EP0012054B1 - Groupeur-dégroupeur de faisceaux d'ions à intervalles dissymétriques et fonctionnant dans une large gamme de vitesse - Google Patents

Groupeur-dégroupeur de faisceaux d'ions à intervalles dissymétriques et fonctionnant dans une large gamme de vitesse Download PDF

Info

Publication number
EP0012054B1
EP0012054B1 EP79400855A EP79400855A EP0012054B1 EP 0012054 B1 EP0012054 B1 EP 0012054B1 EP 79400855 A EP79400855 A EP 79400855A EP 79400855 A EP79400855 A EP 79400855A EP 0012054 B1 EP0012054 B1 EP 0012054B1
Authority
EP
European Patent Office
Prior art keywords
distance
ions
bundling device
over
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400855A
Other languages
German (de)
English (en)
Other versions
EP0012054A1 (fr
Inventor
Jacques Pottier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0012054A1 publication Critical patent/EP0012054A1/fr
Application granted granted Critical
Publication of EP0012054B1 publication Critical patent/EP0012054B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means

Definitions

  • the present invention relates to an ion beam grouper-unbundler, at asymmetrical intervals, and operating in a wide speed range. It finds application in ion acceleration installations.
  • a grouper or an ion beam ungrouper is constituted by a resonant structure supplied by a high frequency or hyper-frequency source, and crossed by an ion beam so that the electric field established in the structure modulates the velocity of the ions appropriately.
  • the modulation on the speed has the effect of accelerating the slow ions more than the fast ions, which allowed grouping in a packet of small spatial extent at a determined distance from the consolidator; the speeds of the different ions constituting a packet are then distributed over a wider range.
  • Consolidators are used in ion acceleration systems when, for example, time of flight experiments or any injection into a high frequency accelerator is desired.
  • modulation has the effect of increasing low speeds and reducing high speeds, which makes it possible to reduce the speed dispersion of the ions.
  • Such an apparatus is used when it is desired to use monoenergetic ions, without particular concern over the width of the packet of ions.
  • FIGS 1 and 2 recall, in broad outline, the principles of construction and operation of these two devices.
  • FIG. 1 On part (a) of FIG. 1 is shown a resonant structure constituted by a wall 2 closed at its two ends by lateral faces 4 and 6 crossed respectively by inlet 8 and outlet 10 conduits of a beam d 'ions 12.
  • the structure shown further comprises a sliding tube 14 connected to the wall 2 by a conductive support 16. This sliding tube is separated from the conduits 8 and 10 by two identical intervals 1, and 1 2 , All these parts are conductive and for example metallic.
  • Part (b) of this same figure 1 illustrates the electrical diagram of the structure shown in part (a).
  • These two conduits 8 and 10 are connected to ground (or more generally to a reference potential) and the sliding tube 14 is brought to an alternating voltage V due to the high frequency (or hyper-frequency) field prevailing in the structure (this voltage V being counted from said reference potential).
  • the intervals I 1 and I 2 each have a length / and their centers are distant from the length L. The same mean electric field V / 1 therefore prevails in these two intervals.
  • the diagrams in FIG. 2 illustrate the operation of the device in FIG. 1.
  • the ions of average speed penetrate in the interval I 1 at the instant t 0 (part a), the distance z which they travel is plotted on the ordinate as a function of the times on the abscissa.
  • These ions are subjected (b) to an electric field E o during their crossing of the interval I 1 , this field modifying their speed slightly (this modification of speed is generally small compared to the speed proper).
  • Faster ions than the previous ones have reached the interval I 1 at time t, prior to t o . They are subjected to a field E, weaker than E o .
  • the mechanism is analogous to the difference that it tends to reduce the energy deficit of slow ions and to reduce the excess energy of fast ions.
  • a decoupler placed at a distance z receives ions at time to and applies an E ô field to them.
  • Faster ions have reached the interaction interval of the unbundler at the moment prior to t ' 0 . They are subjected to a field E ' 1 weaker than E ' 0 .
  • the slower ions which reach the ungrouper at t ' 2 , they see in the interaction interval a field E ' 2 greater than E ' 0 .
  • the ions are driven at substantially equal speeds, but correspondingly, they occupy an extended part of the space.
  • the voltages used in the unbundlers are of the order of magnitude of the energy dispersion of the beam and can be between 10 kV and 100 kV approximately.
  • FIG. 1 is, among the known structures, that which most closely resembles the invention. We can consider that it is formed of a first part constituted by the support 16, the faces 4 and 6 and the wall 2, this part being equivalent to a resonant line in ⁇ / 4, if ⁇ is the wavelength of the electromagnetic field introduced into the structure and of a second part constituted by the intervals 1, and 1 2 which are zones of a capacitive nature.
  • This structure of the prior art requires that the actions exerted by the electric field on the ions in the two interaction intervals are cumulative. This implies that the ions travel the distance L separating these two intervals in a time which is an odd multiple of the half-period T of the field. This structure of the prior art therefore only works correctly if the ions are driven at a speed close to 2L / T (or a multiple of this speed).
  • the subject of the invention is precisely a grouper-unbundler which simultaneously remedies these two drawbacks.
  • the grouper-unbundler of the invention is of the type which includes two intervals and, as such, it benefits from the advantage offered by this family of devices, namely a small footprint.
  • the grouper-unbundler of the invention does not have the disadvantage of having a narrow speed range and this thanks to an original arrangement of the two interaction intervals.
  • the grouper-unbundler of the invention can therefore operate in a wide range of speeds while having a small footprint.
  • the present invention relates to an ion beam grouping-ungrouping unit, of the type of cees which include a resonant structure supplied by a high frequency or hyper frequency generator, this structure comprising a cylindrical wall closed by two lateral faces traversed respectively by an inlet duct and an outlet duct for the beam, and comprising a sliding tube disposed between said ducts and defining with the inlet duct a first interval and with the outlet duct a second interval, the ion beam being introduced into this structure through the inlet duct, first undergoing, in the first interval, a first action on the part of the electric field which reigns there, then traversing the sliding tube and finally undergoing in the second interval a second action on the part of the electric field which reigns there and leaving the structure by the outlet conduit ;
  • this grouper-unbundler is characterized in that the two intervals defined by the sliding tube and the inlet and outlet conduits are highly asymmetrical, one of the two intervals providing the ion beam with an electric field much lower
  • the grouper-unbunder of the invention is characterized in that the interval with weak action has a length such that it is traversed by the ion beam in a large time in front of the half resonance period of the structure.
  • the grouper-unbunder of the invention is characterized in that the inlet and outlet conduits have different sections, the sliding tube having a flared shape passing from a small section equal to that of the 'one of the conduits with a strong section equal to that of the other conduit.
  • Figures 1 and 2 relate to the prior art and have already been described.
  • the first interval crossed by the ion beam is the predominantly acting interval, the second interval occurring negligibly. But it goes without saying that this order could be reversed, the beam being able to penetrate first in the interval with negligible action.
  • the structures described can also function as a grouper.
  • FIG. 3 firstly illustrate a first variant of the invention.
  • an inlet conduit 20 there is an inlet conduit 20, a sliding tube 22 and finally, an outlet tube 24.
  • An ion beam 26 successively passes through these three elements which are brought to respectively equal potentials at 0, V and O.
  • the real structure is represented in FIG. 4. It is supplied by a source 28, high frequency or microwave, the means for coupling this source to the resonant structure not being shown explicitly, because they are well known to those skilled in the art.
  • the inlet conduit 20 and the sliding tube define a first interval I 1 , of length 1, which is the seat of an electric field of average value V / I 1 .
  • the length I 1 is chosen to be sufficiently short so that the transit time of the ions is less than the half-period T / 2 of the field. So we have: as in the prior art.
  • the sliding tube 22 and the outlet conduit 24 define a second interval 1 2 , of length 1 2 much greater than 1,.
  • FIG. 5 illustrates a second variant of the invention.
  • the device shown also comprises an inlet duct 30, a sliding tube 32 and an outlet duct 34.
  • this outlet duct has a larger section than the inlet duct.
  • the sliding tube then has a flared shape which constitutes a transition between the inlet and outlet conduits.
  • the average electric field V / I 2 which prevails between the sliding tube 32 and the outlet pipe 34 is therefore the same as that which prevails between the inlet pipe 30 and the sliding pipe 32. But it is the field which reigns in an area distant from that crossed by the ion beam. The field which acts on the ions is in fact different from that which prevails at the level of exit conduit.
  • I 0 is the modified Bessel function of the first kind and of order 0 and ⁇ the ratio of the speed v of the ions to that of light and to the wavelength of the field in vacuum. If we denote by x the quantity the serial development of I 0 is:
  • the field E o on the axis is therefore less than the field E a (which is on average equal to V / 12) and can be significantly less than this field.
  • E a which is on average equal to V / 12
  • the second interval 1 2 therefore plays a negligible role compared to that enjoyed by I 1 , because the field on the y axis is much weaker than in the first.
  • This already erased role played by the interval 1 2 can be reduced in a third variant, if this interval is lengthened, as shown in FIG. 6, until presenting a length 1 2 large in front of vT. Then, as in the variant illustrated in FIGS. 3 and 4, the field acts in directions which vary during the crossing of the ions, which reduces its net action.
  • the structure shown in this figure comprises a cavity 40, inlet 42 and outlet 44 ducts, a sliding tube 46, a spiral conductor 48 forming self-inductance; the spaces between the tube 46 and the conduits 42 and 44 constitute capacitive zones. This arrangement significantly reduces the size of the structure.
  • the cavity can be tunable by variations of certain dimensions.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Description

  • La présente invention a pour objet un groupeur-dégroupeur de faisceau d'ions, à intervalles dissymétriques, et fonctionannant dans une large gamme de vitesse. Elle trouve une application dans les installations d'accélération d'ions.
  • On sait qu'un groupeur.ou un dégroupeur de faisceau d'ions est constitué par une structure résonnante alimentée par une source haute fréquence ou hyper-fréquence, et traversée par un faisceau d'ions de telle sorte que le champ électrique établi dans la structure module la vitesse des ions de manière appropriée.
  • Dans un groupeur, la modulation sur la vitesse a pour effet d'accélérer davantage les ions lents que les ions rapides, ce qui permit un regroupement en paquet de faible étendue spataile à une distance déterminée du groupeur; les vitesses des différents ions constituant un paquet sont alors distribuées dans une plage élargie. Les groupeurs sont utilisés dans les systèmes d'accélération d'ions lorsqu'on veut procéder, par exemple, à des expériences de temps de vol ou à toute injection dans un accélérateur haute fréquence.
  • Dans un dégroupeur, la modulation a pour effet d'augmenter les vitesses faibles et de réduire les vitesses élevées, ce qui permit de diminuer la dispersion en vitesse des ions. Un tel appareil est utilisé lorsqu'on désire utiliser des ions monoénergétiques, sans préoccupation particulière sur la largeur du paquet d'ions.
  • Les figures 1 et 2 rappellent, dans leurs grandes lignes, les principes de construction et de fonctionnement de ces deux appareils.
  • Sur la partie (a) de la figure 1 est représentée une structure résonnante constituée par une paroi 2 fermée à ses deux extrémités par des faces latérales 4 et 6 traversées respectivement par des conduits d'entrée 8 et de sortie 10 d'un faisceau d'ions 12. La structure représentée comprend en outre un tube de glissement 14 relié à la paroi 2 par un support conducteur 16. Ce tube de glissement est séparé des conduits 8 et 10 par deux intervalles 1, et 12 identiques, Toutes ces pièces sont conductrices et par exemple métalliques.
  • La partie (b) de cette même figure 1 illustre le schéma électrique de la structure représentée sur la partie (a). Ces deux conduits 8 et 10 sont reliés à la masse (ou plus généralement à un potentiel de référence) et le tube de glissement 14 est porté à une tension alternative V du fait du champ haute fréquence (ou hyper-fréquence) qui règne dans la structure (cette tension V étant comptée à partir dudit potentiel de référence). Les intervalles I1 et I2 présentent chacun une longueur / et leurs centres sont distants de la longueur L. Un même champ électrique moyen V/1 règne donc dans ce deux intervalles.
  • Les schémas de la figure 2 illustrent le fonctionnement du dispositif de la figure 1. Les ions de vitesse moyenne pénètrent dans l'intervalle I1 à l'instant t0 (partie a), la distance z qu'ils parcourent est portée en ordonnées en fonction des temps figurant en abscisse. Ces ions sont soumis (b) à un champ électrique Eo pendant leur traversée de l'intervalle I1, ce champ modifiant légèrement leur vitesse, (cette modification de vitesse est en général faible devant la vitesse proprement dite). Des ions plus rapides que les précédents ont atteint l'intervalle I1 à l'instant t, antérieur à to. Ils sont soumis à un champ E, plus faible que Eo. Inversement, des ions plus lents n'atteignent l'intervalle 1, qu'à l'instant t2>to et ces derniers voient un champ E2 plus intense que Eo. Les grandeurs relatives des champs sont donc telles que les ions les plus lents vont pouvoir rejoindre les ions les plus rapides: c'est le fonctionnement en groupeur.
  • Ce mécanisme suppose évidemment que le champ électrique croisse dans le temps de façon appropriée. En pratique, on n'utilise que rarement la modulation idéale qui serait linéaire, mais plutôt une modulation sinusoïdale ou une somme de modulations sinusoïdales beaucoup plus facile à obtenir, cette modulation n'étant utilisée que sur one partie sensiblement linéaire. Les ions qui pénètrent dans l'intervalle 1, à des périodes où le champ ne présente pas la variation appropriée ne sont évidemment pas regroupés. Mais, pour les autres, on observe un regroupement à une distance z0 de l'intervalle I1.
  • Dans un dégroupeur d'ions, le méchanisme est analogue à cette différence qu'il tend à réduire le déficit en énergie des ions lents et à réduire l'excès d'énergie des ions rapides. Un dégroupeur placé à une distance z reçoit des ions à l'instant to et leur applique un champ Eô. Des ions plus rapides ont atteint l'intervalle d'interaction du dégroupeur à l'instant
    Figure imgb0001
    antérieur à t' 0. Ils sont soumis à un champ E' 1 plus faible que E' 0. Quant aux ions plus lents, qui atteignent le dégroupeur en t' 2, ils voient dans l'intervalle d'interaction un champ E' 2 supérieur à E' 0. A la sortie du dégroupeur, les ions sont animés de vitesses sensiblement égales, mais corrélative- ment, ils occupent une partie étendue de l'espace.
  • Aussi bien dans un groupeur que dans un dégroupeur, les intervalles où les ions subissent l'action du champ électrique doivent être suffisamment courts pour que le temps de transit des ions soit inférieur à la demi-période du champ. Si v est la vitesse des ions et T la période, on doit donc avoir:
    Figure imgb0002
  • A titre explicatif, on peut indiquer que les tensions que l'on recontre habituellement dans les groupeurs de faisceaux d'ions sont définies par deux impératifs: la modulation de vitesse apportée au faisceau doit être faible devant la vitesse dudit faisceau, et la tension d'accélération doit être grande devant les fluctuations naturelles du faisceau. En pratique, on utilise des tensions de l'ordre de quelques dizaines de kilovolts ou moins.
  • Quant aux tensions utlisées dans les dégroupeurs, elles sont de l'ordre de grandeur de la dispersion en énergie du faisceau et peuvent être comprises entre 10 kV et 100 kV environ.
  • Au sujet de ces appareils, on pourra consulter l'article de E. L. Hubbard et al intitulé "Heavy-lon Linear Accelerator" publié dans la revue "The Review of Scientific Instruments", vol. 32, No. 6, juin 1961, page 621, l'article de J. S. Sokolowski et al intitulé "Status Report on Stanford's Superconducting Heavy Ion Linear Project" publié dans la revue "IEEE Transactions on Nuclear Science", vol NS-24, No. 3, juin 1977, page 1141, et enfin l'article de B. Cork intitulé "Proton Linear Accelerator Injector for the Bevatron" et publié dans la revue "The Review of Scientific Instruments" vol. 26, No. 2, février 1955, page 210.
  • Ces généralités ayant été rappelées, il est possible de définir l'invention par rapport l'art antérieur. La structure représentée sur la figure 1 est, parmi les structures connues, celle qui se rapproche le plus de l'invention. On peut considérer qu'elle est formée d'une première partie constituée par le support 16, les faces 4 et 6 et la paroi 2, cette partie étant équivalente à une ligne résonnante en λ/4, si λ est la longueur d'onde du champ électromagnétique introduit dans la structure et d'une seconde partie constituée par les intervalles 1, et 12 qui sont des zones de nature capacitive.
  • L'intérêt d'une telle structure est de présenter un ecombrement faible (inférieur à λ/4) alors que pour les structures à un seul intervalle d'interaction, les dimensions sont de l'ordre de A/2, ce qui devient prohibitif pour des fréquences de travail inférieures à 100 MHz (la demi-longueur d'onde est alors égale à 1,5 m).
  • Cette structure de l'art antérieur nécessite que les actions exercées par le champ électrique sur les ions dans les deux intervalles d'interaction soient cumulatives. Cela implique que les ions parcourent la distance L séparant ces deux intervalles en un temps qui est un multiple impair de la demi-période T du champ. Cette structure de l'art antérieur ne fonctionne donc correctement que si les ions sont animés d'une vitesse voisine de 2L/T (ou d'un multiple de cette vitesse).
  • Cette contrainte imposée à la vitesse des ions est gênante dans la plupart des applications des groupeurs et dégroupeurs. En effet, ces appareils sont utilisés en général dans des installations comprenant, par exemple et successivement, une source d'ions, un injecteur, un premier accélérateur (de type Van de Graaf par exemple), un second accélérateur (de type linéaire par exemple). Or, dans de telles installations, il est fréquent d'avoir à faire varier l'énergie des ions, ce qui revient à modifier leur vitesse, ou de passer d'un type d'ions à un autre à énergie constante, ce qui entraîne encore une modification de leur vitesse.
  • Il n'est donc pas possible d'utiliser les appareils décrits dans tous les cas et ils doivent être modifiés dans leur dimension en fonction des besoins, ce qui est peu commode.
  • Cettes, on connaît des dispositifs à un seul intervalle d'accélération qui ne présentent pas cet inconvénient du fait même de l'unicité de cet intervalle. Mais comme cela a déjà été souligné plus haut, ces dispositifs présentent un inconvénient majeur du fait de leur encombrement qui est d'autant plus grand que la fréquence est basse.
  • L'invention a justement pour objet un groupeur-dégroupeur qui remédie simultanément à ces deux inconvénients. A cette fin, le groupeur-dégroupeur de l'invention est du genre de ceux qui comprennent deux intervalles et, à ce titre, il bénéficie de l'avantage offert par cette famille de dispositifs, à savoir un encombrement faible. Par ailleurs, le groupeur-dégroupeur de l'invention ne présente pas l'inconvénient d'avoir une plage de vitesse étroite et cela grâce à une disposition originale des deux intervalles d'interaction.
  • Le groupeur-dégroupeur de l'invention peut donc fonctionner dans une large gamme de vitesses tout en présentant un faible encombrement.
  • Ce double but est atteint par l'utilisation de deux intervalles qui ne sont plus symétriques, comme dans l'art antérieur, mais au contraire très dissymétriques, l'un d'eux étant le siège d'un champ électrique qui est faible par rapport au champ qui règne dans l'autre. La contribution de cet intervalle dans le processus demodula- tion de vitesse est alors négligeable devant celle de l'autre intervalle. Il en résulte que la condition sur le caractère cumulatif des deux actions exercées par le champ dans les deux intervalles disparaît et avec elle, la contrainte sur le temps de parcours des ions d'un intervalle à l'autre.
  • De façon plus précise, la présente invention a pour objet un groupeur-dégroupeur de faisceau d'ions, du genre de ceus qui comprennent une structure résonnante alimentée par un générateur haute fréquence ou hyper- fréquence, cette structure comportant une paroi cylindrique fermée par deux faces latérales traversées respectivement par un conduit d'entrée et un conduit de sortie du faisceua, et comportant un tube de glissement disposé entre lesdits conduits et définissant avec le conduit d'entrée un premier intervalle et avec le conduit de sortie un second intervalle, le faisceau d'ions étant introduit dans cette structure par le conduit d'entrée, subissant d'abord, dans le premier intervalle, une première action de la part du champ électrique qui y règne, puis parcourant le tube de glissement et subissant enfin dans le second intervalle une seconde action de la part du champ électrique qui y règne et quittant la structure par le conduit de sortie; ce groupeur-dégroupeur est caractérisé en ce que les deux intervalles définis par le tube de glissement et les conduits d'entrée et de sortie sont fortement dissymétriques, l'un des deux intervalles offrant au faisceau d'ions un champ electrique très inférieur à ce qu'offre l'autre intervalle, l'action exercée dans ledit intervalle par le champ électrique sur les ions, étant alors négligeable devant celle qui est exercée dans l'autre intervalle.
  • Selon une première variante, le groupeur-dégroupeur de l'invention est caractérisé en ce que l'intervalle à action faible présente une longueur telle qu'il est parcouru par le faisceau d'ions en un temps grand devant la demi-période de résonance de la structure.
  • Selon une seconde variante, le groupeur-dégroupeur de l'invention est caractérisé en ce que les conduits d'entrée et de sortie ont des sections différentes, le tube de glissement présentant une forme évasée passant d'une section faible égale à celle de l'un des conduits à une section forte égale à celle de l'autre conduit.
  • Selon une troisième variante, les deux dispositions précédentes sont combinées.
  • De toute façon, les caractéristiques et avantages de l'invention apparaîtront mieux après la description qui va suivre, d'exemples de réalisation donnés à titire -explicatif et nullement limitatif. Cette description se réfère à des dessins sur lesquels:
    • - la figure 1 représente une structure résonnante de groupeur-dégroupeur selon l'art antérieur,
    • - la figure 2 est un schéma explicatif du fonctionnement d'un groupeur-dégroupeur,
    • - la figure 3 représente un schéma électrique d'une structure résonnante de groupeur-dégroupeur selon un première variante de l'invention,
    • -la figure 4 représente, en coupe, une structure correspondant à ce schéma,
    • - la figure 5 représente schématiquement une structure résonnante de groupeur-dégroupeur selon une seconde variante de l'invention,
    • - la figure 6 représente schématiquement une structure résonnante du groupeur-dégroupeur selon une troisième variante de l'invention,
    • - la figure 7 représente un mode particulier de réalisation d'un groupeur-dégroupeur conforme à l'invention.
  • Les figures 1 et 2 sont relatives à l'art antérieur et ont déjà été décrites. Sur les autres figures relatives à la présente invention, il est supposé à titre illustratif, que le premier intervalle traversé par le faisceau d'ions est l'intervalle à action prépondérante, le second intervalle intervenant de façon négligeable. Mais il va de soi que cet ordre pourrait être inversé, le faisceau pouvant pénétrer d'abord dans l'intervalle à action négligeable. Par ailleurs, dans la description qui suit, il est question d'un "groupeur", mais il va de soi que les structures décrites peuvent aussi bien fonctionner en dégroupeur.
  • Les figures 3 et 4 tout d'abord illustrent une première variante de l'invention. Sur le schéma de la figure 3, on trouve un conduit d'entrée 20, un tube de glissement 22 et enfin, un tube de sortie 24. Un faisceau d'ions 26 traverse successivement ces trois éléments qui sont portés à des potentiels respectivement égaux à 0, V et O. La structure réelle est représentée sur la figure 4. Elle est alimentée par une source 28, haute fréquence ou hyperfréquence, les moyens de couplage de cette source à la structure résonnante n'étant pas représentés explicitement, car ils sont bien connus de l'homme de l'art.
  • Le conduit d'entrée 20 et le tube de glissement définissent un premier intervalle I1, de longueur 1, qui est le siège d'un champ électrique de valeur moyenne V/I1. La longueur I1 est choisie suffisamment courte pour que le temps de transit des ions soit inférieur à la demi-période T/2 du champ. On a donc:
    Figure imgb0003
    comme dans l'art antérieur.
  • Le tube de glissement 22 et le conduit de sortie 24 définissent un second intervalle 12, de longueur 12 beaucoup plus grande que 1,.
  • Cet écart entre les longueurs I1 et I2 entraîne deux conséquences: la première est que le champ électrique moyen VlI2 qui règne dans le second intervalle est beaucoup plus faible que le champ moyen V/I1 qui règne dans le premier; la seconde est que la longueur 12 n'est plus petite devant
    Figure imgb0004
    comme l'est 11, de sorte que le temps de transit des ions à travers cet intervalle peut atteindre ou même dépasser la période T du champ. Celui-ci change donc de direction au cours de ce transit, de sorte que son' action nette sur les ions est très faible.
  • Ces deux particularités de champ-faiblesse de son intensité et alternance pendant la traversée des ions-contrlbuent à rendre son action négligeable devant celle qui est exercée dans le premier intervalle. Il en résulte que, dans un tel groupeur, la vitesse des ions n'est plus soumise à la condition évoquée plus haut à propos de l'art antérieur et qui porte surf le temps mis par les ions pour passer d'un intervalle à l'autre, l'instant où les ions pénétrent dans l'intervalle 12 devenant en effet indifférent.
  • La figure 5 illustre une seconde variante de l'invention. Le dispositif représenté comprend encore un conduit d'entrée 30, un tube de glissement 32 et un conduit de sortie 34. Mais ce conduit de sortie possède une section plus grande que le conduit d'entrée. Le tube de glissement présente alors une forme évasée qui constitue une transition ' entre les conduits d'entrée et de sortie.
  • Sur la variante représentée, les intervalles I1 et I2 ont même longueur I1=I2. Le champ électrique moyen V/I2 qui règne entre le tube de glissement 32 et le conduit de sortie 34 est donc le même que celui qui règne entre le conduit d'entrée 30 et le tube de glissement 32. Mais il s'agit du champ qui règne dans une zone éloignée de celle qui est traversée par le faisceau d'ions. Le champ qui agit sur les ions est en fait différent de celui qui règne au niveau de conduit de sortie. Si l'on suppose que la structure est de révolution autour de l'axe du faisceau, le champ Eo sur cet axe est relié au champ Eg et au rayon a, par la relation classique:
    Figure imgb0005
    où I0 est la fonction de Bessel modifiée de première espèce et d'ordre 0 et β le rapport de la vitesse v des ions à celle de la lumière et A la longueur d'onde du champ dans le vide. Si l'on désigne par x la quantité
    Figure imgb0006
    le développement en série de I0 est:
    Figure imgb0007
  • Le champ Eo sur l'axe est donc inférieur au champ Ea (lequel est en moyenne égal à V/12) et peut être nettement inférieur à ce champ. Par exemple pour β=0,01, λ=6 m (f=50 MHz) et a=10 cm, on a I0≃28.
  • Dans cette variante, le second intervalle 12 joue donc bien un rôle négligeable devant celui jouf par I1, parce que le champ sur l'axe y est beaucoup plus faible que dans le premier. Ce rôle déjà effacé joué par l'intervalle 12 peut encoure être réduit dans une troisième variante, si cet intervalle est allongé, comme représenté sur la figure 6, jusqu'à présenter une longueur 12 grande devant vT. Alors, comme dans la variante illustrée par les figures 3 et 4, le champ agit selon des directions qui varient pendant la traversée des ions, ce qui réduit son action nette.
  • Il va de soi que les structures qui viennent d'être décrites peuvent être de révolution ou présenter des formes autres, parallélépipédiques par exemple.
  • Il va également de soi qu'on peut adopter pour la cavité résonnante proprement dite, une grande variété de formes. Elle peut être du type à ligne en λ/4 comme sur la figure 4, mais aussi à support en hélice ou en spirale, cette dernière variété étant illustrée sur la figure 7.
  • La structure représentée sur cette figure comprend une cavite 40, des conduits d'entrée 42 et de sortie 44, un tube de glissement 46, un conducteur spiralé 48 formant self-inductance; les espaces compris entre le tube 46 et les conduits 42 et 44 constituent des zones capacitives. Cette disposition permet de diminuer sensiblement l'encombrement de la structure.
  • Dans tous les cas, la cavité peut être accordable par variations de certaines dimensions.

Claims (4)

1. Groupeur-dégroupeur de faisceau d'ions, du genre de ceus qui comprennent une structure résonnante alimentée par un générateur haute-fréquence ou hyper-fréquence, cette structure comportant une paroi cylindrique fermée par deux faces latérales traversées respectivement par un conduit d'entrée et un conduit de sortie du faisceau, et comportant un tube de glissement disposé entre lesdits conduits et définissant avec le conduit d'entrée un premier intervalle et avec le conduit de sortie un second intervalle, le faisceau d'ions étant introduit dans cette structure par le conduit d'entrée, subissant d'abord dans le premier intervalle une première action de la part du champ électrique qui y règne, puis parcourant le tube de glissement et subissant dans le second intervalle, une seconde action de la part du champ électrique qui y règne et quittant la structure par le conduit de sortie, caractérisé en ce que les deux intervalles définis par le tube de glissement et les conduits d'entrée et de sortie sont fortement dissymétriques, l'un des deux intervalles offrant au faisceau d'ions un champ électrique très inférieur à ce qu'offre l'autre intervalle, l'action exercée dans ledit intervalle par le champ électrique sur les ions étant alors négligeable devant celle qui est exercée dans l'autre intervalle.
2. Groupeur-dégroupeur selon la revendication 1, caractérisé en ce que les conduits d'entrée et de sortie ont des sections différentes, le tube de glissement présentant une forme évasée passant d'une section faible égale à celle de l'un des conduits à une section forte égale à celle de l'autre conduit.
3. Groupeur-dégroupeur selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'intervalle à action faible présente une longueur telle qu'il est parcouru par le faisceau d'ions en un temps grand devant la demi-période de résonance de la structure.
4. Groupeur-dégroupeur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la structure est du type en ligne quart d'onde, ou à spirale, ou à hélice, ou à self-inductance localisée.
EP79400855A 1978-11-23 1979-11-13 Groupeur-dégroupeur de faisceaux d'ions à intervalles dissymétriques et fonctionnant dans une large gamme de vitesse Expired EP0012054B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7833103A FR2442505A1 (fr) 1978-11-23 1978-11-23 Groupeur-degroupeur de faisceau d'ions a intervalles dissymetriques et fonctionnant dans une large gamme de vitesse
FR7833103 1978-11-23

Publications (2)

Publication Number Publication Date
EP0012054A1 EP0012054A1 (fr) 1980-06-11
EP0012054B1 true EP0012054B1 (fr) 1982-06-02

Family

ID=9215240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400855A Expired EP0012054B1 (fr) 1978-11-23 1979-11-13 Groupeur-dégroupeur de faisceaux d'ions à intervalles dissymétriques et fonctionnant dans une large gamme de vitesse

Country Status (5)

Country Link
US (1) US4284923A (fr)
EP (1) EP0012054B1 (fr)
JP (1) JPS5574100A (fr)
DE (1) DE2963034D1 (fr)
FR (1) FR2442505A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527413A1 (fr) * 1982-05-19 1983-11-25 Commissariat Energie Atomique Accelerateur lineaire de particules chargees comportant des tubes de glissement
US4641103A (en) * 1984-07-19 1987-02-03 John M. J. Madey Microwave electron gun
DE3430984A1 (de) * 1984-08-23 1986-03-06 Leybold-Heraeus GmbH, 5000 Köln Verfahren und vorrichtung zur registrierung von teilchen oder quanten mit hilfe eines detektors
US6635890B2 (en) * 2001-08-23 2003-10-21 Axcelis Technologies, Inc. Slit double gap buncher and method for improved ion bunching in an ion implantation system
US6583429B2 (en) * 2001-08-23 2003-06-24 Axcelis Technologies, Inc. Method and apparatus for improved ion bunching in an ion implantation system
US8013290B2 (en) * 2006-07-31 2011-09-06 Bruker Daltonik Gmbh Method and apparatus for avoiding undesirable mass dispersion of ions in flight
US7735400B2 (en) * 2007-08-20 2010-06-15 Ho-Tien Chen Torque releasing clutch for a screw driver blade
EP2823694A1 (fr) * 2012-05-31 2015-01-14 Siemens Aktiengesellschaft Procédé et dispositif de groupage en paquets d'un faisceau de particules chargées
RU2554111C1 (ru) * 2014-02-04 2015-06-27 Объединенный Институт Ядерных Исследований Способ аксиальной инжекции пучка в компактный циклотрон со сверхвысоким магнитным полем

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA503447A (fr) * 1954-06-01 Goudet Georges Lampes a vide pour frequences ultra hautes
BE481272A (fr) * 1945-12-17
FR1074994A (fr) * 1953-02-23 1954-10-11 Csf Accélérateur linéaire de structure coaxiale à champs électrique et magnétique croisés
US2770755A (en) * 1954-02-05 1956-11-13 Myron L Good Linear accelerator
US3387171A (en) * 1960-06-10 1968-06-04 Varian Associates Device for modulating beams of charged particles utilizing a long interaction gap
US3366886A (en) * 1965-10-24 1968-01-30 Hugh L. Dryden Linear accelerator frequency control system
SU197037A1 (ru) * 1966-01-06 1973-12-10 Физико-Технический Институт Ан Украинской Сср Ускор юща система линейного ускорител ионов
US3710163A (en) * 1971-02-02 1973-01-09 B Rudiak Method for the acceleration of ions in linear accelerators and a linear accelerator for the realization of this method
SU368673A1 (ru) * 1971-05-20 1973-01-26 Усилительный клистрон
JPS533225B2 (fr) * 1972-04-18 1978-02-04

Also Published As

Publication number Publication date
DE2963034D1 (en) 1982-07-22
EP0012054A1 (fr) 1980-06-11
FR2442505A1 (fr) 1980-06-20
JPS5574100A (en) 1980-06-04
US4284923A (en) 1981-08-18
FR2442505B1 (fr) 1983-06-17

Similar Documents

Publication Publication Date Title
CH623182A5 (fr)
EP0012054B1 (fr) Groupeur-dégroupeur de faisceaux d'ions à intervalles dissymétriques et fonctionnant dans une large gamme de vitesse
EP2732548B1 (fr) Oscillateur spintronique et utilisation de celui-ci dans des dispositifs radiofréquence
EP0094889B1 (fr) Accélérateur linéaire de particules chargées comportant des tubes de glissement
EP0022700A1 (fr) Dispositif à ondes magnétostatiques comportant une structure d'échange à bandes conductrices
EP0467818B1 (fr) Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial
WO2016023919A1 (fr) Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur
EP0078188B1 (fr) Dispositif hyperfréquence à large bande générateur des harmoniques d'ordre pair d'un signal incident, et utilisation d'un tel dispositif dans un système hyperfréquence
EP3293880A1 (fr) Circuit d adaptation pour amplificateur bas bruit et amplificateur bas bruit comprenant un tel circuit
EP0353153A1 (fr) Dispositif d'oscillation et de guidage magnétiques de particules chargées, destiné à l'amplification d'un rayonnement électromagnétique
EP0335788A1 (fr) Circuit déphaseur hyperfréquence
FR2530075A1 (fr) Tube electronique avec interaction transversale du type cyclotron
EP0475802A1 (fr) Klystron à large bande passante instantanée
FR2544128A1 (fr) Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences
EP0762529B1 (fr) Polariseur à iris pour source primaire d'antenne
EP0514255B1 (fr) Source d'ions à résonance cyclotronique électronique
EP0124395A1 (fr) Canon à électrons pour générateurs d'ondes radioélectriques pour hyperfréquences
EP0380397B1 (fr) Modulateur équilibré pour signal électromagnétique hyperfréquence de puissance
FR2576477A1 (fr) Ensemble accelerateur lineaire de particules chargees
EP0572293B1 (fr) Dispositif de compression d'impulsions, notamment en émission hyperfréquence
FR2691287A1 (fr) Nouveau circuit de sortie à interaction étendue pour un klystron relativiste large bande.
FR2727210A1 (fr) Simulateur d'impulsion electromagnetique
EP0921587B1 (fr) Filtre hyperfréquence à flanc superieur raide
BE468766A (fr)
BE507972A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB NL

17P Request for examination filed

Effective date: 19801108

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE GB NL

REF Corresponds to:

Ref document number: 2963034

Country of ref document: DE

Date of ref document: 19820722

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG, BERLIN UND MUENCHEN

Effective date: 19830228

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19840312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891028

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891114

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891130

Year of fee payment: 11

Ref country code: GB

Payment date: 19891130

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19901130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910801