WO1993005271A1 - Vermessungsverfahren für seilkernbohrungen und vorrichtung zur durchführung - Google Patents

Vermessungsverfahren für seilkernbohrungen und vorrichtung zur durchführung Download PDF

Info

Publication number
WO1993005271A1
WO1993005271A1 PCT/EP1992/002043 EP9202043W WO9305271A1 WO 1993005271 A1 WO1993005271 A1 WO 1993005271A1 EP 9202043 W EP9202043 W EP 9202043W WO 9305271 A1 WO9305271 A1 WO 9305271A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
measuring
measurement
portable
transmission
Prior art date
Application number
PCT/EP1992/002043
Other languages
English (en)
French (fr)
Inventor
Udo Dickel
Helmut Palm
Clemens Hinz
Original Assignee
Ruhrkohle Aktiengesellschaft
Bergwerksverband Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrkohle Aktiengesellschaft, Bergwerksverband Gmbh filed Critical Ruhrkohle Aktiengesellschaft
Priority to EP92918511A priority Critical patent/EP0601030B1/de
Priority to US08/204,320 priority patent/US5560437A/en
Priority to DE59206874T priority patent/DE59206874D1/de
Publication of WO1993005271A1 publication Critical patent/WO1993005271A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing, or removing tools, packers or the like in the boreholes or wells
    • E21B23/08Introducing or running tools by fluid pressure, e.g. through-the-flow-line tool systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors
    • E21B25/02Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors the core receiver being insertable into, or removable from, the borehole without withdrawing the drilling pipe
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/26Storing data down-hole, e.g. in a memory or on a record carrier
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections

Definitions

  • the invention relates to a measurement method for cable core bores and an apparatus for carrying out the method.
  • a borehole measuring method and an associated device are known, with which in particular horizontal or deflected bores can be measured, the measuring probe on End of the drill pipe is attached and a measuring cable is provided between the drill pipe and a measuring car for days, which can be moved via a cable winch.
  • the measuring probe consists of a drill collar mechanically and electrically connected to the cable lug, to which a coupling rod connects, to which the measuring tools are connected.
  • the probe also includes a coupling housing for connection to the drill string and a protective housing for the measuring tools, which has a measuring opening.
  • the measuring probe is firmly connected to the drill string, so that the drill string must be removed before each measurement in order to remove the drill bit at the lower end of the drill string and to install the measuring probe there .
  • the invention is based on the object of a measurement method suitable for core drilling to propose, in which one can work with an interchangeable measuring probe without having to remove the drill pipe.
  • the invention is also based on the object of proposing a device for carrying out the method according to the invention.
  • Devices for carrying out the measurement method according to claims 1 to 5 show the features of device claims 7 to 10.
  • a modified device for carrying out the modified measurement method according to claim 6 is evident from the features of claim 11.
  • the measurement method according to the invention for cable core bores and the associated device are optimally suited for the geophysical measurement of strongly deflected bores.
  • Vermes ⁇ sungsssel based on autonomously functioning measurement probes, which are flushed into the linkage and de ⁇ ren front sensors poke out of the drill bit, the dismounting of the drill string before 'the measurement it is mixed avoided, so that the labor and Time spent on the Surveying work can be reduced significantly.
  • No cable connection is required during the measuring process itself, so that no complex side entrances to the linkage are required. Since the measuring probes are housed within the rod, there are no measuring probe losses.
  • the coil system accommodated in the inner tube head of the measuring probe and in the transmission probe enables wireless (inductive) communication from above with the microprocessor-controlled measuring probe.
  • the measuring cable of the transmission probe is connected to a laptop PC or portable personal computer provided for days in order to initialize the measuring probe before the start of the measuring process and to synchronize it with the laptop PC.
  • the measuring probe is able to in a fixed time interval, for. B. 1/10 second to record measurement data and write them into their large semiconductor memory of at least one MByte.
  • the transmission probe is removed from the borehole and the measuring cable is thus protected from damage.
  • the change in depth is preferably taken off simultaneously via a measuring wheel, which is attached to the rod for days, and is written into a data file by the laptop PC as a function of time.
  • the measuring probe with the core tube catcher is recovered, opened and read out from the laptop PC.
  • the time data information is assigned to the measurement data and a depth data file is created therefrom, which can be plotted on the spot on a printer.
  • the measurement can be interrupted at any time and the measuring probe can be checked by flushing in the transmission probe.
  • measurement data can also be read out directly from the measurement probe with the aid of the transmission probe and transferred to the laptop PC.
  • Flg. 1 shows a schematic illustration of a measurement method for cable core bores and a device for carrying out the method
  • FIG. 2 shows a schematic illustration of a wirelessly connected measuring and transmission probe unit
  • FIG. 3 shows a schematic illustration of a length measuring device
  • FIG. 6 shows a schematic representation of a circular probe suitable as a measuring probe and at the same time as a transmission probe.
  • FIG. 1 shows a measuring probe 1 according to the invention in the deflected part 43 of a borehole 12 and a co-operating transmission probe 2, which is accommodated in a drill rod 3, to illustrate the principle on which the measurement method according to the invention and the device for carrying out the method are based are located in borehole 12, 43.
  • the measuring probe 1 has already reached its measuring point in the area of a drill bit 5 by flushing in with the rinsing liquid.
  • the transmission probe 2 is still located in the straight part of the borehole 12 is - also by flushing in with the flushing liquid - entered into the drill pipe 3 until it has reached its working position immediately behind the measuring probe 1.
  • the transmission probe 2 is attached to a borehole measuring cable 4, which is braked by a measuring cable winch 13 when it is retracted and pulled when it is extended.
  • the measuring cable winch 13 is arranged in the schematic figure next to a drilling rig 14. In practice, it will be conveniently housed on the working platform of the derrick 14.
  • the downhole measuring cable 4 is connected to a measuring carriage 42, in which a laptop PC 7 is accommodated with a registration unit 41. a data processor 44, a data memory 45, a printer 15 and a battery 28 as energy supply.
  • Measuring probe 1 and transmission probe 2 are wirelessly connected to one another in the working position via a soft magnetic core 21 and two induction coils 9 (measuring probe 1) and 10 (transmission probe 2), see FIG.
  • the energy-autonomous measuring probe 1 has a measuring sensor 47 which has a measuring opening ⁇ opening in the drill bit 5 has a metrologically free access to the base and to the walls of the borehole 12, 43 in order to obtain measurement data, for example about the nature of the mountains, the borehole wall and the borehole caliber 38.
  • the measuring probe 1 consists of a measuring probe housing 30 in which a measuring element 16, a power supply by means of a battery 17, a data processor 18, a data memory 19 and a serial data transmitter 20 are accommodated.
  • the measuring sensor housing 30 is preceded by the measuring sensor 47, which protrudes from the measuring opening of the drill bit 5 during measurement.
  • an inner tube head 11 is mounted, via a core barrel coupling 6 for locking of the measuring probe 1 with 'the drill string 3 and the drill bit can be connected.
  • the soft magnetic core 21 is anchored in the center on the side of the measuring probe housing 30 facing away from the drilling head 5.
  • the anchored magnet end 21a is surrounded by the windings of the induction coil 9, the connections 48, 49 of which lead to the serial data transmitter 20.
  • the soft magnetic core 21 projects beyond the inner tube head 11.
  • the free magnet end 21b is surrounded by a coil attachment 23, in which the induction coil 10 of the transmission probe 2 is accommodated.
  • the coil attachment 23 is attached to a cable head 22 in which the end of the downhole measuring cable 4 is fastened.
  • the two connections 50, 57 of the induction coil 10 are connected to the downhole measuring cable 4 via the cable head 22.
  • the transmission probe 2 In the illustrated assignment of the transmission probe 2 to the measuring probe 1, wireless data transmission from the laptop PC 7 to the measuring probe 1 is made possible in order to initialize it and at the same time to synchronize it with the laptop PC 7. Then is the measuring probe 1 is able to record measurement data and temporarily store it in the data memory 19.
  • the transmission probe 2 can now be pulled out of the borehole 12, 43 by means of the measuring cable winch 13.
  • the measurement data is recorded while the drill pipe 3 is being pulled out of the borehole 12, 43.
  • Differentiated pulses from an RS232 interface are provided as the data transmission format. With an RS232 interface, the transmitted and received data are usually exchanged on two separate lines. Here it is necessary to transmit the data separately over a line.
  • the borehole depth is determined at the same time as the measurement data recording.
  • the depth measuring device shown schematically in FIG. 3 serves for this purpose.
  • a gamma probe la can be used as the measuring probe 1, for example.
  • the probe housing 30 there are a sodium joid crystal 31 and an electron multiplier tube 32, to which a voltage converter 33 is assigned. housed, with the help of which the measurement data are determined. These are fed via a data processor 18 to the data memory 19, from which they can be read out via the serial data transmitter 20.
  • the battery 17 serves as the power supply.
  • radioactive measurements are also possible through the drill pipe 3
  • a measurement uninfluenced by the drill pipe 3 offers a significantly better resolution, especially when a radioactive radiator is used and the gamma probe la is used as a density probe becomes.
  • the sensors of the radioactive measurements are clearly manageable and the measurement data obtained are low. With 1 Mbyte of memory in the gamma probe la, measurements can be carried out continuously for more than 24 hours.
  • a dip probe lb can also serve as the measuring probe 1, as shown in FIG. 5.
  • a pendulum potentiometer 34 and analog electronics 35 are included as data measuring devices, which record the reflections of ultrasonic signals emanating from ultrasonic transducers 37 which are connected upstream of the probe housing 30.
  • a battery 17 as a power generator as well as a data processor 18, a data memory 19 and a serial data transmitter 20 are provided in the probe housing 30.
  • the dipmeter probe 1b serves to detect the position of layer boundaries and fissures.
  • Several fixed ultrasonic oscillators 37 measure the amplitude and the transit time without contact according to the echo principle.
  • the ultrasonic pulses are scattered at fissures and layer boundaries and are reflected in the attenuated intensity from the borehole wall.
  • the usual evaluation and display methods can also be applied to these amplitude values, as are also done for electrical dipmeters.
  • the sum of all ultrasound transit times represents the borehole caliber 38, the value of which is stored as a further value in addition to the amplitudes.
  • the orientation value is tapped by the electric pendulum potentiometer 34 and determines the position of the ultrasonic transducers 37 in relation to the roll axis of the dipometer probe 1b. This ensures a simple top-bottom orientation.
  • the dipmeter probe 1b can also be operated like a caliber probe by selecting a different probe program during initialization. In contrast to dipmeter operation, only the caliber values are then stored. The exact caliber values are important in connection with the density measurements of the gamma probe la (gamma-gamma).
  • volume measurements of the bore 12 can be carried out with the dipometer probe 1b.
  • the dipmeter probe 1b must be engaged when removing the linkage 3 and the depth with the depth measuring wheel 8 and the laptop PC 7 can be measured.
  • a high-resolution measuring method can be implemented with the dipmeter probe 1b, the smallest depth resolution of which is 1 mm.
  • a gyro probe 1c can finally be provided as measuring probe 1, which can be used alone or together with one of measuring probes 1a and 1 or 1b for recording the measurement data of interest.
  • a gyro module 39 and optionally an additional sensor 40 are integrated as a measuring device in the probe body 30 of the gyro probe 1c.
  • the additional sensor 40 also makes it possible to measure the position of the pipe screw connections of the drill pipe 3.
  • a battery 17 for power supply and a data processor 18, a data memory 19 and a serial data transmitter 20 are accommodated in the housing 30 of the gyro probe 1c.
  • induction coil of the measuring probe 10 induction coil of the transmission probe 11 inner tube head 12 borehole 13 measuring cable winch 14 derrick 15 printer 16 measuring element 17 battery 18 data processor 19 data memory 20 serial data transmitter 21 soft magnetic core 21a anchored magnetic end 21b free magnetic end 22 cable head 23 coil attachment

Abstract

Vermessungsverfahren für Seilkernbohrungen, bei dem eine autark funktionierende Meßsonde (1) in das Bohrgestänge (3) eingespült und in der Bohrkrone (5) über eine Kernrohrkupplung (6) arretiert wird, weiterhin eine Übertragungssonde (2) mit daran befestigtem und an einen Laptop PC (7) angeschlossenem Bohrlochmeßkabel (4) in das Bohrgestänge (3) eingespült wird, eine drahtlose Verbindung zwischen Meßsonde (1) und Übertragungssonde (2) hergestellt wird, die Meßsonde (1) über den Laptop PC (7) initialisiert und mit diesem synchronisiert wird, von der Meßsonde (1) Meßwerte aufgenommen und zeitabhängig zwischengespeichert werden, die Übertragungssonde (2) aus dem Bohrgestänge (3) herausgezogen wird und die Meßsonde (1) nach beendeter Messung mit Hilfe eines Kernrohrfängers geborgen und die Meßwerte über den Laptop PC (7) ausgelesen werden und Vorrichtung zur Durchführung des Verfahrens.

Description

Vermessungsverfahren für Seilkernbohrungen und Vorrichtung zur Durchführung
Die Erfindung betrifft ein Vermesssungsverfahren für Seilkernbohrungen sowie eine Vorrichtung zur Durchfüh¬ rung des Verfahrens.
Aus der Druckschrift "HORIZONTAL WELL LOGGING BY 'SYMPHOR' , Eighth European Formation Evaluation Sympo¬ sium" , in London, 1983, ist ein Bohrlochmeßverfahren und eine zugehörige Vorrichtung bekannt, mit dem insbesondere horizontale oder abgelenkte Bohrungen vermessen werden können, wobei die Meßsonde am Ende des Bohrgestänges angebracht ist und zwischen Bohrgestänge und einem Meßwagen über Tage ein Meßkabel vorgesehen ist, das über eine Kabelwinde bewegt werden kann. Die Meßsonde besteht aus einer mit dem Kabelschuh mecha¬ nisch und elektrisch verbundenen Schwerstange, an die eine KupplungsStange anschließt, denen die Meßwerkzeuge nachgeschaltet sind. Die Sonde umfaßt weiterhin ein Kupplungsgehäuse zum Anschluß an das Bohrgestänge und ein Schutzgehäuse für die Meßwerkzeuge, das eine Me߬ öffnung aufweist. Bei diesem Meßverfahren und der zuge¬ hörigen Meßvorrichtung ist es nachteilig, daß die Me߬ sonde fest mit dem Bohrgestänge verbunden ist, so daß das Bohrgestänge vor jeder Messung ausgebaut werden muß, um die Bohrkrone am unteren Ende des Bohrstrangs auszubauen und die Meßsonde dort einzubauen.
Es ist weiterhin aus "Efficiently log and perforate 60o+ wells with coiled tubing", WORLD OIL, July 1987, S. 32, 33, 35, bereits ein Verfahren und eine Vorrich¬ tung zur Vermessung bekannt, bei dem anstelle des Bohrgestänges ein spezieller aufrollbarer Schlauch ver¬ wendet wird, der mit einem Spezial-Schlauchhaspel zusammenwirkt und an dessen Ende eine Meßsonde an¬ schließbar ist, beispielsweise eine Gammasonde, eine Ortungssonde für Verrohrungs erbindungen bzw. eine Aku¬ stiksonde zur Güteprüfung der Ringspaltzementierung zwischen Verrohrung und Gebirge. Bei diesem Vermes¬ sungsverfahren und der Vorrichtung zu dessen Durchfüh¬ rung ist eine schnelle Untersuchung solcher Bohrungen möglich, bei denen der Bohrturm bereits abgebaut ist. Andererseits ist es nachteilig, daß ein spezieller Has¬ pel und ein spezielles Schlauchgestänge benötigt wer¬ den, um die erforderlichen Messungen durchzuführen.
Der Erfindung liegt die Aufgabe zugrunde, ein für Seilkernbohrungen geeignetes Vermessungsverfahren vorzuschlagen, bei dem mit einer auswechselbaren Me߬ sonde gearbeitet werden kann, ohne das Bohrgestänge ausbauen zu müssen. Weiterhin liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens vorzuschlagen.
Hinsichtlich des Vermessungsverfahrens wird diese Auf¬ gabe durch die Merkmale des Patentanspruchs 1 gelöst. Weiterbildungen des Vermessungsverfahrens sind in den Ansprüchen 2 bis 5 niedergelegt. Ein abgewandeltes Ver¬ messungsverfähren nach Anspruch 1 weisen die Merkmale von Anspruch 6 aus.
Vorrichtungen zur Durchführung des Vermessungsverfah¬ rens nach den Ansprüchen 1 bis 5 zeigen die Merkmale der Vorrichtungsansprüche 7 bis 10.
Eine abgewandelte Vorrichtung zur Durchführung des abgewandelten VermessungsVerfahrens nach Anspruch 6 geht aus den Merkmalen des Anspruchs 11 hervor.
Das erfindungsgemäße Vermessungsverfahren für Seil¬ kernbohrungen und die zugehörige Vorrichtung eignen sich optimal für die geophysikalische Vermessung von stark abgelenkten Bohrungen. Mit diesem neuen Vermes¬ sungskonzept, das auf autark funktionierenden Meßsonden basiert, die in das Gestänge eingespült werden und de¬ ren Sensoren vorn aus der Bohrkrone herausschauen, wird das Ausbauen des Bohrgestänges vor' dem Vermessen ver¬ mieden, so daß der Arbeits- und Zeitaufwand für die Vermessungsarbeiten ganz wesentlich verringert werden kann. Während des Meßvorganges selbst ist keine Kabelverbindung erforderlich, so daß auch keine aufwen¬ dige Seiteneingänge in das Gestänge benötigt werden. Da die Meßsonden innerhalb des Gestänges untergebracht sind, treten keine Meßsondenverluste auf.
Auch bei einem Meßsondenwechsel ist es nicht mehr erforderlich, das Gestänge komplett auszubauen, da jede Meßsonde, ähnlich wie ein volles Kernrohr, schnell mit Hilfe des Kernrohrfängers aus dem Bohrgestänge ausge¬ baut werden kann, woraufhin ebenso schnell eine neue Meßsonde durch Einspülen eingebracht werden kann. Bei Anwendung des erfindungsgemäßen Verfahrens treten Schwierigkeiten beim Durchführen der Vermessungsarbei¬ ten praktisch nicht mehr auf, weil überall dort, wo ge¬ bohrt worden ist, anschließend sofort gemessen werden kann, ohne das Bohrgestänge ziehen zu müssen. Der Aussendurchmesser der Meßsonden entspricht dem eines Seilkern'rohres und läßt sich wie dieses leicht über den Innenrohrkopf in die Kernrohrkupplung einrasten.
Das im Innenrohrkopf der Meßsonde und in der Übertra¬ gungssonde untergebrachte Spulensystem ermöglicht eine drahtlose (induktive) Kommunikation von über Tage aus mit der mikroprozessorgesteuerten Meßsonde. Zu diesem Zweck ist das Meßkabel der Übertragungssonde an einen über Tage vorgesehenen Laptop PC bzw. tragbaren Perso¬ nal-Computer angeschlossen, um die Meßsonde vor Beginn des Meßvorganges zu initialisieren und mit dem Laptop PC zu synchronisieren. Die Meßsonde ist in der Lage, in einem festen Zeitintervall, z. B. 1/10 Sekunde, Meßdaten zu erfassen und diese in ihren großen Halbleiterspeicher von minde¬ stens einem MByte einzuschreiben. Vor dem eigentlichen Meßvorgang, der mit dem Ausbau des Gestänges abläuft, wird die Ubertragungssonde aus dem Bohrloch entfernt und somit das Meßkabel vor Beschädigungen bewahrt.
Vorzugsweise wird bei jeder Messung gleichzeitig die Teufenveränderung über ein Meßrad, das über Tage am Ge¬ stänge angebracht ist, abgenommen und zeitabhängig von dem Laptop PC in ein Daten-File geschrieben. Nach der Beendigung der Messung wird die Meßsonde mit dem Kern¬ rohrfänger geborgen, geöffnet und vom Laptop PC ausgelesen. Gleichzeitig wird den Meßdaten die Zeitda¬ teninformation zugeordnet und daraus ein Teufe-Daten- File erstellt, der an Ort und Stelle auf einem Drucker ausgeplottet werden kann.
Falls notwendig kann die Messung jederzeit unterbrochen werden und durch Einspülen der Ubertragungssonde eine Kontrolle der Meßsonde erfolgen. Im begrenzten Umfange lassen sich auch Meßdaten mit Hilfe der Übertragungs- sonde unmittelbar aus der Meßsonde herauslesen und zum Laptop PC übertragen.
Die Erfindung wird nachfolgend beispielhaft anhand der Zeichnung näher beschrieben. Es zeigen: Flg. 1 eine schematische Darstellung eines Vermessungs¬ verfahrens für Seilkernbohrungen sowie eine Vor¬ richtung zur Durchführung des Verfahrens;
Fig. 2 eine schematische Darstellung einer drahtlos verbundenen Meß- und Übertragungssondeneinheit;
Fig. 3 eine schematische Darstellung einer Längenmeß- vorrichtung;
Fig. 4 eine schematische Darstellung einer Gammasonde;
Fig. 5 eine schematische Darstellung einer Dipmeter- sonde und
Fig. 6 eine schematische Darstellung einer als Meßsonde und zugleich als Ubertragungssonde geeigneten Kreis lsonde.
In Fig. 1 ist zur Verdeutlichung des dem erfindungsge¬ mäßen Vermessungsverfahren sowie der Vorrichtung zur Durchführung des Verfahrens zugrunde liegenden Prinzips eine erfindungsgemäße Meßsonde 1 im abgelenkten Teil 43 eines Bohrlochs 12 sowie eine damit zusammenwirkende Ubertragungssonde 2 abgebildet, die in einem Bohrge¬ stänge 3 untergebracht sind, das sich im Bohrloch 12, 43 befindet. Die Meßsonde 1 ist bereits durch Einspülen mit der Spülflüssigkeit an ihre Meßstelle im Bereich einer Bohrkrone 5 gelangt. Die Ubertragungssonde 2 be¬ findet sich noch im geraden Teil des Bohrlochs 12. Sie wird - ebenfalls durch Einspülen mit der Spülflüs¬ sigkeit - in das Bohrgestänge 3 eingetragen, bis sie ihre Arbeitsstellung unmittelbar hinter der Meßsonde 1 erreicht hat. Die Ubertragungssonde 2 ist an ein Bohr¬ lochmeßkabel 4 angeschlagen, das über eine Meßkabel¬ winde 13 beim Einfahren abgebremst und beim Ausfahren gezogen wird. Die Meßkabelwinde 13 ist in der schemati¬ schen Figur neben einem Bohrturm 14 angeordnet. In der Praxis wird sie zweckmäßig auf der Arbeitsbühne des Bohrturms 14 untergebracht sein. Das Bohrlochmeßkabel 4 ist im Beispiel an einen Meßwagen 42 angeschlossen, in dem ein Laptop PC 7 untergebracht ist mit einer Re¬ gistriereinheit 41,. einem Datenprozessor 44, einem Da¬ tenspeicher 45, einem Drucker 15 und einer Batterie 28 als Energieversorgung. Meßsonde 1 und Ubertragungssonde 2 sind in Arbeitsstellung über einen Weichmagnetkern 21 und zwei Induktionsspulen 9 (Meßsonde 1) sowie 10 (Ubertragungssonde 2) drahtlos miteinander verbunden, vergleiche Fig. 2. Die energetisch autarke Meßsonde 1 verfügt über einen Meßsensor 47, der über eine Meßöff¬ nung in der Bohrkrone 5 einen meßtechnisch freien Zu¬ gang zur Sohle und zu den Wänden des Bohrlochs 12, 43 hat, um Meßdaten, beispielsweise über die Ge- birgsbeschaffenheit, die Bohrlochwandung und das Bohr¬ lochkaliber 38, zu erlangen.
In Fig. 2 sind die Meßsonde 1 und die Ubertragungssonde 2, die zu einer Meß- und Übertragungseinheit verbunden sind, in einer DatenübermittlungsStellung abgebildet. Aus dieser Darstellung geht weiterhin der allgemeine Aufbau der Meßsonde 1 und der Ubertragungssonde 2 her¬ vor. Die Meßsonde 1 besteht aus einem Meßsondengehäuse 30, in dem ein Meßelement 16, eine Stromversorgung mit¬ tels Batterie 17, ein Datenprozessor 18, ein Datenspei¬ cher 19 sowie ein serieller Datenübermittler 20 unter¬ gebracht sind. Dem Meßsondengehäuse 30 ist der Meßsen¬ sor 47 vorgeschaltet, der beim Messen aus der Meßöff¬ nung der Bohrkrone 5 herausragt. An der Rückseite der Meßsonde 1 ist ein Innenrohrkopf 11 angebracht, der über eine Kernrohrkupplung 6 zur Arretierung der Me߬ sonde 1 mit ' dem Bohrgestänge 3 bzw. der Bohrkrone 5 verbindbar ist. Auf der dem Bohrkopf 5 abgewandten Seite des Meßsondengehäuses 30 ist mittig der Weich¬ magnetkern 21 verankert. Das verankerte Magnetende 21a ist von den Windungen der Induktionsspule 9 umgeben, deren Anschlüsse 48, 49 zum seriellen Datenübermittler 20 führen. Der Weichmagnetkern 21 überragt mit seinem freien Magnetende 21b den Innenrohrkopf 11. In Übertra¬ gungsstellung ist das freie Magnetende 21b von einem Spulenvorsatz 23 umgeben, in dem die Induktionsspule 10 der Ubertragungssonde 2 untergebracht ist. Der Spulen¬ vorsatz 23 ist an einem Kabelkopf 22 angebracht, in dem das Ende des Bohrlochmeßkabels 4 befestigt ist. Die beiden Anschlüsse 50, 57 der Induktionsspule 10 sind über den Kabelkopf 22 mit dem Bohrlochmeßkabel 4 ver¬ bunden. Bei der dargestellten Zuordnung von Ubertragungssonde 2 zur Meßsonde 1 ist eine drahtlose Datenübermittlung vom Laptop PC 7 zur Meßsonde 1 ermög¬ licht, um diese zu initialisieren und gleichzeitig mit dem Laptop PC 7 zu synchronisieren. Anschließend ist die Meßsonde 1 in der Lage, Meßdaten aufzunehmen und im Datenspeicher 19 zwischenzuspeichern. Die Übertragungs- sonde 2 kann nunmehr mittels der Meßkabelwinde 13 aus dem Bohrloch 12, 43 herausgezogen werden. Die Aufnahme der Meßdaten erfolgt während des Herausziehens des Bohrgestänges 3 aus dem Bohrloch 12, 43. Als Datenübertragungsformat sind differenzierte Impulse aus einer RS232-Schnittstelle vorgesehen. Üblicherweise werden bei einer RS232-Schnittstelle die gesendeten und empfangenen Daten auf zwei getrennten Leitungen ausge¬ tauscht. Hier ist es erforderlich, die Daten zeitlich getrennt über eine Leitung zu übermitteln.
Zeitgleich mit der Meßdatenaufnahme wird die Bohrloch¬ tiefe ermittelt. Dazu dient die in Fig. 3 schematisch dargestellte Teufenmeßvorrichtung. An der jeweils ober¬ sten Bohrstange des Meßgestänges 3 ist ein Teufen eßrad 8 seitlich angebracht, dessen Umdrehungen von einem Im¬ pulsgeber 24 und einer Meßleitung 27 einem Impulszähler 25 übermittelt werden, der über eine Übertragungslei- tung 29 an den Laptop PC 7 angeschlossen ist. Da der Laptop PC 7 und die Meßsonde 1 zeitsynchron arbeiten, lassen sich die jeweils gesammelten Daten zusammenfüh¬ ren, d.h. die Meßdaten werden der jeweiligen Bohrloch¬ tiefe zugeordnet, an der sie genommen worden sind.
Als Meßsonde 1 kann beispielsweise eine Gammasonde la verwendet werden, deren schematischer Aufbau aus Fig. 4 hervorgeht. Im Meßsondengehäuse 30 sind ein Natrium-Jo- did-Kristall 31 und eine Elektronenvervielfacherröhre 32, denen ein Spannungsumformer 33 zugeordnet ist, untergebracht, mit deren Hilfe die Meßdaten ermittelt werden. Diese werden über einen Datenprozessor 18 dem Datenspeicher 19 zugeführt, aus dem sie über den seri¬ ellen Datenübermittler 20 ausgelesen werden können. Als Stromversorgung dient die Batterie 17. Obwohl ra¬ dioaktive Messungen auch durch das Bohrgestänge 3 mög¬ lich sind, bietet eine vom Bohrgestänge 3 unbeeinflußte Messung eine wesentlich bessere Auflösung, vor allem, wenn ein radioaktiver Strahler vorgesetzt wird und die Gammasonde la als Dichtesonde eingesetzt wird. Die Sen- sorik der Radioaktivmessungen ist gut überschaubar und die anfallenden Meßdaten sind gering. Mit 1 MByte Spei¬ cher in der Gammasonde la kann mehr als 24 Stunden lang ununterbrochen gemessen werden.
Als Meßsonde 1 kann weiterhin beispielsweise eine Dip etersonde lb dienen, wie Figur 5 zeigt. In deren Gehäuse 30 sind ein Pendelpotentiometer 34 und eine Analogelektronik 35 als Datenmeßeinrichtung enthalten, die die Reflexionen von Ultraschallsignalen aufnehmen, die von Ultraschallschwingern 37 ausgehen, die dem Son¬ dengehäuse 30 vorgeschaltet sind. Weiterhin sind im Sondengehäuse 30 eine Batterie 17 als Stromerzeuger so¬ wie ein Datenprozessor 18, ein Datenspeicher 19 und ein serieller Datenübermittler 20 vorgesehen. Die Dipmeter¬ sonde lb dient zur Erfassung der Lage von Schichtgren¬ zen und Klüften. Mehrere feste Ultraschallschwinger 37 messen berührungslos nach dem Echolptprinzip die Ampli¬ tude und die Laufzeit. An Klüften und Schichtgrenzen werden die Ultraschallimpulse gestreut und in abge¬ schwächter Intensität von der Bohrlochwand reflektiert. Auf diese Amplitudenwerte können die gängigen Auswer- tungs- und Darstellungsverfahren angewendet werden, wie sie auch für elektrische Dipmeter gemacht werden. Die Summe aller Ultraschall-Laufzeiten repräsentiert das Bohrlochkaliber 38, dessen Wert neben den Amplituden als weiterer Wert abgespeichert wird. Der Orientie¬ rungswert wird vom elektrischen Pendelpotentiometer 34 abgegriffen und bestimmt, in welcher Lage, in Bezug auf die Rollachse der Dipmetersonde lb, sich die Ultra¬ schällschwinger 37 befinden. Damit ist eine einfache Oben-Unten-Orientierung gewährleistet.
Zur entgültigen Einordnung der Schichten und Klüfte sind aber dazu noch Messungen über den Verlauf und die Lage des Bohrloches 12, 43 notwendig, die mit einer Kreiselsonde lc durchgeführt werden, die unten be¬ schrieben wird.
Die Dipmetersonde lb kann aber auch, durch Wahl eines anderen Sondenprogrammes bei der Initialisierung, wie eine Kalibersonde betrieben werden. Im Unterschied zum Dipmeterbetrieb werden dann nur die Kaliberwerte ge¬ speichert. Die exakten Kaliberwerte sind im Zu¬ sammenhang mit den Dichtemessungen der Gammasonde la (Gamma-Gamma) von Bedeutung.
Darüber hinaus können mit der Dipmetersonde lb Volumen¬ messungen der Bohrung 12 durchgeführt werden. Dazu muß beim Ausbauen des Gestänges 3 die Dipmetersonde lb ein¬ gerastet sein und die Teufe mit dem Teufenmeßrad 8 und dem Laptop PC 7 gemessen werden. Mit der Dipmetersonde lb läßt sich ein hochauflösendes Meßverfahren verwirklichen, dessen kleinste Teufenauflösung 1 mm be¬ trägt.
Als Meßsonde 1 kann schließlich, wie Fig. 6 zeigt, eine Kreiselsonde lc vorgesehen sein, die allein oder zusam¬ men mit einer der Meßsonden la und 1 oder lb zur Erfas¬ sung der jeweils interessierenden Meßdaten angewendet werden kann. Im Sondenkörper 30 der Kreiselsonde lc ist ein Kreiselmödul 39 und gegebenenfalls ein Zusatzsensor 40 als Meßeinrichtung integriert. Mit Hilfe der Krei¬ selsonde lc kann der Verlauf eines Bohrlochs 12, 43 und die Position des Bohrlochtiefsten mit einer Genauigkeit von 1 m auf 1000 m Teufe angegeben werden. Sie wird mit dem Bohrlochmeßkabel 4a im Bohrgestänge 3 gefahren und mißt dabei ständig den Kurs und die Lage des Bohrlochs 12, 43. Bei stärkerer Neigung kann sie mit einem Kolben nach vorne gespült werden. Während der Messung werden die Daten zum Meßwagen 42 übertragen und dort in der Registriereinheit 41 gespeichert. Der Zusatzsensor 40 erlaubt es gleichzeitig, die Lage der Rohrverschraubun¬ gen des Bohrgestänges 3 zu vermessen. Wie bei den Me߬ sonden la, lb sind im Gehäuse 30 der Kreiselsonde lc eine Batterie 17 zur Stromversorgung sowie ein Da¬ tenprozessor 18, ein Datenspeicher 19 sowie ein seriel¬ ler Datenübermittler 20 untergebracht. BEZUGSZEICHENLISTE
1 Meßsonde la Gammasonde lb Dipmetersonde lc Kreiselsonde
2 Übertragungssonde
3 Bohrgestänge
4 Bohrlochmeßkabel
4a Bohrlochmeßkabel
5 Bohrkrone
6 Kernrohrkupplung
7 Laptop PC
8 Teufenmeßrad
9 Induktionsspule der Meßsonde 10 Induktionsspule der Ubertragungssonde 11 Innenrohrkopf 12 Bohrloch 13 Meßkabelwinde 14 Bohrturm 15 Drucker 16 Meßelement 17 Batterie 18 Datenprozessor 19 Datenspeicher 20 serieller Datenübermittler 21 Weichmagnetkern 21a verankertes Magnetende 21b freies Magnetende 22 Kabelkopf 23 Spulenvorsatz
24 Impulsgeber
25 Impulszähler
27 Meßleitung
28 Batterie
29 Übertragungsleitung 30 Meßsondengehäuse
31 Natrium- odid-Kristall
32 Elektronenvervielfacherröhre 33 Spannungsumformer
34 Pendelpotentiometer
35 Analogelektronik
37 Ultraschallschwinger
38 Bohrlochkaliber
39 Kreiselmodul
40 Zusatzsensor
41 Registriereinheit
42 Meßwagen
43 abgelenktes Bohrloch
44 Datenprozessor
45 Datenspeicher
47 Meßsensor
48 Anschluß
49 Anschluß
50 Anschluß
51 Anschluß

Claims

Patentansprüche
1. Vermessungsverfahren für Seilkernbohrungen, dadurch gekennzeichnet, daß eine autark funktionierende Me߬ sonde (1) in das Bohrgestänge (3) eingespült und in der Bohrkrone (5) über eine Kernrohrkupplung (6) ar¬ retiert wird, weiterhin eine Ubertragungssonde (2) mit daran befestigtem und an einen tragbaren PC (7) angeschlossenem Bohrlochmeßkabel (4) in das Bohrge¬ stänge (3) eingespült wird, eine drahtlose Verbindung zwischen Meßsonde (1) und Ubertragungssonde (2) her¬ gestellt wird, die Meßsonde (1) über den tragbaren PC (7) initialisiert und mit diesem synchronisiert wird, von der Meßsonde (1) Meßwerte aufgenommen und zeitab¬ hängig zwischengespeichert werden, die Ubertra¬ gungssonde (2) aus dem Bohrgestänge (3) herausgezogen wird und die Meßsonde (1) nach beendeter Messung mit Hilfe eines Kernrohrfängers geborgen und die Meßwerte über den tragbaren PC (7) ausgelesen werden.
2. Vermessungsverfahren nach Anspruch 1, dadurch gekenn¬ zeichnet, daß die Messung während des GestängeZiehens erfolgt und die jeweilige Meßteufe über einen Wegan¬ zeiger (8) ermittelt und zeitabhängig vom tragbaren PC ( ) gespeichert wird.
3. Vermessungsverfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß als Meßsonden (1) Gamma- sonden (la.) oder Dipmetersonden (lb) verwendet wer¬ den.
4. Vermessungsverfahren nach Anspruch 3, dadurch gekenn¬ zeichnet, daß die Meßwerte der verschiedenen Meßson¬ den (la, lb) nacheinander und teufensynchron ermit¬ telt und gemeinsam ausgewertet werden.
5. Vermessungsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß von der Meßsonde (1) aufgenommene Meßdaten unmittelbar oder nach Zwischen- speicherung in der Meßsonde (1) drahtlos an die Uber¬ tragungssonde (2) übertragen und von dieser an den tragbaren PC (7) weitergeleitet werden.
6. Abgewandeltes Vermessungsverfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß eine Kreiselsonde (lc) als Meßsonde (1) verwendet wird, die unmittelbar über Bohrlochmeßkabel (4a) an den tragbaren PC (7) angeschlossen und über diesen initialisiert und mit diesem synchronisiert wird.
7. Vorrichtung zur Durchführung des VermessungsVerfah¬ rens nach den Ansprüchen 1 bis 3, dadurch gekenn¬ zeichnet, daß eine Meßsonde (1) mit einer Ubertra¬ gungssonde (2) über Induktionsspulen (9, 10) sowie einen Weichmagnetkern (21) drahtlos verbindbar ist, die Ubertragungssonde (2) mittels Bohrlochmeßkabel (4) an einen tragbaren PC (7) angeschlossen ist, die Meßsonde (1) mit einem Innenrohrkopf (11) versehen und in einer Bohrkrone (5) arretierbar ist, sowie in der Meßsonde (1) ein Meßelement (16), eine Energie¬ versorgung (17), ein Datenprozessor (18) und ein Da¬ tenspeicher (19) enthalten sind, und die Ubertra¬ gungssonde (2) aus einem Meßkabelkopf (22) mit einem Spulenvorsatz (23) gebildet wird.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der tragbare PC (7) über eine Meßleitung (27) mit einem Impulszähler (25) und Impulsgeber (24) eines Teufenmeßrades (8) verbunden ist, das an das Bohrge¬ stänge (3) anschließbar ist.
9. Vorrichtung nach den Ansprüchen 7 oder 8, dadurch ge¬ kennzeichne , daß die Meßsonde (1) eine Gammasonde (la) ist, deren Sensorteil einen Natrium-Jodid-Kri- stall (31) und als Meßwertgeber eine Elektronenver- vielfacherröhre (32) umfaßt.
10. Vorrichtung nach den Ansprüchen 7 oder 8, dadurch ge¬ kennzeichnet, daß die Meßsonde (1) ein akustisches Dipmeter (36) ist, deren Sensorteil aus mehreren Ul¬ traschallschwingern(37) , einer Analogelektronik (35) und einem Pendelpotentiometer (34) besteht.
1« Abgewandelte Vorrichtung nach den Ansprüchen 7 und 8 zur Durchführung des VermessungsVerfahrens nach den Ansprüchen.1, 2 und 6, dadurch gekennzeichnet, daß als Meßsonde (1) eine Kreiselsonde (lc) vorgesehen ist, die über ein Bohrlochmeßkabel (4a) unmittelbar mit dem tragbaren PC (7) verbunden ist und aus einem Kreiselmodul (3a), einem Zusatzsensor (40), einer Stromversorgung (17), einem Datenprozessor (18), ei¬ nem Datenspeicher (19) und einem seriellen Datenüber¬ mittler (20) gebildet wird.
PCT/EP1992/002043 1991-09-06 1992-09-04 Vermessungsverfahren für seilkernbohrungen und vorrichtung zur durchführung WO1993005271A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP92918511A EP0601030B1 (de) 1991-09-06 1992-09-04 Vermessungsverfahren für seilkernbohrungen und vorrichtung zur durchführung
US08/204,320 US5560437A (en) 1991-09-06 1992-09-04 Telemetry method for cable-drilled boreholes and method for carrying it out
DE59206874T DE59206874D1 (de) 1991-09-06 1992-09-04 Vermessungsverfahren für seilkernbohrungen und vorrichtung zur durchführung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4129709A DE4129709C1 (de) 1991-09-06 1991-09-06
DEP4129709.1 1991-09-06

Publications (1)

Publication Number Publication Date
WO1993005271A1 true WO1993005271A1 (de) 1993-03-18

Family

ID=6440047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/002043 WO1993005271A1 (de) 1991-09-06 1992-09-04 Vermessungsverfahren für seilkernbohrungen und vorrichtung zur durchführung

Country Status (6)

Country Link
US (1) US5560437A (de)
EP (1) EP0601030B1 (de)
AU (1) AU2487392A (de)
DE (2) DE4129709C1 (de)
WO (1) WO1993005271A1 (de)
ZA (1) ZA926583B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601811A2 (de) * 1992-12-07 1994-06-15 Akishima Laboratories (Mitsui Zosen) Inc. System für Messungen während des Bohrens mit Druckpuls-Ventil zur Datenübertragung

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221221C2 (de) * 1992-06-27 1995-10-26 Bergwerksverband Gmbh Vermessungsverfahren für Seilkernbohrungen und Vorrichtung zur Durchführung
DE4437525C2 (de) * 1994-10-20 1998-07-23 Geotechnisches Ingenieurbuero Verfahren und Vorrichtung zur Untersuchung der Wandung eines Bohrlochs in Gestein
US5720354A (en) * 1996-01-11 1998-02-24 Vermeer Manufacturing Company Trenchless underground boring system with boring tool location
CA2238334C (en) * 1996-09-23 2008-04-22 Intelligent Inspection Corporation Commonwealth Of Massachusetts Autonomous downhole oilfield tool
US5988243A (en) * 1997-07-24 1999-11-23 Black & Decker Inc. Portable work bench
US6536520B1 (en) 2000-04-17 2003-03-25 Weatherford/Lamb, Inc. Top drive casing system
GB9826017D0 (en) * 1998-11-28 1999-01-20 Wireline Technologies Ltd Well logging method and apparatus
FI111287B (fi) * 1998-12-10 2003-06-30 Tamrock Oy Menetelmä ja kallionporauslaite kallionporauksen ohjaamiseksi
AU1995100A (en) * 1999-01-16 2000-08-01 Transmission Winch Systems Limited Winching apparatus
US6189621B1 (en) * 1999-08-16 2001-02-20 Smart Drilling And Completion, Inc. Smart shuttles to complete oil and gas wells
US6308787B1 (en) 1999-09-24 2001-10-30 Vermeer Manufacturing Company Real-time control system and method for controlling an underground boring machine
US6315062B1 (en) 1999-09-24 2001-11-13 Vermeer Manufacturing Company Horizontal directional drilling machine employing inertial navigation control system and method
US6928864B1 (en) * 1999-09-30 2005-08-16 In-Situ, Inc. Tool assembly and monitoring applications using same
US6349778B1 (en) 2000-01-04 2002-02-26 Performance Boring Technologies, Inc. Integrated transmitter surveying while boring entrenching powering device for the continuation of a guided bore hole
US6836218B2 (en) 2000-05-22 2004-12-28 Schlumberger Technology Corporation Modified tubular equipped with a tilted or transverse magnetic dipole for downhole logging
US6995684B2 (en) 2000-05-22 2006-02-07 Schlumberger Technology Corporation Retrievable subsurface nuclear logging system
US6577244B1 (en) * 2000-05-22 2003-06-10 Schlumberger Technology Corporation Method and apparatus for downhole signal communication and measurement through a metal tubular
US6655453B2 (en) * 2000-11-30 2003-12-02 Xl Technology Ltd Telemetering system
FI118134B (sv) * 2001-10-19 2007-07-13 Sandvik Tamrock Oy Bergborrningsanordning och brytningsanordning
US7730965B2 (en) 2002-12-13 2010-06-08 Weatherford/Lamb, Inc. Retractable joint and cementing shoe for use in completing a wellbore
BR0316278B1 (pt) 2002-11-15 2013-04-02 mÉtodo para perfurar um furo de sondagem, sistema adequado para perfurar de maneira direcional um furo de sondagem, conjunto de fundo de furo, e, motor de suspensço.
USRE42877E1 (en) 2003-02-07 2011-11-01 Weatherford/Lamb, Inc. Methods and apparatus for wellbore construction and completion
US7650944B1 (en) 2003-07-11 2010-01-26 Weatherford/Lamb, Inc. Vessel for well intervention
US7207215B2 (en) * 2003-12-22 2007-04-24 Halliburton Energy Services, Inc. System, method and apparatus for petrophysical and geophysical measurements at the drilling bit
US6913087B1 (en) 2004-01-30 2005-07-05 Black & Decker Inc. System and method for communicating over power terminals in DC tools
CA2538196C (en) 2005-02-28 2011-10-11 Weatherford/Lamb, Inc. Deep water drilling with casing
US7857052B2 (en) 2006-05-12 2010-12-28 Weatherford/Lamb, Inc. Stage cementing methods used in casing while drilling
US8276689B2 (en) 2006-05-22 2012-10-02 Weatherford/Lamb, Inc. Methods and apparatus for drilling with casing
US8433058B2 (en) * 2008-08-08 2013-04-30 Avaya Inc. Method and system for distributed speakerphone echo cancellation
US8548742B2 (en) * 2008-10-21 2013-10-01 National Oilwell Varco L.P. Non-contact measurement systems for wireline and coiled tubing
RU2643380C2 (ru) * 2013-02-08 2018-02-01 Сергей Георгиевич Фурсин Способ контроля забойных параметров в процессе бурения скважины
CN208010332U (zh) * 2018-02-13 2018-10-26 宁波金地电子有限公司 一种非开挖导向仪的探棒
WO2021016443A1 (en) 2019-07-24 2021-01-28 Schlumberger Technology Corporation Conveyance apparatus, systems, and methods
US11283701B2 (en) * 2020-01-24 2022-03-22 Halliburton Energy Services, Inc. Telemetry configurations for downhole communications
US11187077B2 (en) * 2020-01-31 2021-11-30 Halliburton Energy Services, Inc. Adaptive wireline telemetry in a downhole environment
CN112343578B (zh) * 2020-11-09 2023-07-21 黄山联合应用技术研究院 一种可视化测井机构掘进装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086167A (en) * 1958-11-13 1963-04-16 Sun Oil Co Bore hole logging methods and apparatus
GB1096388A (en) * 1965-07-27 1967-12-29 Texaco Development Corp Retrieval system for logging while drilling
US4001774A (en) * 1975-01-08 1977-01-04 Exxon Production Research Company Method of transmitting signals from a drill bit to the surface
GB1557863A (en) * 1976-06-22 1979-12-12 Shell Int Research Method and means for transmitting information through a pipe string situated in a borehole oe well
EP0056872A1 (de) * 1981-01-22 1982-08-04 Kisojiban Consultants Co., Ltd. Verfahren und Vorrichtung für die Bodenuntersuchung
DE3402386A1 (de) * 1984-01-25 1985-08-01 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Induktive energie- und datenuebertragung
AU546119B2 (en) * 1980-01-21 1985-08-15 Exploration Logging Inc. Transmitting well logging data
GB2188352A (en) * 1986-03-25 1987-09-30 British Petroleum Co Plc Core sampling equipment
EP0299863A2 (de) * 1987-07-16 1989-01-18 Schlumberger Technology Corporation Einrichtung zur elektromagnetischen Kopplung von Energie- und Datensignalen zwischen einer Vorrichtung im Bohrloch und der Oberfläche
EP0330558A1 (de) * 1988-02-22 1989-08-30 Institut Français du Pétrole Verfahren und Vorrichtung zum Übertragen von Information per Kabel und per Spülungsdruckwellen
US4955438A (en) * 1988-04-22 1990-09-11 Eastman Christensen Company Core drilling tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868506A (en) * 1954-06-01 1959-01-13 Texas Co Determination of fluid movement in bore holes
US4003441A (en) * 1975-04-22 1977-01-18 Efim Lvovich Lokshin Method of opening carbon-bearing beds with production wells for underground gasification
DE3035905C2 (de) * 1980-09-24 1982-12-30 Christensen, Inc., 84115 Salt Lake City, Utah Vorrichtung zur Fernübertragung von Informationen aus einem Bohrloch zur Erdoberfläche während des Betriebs eines Bohrgeräts
US4932471A (en) * 1989-08-22 1990-06-12 Hilliburton Company Downhole tool, including shock absorber
FR2679958B1 (fr) * 1991-08-02 1997-06-27 Inst Francais Du Petrole Systeme, support pour effectuer des mesures ou interventions dans un puits fore ou en cours de forage, et leurs utilisations.
US5234053A (en) * 1992-07-16 1993-08-10 Halliburton Geophysical Services, Inc. Reeled tubing counter assembly and measuring method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086167A (en) * 1958-11-13 1963-04-16 Sun Oil Co Bore hole logging methods and apparatus
GB1096388A (en) * 1965-07-27 1967-12-29 Texaco Development Corp Retrieval system for logging while drilling
US4001774A (en) * 1975-01-08 1977-01-04 Exxon Production Research Company Method of transmitting signals from a drill bit to the surface
GB1557863A (en) * 1976-06-22 1979-12-12 Shell Int Research Method and means for transmitting information through a pipe string situated in a borehole oe well
AU546119B2 (en) * 1980-01-21 1985-08-15 Exploration Logging Inc. Transmitting well logging data
EP0056872A1 (de) * 1981-01-22 1982-08-04 Kisojiban Consultants Co., Ltd. Verfahren und Vorrichtung für die Bodenuntersuchung
DE3402386A1 (de) * 1984-01-25 1985-08-01 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Induktive energie- und datenuebertragung
GB2188352A (en) * 1986-03-25 1987-09-30 British Petroleum Co Plc Core sampling equipment
EP0299863A2 (de) * 1987-07-16 1989-01-18 Schlumberger Technology Corporation Einrichtung zur elektromagnetischen Kopplung von Energie- und Datensignalen zwischen einer Vorrichtung im Bohrloch und der Oberfläche
EP0330558A1 (de) * 1988-02-22 1989-08-30 Institut Français du Pétrole Verfahren und Vorrichtung zum Übertragen von Information per Kabel und per Spülungsdruckwellen
US4955438A (en) * 1988-04-22 1990-09-11 Eastman Christensen Company Core drilling tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601811A2 (de) * 1992-12-07 1994-06-15 Akishima Laboratories (Mitsui Zosen) Inc. System für Messungen während des Bohrens mit Druckpuls-Ventil zur Datenübertragung
EP0601811A3 (de) * 1992-12-07 1995-05-17 Akishima Lab Mitsui Zosen Inc System für Messungen während des Bohrens mit Druckpuls-Ventil zur Datenübertragung.
US5495237A (en) * 1992-12-07 1996-02-27 Akishima Laboratories (Mitsui Zosen) Inc. Measuring tool for collecting down hole information and metering valve for producing mud-pulse used in the same

Also Published As

Publication number Publication date
EP0601030B1 (de) 1996-08-07
ZA926583B (en) 1993-03-09
DE4129709C1 (de) 1992-12-03
AU2487392A (en) 1993-04-05
US5560437A (en) 1996-10-01
EP0601030A1 (de) 1994-06-15
DE59206874D1 (de) 1996-09-12

Similar Documents

Publication Publication Date Title
DE4129709C1 (de)
DE602004009043T2 (de) Radiale einstellbare bohrlochvorrichtungen und verfahren für dieselben
DE69920078T2 (de) Vorrichtung und Verfahren zur Bestimmung der Bohrmethode, um Formationsbewertungsmessungen zu optimieren
DE3513178C2 (de) Vorrichtung zur Datenübertragung längs eines Bohrlochgestängestranges
US4520468A (en) Borehole measurement while drilling systems and methods
DE3813508C1 (de)
DE102005008430A1 (de) Verfahren und Vorrichtung zum Bohren eines Bohrlochs von einem entfernten Ort aus
DE102006014265A1 (de) Modulares Bohrlochwerkzeugsystem
DE2720273A1 (de) Verfahren und vorrichtung zum ermitteln sowie registrieren von messwerten einer tiefbohrung
DE3435812A1 (de) Geraet zur messung der drehgeschwindigkeit eines rotierenden elements
DE4221221C1 (de)
EP0811750A1 (de) Verfahren und Vorrichtung zur unterirdischen Erfassung der Teufe einer Bohrung
DE112016000873T5 (de) Messen frequenzabhängiger akustischer Dämpfung
DE2025362B2 (de) BohrlochmeBverfahren und Vorrichtung fur seine Durchführung
DE1943222A1 (de) Elektronische UEberwachungseinrichtung der Bohrverhaeltnisse bei OEl- und Gasvorkommen
DE112016000973B4 (de) Verbesserte Impulserzeugung zur Untertagevermessung
DE112016000878T5 (de) Adaptive Minimum-Phase-Wavelet-Generierung in Echtzeit für Bohrlochwerkzeuge
DE102005038313B4 (de) Verfahren zur Messung der geologischen Lagerungsdichte und zur Detektion von Hohlräumen im Bereich eines Vortriebstunnels
DE112016000975T5 (de) Verrohrungs- und Zementevaluierungswerkzeug mit reduziertem Sendernachschwingen
DE112016000854T5 (de) In-situ-Messung von Geschwindigkeit und Abschwächung von Bohrlochflüssigkeit in einem Ultraschall-Abtastwerkzeug
DE3540251A1 (de) Vorrichtung und verfahren zur akustischen richtungsvermessung
DE2118380A1 (de) Verfahren und Vorrichtung zum Erkennen und Lokalisieren von Leckstellen
DE102013008621A1 (de) Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörper
DE2621142B2 (de) Verfahren und Einrichtung zur Bestimmung der Teufe des Trennspiegels Blanketmedium-Salzsole bei der Herstellung von Kavernen
DE3028362A1 (de) Instrumentensystem fuer eine bohreinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP PL RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992918511

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992918511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08204320

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1992918511

Country of ref document: EP