EP0013242B1 - Générateur d'ondes radioélectriques pour hyperfréquence - Google Patents

Générateur d'ondes radioélectriques pour hyperfréquence Download PDF

Info

Publication number
EP0013242B1
EP0013242B1 EP79401065A EP79401065A EP0013242B1 EP 0013242 B1 EP0013242 B1 EP 0013242B1 EP 79401065 A EP79401065 A EP 79401065A EP 79401065 A EP79401065 A EP 79401065A EP 0013242 B1 EP0013242 B1 EP 0013242B1
Authority
EP
European Patent Office
Prior art keywords
frequency
resonant
coupled
axis
radioelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79401065A
Other languages
German (de)
English (en)
Other versions
EP0013242A1 (fr
Inventor
Georges Mourier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0013242A1 publication Critical patent/EP0013242A1/fr
Application granted granted Critical
Publication of EP0013242B1 publication Critical patent/EP0013242B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path

Definitions

  • the invention relates to a radio wave generator for the microwave domain. It relates more particularly to a generator operating at the top of this field, namely over a few tens of gigahertz, that is to say in millimeter and submillimetric waves.
  • the electrons are produced by a device which imparts to them a speed component directed transversely to this axis.
  • This device is generally an electron gun whose cathode has the shape of a ring and produces a hollow cylindrical beam.
  • the high frequency electric field it consists of the electric component of the electromagnetic field prevailing inside resonant volumes placed on the beam path, all along it, and coupled to the latter.
  • the electrons progress along the axis on spiral trajectories and are able on the last part of their path to give up radioelectric energy on the frequency of the electromagnetic field or on a multiple of this thanks to to the high frequency alternating components formed within the beam in the first part of the path.
  • the radioelectric energy produced on this frequency is collected in one or more charges coupled to the last resonant volume.
  • the subject of the invention is a millimeter wave generator of the type to which reference has been made above, using a longitudinal magnetic field and a high frequency electric field, the lines of force of which are arranged transversely to it, to reduce the difficulties reported.
  • the generator of the invention is divided into two successive sections along the axis.
  • the first that by which between the beam, the resonant volumes have a resonant frequency equal to the cyclotronic frequency of the electrons in the magnetic field B.
  • these volumes are fed at high frequency, by a wave at the cyclotronic frequency f e .
  • the second section which resonates at a multiple or harmonic frequency nf e of the latter (n being the rank of the harmonic), energy is taken.
  • the generator of the invention therefore appears as a system with two sections, one, accelerating, in which a high frequency field on the frequency f e communicates energy to the electrons, and the other, collector, in which is taken some of the energy from these electrons.
  • the device of the invention is, in other words, like a generator on the frequency nf c in which a low frequency accelerator f e has been incorporated.
  • the advantage of transferring energy to the electron beam at this low frequency lies in the fact that these transfers generally have a higher efficiency at low frequency.
  • the applied magnetic field has an intensity corresponding to the cyclotronic frequency f e and, as a result, is also reduced compared to that which the frequency nf c would require.
  • the resonant volumes of the two sections can, in the context of the invention, be integral parts of a single resonant enclosure.
  • the single resonant volume is chosen so as to present space harmonics of large amplitude on the desired operating frequency.
  • a resonant volume is used, for example, a waveguide of the type known at microwave, resonating on the cyclotron frequency, and the cross section of which has been deformed so as to favor the presence of these harmonics in the configuration. of the electromagnetic field that prevails there.
  • Such a guide is therefore of the type of one of those used in microwave; it has a regular section whose dimensions are large relative to the wavelength of the wave to be generated. It allows the use of a cylindrical beam easy to produce, propagating along its axis, along and in the vicinity of which, given the dimensions of the guide, it should be noted that the fields are of small amplitude.
  • Figure 1 (a, b, c,) shows some of the forces with high amplitude space harmonics on the frequency nf e in the case of a circular guide: the lines with the arrows represent the lines of force of the electric field with a high value component on harmonics 3 and 5 in TE 1Q mode.
  • the beam propagates in this guide, under the action of a high continuous voltage applied between the cathode by which it is produced and an anode placed in front.
  • this high voltage provides it with part of its energy, longitudinal, the other, transverse, being supplied to it by the high frequency electric field prevailing in the waveguide in which it propagates.
  • a guide which is itself at the voltage of this anode, with which it forms an equipotential space into which the beam is introduced by various means known in the art, and which will not be mentioned. He describes there, in the operating conditions, a spiral trajectory whose radius increases as the beam progresses and it acquires energy.
  • This trajectory follows a generally conical surface, of revolution around the axis of the system, the direction of which coincides with that of the magnetic field. It can be likened to a series of successive circular turns, whose radius increases, roughly, linearly as a function of the abscissa on the axis, and each described in a time equal to the cyclotronic period in field B.
  • This trajectory must remain entirely within the waveguide.
  • the guide used to be able to operate at the cyclotron pulsation ⁇ c that is to say the value of this radius corresponding to the cut-off at this frequency, and the radius r of the trajectory of the electrons at their maximum energy.
  • the ratio 2 ⁇ r / ⁇ o is equal to 1.238, while that corresponding to the radius a, that is to say 2 ⁇ a / ⁇ o is 1.841.
  • the radius of the guide is therefore much larger than the maximum radius of the path.
  • the guide is then deformed to obtain the space harmonics on the pulsation n ⁇ c in it.
  • the wave generator of this variant of the invention is presented according to the general diagram of FIG. 2.
  • An electron beam 1 is directed along the axis XX of a waveguide 20 whose section 2, circular in the example presents the two extensions, of rectangular section, 3 and 4, diametrically opposite. These lateral volumes preferentially guide a harmonic of the frequency of the guide in TE 10 mode; the field lines of the electrical component on the mode in question are represented by the arrows.
  • a magnetic field B (arrow) is directed longitudinally along the axis XX of the guide.
  • An oscillator excites the guide at the pulsation ⁇ c , equal to the cyclotronic pulsation of the beam electrons in the magnetic field B.
  • This oscillator is coupled to the guide by the antenna 5, which has been shown diagrammatically by its loop.
  • a second antenna, shown diagrammatically at 6, makes it possible to collect the power generated in the guide at the frequency n ⁇ c .
  • the beginning of the path of the beam 1 has been shown within the limits of the drawing, showing the first turns thereof; antenna 6, placed at the level of the last of them, should be placed further away, as will be seen in a numerical example.
  • the electron beam is produced by a gun which comprises a cathode 10, circular, a Pierce electrode 12, and an anode 14 accelerating the beam.
  • the electrons yield high frequency energy to a load 8 coupled to the output antenna 6.
  • the energy which they receive in continuous and high frequency form places them in relativistic conditions, that is to say ie such that their variation in mass following the increase in their energy in the accelerating section causes a variation in their phase with respect to the electromagnetic field; at these speeds it is found that the moving electron is capable of yielding energy to a high frequency electromagnetic field.
  • This is so for values of the pulsation, or angular velocity, ⁇ s , of the electrons included in a certain range around the pulsation of the electromagnetic field with which they are interacting. This can lead, in the generators of the invention, to using a magnetic field whose intensity varies with the abscissa along the axis XX.
  • the generator of the invention appears as a high power frequency multiplier.
  • a first example concerns the pulse operation of the generator of the invention. This is presented as shown in FIG. 2.
  • the cylindrical waveguide has in its central part a radius of approximately 5 mm and two diametrically opposite, rectangular, and proportional extensions as in the example of this figure.
  • An ordinary type gun provides a beam of 1 amp, accelerated under 10 kilovolts by the anode 14.
  • the oscillator is a magnetron operating in pulses at the frequency of 1 6 gigahertz; it excites the guide with a power of 60 kilowatts, in which a field is established whose lines of force in TE 10 mode are those of the arrows in solid line.
  • the value of the magnetic field is 0.6 tesla; the electron beam describes, under these conditions, around the axis XX of the system, a spiral located on a generally conical surface, widening in the direction of propagation. It is modulated along its trajectory, and the modulated current has components at frequencies nx 16 gigahertz.
  • the lateral extensions preferentially guide one of these frequencies, the frequency of 80 GHz in particular, in the same mode as the fundamental frequency.
  • the maximum energy it reaches is 60 kilovolts after 10 periods.
  • the guide length required is approximately 4 centimeters, which corresponds to a consumed power of 3 kw for a guide having an overvoltage of 800, or 5% of the power communicated to the electrons.
  • Bundles are created within the cylindrical electron beam whose diameter is 1.2 mm, while the radius of their orbit is 1.35 mm.
  • the harmonic current component 5 is, without other focusing means, of about 0.21 l 0 , la being the beam current.
  • the output power is 300 kW.
  • the other two examples relate to continuous operation of the generator of the invention.
  • the oscillator used at high frequency excitation is here a klystron operating at 10 GHz.
  • a klystron operating at 10 GHz In the table below are given the characteristics corresponding to two different levels of excitation.
  • the structure of the generator can be that of FIG. 2, using a single resonant volume, the waveguide, for the excitation frequency and its harmonic.
  • the electron beam passes into the first resonant volume, or cavity, 40, supplied at high frequency by a klystron, and the energy is drawn from the harmonic frequency in a second cavity 60 , separated from the first, 40, by an adaptation device 70.
  • the beam is produced by the accelerator 80.
  • adaptation section represented at 70 in FIG. 3, could include a device for injecting a signal to be amplified at frequency nCùe 'In this case, it would include a resonant element coupled to the device for injecting the signal.
  • the generator of the invention can also be produced with a flat beam, having a rectangular section, and a waveguide whose section has the same shape, and whose width can reach up to 1.5 times the length d xo wave.
  • the beam is thin and wide and allows high applied powers.
  • the beam can be supplied by a cathode and accelerated by an anode at the entrance to the microwave part, as in the example in FIG. 2. It can also be produced in a separate installation, before it enters the guide. waves or in the cavities of the generator, that is to say in the microwave part; such an installation is for example a betatron, a storage ring etc. (figure 3).
  • the generator of the invention has the same applications as the generators of the prior art for millimeter waves, namely measurement in plasma installations, radar transmission, telecommunications, etc.

Landscapes

  • Particle Accelerators (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Microwave Tubes (AREA)

Description

  • L'invention concerne un générateur d'ondes radioélectriques pour le domaine des hyperfréquences. Elle concerne plus particulièrement un générateur fonctionnant dans le haut de ce domaine, à savoir sur quelques dizaines de gigahertz, c'est-à-dire en ondes millimétriques et submillimétriques.
  • On connaît d'après l'art antérieur divers types de tubes électroniques destinés à cet usage et, notamment, ceux dans lesquels le faisceau d'électrons progresse le long d'un axe le long duquel il est soumis à l'action d'un champ magnétique uniforme, constant dans le temps, dirigé suivant cet axe, et à celle d'un champ électrique de haute fréquence dirigé transversalement au précédent et dont la fréquence est égale à la fréquence cyclotronique des électrons dans le champ magnétique en question.
  • Dans les tubes de ce type, les électrons sont produits par un dispositif qui leur imprime une composante de vitesse dirigée transversalement à cet axe. Ce dispositif est généralement un canon à électrons dont la cathode a la forme d'un anneau et produit un faisceau cylindrique creux.
  • Quant au champ électrique de haute fréquence, il consiste dans la composante électrique du champ électromagnétique régnant à l'intérieur de volumes résonnants placés sur le trajet du faisceau, tout le long de celui-ci, et couplés à ce dernier.
  • Dans ces conditions, les électrons progressent le long de l'axe sur des trajectoires en spirale et sont capables sur la dernière partie de leur trajet de céder de l'énergie radioélectrique sur la fréquence du champ électromagnétique ou sur un multiple de celle-ci grâce aux composantes alternatives de haute fréquence formées au sein du faisceau dans la première partie du trajet. L'énergie radioélectrique produite sur cette fréquence est recueillie dans une ou plusieurs charges couplées au dernier volume résonant.
  • Dans les tubes de ce type de l'art antérieur, l'énergie est fournie aux électrons exclusivement par la source continue qui les accélère ; aucune autre source d'énergie n'est présente dans le système.
  • Ce type du tube a fait l'objet ces dernières années de développements sur lesquels on trouvera des informations dans la communication de V. A. FLYAGIN, A. V. GAPONOV, M. I. PETELIN, V. K. JULPATOV « The Gyrotron » Second International Conference and Winter School on Submillimeter Waves and their Applications Dec. 6-11, 1976 - Puerto-Rico.
  • Ces tubes se caractérisent donc par des valeurs élevées de la tension continue d'accélération appliquée au faisceau pour lui conférer le haut niveau d'énergie désiré. Ils se caractérisent aussi par des champs magnétiques de grande intensité. On sait que l'intensité du champ magnétique B et la fréquence cyclotronique fcc = 2πfc) sont deux grandeurs proportionnelles : We = eB/-mo, e et mo représentant respectivement la charge et la masse de l'électron au repos.
  • Or, l'application de tensions continues élevées se heurte à des difficultés d'isolement dans le cas de ces longueurs d'ondes où les circuits sont de très petites dimensions. Quant à l'application des champs magnétiques nécessaires, elle conduit généralement, si l'on veut pouvoir atteindre les valeurs nécessaires, qui dépassent celles maximales réalisables dans les conditions normales, à utiliser des circuits supraconducteurs, dont on sait que la réalisation et la mise en oeuvre sont difficiles.
  • L'invention a pour objet un générateur d'ondes millimétriques du type de ceux auxquels il a été fait référence ci-dessus, utilisant un champ magnétique longitudinal et un champ électrique haute fréquence dont les lignes de force sont disposées transversalement à celui-ci, permettant de réduire les difficultés signalées.
  • Dans ce but, le générateur de l'invention est divisé en deux sections se succédant le long de l'axe. Dans la première, celle par où entre le faisceau, les volumes résonnants ont une fréquence de résonance égale à la fréquence cyclotronique des électrons dans le champ magnétique B. De plus, ces volumes sont alimentés en haute fréquence, par une onde à la fréquence cyclotronique fe. Dans la deuxième section, qui résonne à une fréquence multiple ou harmonique nfe de cette dernière (n étant le rang de l'harmonique), a lieu le prélèvement d'énergie. Par cette disposition, une part de leur énergie est communiquée aux électrons par le champ électrique haute fréquence régnant dans la première section. Il est ainsi possible, toutes choses étant égales par ailleurs, de réduire la tension continue appliquée au faisceau et de réduire les difficultés résultant de cette application.
  • Le générateur de l'invention apparaît donc comme un système à deux sections, l'une, accélératrice, dans laquelle un champ haute fréquence sur la fréquence fe communique de l'énergie aux électrons, et l'autre, collectrice, dans laquelle est prélevée une part de l'énergie de ces électrons. Le dispositif de l'invention se présente, en d'autres termes, comme un générateur sur la fréquence nfc auquel a été incorporé un accélérateur à basse fréquence fe. L'intérêt du transfert d'énergie au faisceau d'électrons sur cette fréquence basse réside dans le fait que ces transferts présentent en général un rendement plus élevé à basse fréquence.
  • Le champ magnétique appliqué a une intensité correspondant à la fréquence cyclotronique fe et, de ce fait, se trouve lui aussi réduit par rapport à celui que nécessiterait la fréquence nfc.
  • Enfin, il n'est plus nécessaire dans les générateurs de l'invention de prévoir, comme dans l'art antérieur, une disposition du canon à électrons permettant de conférer aux électrons une vitesse transversale, à savoir, comme il a été dit, un canon à cathode en anneau. Cette vitesse transversale leur est conférée, dans le générateur de l'invention, par le champ haute fréquence régnant dans la première section.
  • Ces possibilités constituent des avantages de l'invention par rapport à l'art antérieur.
  • Comme on le verra, les volumes résonnants des deux sections peuvent, dans le cadre de l'invention, être parties intégrantes d'une seule et même enceinte résonnante.
  • L'invention sera mieux comprise à la lecture de la description qui suit et des figures jointes qui représentent :
    • figure 1 des exemples de sections de guides d'ondes utilisées dans les générateurs de l'invention
    • figure 2 une vue générale schématique d'un générateur de l'invention ;
    • figure 3 un schéma d'une autre variante du générateur de l'invention.
  • Il apparaît que dans les générateurs de ce type, utilisant un champ magnétique et un champ électrique de haute fréquence croisés, le fonctionnement est effectivement possible sur un harmonique de la fréquence cyclotronique des particules, de pulsation ωc, suivant les notations précédentes. Pour que ce fonctionnement présente une efficacité suffisante, il est cependant nécessaire que le champ haute fréquence présente, comme on l'a dit, une grande amplitude sur l'harmonique en question.
  • Dans une variante de l'invention, le volume résonnant unique est choisi de façon à présenter des harmoniques d'espace de grande amplitude sur la fréquence de fonctionnement désirée. A cette fin, on utilise, par exemple, comme volume résonnant, un guide d'ondes du type connu en hyperfréquence, résonnant sur la fréquence cyclotronique, et dont la section a été déformée de façon à favoriser la présence de ces harmoniques dans la configuration du champ électromagnétique qui y règne.
  • Un tel guide est donc du type de l'un de ceux utilisés en hyperfréquence ; il présente une section régulière dont les dimensions sont grandes par rapport à la longueur d'onde de l'onde à engendrer. Il permet l'utilisation d'un faisceau cylindrique facile à produire, se propageant suivant son axe, le long et au voisinage duquel, vu les dimensions du guide, il faut bien remarquer que les champs sont de petite amplitude.
  • Mais grâce aux déformations de cette section du guide utilisé dans l'invention, il est possible de localiser les lignes de force des harmoniques d'espace de manière que leur amplitude dans la région du faisceau présente une valeur suffisante pour une interaction efficace entre le faisceau d'électrons et ces harmoniques.
  • On donne ci-dessous un exemple de ces déformations dans le cas de guides originellement circulaires. Cet exemple est donné à titre non limitatif, pour fixer les idées, étant entendu que d'autres formes de guides et notamment les guides à section rectangulaire, offriraient des possibilités analogues.
  • La figure 1 (a, b, c,) montre certaines des forces présentant des harmoniques d'espace d'amplitude élevée sur la fréquence nfe dans le cas d'un guide circulaire : les lignes avec les flèches représentent les lignes de force du champ électrique comportant une composante de valeur élevée sur les harmoniques 3 et 5 dans le mode TE1Q.
  • Le faisceau se propage dans ce guide, sous l'action d'une haute tension continue appliquée entre la cathode par laquelle il est produit et une anode placée devant. Comme on l'a dit, cette haute tension lui fournit une partie de son énergie, longitudinale, l'autre, transversale, lui étant fournie par le champ électrique de haute fréquence régnant dans le guide d'ondes dans lequel il se propage au-delà de cette anode, guide qui est lui-même à la tension de cette anode, avec laquelle il forme un espace équipotentiel dans lequel le faisceau est introduit par divers moyens connus de la technique, et qui ne seront pas mentionnés. Il y décrit, dans les conditions de fonctionnement, une trajectoire en spirale dont le rayon va en grandissant au fur et à mesure que le faisceau progresse et qu'il acquiert de l'énergie. Cette trajectoire suit une surface de forme générale conique, de révolution autour de l'axe du système, dont la direction est confondue avec celle du champ magnétique. Elle peut être assimilée à une série de spires circulaires successives, dont le rayon croît, en gros, linéairement en fonction de l'abscisse sur l'axe, et décrites chacune en un temps égal à la période cyclotronique dans le champ B.
  • Cette trajectoire doit demeurer tout entière à l'intérieur du guide d'ondes.
  • On a comparé ci-dessous le rayon a minimum que doit présenter, sur le mode TE1Q, le guide utilisé pour pouvoir fonctionner à la pulsation cyclotronique ωc, c'est-à-dire la valeur de ce rayon correspondant à la coupure à cette fréquence, et le rayon r de la trajectoire des électrons à leur énergie maximale.
  • On a admis, dans cette évaluation, que toute l'énergie des électrons leur est conférée par le champ électrique haute fréquence, ce qui est une hypothèse idéale faite dans le seul but de permettre cette évaluation ; on a supposé en outre une énergie transmise aux électrons par le champ haute fréquence de 50 keV au-dessus de leur énergie au repos, c'est-à-dire un accroissement d'un dixième environ de cette dernière. On a dans ces conditions 1 + W/Wo = (1―2/t)‾½, Wo représentant l'énergie de l'électron au repos et W son gain d'énergie sur sa trajectoire ; t représente le facteur relativiste, égal au rapport vt/c de la vitesse, ici entièrement transversale, de l'électron, à celle de la lumière. On a vt/c = ωc r/c.
  • On a rapporté ces rayons a et r à la longueur d'onde λo correspondant à cet harmonique.
  • A titre d'exemple pour n = 3, le rapport 2π r/λo est égal à 1,238, alors que celui correspondant au rayon a, c'est-à-dire 2π a/λo vaut 1,841.
  • Le rayon du guide est donc largement plus grand que le rayon maximal de la trajectoire. Le guide est ensuite déformé pour obtenir les harmoniques d'espace sur la pulsation nωc dans celui-ci.
  • Le générateur d'ondes de cette variante de l'invention se présente suivant le schéma général de la figure 2.
  • Un faisceau d'électrons 1 est dirigé suivant l'axe XX d'un guide d'ondes 20 dont la section 2, circulaire dans l'exemple présente les deux prolongements, de section rectangulaire, 3 et 4, diamétralement opposés. Ces volumes latéraux guident préférentiellement un harmonique de la fréquence du guide sur le mode TE10 ; les lignes de champ de la composante électrique sur le mode en question sont représentées par les flèches.
  • Un champ magnétique B (flèche) est dirigé longitudinalement suivant l'axe XX du guide. Un oscillateur excite le guide à la pulsation ωc, égale à la pulsation cyclotronique des électrons du faisceau dans le champ magnétique B. Cet oscillateur est couplé au guide par l'antenne 5, que l'on a schématisée par sa boucle. Une seconde antenne, représentée schématiquement en 6, permet de recueillir la puissance engendrée dans le guide à la fréquence nωc. Sur la figure, on a représenté le début de la trajectoire du faisceau 1 dans les limites du dessin, montrant les premières spires de celle-ci ; l'antenne 6, placée au niveau de la dernière d'entre elles, devrait se trouver placée plus loin, comme on le verra sur un exemple numérique. Dans l'exemple, le faisceau d'électrons est produit par un canon qui comprend une cathode 10, circulaire, une électrode de Pierce 12, et une anode 14 accélérant le faisceau.
  • Dans ces conditions, les électrons cèdent de l'énergie haute fréquence à une charge 8 couplée à l'antenne de sortie 6. L'énergie qu'ils recoivent sous forme continue et haute fréquence les place dans des conditions relativistes, c'est-à-dire telles que leur variation de masse consécutive à l'augmentation de leur énergie dans la section accélératrice entraîne une variation de leur phase par rapport au champ électromagnétique ; à ces vitesses on constate que l'électron en mouvement est capable de céder de l'énergie à un champ électromagnétique haute fréquence. Il en est ainsi pour des valeurs de la pulsation, ou vitesse angulaire, ωs, des électrons comprises dans une certaine plage autour de la pulsation du champ électromagnétique avec lequel ils sont en interaction. Ceci peut conduire, dans les générateurs de l'invention, à utiliser un champ magnétique dont l'intensité varie avec l'abscisse le long de l'axe XX.
  • Le générateur de l'invention apparaît comme un multiplicateur de fréquence de haute puissance.
  • Ceci amène à souligner, pour être rigoureux, qu'il n'y a pas exactement multiplication de la pulsation cyclotronique ωc par le facteur n précédent, mais multiplication par un facteur légèrement différent de n, du fait que la condition ωs = nωc n'est pas rigoureusement remplie.
  • Ci-dessous sont donnés trois exemples de caractéristiques de fonctionnement du dispositif de l'invention.
  • Un premier exemple concerne le fonctionnement en impulsions du générateur de l'invention. Celui-ci se présente comme montré sur la figure 2. Le guide d'ondes cylindrique présente dans sa partie centrale un rayon de 5 mm environ et deux extensions diamétralement opposées, rectangulaires, et proportionnées comme dans l'exemple de cette figure. Un canon de type ordinaire fournit un faisceau de 1 ampère, accéléré sous 10 kilovolts par l'anode 14.
  • L'oscillateur est un magnétron fonctionnant en impulsions à la fréquence de 16 gigahertz ; il excite le guide avec une puissance de 60 kilowatts, dans lequel s'établit un champ dont les lignes de force sur le mode TE10 sont celles des flèches en trait plein. La valeur du champ magnétique est de 0,6 tesla ; le faisceau d'électrons décrit, dans ces conditions, autour de l'axe XX du système, une spirale située sur une surface de forme généralement conique, s'évasant dans la direction de propagation. Il est modulé le long de sa trajectoire, et le courant modulé présente des composantes aux fréquences n x 16 gigahertz. Les extensions latérales guident préférentiellement l'une de ces fréquences, la fréquence de 80 GHz notamment, sur le même mode que la fréquence fondamentale. L'énergie maximale qu'il atteint est de 60 kilovolts au bout de 10 périodes. A 16 GHz, la longueur de guide nécessaire est de 4 centimètres environ, ce qui correspond à une puissance consommée de 3 kw pour un guide présentant une surtension de 800, soit 5% de la puissance communiquée aux électrons. Des paquets sont créés au sein du faisceau d'électrons cylindrique dont le diamètre est de 1,2 mm, alors que le rayon de leur orbite est de 1,35 mm. La composante de courant à l'harmonique 5 est, sans autre moyen de focalisation, d'environ 0,21 lo, la étant le courant du faisceau. La puissance de sortie est de 300 kw.
  • Les deux autres exemples concernent un fonctionnement en continu du générateur de l'invention. L'oscillateur utilisé à l'excitation haute fréquence est ici un klystron fonctionnant à 10 GHz. Dans le tableau ci-dessous sont données les caractéristiques correspondant à deux niveaux d'excitation différents.
    Figure imgb0001
  • Comme dans l'exemple précédent, la structure du générateur peut être celle de la figure 2, utilisant un seul et même volume résonnant, le guide d'ondes, pour la fréquence d'excitation et son harmonique.
  • Mais il est possible aussi d'utiliser deux cavités successives alignées le long du champ magnétique, pour l'excitation puis pour le prélèvement d'énergie sur l'harmonique, ces cavités fonctionnant sur le mode TM1O' moyennant un raccordement adapté, entre les deux cavités.
  • Ce cas est représenté schématiquement sur la figure 3.
  • Dans l'exemple de cette figure, le faisceau d'électrons passe dans le premier volume résonnant, ou cavité, 40, alimenté en haute fréquence par un klystron, et le prélèvement d'énergie sur la fréquence harmonique se fait dans une seconde cavité 60, séparée de la première, 40, par un dispositif d'adaptation 70. Le faisceau est produit par l'accélérateur 80.
  • On notera que la section d'adaptation, représentée en 70 sur la figure 3, pourrait comporter un dispositif d'injection d'un signal à amplifier de fréquence nCùe' Dans ce cas, elle comporterait un élément résonnant couplé au dispositif d'injection du signal.
  • On a décrit dans ce qui précède une structure du générateur de l'invention à guide d'ondes cylindriques utilisant un faisceau d'électrons également cylindrique. Le générateur de l'invention peut aussi être réalisé avec un faisceau plat, présentant une section rectangulaire, et un guide d'ondes dont la section à la même forme, et dont la largeur peut atteindre jusqu'à 1,5 fois la longueur d'onde xo. Dans ce cas, le faisceau est mince et large et permet des puissances appliquées élevées.
  • Enfin, le faisceau peut être fourni par une cathode et accéléré par une anode à l'entrée de la partie hyperfréquence, comme dans l'exemple de la figure 2. Il peut aussi être produit dans une installation séparée, avant son entrée dans le guide d'ondes ou dans les cavités du générateur, c'est-à-dire dans la partie hyperfréquence ; une telle installation est par exemple un bétatron, un anneau de stockage etc. (figure 3).
  • Le générateur de l'invention a les mêmes applications que les générateurs de l'art antérieur pour ondes millimétriques, à savoir la mesure dans les installations de plasma, l'émission radar, les télécommunications, etc.

Claims (5)

1. Générateur d'ondes radioélectriques pour hyperfréquence utilisant un faisceau d'électrons se propageant suivant un axe, soumis à un champ magnétique dirigé suivant cet axe et au champ électromagnétique de volumes résonnants disposés le long de cet axe caractérisé en ce qu'il comprend, couplées à ces volumes résonnants, une source d'ondes à une fréquence égale à la fréquence cyclotronique fe des électrons du faisceau dans le champ magnétique, et une charge dans laquelle est prélevée une énergie sur une fréquence voisine d'un multiple nfc de cette fréquence cyclotronique.
2. Générateur d'ondes radioélectriques suivant la revendication 1, caractérisé en ce que ces volumes résonnants consistent en un guide cylindrique unique dont la section est déformée de façon à présenter deux extensions, de section rectangulaire, diamétralement opposées, et couplé à la source à l'une de ses extrémités et à la charge à l'autre.
3. Générateur d'ondes radioélectriques suivant la revendication 1, caractérisé en ce que les volumes résonnants consistent en deux enceintes résonnantes séparées, traversées successivement par le faisceau d'électrons, la première, couplée à la source, résonnant sur la fréquence cyclotronique, et la seconde, couplée à la charge, résonnant sur la fréquence voisine en question.
4. Générateur d'ondes radioélectriques suivant la revendication 1, caractérisé en ce que les volumes résonnants consistent en trois enceintes résonnantes séparées, traversées successivement par le faisceau d'électrons, la première, couplée à la source, résonnant sur la fréquence cyclotronique, la troisième, couplée à la charge, résonnant sur la fréquence voisine en question, et la seconde, couplée à un générateur d'un signal radioélectrique à amplifier, sur la fréquence voisine en question.
5. Générateur d'ondes radioélectriques suivant la revendication 1, caractérisé en ce que le champ magnétique a une valeur qui varie le long de l'axe de propagation.
EP79401065A 1978-12-29 1979-12-21 Générateur d'ondes radioélectriques pour hyperfréquence Expired EP0013242B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7836960 1978-12-29
FR7836960A FR2445611A1 (fr) 1978-12-29 1978-12-29 Generateur d'ondes radioelectriques pour hyperfrequence

Publications (2)

Publication Number Publication Date
EP0013242A1 EP0013242A1 (fr) 1980-07-09
EP0013242B1 true EP0013242B1 (fr) 1982-12-15

Family

ID=9216756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79401065A Expired EP0013242B1 (fr) 1978-12-29 1979-12-21 Générateur d'ondes radioélectriques pour hyperfréquence

Country Status (5)

Country Link
US (1) US4306174A (fr)
EP (1) EP0013242B1 (fr)
JP (1) JPS5593638A (fr)
DE (1) DE2964334D1 (fr)
FR (1) FR2445611A1 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528626A2 (fr) * 1978-12-29 1983-12-16 Thomson Csf Generateur d'ondes radioelectriques pour hyperfrequence
US4362968A (en) * 1980-06-24 1982-12-07 The United States Of America As Represented By The Secretary Of The Navy Slow-wave wideband cyclotron amplifier
FR2491256A1 (fr) * 1980-09-26 1982-04-02 Thomson Csf Accelerateur d'electrons et generateur d'ondes millimetriques et infra-millimetriques comportant un tel accelerateur
FR2520552A2 (fr) * 1982-01-22 1983-07-29 Thomson Csf Generateur d'ondes radioelectriques pour hyperfrequence
FR2542928B1 (fr) * 1983-03-18 1985-10-04 Thomson Csf Transformateur de modes de propagation hyperfrequence
US4550271A (en) * 1983-06-23 1985-10-29 The United States Of America As Represented By The Secretary Of The Navy Gyromagnetron amplifier
FR2625836B1 (fr) * 1988-01-13 1996-01-26 Thomson Csf Collecteur d'electrons pour tube electronique
FR2672730B1 (fr) * 1991-02-12 1993-04-23 Thomson Tubes Electroniques Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfrequence et tube hyperfrequence comprenant un tel dispositif.
US20050203578A1 (en) * 2001-08-15 2005-09-15 Weiner Michael L. Process and apparatus for treating biological organisms
DE102004046366A1 (de) * 2004-07-15 2006-02-09 Levin, Felix, Dr. Universell einsetzbare Testvorrichtung zur schnellen Analysen von Flüssigkeiten
CN104487864B (zh) 2012-08-27 2017-06-23 伊莱克斯公司 机器人定位系统
KR20150141979A (ko) 2013-04-15 2015-12-21 악티에볼라겟 엘렉트로룩스 돌출 측부 브러시를 구비하는 로봇 진공 청소기
JP6217952B2 (ja) 2013-04-15 2017-10-25 アクティエボラゲット エレクトロラックス ロボット真空掃除機
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
KR102393550B1 (ko) 2013-12-19 2022-05-04 에이비 엘렉트로룩스 청소 영역의 우선순위를 정하는 방법
KR102116596B1 (ko) 2013-12-19 2020-05-28 에이비 엘렉트로룩스 나선형 패턴으로 이동하는 사이드 브러시를 구비한 로봇 진공 청소기
CN105813528B (zh) 2013-12-19 2019-05-07 伊莱克斯公司 机器人清洁设备的障碍物感测爬行
CN105744872B (zh) 2013-12-19 2020-01-14 伊莱克斯公司 旋转侧刷的自适应速度控制
EP3084540B1 (fr) 2013-12-19 2021-04-14 Aktiebolaget Electrolux Robot de nettoyage et methode d'exploitation associee
CN105848545B (zh) 2013-12-20 2019-02-19 伊莱克斯公司 灰尘容器
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
WO2016037636A1 (fr) 2014-09-08 2016-03-17 Aktiebolaget Electrolux Aspirateur robotisé
JP6443897B2 (ja) 2014-09-08 2018-12-26 アクチエボラゲット エレクトロルックス ロボット真空掃除機
CN106998980B (zh) 2014-12-10 2021-12-17 伊莱克斯公司 使用激光传感器检测地板类型
EP3229983B1 (fr) 2014-12-12 2019-02-20 Aktiebolaget Electrolux Brosse latérale et appareil de nettoyage robotique
CN106998984B (zh) 2014-12-16 2021-07-27 伊莱克斯公司 用于机器人清洁设备的清洁方法
WO2016095965A2 (fr) 2014-12-16 2016-06-23 Aktiebolaget Electrolux Feuille de route basée sur l'expérience pour un dispositif de nettoyage robotisé
WO2016165772A1 (fr) 2015-04-17 2016-10-20 Aktiebolaget Electrolux Dispositif de nettoyage robotique et procédé de commande de dispositif de nettoyage robotique
KR102445064B1 (ko) 2015-09-03 2022-09-19 에이비 엘렉트로룩스 로봇 청소 장치의 시스템
KR102588486B1 (ko) 2016-03-15 2023-10-11 에이비 엘렉트로룩스 로봇 청소 장치 및 로봇 청소 장치에서의 절벽 검출 실시 방법
CN109068908B (zh) 2016-05-11 2021-05-11 伊莱克斯公司 机器人清洁设备
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
JP6989210B2 (ja) 2017-09-26 2022-01-05 アクチエボラゲット エレクトロルックス ロボット清掃デバイスの移動の制御

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR672E (fr) * 1902-04-02 1903-02-25 Henn Junior Wilhelm Dispositif pour nettoyage de bicyclettes
US2305883A (en) * 1940-07-13 1942-12-22 Int Standard Electric Corp Frequency multiplier
US2395560A (en) * 1940-10-19 1946-02-26 Bell Telephone Labor Inc Wave guide
GB640981A (en) * 1941-10-23 1950-08-02 Sperry Corp Improvements in or relating to high frequency electron discharge tube structures
US2494721A (en) * 1947-06-18 1950-01-17 Bell Telephone Labor Inc Electron velocity variation device with noise reducing resonator
US3218503A (en) * 1962-06-27 1965-11-16 Zenith Radio Corp Electron beam devices
GB1096921A (en) * 1963-03-28 1967-12-29 Nat Res Dev Radiation generators
US3457450A (en) * 1966-08-31 1969-07-22 Varian Associates High frequency electron discharge device
US3463959A (en) * 1967-05-25 1969-08-26 Varian Associates Charged particle accelerator apparatus including means for converting a rotating helical beam of charged particles having axial motion into a nonrotating beam of charged particles
FR2401508A1 (fr) * 1977-06-27 1979-03-23 Commissariat Energie Atomique Injecteur d'electrons pour generateur hyperfrequence
FR2396407A1 (fr) * 1977-06-27 1979-01-26 Commissariat Energie Atomique Generateur d'ondes metriques et decimetriques
US4200820A (en) * 1978-06-30 1980-04-29 Varian Associates, Inc. High power electron beam gyro device

Also Published As

Publication number Publication date
EP0013242A1 (fr) 1980-07-09
FR2445611B1 (fr) 1982-06-04
JPS5593638A (en) 1980-07-16
FR2445611A1 (fr) 1980-07-25
US4306174A (en) 1981-12-15
DE2964334D1 (en) 1983-01-20

Similar Documents

Publication Publication Date Title
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
EP2798209B1 (fr) Propulseur plasmique et procede de generation d'une poussee propulsive plasmique
FR2547456A1 (fr) Tube a faisceau d'electrons module en densite avec un gain accru
FR2499312A1 (fr) Dispositif d'attenuation de modes pour des cavites de gyrotrons
BE1005864A5 (fr) Accelerateur d'electrons a cavite resonante.
EP0239466A1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
EP0049198B1 (fr) Accélérateur d'électrons et générateur d'ondes millimétriques et infra-millimétriques comportant un tel accélérateur
FR2643507A1 (fr) Canon a electrons a faisceau electronique module par un dispositif optique
FR2492158A1 (fr) Tube a electrons pour gyrotron
EP0499514B1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfréquence, et tube hyperfréquence comprenant un tel dispositif
EP0082769A1 (fr) Multiplicateur de fréquence
EP0407558B1 (fr) Dispositif amplificateur ou oscillateur fonctionnant en hyperfrequence
FR2501413A1 (fr) Tube a vide du type gyrotron a stabilite elevee
FR2830371A1 (fr) Generateur d'ondes hyperfrequences a cathode virtuelle
FR2530075A1 (fr) Tube electronique avec interaction transversale du type cyclotron
EP0413018B1 (fr) Dispositif generateur d'ondes hyperfrequences a cathode virtuelle
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
FR2544128A1 (fr) Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences
EP0122186B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquences
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
FR2936648A1 (fr) Tube micro-ondes compact de forte puissance
FR2789800A1 (fr) Generateur radiofrequence de tres grande puissance
FR2815810A1 (fr) Accelerateur d'electrons compact a cavite resonante
FR2749703A1 (fr) Dispositif pour engendrer un champ magnetique et source ecr comportant ce dispositif
FR2528626A2 (fr) Generateur d'ondes radioelectriques pour hyperfrequence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed
ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 2964334

Country of ref document: DE

Date of ref document: 19830120

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951117

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951121

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961221

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT