (1, 1, 1, 4, 4, 5, 5, 5, 1 Kuta Fluoro Pentane).
  • Nonafluoropentene-2 can be obtained from 1,1,1,2,3,4,4,5,5,5-decafluorene by industrial and economical methods in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタン及びその製造 方法
産 m±の利用分野
本発明は、 冷媒、 発泡剤、 mk溶剤として使用されている CFCや
HCFCの代替化合物となり得る有用な化合物である、 1, 1, 1, 2, 2, 5, 5, 5—ォクタフルォロペンタンおよびその ¾ii方法に関するも のである。
従来の技術
¾έ¾、 パーフルォロォレフインの水素添加反応としては、 へキサフルォ 口プロペンなどの水素添加反応が知られている 〔ケミストリー ·ォブ,ォ 一ガニック ·フルオリン ·カンパウンズ(Chemistry of Organic Flu orine Compounds),第 5章、 170頁、 ジョン ·ワイリー ·アンド ·サンズ (JOH WILEY& S0NS)〕 。 しかし、 デカフルォロペンテン一 2の水素化反 応については全く知られていない。
また、 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタンは新 親化合物であるので、 その製造方法は当然のことながら、 未知である。 また、 上記の有用な 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロ ペンタンを得ようとして、 パラジウム触媒を用いて水素化反応を行った場 合は、 1, 1, 1, 2, 2, 3, 4, 5, 5, 5—デカフルォロペンタン が主生成物として得られるので、 収率が低く、 工業的には適していない。 発明の目的
本発明の目的は、 新規化合物である 1, 1, 1, 2, 2, 5, 5, 5- ォクタフルォロペンタンを提拱し、 その効率的な製造方法を提供しょうと するものである。
発明の構成
即ち、 本発明は、 新規な 1, 1, 1, 2, 2, 5, 5, 5—才クタフル ォロペンタンを提供するものである。
また、 本発明は、 水素化触媒、 例えば白金触媒の存在下、 デカフルォロ ペンテン— 2を水素と反応させ、 水素化を行う工程を含む、 1, 1, 1, 2, 2, 5, 5, 5—ォクタフルォロペンタンの製造方法を^!するもの である。
この発明の製造方法では、 デカフルォロペンテン一 2を原料として使用 し、 白金触媒の存在下、 0〜500で、 更には 30〜450 °Cの温度で水素化反 応を行う。 これにより、 90%以上の高収率で目的とする 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタンを得ることができる。
この発明では、 白 媒を用いて、 水素化を行うことが重要であり、 パ ラジウム触媒を用いて同様の反応を行った場合は、 1, 1, 1, 2, 2, 3, 4, 5, 5, 5—デカフルォロペンタンを多量に生成し、 目的である 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタンの収率が低下 する。
反応は、 液相又は気相のいずれでも行うことができ、 特に気相反応方式 としては、 固定床型気相反応、 流動床型気相反応などの方式をとることが できる。
白金触媒は、 活性炭、 アルミナ、 シリカゲル、 酸化チタン (チタニア) 、 ジルコニァなどから選ばれた少なくとも 1種の担体に担持して使用するの が好ましい。
また、 担体の粒径は、 反応にほとんど影響を及ぼさないが、 好ましくは 0.1〜100画である。 担持濃度としては、 0. 01〜10重量%、 更には 0. 05〜10重量 と幅広いも のが使用可能であるが、 通常 0. 5〜 5重量 担持品が推奨される。
反応温度は、 通常 0〜500。C、 更には 30〜500。C、 好ましくは 200〜450 でである。
デカフルォロペンテン一 2の水素化反応において、 水素と原料の割合は 大幅に変動させ得る。 しかしながら、 通常、 少なくとも化学量論量の水素 を使用して水素化を行う。 出発物質の全モルに対して、 化学量論量よりか なり多い量、 例えば 4モルまたはそれ以上の水素を使用し得る。
反応の圧力は特に限定されず、 加圧下、 減圧下、 常圧下で可能であるが、 減圧下では装置が複雑になるから、 加圧下、 常圧下で反応を行う方が好ま しい。
気相反応の場合、 接触時間は、 通常 0. 1〜300秒、 特には 0. 5〜30秒、 更には 1〜30秒である。
上記の 1 , 1 , 1, 2, 2, 5, 5 , 5—才クタフルォロペンタンの製 造に際して使用する水素化触媒として、 銀、 銅、 金、 テルル、 亜鉛、 クロ ム、 モリブデン及びタリウムからなる群より選ばれた少なくとも 1種の金 属を白金に添加してなる水素化触媒を用いることができる。
この場合、 白金に他の金属を添加することが重要である。 一般的に合金 触媒においては、 合金 に応じてその成分元素の特性が出現するといわ れており、 添加金属成分の量は白金に対して 0. 01〜500重量%、 特には 0 . 1〜300重量%が白金の特性を活かす意味で好適である。
合金の各種担体への担持濃度としては、 0. 01〜10%、 更には 0. 05〜5 % と幅広いものが使用可能であるが、 通常 0. 5〜2 %の担持品が推奨される。 また、 合^ 媒の担体、 その粒径は上記したものと同様であってよレ、。 使用する水素の割合も上記したと同様に少なくとも化学量論量としてよい。 また、 反応方式、 反応圧力、 反応温度 (特には 50〜450 °C) 、 接触時間 も上記したものと同様であってよい。
'本発明者は、 上記の 1, 1, 1, 2 , 2, 5, 5, 5 -才クタフルォロ ペンタンの製造方法において、 1, 1 , 1, 2, 3, 4 , 4 , 5 , 5 , 5 —デカフルオロー 2—ペンテンを出発原料とし、 貴金属触媒による水素添 加とこれに引き続く活性炭による気相脱フッ酸を繰り返し行うと、 収率よ く目的生成物が得られること、 また、 反応の中間体として得られるデカフ ルォロペンタン、 ノナフルォロペンタンが脱フッ酸する反応条件では目的 生成物は実質的に脱フッ酸しないことを見出し、 さらにこの事実より、 連 続的な製造が可能であることを見出した。
即ち、
""^式 (1) :
CF8CX=CYCF2CF8
(但し、 この一般式中、 Xはフッ素原子又は水素原子、 Yはフッ素原子 又は水素原子である。 )
で表されるフルォロペンテン類を触媒の存在下で水素添加し、 これによつ て、
一般式 (2) :
CF8CHXCHYCF2CFS
(但し、 この一般式中、 X及び Yは前記したものと同じである。 ) で表されるフルォロペンタン類を得た後、 このフルォ口ペンタン類を脱フ ッ酸させて前記一般式 (1) で表される新たなフルォロペンテン類を得るェ 程を繰り返すことを経て、 1, 1 , 1, 2, 2 , 5 , 5, 5—ォクタフル ォロペンタンを得る。
この製造方法の一例を反応式で示すと以下のようである。 水素添加 脱フッ酸
8 CI1: CFCr 2 CF 8 - CFsCFHCFHCFaCFs
水素添加
CF8CH=CFCF2CF8 +CF8CF =CHCF2CF8
脱フッ酸
CF8 CH2CFHCF2CFs +CF8CFHCH2CF2CF3
水素添加
Figure imgf000007_0001
この方法を実施する場合の形態は、 様々な形を取り得る。 フルォロペン テン類の水素添加工程では、 反応管に貴金属触媒を所 塡し、 そこに 所定の ¾J¾にて水素と原料を所定の *¾びモル比にて流通させるといった 形態をとり得る。 フルォロペンタン類の脱フッ酸工程では、 反応管に所定 量の活性炭を充填し、 そこに所定の温度にて原料を所定量流通させるとい つた形態をとり得る。
上記において、 フルォロペンテン類を水素添加工程とこれに続く脱フッ 酸工程へ^的に供給しながら、 得られた 1 , 1 , 1 , 2, 2 , 5, 5 , 5—ォクタフルォロペンタンを反応混合物から連続的に分離し、 残りのフ ルォロペンテン類及びフルォ口ペンタン類を再度前記水素添加工程及び脱 フッ酸工程へ 的に戻すことができる。
また、 フルォロペンテン類を水素添加工程とこれに続く脱フッ酸工程へ 供給し、 得られたフルォ πペンテン類及びフルォロペンタン類を含む反応 混合物を再度前記水素添加工程及び脱フッ酸工程へ供給して循環させ、 実 質的に反応混合物が 1 , 1, 1, 2 , 2 , 5, 5 , 5—才クタフルォロぺ ンタンとなるまで循環を続けることができる。
次に、 上記の水素添加工程及び脱フッ酸工程を詳述する。 (:水素添加)
フルォロペンテン類の水素添加は液相、 気相いずれでも可能であるが、 応の容易さ、 および副生成物が少なくなることを考慮すれば、 気相 反応の方が好ましい。
水素添加触媒としては、 白金、 パラジウム、 ロジウム、 ルテニウムなど からなる群より選ばれた少なくとも 1種の貴金属触媒が好ましく、 また活 性の高さから白金、 パラジウムが特に好ましい。 また、 これら貴金属触媒 は担体に担持されたものが通常用いられ、 担体及びその担持濃度としては、 上記したものと同様であってよい。
また、 水素添加の反応温度としては、 0〜500。C、 更には 30〜450での 範囲が選ばれ、 特に好ましくは、 50〜250でである。 その他、 水素の割合、 反応方式、 接触時間も上記したと同様であってよい。
(脱フッ酸)
上記におけるフルォ πペンタン類の脱フッ酸は、 液相中でアルカリを用 いても可能であるが、 連続反応を考慮すれば、 気相で行う方が好ましい。 ここで、 フルォロベンタン類をガス状憨にて活性炭と接触せしめること が重要である。 すなわち、 反応管に活性炭を充填し、 所定の温度にてペン タン類をガス状態にて流通させるといつた気相反応の形態をとる。 気相反 応の方式としては、 固定床型気相反応、 流動床型気相反応などの方式をと ることができる。
活性炭の種類については特に限定されない。 粒状活性炭である白鷺 C ( 武田薬品 (株) 製) やヤシガラ活性炭であるヤシコール (太平化学産業 ( 株) 製) などが好適に用いられる。
脱フッ酸の反応温度は、 20(TC〜600 °Cがよく、 さらに好ましくは、 250 〜450での範囲である。 これより低いと、 反応はほとんど進行しないし、 これより高い反応 では、 分解による副生成物が多量に生成し易い。 活性炭との接触時間については、 大幅に変動させうるが、 通常 0.1-200 秒、 さらに好ましくは 0.5〜: 120秒である。
この方法を実施する態様としては、 次の 1)〜3) がある。
1) 逐次、 水素添加と脱フッ酸を行い、 目的生成物を得る方法。 つまり、 出発原料のパーフルオロー 2—ペンテンを水素添加してデカフルォロペン タンを得た後、 これを脱フッ酸してノナフルオロー 2—ペンテンとし、 さ らにこれを水素添加してノナフルォロペンタンを得た後、 脱フッ酸を行レ、、 ォクタフルオロー 2—ペンテンを得る。 これを水素添加し、 目的物の 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタンを得る ¾ ^応の 方法。
2) 7J素添加用反応器、 引き続く脱フッ酸用反応器、 合計 2つの反応器 を用い、 原料であるパ一フルオロー 2—ペンテンを^された 2つの反応 器に水素と共に流通させる。 脱フッ酸用反応器の出口から得られるフルォ 口ペンテン類、 フルォロペンタン類の混合物からフ 酸を除去したのち、 再度同一の された反応器に水素と共に流通させ、 実質的に反応生成物 が 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタンのみになる までこの循環を続けるといった方法。
3) 原料であるパーフルオロー 2—ペンテンを一定の割合で洪給しなが ら、 2) と同様に行い、 2) において循環させている反応生成物の 、 または全部を抜き出し、 目的物である 1, 1, 1, 2, 2, 5, 5, 5— ォクタフルォ πペンタンを精留などにより分離し、 残ったその他のフルォ 口ペンタン類、 フルォロペンテン類を再度循環させるといった連^ K応方 特に、 2) 及び 3) の方法は、 目的物である 1, 1, 1, 2, 2, 5, 5, 5—ォクタフルォロペンタンが、 他のフルォロペンタン類が活性炭に よって脱フッ酸する条件下では実質的にほとんど脱フッ酸を起こさない、 という重要な知見により可能となったものである。
なお、 この目的物を得る過程での中間体として、 或いは高分子化合物の モノマーなどとして有用なノナフルォ πペンテン一 2、 即ち、 1, 1, 1, 2, 4, 4, 5, 5, 5—ノナフルォロペンテン一 2の製造法としては、 次式のように、 ペンタフルォロペンテンとテトラフルォロエチレンを 5フ ッ化アンチモンの存在下で反応させる方法がある 〔ィズべスチヤ 'ァカデ ミー ·ナウク 'エスエスエスアール、 セリャ 'キミチェスカャ ( Izv, A kad. Nauk SSSR, Ser. Khim. ) 1591頁、 1982年〕 。
CFeCF=CFH 十 CF2~CF2 ^ CF3CF2CH —CFCFs
しかしながら、 上記文献記載の方法は、 目的物 (収率 70%) のほかに炭 素数 7の副生成物が 30%も生成することや、 原科であるペンタフルォロブ 口ペンの入手が困難であることから、 工業的な製法とは言いがたい。
そこで、 本発明者は、 ノナフルォロペンテン一 2の経済的かつ工業的な 製造方法を鋭意検討し、 特に、 入手容易なデカフルォロペンテン一 2を貴 金属触媒を用いて水素添加することによって得られる 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロペンタンからの脱フッ化水素反応によ るノナフルォロペンテン一 2の製造法について検討した結果、 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロペンタンを気体状態で活性炭 と接触させると脱フッ化水素が起こり、 高収率でノナフルォ πペンテン一 2が得られることを見出した。
すなわち、 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロぺ ンタンを気体状態で活性炭と接触させて脱フッ化水素する、 ノナフルォロ ― 2の製造方法もここに提供するものである。 この場合、 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロぺ ンタンを気体状態で活性炭と接触させることが重要である。 たとえば、 反 応管に活性炭を充塡し、 所定の で原料を気体状態にて流通させるとい つた気相反応の形態をとる。 気相反応の方式は上記したものと同様であつ てよい。
活性炭の種類は上記したものと同様であつてよい。 反応 は特には 200 で〜 600て、 好ましくは 250〜450での範囲であり、 これより低いと反応 はほとんど進行しないし、 これより高い反応 a は分解による副生成物 が多量に生成し易い。
接触時間は、 大幅に変動させうるが、 通常 0.1-200秒、 好ましくは 0.5
〜: 120秒である。
原料である 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロぺ ンタンは、 ジャーナル ·ォブ ·フルオリン,ケミストリー (J. Fluorine. Chem.),28卷、 417頁、 1985年に記載の方法により、 パーフルォロペンテ ンー 2を得た後、 貴金属触媒を用いて二重結合に水素添加することにより 得られる。
産業上の利用可能性
本発明により、 冷媒、 発泡剤、 洗净剤、 溶剤として使用されている CF C化合物や H CFC化合物の代替品となり得る有用な化合物である新規な 1, 1, 1, 2, 2, 5, I 5—ォクタフルォロペンタンを提供し、 か つこれを選択率よく高収率に、 経済的かつ工業的に製造できる。
実施例
以下、 本発明を実施例について更に詳細に説明する。
実施例 1
内径 2ση、 長さ 40αηのステンレス鋼 SUS 3 1 6製反応管に、 アルミナ に 0.5%濃度で担持した白^ 媒 17ccを充填し、 窒素ガスを流しながら、 電気炉中で 300°Cに加熱した。 所定の温度に達した後、 デカフルォロペン テン一 2を予め気化させてガス状にしたものを 8.1CC "分、 水素を 82 分の割合で導入した。 反応温度は 300でを保った。
生成ガスを水洗し、 塩化カルシウムで乾燥後、 ガスクロマトグラフィに より分析した。 原料の転化率は 99%であり、 1, 1, 1, 2, 2, 5, 5, 5一才クタフルォロペンタンの選択率は 90%であった。
なお、 この生成物の同定は以下のようにして行った。
生成ガスを - 70°Cのコールドトラップに捕集し、 生成物を 20段の精留塔 により分離し、 沸点 50〜55での物質を得た。 これを核磁気共鳴スぺクトル (NMR) を用いて分析を行ったところ、 以下の結果が得られたので、 こ れから 1, 1, 1, 2, 2, 5, 5, 5—ォクタフルォロペンタンである と同定した。
蘭 R分析結果
18F -匪 R (基準: CFCls) : δ (ppm) = -68.2(3F, t, J=9Hz)、
-86.2(3F; s)、
Figure imgf000012_0001
!H-NMR: (5= 2.3(4H, m)。
実施例 2
実施例 1と同じ反応装置に、 活性炭に 0.5%濃度で担持した白金触媒 18 ccを充填し、 窒素ガスを流しながら、 電気炉中、 350°Cに加熱し、 所定の 温度に達した後、 デカフルォ口ペンテン一 2を予め気化させてガス状にし たものを 10.5ccZ分、 水素を UOccZ分の割合で導入した。 反応温度は 3 50°Cを保った。
生成ガスを水洗し、 塩化カルシウムで乾燥後、 ガスクロマトグラフィに より分析を行った。 原料の転化率は 99%であり、 1, 1, 1, 2, 2, 5, 5, 5ーォクタフルォロペンタンの選択率は 92%であった。
施例 3
活性炭に 0.5%濃度で担持された白^ «媒に、 活性炭に対して 0.1%の 濃度になる CuCl2 の水溶液を加え、 さらに のホルマリンを滴下して 50てにて 5時間熟成させた後に、 減圧下で水を留去し、 100でにて 24時間 乾燥した。
この触媒を、 内径 2ση、 長さ 40cmの S US 3 1 6製反応管に 17cc充填し、 窒素ガスを流しながら 炉にて 350でに加熱した。 所定の ί¾に達した 後、 窒素ガスの流入を止め、 予め気化させたデカフルォロペンテン— 2を 5.5ccZ分、 Ti素を 54.5ccZ分の割合で導入した。 反応 は 350でとし た。 生成ガスは水洗し、 塩化カルシウムで乾燥後、 ガスクロマトグラフィ により分析を行った。 結果を第 1表に示す。
実施例 4
実施例 3と同様の調製法で、 活性炭に 0.5%濃度で担持された白 媒 に、 AgN03 を用いて 0.1%濃度で銀を担持した合金触媒を調製し、 実施例 3と同様の方法で反応を行った。 結果を第 1表に示す。
実施例 5
実施例 3と同様の調製法で、 活性炭に 0.5%濃度で担持された白 ^[媒 に、 TeCl2 を用いて 0.1%濃度でテルルを担持した合金触媒を調製し、 実 施例 3と同様の方法で反応を行った。 結果を第 1表に示す。
実施例 6
実施例 3と同様の調製法で、 活性炭に 0.5%濃度で担持された白金触媒 に、 AuCls を用いて 0.1%濃度で金を担持した合金触媒を調製し、 実施例 3と同様の方法で反応を行った。 結果を第 1表に示す。 実施例 7
実施例 3と同様の調製法で、 活性炭に 0.5%濃度で担持された白^ 媒 に、 ZnCl2 を用いて 2%濃度で亜鉛を担持した合金触媒を調製し、 この合 金触媒を内径 2cni、 長さ 40σπの SUS 3 1 6製反応管に 20cc充填し、 窒素 ガスを流しながら、 電気炉にて 400でに加熱した。
所定の温度に達した後、 窒素ガスの流入を止め、 予め気化させたデカフ ルォロペンテン一 2を lOccZ分、 水素を lOOcc/分の割合で導入した。 反 応温度は 400てとした。 生成ガスは水洗し、 塩化カルシウムで乾燥後、 ガ スクロマトグラフィにより分析を行つた。 結果を第 1表に示す。
実施例 8
実施例 3と同様の調製法で、 活性炭に 0.5%濃度で担持された白金触媒 に、 Cr(N08)8 ·9Η20を用いて 2%濃度でクロムを担持した合金触媒を調製 し、 この合 ^媒を内径 2αη、 長さ 40cmの SUS 3 1 6¾^応管に 16cc充 塡し、 窒素ガスを流しながら、 電気炉にて 400でに加熱した。
所定の温度に達した後、 窒素ガスの流入を止め、 予め気化させたデカフ ルォロペンテン一 2を 12ccZ分、 水素を 78ccZ分の割合で導入した。 反応 温度は 400てとした。 生成ガスは水洗し、 塩化カルシウムで乾燥後、 ガス クロマトグラフィにより分析を行った。 結果を第 1表に示す。
実施例 9
実施例 3と同様の調製法で、 活性炭に 0.5%濃度で担持された白金触媒 に、 T1C1S を用いて 2%濃度でタリウムを担持した合金触媒を調製し、 こ の合金触媒を内径 2cm、 長さ 40cmの SUS 3 1 6製反応管に 13cc充塡し、 窒素ガスを流しながら、 電気炉にて 350でに加熱した。
所定の温度に達した後、 窒素ガスの流入を止め、 予め気化させたデカフ ルォロペンテン— 2を 12ccZ分、 水素を 78ccZ分の割合で導入した。 反応 温度は 350でとした。 生成ガスは水洗し、 塩化カルシウムで乾燥後、 ガス クロマトグラフィにより分析を行った。 結果を第 1表に示す。
実施例 10
実施例 3と同様の調製法で、 活性炭に 0. 5%濃度で担持された白^媒 に、 (ΝΗ4) βΜοτ024 · 4Η20を用いて 2 %濃度でモリブデンを担持した合^ 媒を調製し、 この合^ 媒を内径 2 cm、 長さ 40αηの S U S 3 1 6 «応管 に 14. 5cc充填し、 窒素ガスを流しながら、 電気炉中で 350でに加熱した。 所定の温度に達した後、 窒素ガスの流入を止め、 予め気化させたデカフ ルォロペンテン一 2を 9. 5ccZ分、 水素を 95.5ccZ分の割合で導入した。 反応 i¾gは 350でとした。 生成ガスは水洗し、 塩化カルシウムで乾燥後、 ガスクロマトグラフィにより分析を行つた。 結果を第 1表に示す。
実施例 11
活性炭に 0. 5%濃度で担持された白 ^媒に、 活性炭に対して 1 %の濃 度になる AgN03 水溶液を加え、 さらにホルマリン を加えて 50°Cにて 5時間熟成した後、 減圧下で水を留去した。 分析によりこの触媒中の含水 率は、 54%であった。
このようにして得られた触媒を、 200ccの S U S 3 1 6製オートクレー ブに 2 g入れ、 窒素置換を行った後にデカフルォロペンテン一 2を 20 g導 入し、 攪拌しながら、 水素ガスを室温で 9 KgZcm2 で導入した。 7j素ガス が消費される毎に水素ガスを追加し、 水素がもはや消費されなくなるまで 反応を続けた。 反応終了後、 反応液をガスクロマトグラフィにより分析を 行った。 結果を第 1表に示す。
比較例 1 ―
実施例 1において、 水素化触媒として活性炭に 0. 5%濃度で担持された ノ、'ラジウム触媒を用いて同様に反応を行ったところ、 第 1表に示す結果が 得られた o 第 1表
Figure imgf000016_0001
実施例 12 (水素添加反応)
内径 2cm、 長さ 40cmの SU S 31 6¾S応管に、 アルミナに 0.596濃 度で担持されたパラジウム触S20ccを充塡し、 窒素ガスを流しながら、 電 気炉にて 11(TCに加熱し、 所定の温度に達した後、 デカフルォロペンテン 一 2を予め気化させてガス状にしたものを 40ccZ分、 7J素を 120cc/分の 割合で導入した。 反応温度は 100eCを保った。
生成ガスは、 水洗し、 塩化カルシウムで乾燥後、 ドライアイス/ァセト ンで冷却されたトラップに捕集した。 8時間反応後、 捕集された有機物の 量は 200gであり、 ガスクロマトグラフィによる分析を行ったところ、 デ カフルォロペンテン— 2の転化率は 100%であり、 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロペンタンの選択率は 99.5%であった。 (脱フッ酸反応)
内径 2αη、 長さ 40αηの SUS 3 1 6製反応管に、 粒状活性炭(白鷺 C、 武田薬品工業(株) 製) 20ccを充填し、 窒素ガスを流通させながら、 WM 炉にて 380でに加熱した。 この温度で 2時間加熱した後、 窒素を反応によ り得られた 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロペン タンに代え、 40ccZmin の流量で流通させた。
反応管出口ガスは、 水洗し、 塩化カルシウムで乾燥後、 ドライアイス/ ァセトンで冷却されたトラップに捕集した。 8時間反応後、 捕集された有 機物の量は 184gであった。 ガスクロマトグラフィにより分析を行ったと ころ、 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロペンタン の転化率は 99.8%であり、 目的のノナフルォ σペンテン一 2 {1, 1, 1 , 2, 2, 4, 5, 5, 5—ノナフルォロペンテン一 2 (Ε体、 Ζ体混合 物) と 1, 1, 1, 3, 4, 4, 5, 5, 5—ノナフルォロペンテン一 2 (Ε体、 Ζ体混合物) の混合物 } の選択率は 95%であり、 1, 1, 1, 4, 4, 5, 5, 5—才クタフルォロペンテン— 2が 5%副生していた。 得られたノナフルオロー 2—ペンテン (ォクタフルォロペンテン一 2を
5raol %含む) を原料として同様にして、 8時間水素添加反応を行ったと ころ、 捕集された有機物の量は 186gであり、 ガスクロマトグラフィによ り分析を行ったところ、 ノナフルォロペンテン一 2、 ォクタフルォロペン テン一 2の転化率はともに 100%であり、 1, 1, 1, 2, 4, 4, 5, 5, 5—ノナフルォロペンタンと 1, 1, 1, 3, 4, 4, 5, 5, 5 - ノナフルォロペンタンの混合物が選択率 84.5%、 1, 1, 1, , 4, 5 , 5, 5—ォクタフルォロペンタン (これは上述の 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタンと同じもの) が 5%の選択率で生成 していた。
得られた上記混合物 (1, 1, 1, 4, 4, 5, 5, 5—ォクタフルォ 口ペンタンを 5mol %含む) を原料として同様に活性炭にて気相反応によ り脱フッ酸反応を 8時間行った。 捕集された有機物の量は 170gであり、 ガスクロマトグラフィにより分析を行ったところ、 1, 1, 1, 4, 4,
5, 5, 5—才クタフルォロペンタンはまったく変化しておらず、 上記混 合物の転化率は 100%であり、 1, 1, 1, 4, 4, 5, 5, 5—才クタ フルォロペンテン— 2の選択率は 94% (1, 1, 1, , 4, 5, 5, 5 一才クタフルォロペンタンは 5%) であった。
得られたォクタフルォロペンテン— 2 (1, 1, 1, 4, 4, 5, 5,
5—ォクタフルォロペンタンを 5raol %含む) を原料として同様にして、 8時間水素添加反応を行ったところ、 捕集された有機物の量は 169gであ り、 ガスクロマトグラフィにより分析を行ったところ、 ォクタフルォロぺ ンテン一 2の転化率は 100%であり、 1, 1, 1, 4, 4, 5, 5, 5 - ォクタフルォロペンタンの選択率は 98%であった。 実施例 13
内径 2 αη、 長さ 40αηの S U S 3 1 6 ¾S応管に、 アルミナに 0.5%濃度 で担持されたパラジウム触 iK20ccを充塡した水素添加反応器 (A管〉 と、 内径 2 cm、 長さ 40cmの S U S 3 1 6製反応管に、 ヤシガラ活性炭(ヤシコ —ル、 太平化学産業(株) 製) ) 20ccを充塡した脱フッ酸反応器 (B管) とを接続し、 A管の ί¾度を 100でに、 Β管の温度を 385°Cに設定した。 予め気化させた原料であるデカフルォロペンテン一 2を 40ccZmiii と水 素 100cc/rain とを混合した後、 この混合物を A管に流通させた。 A管、 引き続いて B管を流通して得られる反応混合ガスを水洗してフッ酸を除い た後、 塩化カルシウムにて乾燥させ、 一 70での凝縮器で液ィ匕させ、 反応生 成物をタンク (I ) へ貯えた。 16時間反応を続けた時点で、 液化した反応 生成物の量は 364 gであつた。
ここで、 パーフルォロペンテン— 2の供給を止め、 代わりに、 得られた 反応生成物をタンク (I ) から 20g/hrの供給量で lOOcc/minの流量の 水素と共に A管に流通させた。 同様に、 B管の出口からの反応混合ガスを 凝縮させ、 反応生成物をタンク (H) へ貯えた。
2時間反応を続けた時点で、 タンク (I ) からの反応器への原料の供耠 を続けながら、 得られたタンク (I) の反応生成物をタンク (I )へ tt^ み、 以降得られる反応生成物はタンク (H) を通じてタンク (I ) へ 的に戻した。 この状態にて 8時間反応を続けた後、 タンク (I ) からの反 応器への原料の供給を 20 g Zhrで続けながら、 同時にパーフルォロペンテ ンー 2を 10 gZhr 反応器に供給し始めた。
さらに反応を 3時間続けた後、 タンク (E) の反応混合物の一部を 20g Zhrの割合で精留塔へ抜き出し、 目的物である 1, 1, 1 , , 4 , 5 , 5 , 5—才クタフルォロペンタンを分離した。 目的物以外の生成物はタン ク (Π)へ戻し、 タンク (I) を通じて反応器へ戻した。 このように反応 を続けて、 精留塔への抜き出しを開始してから 10時間で、 95gの 1, 1, 1, 4, 4, 5, 5, 5—ォクタフルォロペンタンを得ることができた。 実施例 14
内径 2cm、 長さ 40cmの SUS316製反応管に、 アルミナに 0.5 %濃度 で担持されたパラジウム触媒 20ccを充填した水素添加反応器 (A管) と、 内径 2cm、 長さ 40σηの SUS 316製反応管に、 ヤシガラ活性炭 (ヤシコ ール、 太平化学産業 (株) 製) ) 20ccを充填した脱フッ酸反応器 (Β管) とを接続し、 Α管の温度を 100°Cに、 B管の温度を 385でに設定した。
A管に、 予め気化させた原料であるデカフルォロペンテン一 2を 40ccZ min と水素 lOOcc/rain とを混合した後、 この混合物を流通させた。 A管、 弓 ίき続いて Β管を流通して得られる反応混合ガスを水洗してフッ酸を除レ、 た後、 塩化カルシウムにて乾燥させ、 —70Cの凝縮器で液化させ、 反応生 成物をタンク (I)へ貯えた。 8時間反応を続けた時点で、 液化した反応 生成物の量は 183 gであった。
ここで、 パ一フルォロペンテン一 2の供給を止め、 代わりに、 得られた 反応生成物をタンク (I)から 20gZhrの烘給量で lOOccZrainの流量の 水素と共に A管に流通させた。 同様に、 B管の出口からの反応混合ガスを 凝縮させ、 反応生成物をタンク (H)へ貯えた。
2時間反応を続けた時点で、 タンク ( I )からの反応器への原料の供絵 を続けながら、 得られたタンク (H) の反応生成物をタンク (I)へ仕込 み、 以後得られる反応生成物はタンク (H) を通じてタンク (I)へ 的に戻した。
この状態にて反応を続け、 B管からの出口ガスをガスクロマトグラフィ により分析し、 1, 1, 1, 4, 4, 5, 5, 5—ォクタフルォロペン夕 9 16023 ンの選択率が 95%となるまで反応を した。 精留により目的である 1, 1, 1, , 4, 5, 5, 5—才クタフルォロペンタンを分離したところ、 沸点45.5〜46.5での1, 1, 1, , 4, 5, 5, 5—ォクタフルォロぺ ンタンが 160 g得られた。
実施例 15
内径 2ση、 長さ 40αηの SUS 3 1 6製反応管に粒状活性炭(白鷺 武 田薬品工業(株) 製) 20ccを充填し、 窒素ガスを流通させながら mm炉中 で 400でに加熱した。 この温度で 2時間加熱した後、 窒素を 1 , 1, 1 , 2, 3, 4, 4, 5, 5, 5—デカフルォロペンタンにかえ、 200cc/min の S¾*で流通させた。 反応管出口ガスは、 水洗し、 塩化カルシウムで乾燥 後、 ガスクロマトグラフィにより分析を行った。 結果を第 2表に示す。 実施例 16
実施例 15と同様の反応管にヤシガラ活性炭(ヤシコール、 太平化学産業 (株) 製) 20ccを充填し、 反応温度を 380でとする以外は実施例 15と同様 に反応を行った。 結果を第 2表に示す。
第 2表 実施例 1 5 実施例 1 6 転化率 (% 99. 9 9 9. 7 選択率 ペンチン (* 1 ) 9. 5 8. 1
(%)
ペンチン (* 2) 9 0. 5 96. 9 * 1 : 1 , 1, 1, , 4, 5, 5, 5—ォクタフルォロペンチン一 2 * 2: 1, 1, 2, 4, 4, 5, 5, 5—ノナフルォロペンテン一 2 (Ε 体、 Ζ体混合物) と 1, 1, 1, 3, 4, 4, 5, 5, 5—ノナフ ルォロペンテン— 2 (Ε体、 Ζ体混合物) の混合物
上記した結果から、 本発明の方法に基いて反応させることによって、 高 反応率、 髙選択率で経済的かつ工業的に目的とする 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォロペンタン (1, 1, 1, 4, 4, 5, 5, 5 一才クタフルォロペンタン) を得ることができる。
また、 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロペン夕 ンから工業的かつ経済的な方法により髙収率でノナフルォロペンテン— 2 が得られる。

Claims

請求の範囲
1. 1, 1, 1, 2, 2, 5, 5, 5—才クタフルォ πペンタン。
2. 水素化触媒の存在下、 デカフルォロペンテン— 2を水素と反応させるェ 程を含む、 1, 1, 1, 2, 2, 5, 5, 5—ォクタフルォロペンタンの製 造方法。
3. 7J素化触媒が白 媒である、 請求の範囲の第 2項に記載の製造方法。
4. 水素化触媒として、 銀、 銅、 金、 テルル、 亜鉛、 クロム、 モリブデン及 びタリウムからなる群より選ばれた少なくとも 1種の金属を白金に添加して なる水素 媒を用いる、 請求の範囲の第 2項に記載の製造方法。
5. 添加金属成分の濃度が白金の濃度に対して 0.01から 500重量%である合 金触媒を使用する、 請求の範囲の第 4項に記載の製造方法。
6. 一般式 (1) :
CF8CX=CYCF2CF8
(但し、 この一般式中、 Xはフッ素原子又は水素原子、 Yはフッ素原子 又は水素原子である。 )
で表されるフルォロペンテン類を触媒の存在下で水素添加し、 これによつ て、
一般式 (2) :
CF8CHXCHYCF2CFs
(但し、 この一般式中、 X及び Yは前記したものと同じである。 ) で表されるフルォロペンタン類を得た後、 このフルォロペンタン類を脱フ ッ酸させて前記一般式 (1) で表される新たなフルォロペンテン類を得るェ 程を繰り返すことを経て、 1, 1, 1, 2, 2, 5, 5, 5—ォク夕フル ォロペンタンを得る、 請求の範囲の第 2項に記載の製造方法。
7. 一般式(1) のフルォロペンテン類が 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルオロー 2 —ペンテンである、 請求の範囲の第 7項に記載の 製造方法。
8 . 水素添加用の触媒が、 白金、 パラジウム、 ロジウム及びルテニウムから なる群より選ばれた少なくとも 1種である、 請求の範囲の第 6項又第 7項に 記載の製造方法。
9 . 一般式 (1) のフルォロペンテン類を水素添加工程とこれに続く脱フッ酸 工程へ纖的に供給しながら、 得られた 1 , 1 , 1 , 2, 2, 5 , 5 , 5 - ォクタフルォロペンタンを反応混合物から連続的に分雜し、 残りのフルォロ ペンテン類及びフルォロペンタン類を再度前記水素添加工程及び脱フッ酸ェ 程へ連続的に戻す、 請求の範囲の第 6項〜第 8項のいずれか 1項に記載の製 造方法。
10. 一般式 (1) のフルォロペンテン類を水素添加工程とこれに続く脱フッ酸 工程へ供給し、 得られたフルォロベンテン類及びフルォ aペンタン類を含む 混合物を再度前記水素添加工程及び脱フッ酸工程へ供給して循環させ、 実質 的に反応混合物が 1, 1, 1 , 2 , 2 , 5 , 5 , 5—才クタフルォロペン夕 ンとなるまで循環を続ける、 請求の範囲の第 6項〜第 8項のいずれか 1項に 記載の製造方法。
11. 活性炭、 アルミナ、 シリカゲル、 ジルコニァ又はチタニアからなる担体 に担持された水素化触媒を使用する、 請求の範囲の第 2項〜第 10項のいずれ か 1項に記載の製造方法。
12. 担体への触媒担持濃度が 0. 01〜: 10%である、 請求の範囲の第 11項に記載 の製造方法。
13. 水素添加を気相中で行う、 請求の範囲の第 2項〜第 12項のいずれか 1項 に記載の製造方法。
14. 反応温度を 0〜500 °Cとする、 請求の範囲の第 2項〜第 13項のいずれか 1項に記載の ®t方法。
15. 一般式 (2) のフルォロペンタン類の脱フッ酸を、 活性炭を触媒として気 相中で 200〜600 の温度範囲で行う、 請求の範囲の第 6項〜第 13項のいず れか 1項に言己載の製造方法。
16. デカフルォロペンテン— 2に対して少なくとも化学量論量の水素を使用 する、 請求の範囲の第 2項〜第 15項のいずれか 1項に記載の製造方法。
17. 1, 1, 1, 2, 3, 4, 4, 5, 5, 5—デカフルォロペンタンを気 体状態で活性炭と接触させて脱フッ化水素する、 ノナフルォロペンテン一 2 の製造方法。
18. 反応温度を 200〜600 eCとする、 請求の範囲の第 17項に記載の製造方法。
PCT/JP1993/000116 1992-02-06 1993-02-01 1,1,1,2,2,5,5,5-octafluoropentane and production thereof WO1993016023A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2108992 1992-02-06
JP4/21089 1992-02-06
JP4413792 1992-02-29
JP7922692 1992-02-29
JP4/79226 1992-02-29
JP4/44137 1992-02-29
JP8461692 1992-03-06
JP4/84616 1992-03-06

Publications (1)

Publication Number Publication Date
WO1993016023A1 true WO1993016023A1 (en) 1993-08-19

Family

ID=27457510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000116 WO1993016023A1 (en) 1992-02-06 1993-02-01 1,1,1,2,2,5,5,5-octafluoropentane and production thereof

Country Status (1)

Country Link
WO (1) WO1993016023A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051651A1 (fr) * 1997-05-16 1998-11-19 Nippon Zeon Co., Ltd. Hydrocarbures fluores, detergents, procede detergent, fluides a base de polymeres et procede de formation de films polymeres
JP2009513812A (ja) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 不飽和フルオロカーボンを含む発泡体を形成するための発泡剤
US7708903B2 (en) * 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
JP2013500861A (ja) * 2009-08-03 2013-01-10 ハネウェル・インターナショナル・インコーポレーテッド 水素化触媒
KR101350620B1 (ko) * 2005-11-01 2014-02-06 이 아이 듀폰 디 네모아 앤드 캄파니 플루오로올레핀을 포함하는 조성물 및 그의 용도
CN110627614A (zh) * 2019-09-24 2019-12-31 浙江三美化工股份有限公司 一种e-1,3,3,3-四氟丙烯的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346049B2 (ja) * 1984-03-06 1988-09-13 Asahi Glass Co Ltd
JPH01146831A (ja) * 1987-10-20 1989-06-08 Bayer Ag フツ素化c↓4〜c↓6炭化水素の製造方法
WO1992006941A1 (en) * 1990-10-11 1992-04-30 E.I. Du Pont De Nemours And Company Saturated linear polyfluorohydrocarbons, processes for their production, and their use in cleaning compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346049B2 (ja) * 1984-03-06 1988-09-13 Asahi Glass Co Ltd
JPH01146831A (ja) * 1987-10-20 1989-06-08 Bayer Ag フツ素化c↓4〜c↓6炭化水素の製造方法
WO1992006941A1 (en) * 1990-10-11 1992-04-30 E.I. Du Pont De Nemours And Company Saturated linear polyfluorohydrocarbons, processes for their production, and their use in cleaning compositions

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051651A1 (fr) * 1997-05-16 1998-11-19 Nippon Zeon Co., Ltd. Hydrocarbures fluores, detergents, procede detergent, fluides a base de polymeres et procede de formation de films polymeres
US6312759B1 (en) 1997-05-16 2001-11-06 Nippon Zeon Co., Ltd. Fluorinated hydrocarbons, detergents, deterging method, polymer-containing fluids, and method of forming polymer films
US8911640B2 (en) 2005-11-01 2014-12-16 E I Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US10329467B2 (en) 2005-11-01 2019-06-25 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US8012368B2 (en) 2005-11-01 2011-09-06 E. I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US8070976B2 (en) 2005-11-01 2011-12-06 E. I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US11124685B2 (en) 2005-11-01 2021-09-21 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
KR101350620B1 (ko) * 2005-11-01 2014-02-06 이 아이 듀폰 디 네모아 앤드 캄파니 플루오로올레핀을 포함하는 조성물 및 그의 용도
JP2009513812A (ja) * 2005-11-01 2009-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 不飽和フルオロカーボンを含む発泡体を形成するための発泡剤
US9410064B2 (en) 2005-11-01 2016-08-09 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US9540557B2 (en) 2005-11-01 2017-01-10 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US9890311B2 (en) 2005-11-01 2018-02-13 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US7708903B2 (en) * 2005-11-01 2010-05-04 E.I. Du Pont De Nemours And Company Compositions comprising fluoroolefins and uses thereof
US11046877B1 (en) 2005-11-01 2021-06-29 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US10563107B2 (en) 2005-11-01 2020-02-18 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
US11046876B2 (en) 2005-11-01 2021-06-29 The Chemours Company Fc, Llc Compositions comprising fluoroolefins and uses thereof
JP2013500861A (ja) * 2009-08-03 2013-01-10 ハネウェル・インターナショナル・インコーポレーテッド 水素化触媒
CN110627614A (zh) * 2019-09-24 2019-12-31 浙江三美化工股份有限公司 一种e-1,3,3,3-四氟丙烯的制备方法

Similar Documents

Publication Publication Date Title
JP3158440B2 (ja) 1,1,1,2,3−ペンタフルオロプロペンの製造方法及び1,1,1,2,3−ペンタフルオロプロパンの製造方法
US6060628A (en) Manufacturing method for 1,1,1,3,3-pentafluoropropane
JP5704264B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
GB2313118A (en) Synthesis of 1-chloro-3,3,3-trifluoropropene and 1,1,1,3,3-pentafluoropropane
CN1128016A (zh) 1,1,1,3,3-五氟丙烷的制备方法
WO2005037744A1 (en) Process for the preparation of 1,1,1,3,3-pentafluoropropane and 1,1,1,3,3,3-hexafluoropropane
JPH06505237A (ja) 水素および少なくとも5個の弗素置換基を含有しているハロゲン−置換されたプロパン類の製造方法
JP3328281B2 (ja) ハイドロフルオロカーボン類の製造方法
US6583328B1 (en) Method for the preparation of 1,1,1,3,3-pentafluoropropene and 1,1,1,3,3-pentafluoropropane
WO1993016023A1 (en) 1,1,1,2,2,5,5,5-octafluoropentane and production thereof
WO2009148191A1 (en) Process for producing fluorine-containing compound by rearrangement reaction
US5302765A (en) Catalytic process for producing CF3 CHClF
US5364991A (en) Preparation of 1,1,1,4,4,4-hexafluorobutane
EP0872468B1 (en) Method for producing 3,3-dichloro-1,1,1-trifluoroacetone
JP3134312B2 (ja) 1,1,1,2,2,4,4,5,5,5‐デカフルオロペンタンの製造方法及びその製造用中間体
EP0714874B1 (en) Process for the production of 1,1,1-trifluoroethane
EP1127865B1 (en) Process for producing 1,1,1-Trifluoroacetone
JP3794859B2 (ja) パーハロゲン化シクロペンタンの製造方法
JPS6144834A (ja) 2,2,2‐トリフロロエタノールおよび1,1,1,3,3,3‐ヘキサフロロイソプロピルアルコールの合成方法
US5421971A (en) Hydrochlorofluorocarbons and hydrofluorocarbons and methods for producing the same
KR100570802B1 (ko) 플루오로에탄의 제조 방법 및 제조된 플루오로에탄의 용도
US5602288A (en) Catalytic process for producing CF3 CH2 F
US5856594A (en) Process for the preparation of 1,1,2,2,3-pentafluoropropane
JPH0688919B2 (ja) 含水素フルオロクロロアルカンの製造方法
JP3489179B2 (ja) ハイドロフルオロカーボンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase