WO1993000786A1 - Procede de fabrication d'un ecran absorbant le rayonnement electromagnetique - Google Patents

Procede de fabrication d'un ecran absorbant le rayonnement electromagnetique Download PDF

Info

Publication number
WO1993000786A1
WO1993000786A1 PCT/FR1992/000553 FR9200553W WO9300786A1 WO 1993000786 A1 WO1993000786 A1 WO 1993000786A1 FR 9200553 W FR9200553 W FR 9200553W WO 9300786 A1 WO9300786 A1 WO 9300786A1
Authority
WO
WIPO (PCT)
Prior art keywords
immersion
spraying
carbon
manufacturing
drying
Prior art date
Application number
PCT/FR1992/000553
Other languages
English (en)
Inventor
A L'energie Atomique Commissariat
Frédéric MARIOTTE
Original Assignee
Commissariat Energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat Energie Atomique filed Critical Commissariat Energie Atomique
Publication of WO1993000786A1 publication Critical patent/WO1993000786A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the present invention relates to the field of screens intended to absorb electromagnetic radiation i and, in particular, in the field of mi c roondes. It therefore applies to electromagnetic radiation in a band of the order of 2 to 30 GHz and finds numerous applications either in the installation antennas responsible for emitting such radiation or in the protection of structures which , for special reasons, must not emit to the outside or receive such microwaves. 5 The ability of a specific place to absorb electromagnetic radiation i and, in particular, in the field of mi c roondes. It therefore applies to electromagnetic radiation in a band of the order of 2 to 30 GHz and finds numerous applications either in the installation antennas responsible for emitting such radiation or in the protection of structures which , for special reasons, must not emit to the outside or receive such microwaves. 5 The ability of a specific place to absorb
  • Electromagnetic waves is represented by its impedance which is written rmule in which ) J is the magnetic permeability and the electrical permittivity. 0
  • an electromagnetic wave is essentially characterized by the simul- taneous propagation of an electric field E and a magnetic field
  • the present invention relates to absorbent screens which consist of a flat honeycomb structure, loaded with carbon.
  • the honeycomb structure is most often made of a plastic material having no absorption effect with respect to electromagnetic waves, while the carbon dispersed in this structure is precisely the material which by its permittivity allows carry out the absorbed one sought.
  • honeycomb structure will denote, in the remainder of this text, a flat structure made up of juxtaposed cells so as to fill the entire volume of the plate constituting the screen, each cell being open at its two ends.
  • the shape of the cells can be any, for example made up of small straight cylinders with circular base juxtaposed or cylinders of square or polygonal section.
  • a front face and a rear face will be defined in the same way for the screens which are the subject of the invention, the front face or entry face being that which receives the electromagnetic waves to be absorbed, and the rear face, that at- beyond which, if the absorbent is of good quality, this same radiation is either greatly attenuated or even completely non-existent.
  • carbon-loaded honeycomb absorbents have an impedance which varies between the input face and the output face, the maximum impedance being located in the vicinity of the input phase to allow absorption. high of the incident wave and, correspondingly, a minimum of reflected energy.
  • the absorbent honeycomb screens of the prior art are composed of several conductive layers, each of which has its own impedance, that is to say a homogeneous carbon load, the Z impedance of the different juxtaposed layers consequently decreasing from the front face to the rear face according to a stepped profile as shown in Figure 1 attached, where the graph corresponds to an absorbent in three layers, the ordinates of the graph representing the impedance and the abscissa the thickness of the layer from the origin 0 which designates the rear face to the abscissa d which represents the front face or input phase.
  • the profi l of variation of the impedance as a function of the thickness as it appears in FIG. 1 is not suitable and a gradient is sought - Linear function depending on the thickness crossed. This corresponds to the case of FIG. 2 and can be obtained using the structures known from FIGS. 3 and 4.
  • the desired gradient is obtained by combining the internal geometric structures of the screen which are pyramids 2 and 4 whose point is located on the side of the entry face, pyramidal volumes that we impregnate uniformly in The volume of carbon black. It is the combination of this uniform impregnation with the shape of the pyramids 2 and 4 which leads to the desired gradient.
  • the screen consists essentially of a honeycomb of juxtaposed cylinders such as 6, and one comes to deposit by spraying with an aqueous solution carbon black using a gun carbon thicknesses such as 8 inside each cylinder 6. All of these deposits 8 which is located on the side of the outlet face also leads to a gradient Linear like the one in figure 2.
  • any gradient profiles as a function of the thickness such as for example conforming to the law of variation of FIG. 5 where the gradient is continuous and monotonic, or even in accordance with the law of variation of FIG. 6 where the gradient is successively decreasing and increasing passing through a minimum value, that is to say non-monotonic.
  • the gradient is successively decreasing and increasing passing through a minimum value, that is to say non-monotonic.
  • the present invention specifically relates to a method of manufacturing absorbent screens for microwaves which allows, using simple means to implement, to make absorbent screens having a profile of variation of any impedance as a function of L 'thickness crossed.
  • This method of manufacturing an absorbent screen vis-à-vis electromagnetic radiation consisting of a flat structure of the honeycomb type loaded with carbon, having a variable impedance gradient as a function of the thickness according to any lo determined in advance, is characterized in that one carries out the carbon charge exactly necessary at each point, by combining the method of deposition by immersion of the rear face in an aqueous bath of carbon black containing an organic binder and the spray deposition method of the same spray gun.
  • the quantity of carbon deposited during immersion in the aqueous bath is obviously uniform and constant over the part of the cells which has undergone immersion.
  • spraying allows an additional deposit of a variable carbon mass depending on the thickness.
  • the planar honeycomb structure is subjected to an aqueous phase immersion of carbon black containing an organic binder on the rear face followed by drying and application of the same solution by spraying with a spray gun on the front face, also followed by a second drying.
  • the manufacturing process further comprises spraying with the gun the same aqueous phase on the rear face followed by a new drying.
  • spraying with the gun the same aqueous phase on the rear face followed by a new drying.
  • several deposition operations by spraying with gun can be used on both the rear side and the front side, these various operations being of course each time separated by a drying phase.
  • the immersion of the planar structure takes place over a portion of the thickness between 1 / 1Oè and 1/3
  • the mass of carbon deposited corresponds to 10% to 30% of The mass of the virgin structure for the immersion step and at 5% to 10% of the mass of The virgin structure for the spraying stages with a spray gun.
  • the drying operations consecutive to the immersion step and to the spraying steps consist of heating to a temperature of the order of 60 ° C. to 80 ° C. for a period of the order of half an hour.
  • FIG. 8 shows the immersion phase of the honeycomb structure of Figure 7 composed of juxtaposed cylindrical tubes
  • FIG. 9 shows, in section through the thickness of the absorbent screen, the carbon black profiles deposited in the immersion operation, then in La or the operations of pi stoLettage.
  • a honeycomb was first represented, constituted in the example described with a structure of 305mmx305mm on one side and a thick- 25.4mm.
  • the structure of the honeycomb itself is made up of cells 6 having the shape of cylinders of circular cross section with a diameter of 6.35 mm and open at both ends.
  • the structure 5 of FIG. O is first immersed in an aqueous dispersion of carbon black 10, charged with an organic binder.
  • the honeycomb structure 10 is immersed in this
  • aqueous solution 12 itself contained in a tank 14.
  • the structure 10 is then dried for half an hour at 70 ° C. During the previous immersion operation, 30 g of solid carbon dispersion were deposited on the structure 10.
  • aqueous solution 12 itself contained in a tank 14.
  • the structure 10 is then dried for half an hour at 70 ° C.
  • 30 g of solid carbon dispersion were deposited on the structure 10.
  • honeycomb structure 10 has deposits 16 of constant density and thickness at the base of the portion of each of the tubes 6 which has been immersed in the aqueous solution 12.
  • a spray deposition from the immersed face or front face of the structure is carried out by spraying and leads, as shown in this FIG. 9, to the additional deposition of a carbon mass gradient 18 following the mas -
  • the mass of carbon deposited for the steps of spraying its ion with a gun is close to 5 to 10% of the mass of the structure of the virgin honeycomb.
  • the electromagnetic absorbents obtained by the process which is the subject of the invention are to be applied, in particular, in the vicinity of microwave antennas, of which they thus make it possible to regularize the emission profile, for example by eliminating certain undesirable lobes of this pro ⁇ f l.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Procédé de fabrication d'un écran absorbant vis-à-vis du rayonnement électromagnétique, constitué d'une structure plane du type en nid d'abeilles chargé de carbone, ayant un gradient d'impédance variable en fonction de l'épaisseur selon une loi quelconque déterminée à l'avance, caractérisé en ce que l'on réalise la charge de carbone exactement nécessaire en chaque point, en combinant la méthode de dépôt par immersion de la face arrière dans un bain aqueux de noir de carbone (12) contenant un liant organique et la méthode de dépôt par pulvérisation du même bain au pistolet.

Description

PROCEDE DE FABRICATION D'UN ECRAN ABSORBANT
LE RAYONNEMENT ELECTROMAGNETIQUE
La présente invention se rapporte au domai- 5 ne des écrans destinés à absorber Le rayonnement é Lectromagné i que et, notamment, dans Le domaine des mi c roondes . IL s'applique par conséquent à du rayonnement électromagnétique compris dans une bande de l'ordre de 2 à 30 GHz et trouve des applications g nombreuses soit dans Les antennes d'installation chargées d'émettre de tels rayonnements soit dans La protection de structures qui, pour des raisons particulières, ne doivent pas émettre vers l'extérieur ou recevoir de tels micro-ondes. 5 L'aptitude d'un mi lieu déterminé à absorber
Les ondes électromagnétiques est représenté par son impédance qui s'écrit rmule dans Laquelle
Figure imgf000003_0001
)J est la perméabilité magnétique et £ la permittivité é lect ri que . 0 En effet, une onde électromagnétique est essentiellement caractérisée par la propagation simul- tanée d'un champ électrique E et d'un champ magnétique
-9
H créant à la fois respecti ement une polarisation
—-> —^ —* ~*
D=6E et une induction magnétique B=^H, formules dans 5 lesquelles d'ailleurs, la permittivité et La perméabi¬ lité sont elles-mêmes des grandeurs complexes que L'on peut écrire : e= £' - i a" et p= r" "J " -
La présente invention se rapporte à des écrans absorbants qui sont constitués d'une structure plane en nid d'abeilles, chargée de carbone. La struc¬ ture en nid d'abeilles est en un matériau le plus souvent plastique n'ayant aucun effet d'absorption vis-à-vis des ondes électromagnétiques, alors que le carbone dispersé dans cette structure est précisé- ment Le matériau qui par sa permittivité permet de réaliser l'absorpt on recherchée.
Par structure en nid d' abeilles, on désignera, dans la suite du présent texte, une structure plane constituée d'alvéoles juxtaposées de façon à remplir tout le volume de la plaque constituant L'écran, chaque alvéole étant ouvert à ses deux extrémités. La forme des alvéoles peut être quelconque, par exemple constituée de petits cylindres droits à base circulaire juxtaposés ou de cylindres à section carrée ou polygonale.
On définira de la même façon pour les écrans objet de l'invention une face avant et une face arrière, la face avant ou face d'entrée étant celle qui reçoit les ondes électromagnétiques à absor- ber, et la face arrière, celle au-delà de Laquelle, si l'absorbant est de bonne qualité, ce même rayon¬ nement est soit fortement atténué soit même complète¬ ment inexistant.
De façon classique connue, Les absorbants en nid d'abeilles chargés au carbone ont une impédance qui varie entre la face d'entrée et la face de sortie, l'impédance maximale étant Localisée au voisinage de la phase d'entrée pour permettre une absorption élevée de l'onde incidente et, corrélativement, un minimum d'énergie réfléchie.
Le plus souvent, les écrans absorbants en nid d'abei lles de l'art antérieur sont composés de plusieurs couches conductrices dont chacune a son impédance propre, c'est-à-dire une charge en carbone homogène, l'impédance Z des différentes cou- cnes juxtaposées diminuant par conséquent depuis la face avant jusqu'à la face arrière selon un profil en escalier tel que représenté sur la figure 1 ci-jointe, où le graphique correspond à un absorbant en trois couches, les ordonnées du graphique représentant L'impédance et les abscisses l'épaisseur de la couche depuis l'origine 0 qui désigne La face arrière jusqu'à l'abscisse d qui représente la face avant ou phase d'entrée. Pour certaines applications particulières des écrans absorbants les rayonnements électromagnéti¬ ques, Le profi l de variation de l'impédance en fonc¬ tion de l'épaisseur tel qu'il apparaît sur la figure 1 ne convient pas et on recherche un gradient d'évolu- tion Linéaire en fonction de l'épaisseur traversée. Ceci correspond au cas de La figure 2 et peut être obtenu à L'aide des structures connues des figures 3 et 4.
Dans La structure d'écrans absorbants de La figure 3, le gradient souhaité est obtenu en combinant les structures géométriques internes de l'écran qui sont des pyramides 2 et 4 dont la pointe est située du côté de La face d'entrée, volumes pyramidaux que l'on imprègne uniformément dans Le volume de noir de carbone. C'est La combinaison de cette imprégnation uniforme avec La forme des pyramides 2 et 4 qui conduit au gradient recherché.
Dans Le cas de La structure également connue, visible sur la figure 4, L'écran est constitué pour l'essentiel d'un nid d'abeilles de cylindres juxtaposés tels que 6, et on vient déposer par pul érisation d'une solution aqueuse de noir de carbone à l'aide d'un pistolet des épaisseurs de carbone telles que 8 à l'intérieur de chaque cylindre 6. L'ensemble de ces dépôts 8 qui se situe du côté de la face de sortie conduit également à un gradient Linéaire comme celui de la figure 2.
Pour d'autres applications des écrans absorbants les rayonnements électromagnétiques et notamment Les micro-ondes, il peut être souhaitable d'obten r des profils de gradient quelconques en fonction de l'épaisseur, tels que par exemple confor¬ mes à la loi de variation de la figure 5 où le gra¬ dient est continu et monotone, ou même conformes à la loi de variation de la figure 6 où le gradient est successivement décroissant et croissant en passant par une valeur minimale, c'est-à-dire non monotone. Dans L'état actuel de la technique, il n'existe pas de possibilité de réaliser de tels gradients d'impé¬ dance à l'aide des structures connues en nid d'abeil- Les.
La présente invention a précisément pour objet un procédé de fabrication d'écrans absorbants pour micro-ondes qui permet à l'aide de moyens simples à mettre en oeuvre de réaliser des écrans absorbants ayant un profil de variation d'impédance quelconque en fonction de L'épaisseur traversée.
Ce procédé de fabrication d'un écran absor¬ bant vis-à-vis du rayonnement électromagnétique, constitué d'une structure plane du type en nid d'abeilles chargé de carbone, ayant un gradient d'impédance variable en fonction de l'épaisseur selon une lo quelconque déterminée à l'avance, est caractérisé en ce que l'on réalise la charge de carbone exactement nécessaire en chaque point, en combinant la méthode de dépôt par immersion de la face arrière dans un bain aqueux de noir de carbone contenant un liant organique et la métnode de dépôt par pulvérisation du même bain au pistolet.
Comme on le voit, le demandeur a mis en évidence qu'en combinant un dépôt αe noir de carbone par immersion de la structure en nid d'abeilles dans une solution aqueuse suivie bien entendu des séchages nécessaires, avec les techniques de pulvérisat on au pistolet de cette même solution, on pouvait obtenir des dépôts réglables en quantité à chaque endroit précis de la structure de façon à réaliser pour Le gradient de celle-ci tout profi l donné à l'avance. En effet, La conjugaison des deux méthodes permet de déposer exactement la quantité de carbone voulue à cet effet en chaque endroit précis des alvéoles du nid d'abei lles. De façon pratique d'ai lleurs, cette quantité précise de carbone à déposer peut être calculée par modélisation à L 'aide d'un ordina¬ teur à partir du profi l donné de la loi de variation d'impédance en fonction de l'épaisseur que l 'on veut réaliser.
Dans une combinaison de ce genre, la quantité de carbone déposée au cours de L'immersion dans Le bain aqueux est évidemment uniforme et constante sur la partie des alvéoles qui a subi l'immersion. En revanche, le pistolettage permet un dépôt complémentaire d'une masse de carbone variable en fonction de l'épaisseur.
Selon une caractéristique intéressante du procédé objet de l'invention, la structure plane en nid d'abei lles est soumise à une immersion en phase aqueuse de noir de carbone contenant un liant organique sur la face arrière suivie d'un séchage et d'une application de la même solution par pulvéri¬ sation au pistolet sur La face avant, également suivie d'un second séchage.
Dans un autre mode de mise en oeuvre de l'invention, Le procédé de fabrication comporte en outre une pulvérisation au pistolet de la même phase aqueuse sur La face arrière suivie d'un nouveau sécha¬ ge. En d'autres termes, alors qu'i l suffit ,en général d'une opération d'immersion de la face arrière, pLu- sieurs opérations de dépôt par pulvérisations au pistolet peuvent intervenir tant sur La face arrière que sur La face avant, ces différentes opérations étant à chaque fois bien entendu séparées par une phase de séchage. Selon une caractéristique du procédé objet de l' nvention, l'immersion de La structure plane a lieu sur une portion de l'épaisseur comprise entre 1/1Oè et 1/3, La masse de carbone déposée correspond à 10% à 30% de La masse de la structure vierge pour l'étape d'immersion et à 5% à 10% de la masse de La structure vierge pour les étapes de pul érisation au pistolet.
Selon une autre caractéristique du procédé de fabrication objet de l'invention, les opérations de séchage consécutives à L'étape d'immersion et aux étapes de pulvérisation consistent en un chauffage à une température de l'ordre de 60°C à 80°C pendant une durée de l'ordre d'une demi-heure.
De toute façon, L'invention sera mieux comprise en se référant à La description qui suit d'un exemple de mise en oeuvre qui sera donné à titre ilLustratif et non limitatif en se référant aux figu¬ res 7 à 9 sur lesquelles :
- la figure 7 montre La structure du nid d'abeilles utilisé ;
- la figure 8 montre la phase d'immersion de la structure en nid d'abeilles de la figure 7 composée de tubes cylindriques juxtaposés ;
- La figure 9 montre, en coupe à travers l'épaisseur de L'écran absorbant, Les profils de noir de carbone déposé dans l'opération d'immersion, puis dans La ou les opérations de pi stoLettâge.
Sur La figure 7, on a d'abord représenté un nid d'abeilles constitué dans l'exemple décrit d'une structure de 305mmx305mm de côté et d'une épais- seur de 25,4mm. La structure du nid d'abei lles propre¬ ment dite est constituée d'alvéoles 6 ayant la forme de cylindres de section droite circulaire de diamètre 6,35mm et ouverts aux deux extrémités. La structure 5 de la figure o subit d'abord une immersion dans une dispersion aqueuse de noir de carbone 10, chargée d'un Liant organique.
Comme représenté sur La figure 8, la struc¬ ture en nid d'abeiLles 10 est immergée dans cette
10 solution aqueuse 12 contenue elle-même dans un bac 14. La structure 10 est ensuite séchée pendant une demi-heure à 70°C. Durant l'opération d'immersion précédente, 30g de dispersion solide de carbone ont été déposés sur la structure 10. D'une manière généra-
15 le, L'immersion a Lieu sur une proportion de l'épais¬ seur comprise entre Le 10è et le tiers de celle-ci et la masse de carbone déposée est de 10 à 30% de la masse de la structure vierge en nid d'abeilles. A la suite de cette opération d'immersion, La struc-
20 ture en nid d'abeilles 10 possède des dépôts 16 de densité et d'épaisseur constante à la base de la portion de chacun des tubes 6 qui a été immergée dans la solution aqueuse 12.
Après l'opération de séchage précédente,
25 un dépôt par pulvérisation à partir de la face ayant subi l'immersion ou face avant de la structure est effectué par pistolettage et conduit, comme représenté sur cette figure 9, au dépôt complémentaire d'un gradient de masse carbonée 18 faisant suite aux mas-
JÛ selottes 16 déposées préalablement le long de la paroi de chaque cylindre 6. Durant cette opération de projection homogène, 10g de dispersion solide sont déposés sur la structure 10. Celle-ci est ensuite séchée à une température de l'ordre de 60 à 80°C
35 pendant une durée de L'ordre d'une demi-heure. Dans certains cas par iculiers, il peut être intéressant de compléter Les deux traitements précédents par un troisième traitement consistant en une deuxième pulvérisation de solution carbonée effectuée cette fois par La face opposée ou face arr ère du futur dispositif d'absorption des ondes. Dans une deuxième opération de ce genre, 4g de disper¬ s on solide sont déposés sur la structure et la phase de séchage finale est identique aux deux phases de séchage précédemment décrites.
La combinaison des deux techniques de dépôt précédemment décrites permet d'obtenir une structure d'absorption 10 ayant n'importe quel gra¬ dient d'impédance choisi à l'avance et notamment une structure ou écran absorbant ayant une très bonne atténuation vis-à-vis des micro-ondes en particulier entre 2 et 18Ghz.
D'une façon générale, la masse de carbone déposée pour les étapes de pulvér sa ion au pistolet est voisine de 5 à 10% de La masse de La structure du nid d'abeilles vierge.
Les absorbants électromagnétiques obtenus par le procédé objet de l'invention trouvent à s'ap¬ pliquer, en particulier, au voisinage des antennes é ettrices de micro-ondes, dont ils permettent ainsi de régulariser le profil d'émission, par exemple en supprimant certains lobes indésirables de ce pro¬ f l.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un écran absor¬ bant vis-à-vis du rayonnement électromagnétique, constitué d'une structure plane du type en nid d'abeilles chargé de carbone, ayant un gradient d'impédance variable en fonction de L'épaisseur selon une loi quelconque déterminée à l'avance, caractérisé en ce que L'on réalise la charge de carbone exactement nécessaire en chaque point, en combinant la méthode de dépôt par immersion de La face arrière dans un bain aqueux de noir de carbone (12) contenant un liant organique et La méthode de dépôt par pulvérisa¬ tion du même bain au pistolet.
2. Procédé de fabrication d'un écran absor- bant selon La revendication 1, caractérisé en ce que La structure plane en nid d'abeilles (10) est soumise à une immersion en phase aqueuse (12) de noir de carbone contenant un liant organique sur la face arrière suivie d'un séchage et d'une applica- tion de la même solution par pulvérisation au pistolet sur la face avant, également suivie d'un second sécha¬ ge.
3. Procédé de fabrication d'un écran absor¬ bant selon la revendication 2, caractérisé en ce qu'il comporte en outre une pulvérisation au pistolet de la même phase aqueuse sur La face arrière, suivie d'un nouveau séchage.
4. Procédé de fabrication d'un écran absor¬ bant selon l'une quelconque des revendications 2 et 3, caractérisé en ce que L'immersion de la structu¬ re plane a lieu sur une portion de L'épaisseur compri¬ se entre 1/1 Oè et 1/3, en ce que La masse de carbone déposée correspond à 10% à 30% de la masse de La structure vierge pour L'étape d'immersion et à 5% à 10% de la masse de la structure vierge pour les étapes de pulvérisation au pistolet.
5. Procédé de fabrication d'un écran absor¬ bant selon L'une quelconque des revendications 2 et 3, caractérisé en ce que les opérations de séchage consécuti ves à L'étape d'immersion et aux étapes de pulvérisation consistent en un chauffage à une température de l'ordre de 60°C à 80°C pendant une durée de l'ordre d'une demi-heure.
PCT/FR1992/000553 1991-06-21 1992-06-18 Procede de fabrication d'un ecran absorbant le rayonnement electromagnetique WO1993000786A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9107670A FR2678132B1 (fr) 1991-06-21 1991-06-21 Procede de fabrication d'un ecran absorbant le rayonnement electromagnetique.
FR91/07670 1991-06-21

Publications (1)

Publication Number Publication Date
WO1993000786A1 true WO1993000786A1 (fr) 1993-01-07

Family

ID=9414148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000553 WO1993000786A1 (fr) 1991-06-21 1992-06-18 Procede de fabrication d'un ecran absorbant le rayonnement electromagnetique

Country Status (2)

Country Link
FR (1) FR2678132B1 (fr)
WO (1) WO1993000786A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2599767A1 (fr) 2011-11-30 2013-06-05 Lunamed AG Dérivés de phénylbutyl
EP2607366A1 (fr) 2011-12-21 2013-06-26 Lunamed AG Esters de butyrate phényl de glycérol
EP2607367A1 (fr) 2011-12-21 2013-06-26 Lunamed AG Dérivés de butyrate phényl de glycérol
CN116160723A (zh) * 2022-07-25 2023-05-26 成都飞机工业(集团)有限责任公司 一种t向吸波蜂窝材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19752137A1 (de) * 1997-11-25 1999-08-05 Daimler Chrysler Aerospace Verfahren zur Herstellung eines Kernelementes
JP2000077883A (ja) * 1998-08-28 2000-03-14 Tdk Corp 不燃性ハニカム電波吸収材およびこれを用いた電波吸収体
FR2967306B1 (fr) 2010-11-05 2019-06-07 Christian Lhomme Tissu absorbant les ondes electromagnetiques

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440655A (en) * 1966-02-26 1969-04-22 Electro Gmbh & Co Space absorbers for electromagnetic waves
GB1216071A (en) * 1961-09-05 1970-12-16 Ludwig Wesch An absorber having high frequency electro-magnetic wave absorbing properties
US4851608A (en) * 1987-05-08 1989-07-25 Technical Wire Products, Inc. Electromagnetic shielding media and methods for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1216071A (en) * 1961-09-05 1970-12-16 Ludwig Wesch An absorber having high frequency electro-magnetic wave absorbing properties
US3440655A (en) * 1966-02-26 1969-04-22 Electro Gmbh & Co Space absorbers for electromagnetic waves
US4851608A (en) * 1987-05-08 1989-07-25 Technical Wire Products, Inc. Electromagnetic shielding media and methods for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2599767A1 (fr) 2011-11-30 2013-06-05 Lunamed AG Dérivés de phénylbutyl
EP2607366A1 (fr) 2011-12-21 2013-06-26 Lunamed AG Esters de butyrate phényl de glycérol
EP2607367A1 (fr) 2011-12-21 2013-06-26 Lunamed AG Dérivés de butyrate phényl de glycérol
CN116160723A (zh) * 2022-07-25 2023-05-26 成都飞机工业(集团)有限责任公司 一种t向吸波蜂窝材料及其制备方法

Also Published As

Publication number Publication date
FR2678132A1 (fr) 1992-12-24
FR2678132B1 (fr) 1993-08-27

Similar Documents

Publication Publication Date Title
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
FR2499312A1 (fr) Dispositif d'attenuation de modes pour des cavites de gyrotrons
CH623182A5 (fr)
WO2006037918A2 (fr) Dispositif generateur d'ondes hyperfrequences a cathode virtuelle oscillante
WO1993000786A1 (fr) Procede de fabrication d'un ecran absorbant le rayonnement electromagnetique
FR2709878A1 (fr) Antenne fil-plaque monopolaire.
EP0197843B1 (fr) Dispositif pour l'excitation par ondes hyperfréquences d'un plasma dans une colonne de gaz, permettant notamment la réalisation d'un laser ionique
EP0122834B1 (fr) Transformateur de modes de propagation hyperfréquence
FR2970808A1 (fr) Dispositif d'actionneur et son procede de fabrication
EP0049198B1 (fr) Accélérateur d'électrons et générateur d'ondes millimétriques et infra-millimétriques comportant un tel accélérateur
EP0410880A1 (fr) Laser à électrons libres à accélérateur d'électrons perfectionné
WO2012143410A1 (fr) Dispostif laser d'emission d'ondes dans le domaine des terahertz
EP0012054B1 (fr) Groupeur-dégroupeur de faisceaux d'ions à intervalles dissymétriques et fonctionnant dans une large gamme de vitesse
EP0532411B1 (fr) Source d'ions à résonance cyclotronique électronique et à injection coaxiale d'ondes électromagnétiques
EP0124396B1 (fr) Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences
EP0244297A1 (fr) Dispositif de séparation isotopique ou d'analyse de masses, par un champ magnétique
FR2830371A1 (fr) Generateur d'ondes hyperfrequences a cathode virtuelle
FR2711847A1 (fr) Moyen d'occultation pour antenne de radar.
EP0714030B1 (fr) Simulateur d'impulsion électromagnétique
FR3000289A1 (fr) Generateur de microondes a cathode virtuelle oscillante et a reflecteurs ouverts
EP0375542B1 (fr) Réflecteur d'ondes électromagnétiques pour antenne et son procédé de fabrication
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
EP0514255B1 (fr) Source d'ions à résonance cyclotronique électronique
FR2552613A1 (fr) Dispositif de chauffage par micro-ondes
EP0295981B1 (fr) Accélérateur d'électrons à nappe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI NO

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE