EP0013242B1 - Generator für elektromagnetische Wellen sehr hoher Frequenz - Google Patents

Generator für elektromagnetische Wellen sehr hoher Frequenz Download PDF

Info

Publication number
EP0013242B1
EP0013242B1 EP79401065A EP79401065A EP0013242B1 EP 0013242 B1 EP0013242 B1 EP 0013242B1 EP 79401065 A EP79401065 A EP 79401065A EP 79401065 A EP79401065 A EP 79401065A EP 0013242 B1 EP0013242 B1 EP 0013242B1
Authority
EP
European Patent Office
Prior art keywords
frequency
resonant
coupled
axis
radioelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79401065A
Other languages
English (en)
French (fr)
Other versions
EP0013242A1 (de
Inventor
Georges Mourier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0013242A1 publication Critical patent/EP0013242A1/de
Application granted granted Critical
Publication of EP0013242B1 publication Critical patent/EP0013242B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/025Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators with an electron stream following a helical path

Definitions

  • the invention relates to a radio wave generator for the microwave domain. It relates more particularly to a generator operating at the top of this field, namely over a few tens of gigahertz, that is to say in millimeter and submillimetric waves.
  • the electrons are produced by a device which imparts to them a speed component directed transversely to this axis.
  • This device is generally an electron gun whose cathode has the shape of a ring and produces a hollow cylindrical beam.
  • the high frequency electric field it consists of the electric component of the electromagnetic field prevailing inside resonant volumes placed on the beam path, all along it, and coupled to the latter.
  • the electrons progress along the axis on spiral trajectories and are able on the last part of their path to give up radioelectric energy on the frequency of the electromagnetic field or on a multiple of this thanks to to the high frequency alternating components formed within the beam in the first part of the path.
  • the radioelectric energy produced on this frequency is collected in one or more charges coupled to the last resonant volume.
  • the subject of the invention is a millimeter wave generator of the type to which reference has been made above, using a longitudinal magnetic field and a high frequency electric field, the lines of force of which are arranged transversely to it, to reduce the difficulties reported.
  • the generator of the invention is divided into two successive sections along the axis.
  • the first that by which between the beam, the resonant volumes have a resonant frequency equal to the cyclotronic frequency of the electrons in the magnetic field B.
  • these volumes are fed at high frequency, by a wave at the cyclotronic frequency f e .
  • the second section which resonates at a multiple or harmonic frequency nf e of the latter (n being the rank of the harmonic), energy is taken.
  • the generator of the invention therefore appears as a system with two sections, one, accelerating, in which a high frequency field on the frequency f e communicates energy to the electrons, and the other, collector, in which is taken some of the energy from these electrons.
  • the device of the invention is, in other words, like a generator on the frequency nf c in which a low frequency accelerator f e has been incorporated.
  • the advantage of transferring energy to the electron beam at this low frequency lies in the fact that these transfers generally have a higher efficiency at low frequency.
  • the applied magnetic field has an intensity corresponding to the cyclotronic frequency f e and, as a result, is also reduced compared to that which the frequency nf c would require.
  • the resonant volumes of the two sections can, in the context of the invention, be integral parts of a single resonant enclosure.
  • the single resonant volume is chosen so as to present space harmonics of large amplitude on the desired operating frequency.
  • a resonant volume is used, for example, a waveguide of the type known at microwave, resonating on the cyclotron frequency, and the cross section of which has been deformed so as to favor the presence of these harmonics in the configuration. of the electromagnetic field that prevails there.
  • Such a guide is therefore of the type of one of those used in microwave; it has a regular section whose dimensions are large relative to the wavelength of the wave to be generated. It allows the use of a cylindrical beam easy to produce, propagating along its axis, along and in the vicinity of which, given the dimensions of the guide, it should be noted that the fields are of small amplitude.
  • Figure 1 (a, b, c,) shows some of the forces with high amplitude space harmonics on the frequency nf e in the case of a circular guide: the lines with the arrows represent the lines of force of the electric field with a high value component on harmonics 3 and 5 in TE 1Q mode.
  • the beam propagates in this guide, under the action of a high continuous voltage applied between the cathode by which it is produced and an anode placed in front.
  • this high voltage provides it with part of its energy, longitudinal, the other, transverse, being supplied to it by the high frequency electric field prevailing in the waveguide in which it propagates.
  • a guide which is itself at the voltage of this anode, with which it forms an equipotential space into which the beam is introduced by various means known in the art, and which will not be mentioned. He describes there, in the operating conditions, a spiral trajectory whose radius increases as the beam progresses and it acquires energy.
  • This trajectory follows a generally conical surface, of revolution around the axis of the system, the direction of which coincides with that of the magnetic field. It can be likened to a series of successive circular turns, whose radius increases, roughly, linearly as a function of the abscissa on the axis, and each described in a time equal to the cyclotronic period in field B.
  • This trajectory must remain entirely within the waveguide.
  • the guide used to be able to operate at the cyclotron pulsation ⁇ c that is to say the value of this radius corresponding to the cut-off at this frequency, and the radius r of the trajectory of the electrons at their maximum energy.
  • the ratio 2 ⁇ r / ⁇ o is equal to 1.238, while that corresponding to the radius a, that is to say 2 ⁇ a / ⁇ o is 1.841.
  • the radius of the guide is therefore much larger than the maximum radius of the path.
  • the guide is then deformed to obtain the space harmonics on the pulsation n ⁇ c in it.
  • the wave generator of this variant of the invention is presented according to the general diagram of FIG. 2.
  • An electron beam 1 is directed along the axis XX of a waveguide 20 whose section 2, circular in the example presents the two extensions, of rectangular section, 3 and 4, diametrically opposite. These lateral volumes preferentially guide a harmonic of the frequency of the guide in TE 10 mode; the field lines of the electrical component on the mode in question are represented by the arrows.
  • a magnetic field B (arrow) is directed longitudinally along the axis XX of the guide.
  • An oscillator excites the guide at the pulsation ⁇ c , equal to the cyclotronic pulsation of the beam electrons in the magnetic field B.
  • This oscillator is coupled to the guide by the antenna 5, which has been shown diagrammatically by its loop.
  • a second antenna, shown diagrammatically at 6, makes it possible to collect the power generated in the guide at the frequency n ⁇ c .
  • the beginning of the path of the beam 1 has been shown within the limits of the drawing, showing the first turns thereof; antenna 6, placed at the level of the last of them, should be placed further away, as will be seen in a numerical example.
  • the electron beam is produced by a gun which comprises a cathode 10, circular, a Pierce electrode 12, and an anode 14 accelerating the beam.
  • the electrons yield high frequency energy to a load 8 coupled to the output antenna 6.
  • the energy which they receive in continuous and high frequency form places them in relativistic conditions, that is to say ie such that their variation in mass following the increase in their energy in the accelerating section causes a variation in their phase with respect to the electromagnetic field; at these speeds it is found that the moving electron is capable of yielding energy to a high frequency electromagnetic field.
  • This is so for values of the pulsation, or angular velocity, ⁇ s , of the electrons included in a certain range around the pulsation of the electromagnetic field with which they are interacting. This can lead, in the generators of the invention, to using a magnetic field whose intensity varies with the abscissa along the axis XX.
  • the generator of the invention appears as a high power frequency multiplier.
  • a first example concerns the pulse operation of the generator of the invention. This is presented as shown in FIG. 2.
  • the cylindrical waveguide has in its central part a radius of approximately 5 mm and two diametrically opposite, rectangular, and proportional extensions as in the example of this figure.
  • An ordinary type gun provides a beam of 1 amp, accelerated under 10 kilovolts by the anode 14.
  • the oscillator is a magnetron operating in pulses at the frequency of 1 6 gigahertz; it excites the guide with a power of 60 kilowatts, in which a field is established whose lines of force in TE 10 mode are those of the arrows in solid line.
  • the value of the magnetic field is 0.6 tesla; the electron beam describes, under these conditions, around the axis XX of the system, a spiral located on a generally conical surface, widening in the direction of propagation. It is modulated along its trajectory, and the modulated current has components at frequencies nx 16 gigahertz.
  • the lateral extensions preferentially guide one of these frequencies, the frequency of 80 GHz in particular, in the same mode as the fundamental frequency.
  • the maximum energy it reaches is 60 kilovolts after 10 periods.
  • the guide length required is approximately 4 centimeters, which corresponds to a consumed power of 3 kw for a guide having an overvoltage of 800, or 5% of the power communicated to the electrons.
  • Bundles are created within the cylindrical electron beam whose diameter is 1.2 mm, while the radius of their orbit is 1.35 mm.
  • the harmonic current component 5 is, without other focusing means, of about 0.21 l 0 , la being the beam current.
  • the output power is 300 kW.
  • the other two examples relate to continuous operation of the generator of the invention.
  • the oscillator used at high frequency excitation is here a klystron operating at 10 GHz.
  • a klystron operating at 10 GHz In the table below are given the characteristics corresponding to two different levels of excitation.
  • the structure of the generator can be that of FIG. 2, using a single resonant volume, the waveguide, for the excitation frequency and its harmonic.
  • the electron beam passes into the first resonant volume, or cavity, 40, supplied at high frequency by a klystron, and the energy is drawn from the harmonic frequency in a second cavity 60 , separated from the first, 40, by an adaptation device 70.
  • the beam is produced by the accelerator 80.
  • adaptation section represented at 70 in FIG. 3, could include a device for injecting a signal to be amplified at frequency nCùe 'In this case, it would include a resonant element coupled to the device for injecting the signal.
  • the generator of the invention can also be produced with a flat beam, having a rectangular section, and a waveguide whose section has the same shape, and whose width can reach up to 1.5 times the length d xo wave.
  • the beam is thin and wide and allows high applied powers.
  • the beam can be supplied by a cathode and accelerated by an anode at the entrance to the microwave part, as in the example in FIG. 2. It can also be produced in a separate installation, before it enters the guide. waves or in the cavities of the generator, that is to say in the microwave part; such an installation is for example a betatron, a storage ring etc. (figure 3).
  • the generator of the invention has the same applications as the generators of the prior art for millimeter waves, namely measurement in plasma installations, radar transmission, telecommunications, etc.

Claims (5)

1. Radioelektrischer Hyperfrequenz-Wellenerzeuger, der ein sich in einer einer Achse entsprechenden Richtung fortpflanzendes Elektronenstrahlenbündel verwendet und einem gemäss dieser Achse orientierten Magnetfeld, sowie dem elektromagnetischen Feld längs dieser Achse angeordneter Resonanzvolumina unterworfen ist, dadurch gekennzeichnet, dass er eine an die genannten Resonanzvolumina angekuppelte Wellenquelle mit einer Frequenz besitzt, die der cyclotronischen Frequenz fc der Elektronen des Strahlenbündels im Magnetfeld gleich ist, sowie eine Belastung, bei welcher eine Energie bei einer Frequenz entnommen wird, annähernd einem Mehrfachen nfc dieser cyclotronischen Frequenz entspricht.
2. Radioelektrischer Wellenerzeuger nach Anspruch 1, dadurch gekennzeichnet, dass die Resonanzvolumina aus einem einzigen zylindrischen Leiter bestehen, dessen Querschnitt derart verformt ist, dass er zwei diametral entgegengesetzte Verlängerungen rechteckigen Querschnitts bildet, wobei der zylindrische Leiter an einem seiner Enden an die Quelle und an seinem anderen Ende an die Belastung angekuppelt ist.
3. Radioelektrischer Wellenerzeuger nach Anspruch 1, dadurch gekennzeichnet, dass die Resonanzvolumina aus zwei getrennten Resonanzräumen bestehen, die nacheinander von dem Elektronenstrahlenbündel durchquert werden, wobei der erste Resonanzraum, der an die Quelle angekuppelt ist, mit der cyclotronischen Frequenz resoniert und der zweite Resonanzraum, der an die Belastung angekuppelt ist, mit der genannten annähernd dem Mehrfachen der cyclotronischen entsprechenden Frequenz resoniert.
4. Radioelektrischer Wellenerzeuger nach Anspruch 1, dadurch gekennzeichnet, dass die Resonanzvolumina aus drei getrennten Resonanzräumen bestehen, die nacheinander vom Elektronenstrahlenbündel durchquert werden, wobei der erste Resonanzraum, der an die Quelle angekuppelt ist, mit der cyclotronischen Frequenz resoniert, der dritte Resonanzraum, der an die Belastung angekuppelt ist, mit der genannten, der cyclotronischen Frequenz annähernd entsprechenden Frequenz resoniert und der zweite Resonanzraum, der mit einem Erzeuger eines zu verstärkenden radioelektrischen Signals gekuppelt ist, mit der der genannten, der cyclotronischen Frequenz annähernd entsprechenden Frequenz resoniert.
5. Radioelektrischer Wellenerzeuger nach Anspruch 1, dadurch gekennzeichnet, dass das Magnetfeld einen längs der Fortpflanzungsachse sich verändernden Wert besitzt.
EP79401065A 1978-12-29 1979-12-21 Generator für elektromagnetische Wellen sehr hoher Frequenz Expired EP0013242B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7836960 1978-12-29
FR7836960A FR2445611A1 (fr) 1978-12-29 1978-12-29 Generateur d'ondes radioelectriques pour hyperfrequence

Publications (2)

Publication Number Publication Date
EP0013242A1 EP0013242A1 (de) 1980-07-09
EP0013242B1 true EP0013242B1 (de) 1982-12-15

Family

ID=9216756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79401065A Expired EP0013242B1 (de) 1978-12-29 1979-12-21 Generator für elektromagnetische Wellen sehr hoher Frequenz

Country Status (5)

Country Link
US (1) US4306174A (de)
EP (1) EP0013242B1 (de)
JP (1) JPS5593638A (de)
DE (1) DE2964334D1 (de)
FR (1) FR2445611A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528626A2 (fr) * 1978-12-29 1983-12-16 Thomson Csf Generateur d'ondes radioelectriques pour hyperfrequence
US4362968A (en) * 1980-06-24 1982-12-07 The United States Of America As Represented By The Secretary Of The Navy Slow-wave wideband cyclotron amplifier
FR2491256A1 (fr) * 1980-09-26 1982-04-02 Thomson Csf Accelerateur d'electrons et generateur d'ondes millimetriques et infra-millimetriques comportant un tel accelerateur
FR2520552A2 (fr) * 1982-01-22 1983-07-29 Thomson Csf Generateur d'ondes radioelectriques pour hyperfrequence
FR2542928B1 (fr) * 1983-03-18 1985-10-04 Thomson Csf Transformateur de modes de propagation hyperfrequence
US4550271A (en) * 1983-06-23 1985-10-29 The United States Of America As Represented By The Secretary Of The Navy Gyromagnetron amplifier
FR2625836B1 (fr) * 1988-01-13 1996-01-26 Thomson Csf Collecteur d'electrons pour tube electronique
FR2672730B1 (fr) * 1991-02-12 1993-04-23 Thomson Tubes Electroniques Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfrequence et tube hyperfrequence comprenant un tel dispositif.
US20050203578A1 (en) * 2001-08-15 2005-09-15 Weiner Michael L. Process and apparatus for treating biological organisms
DE102004046366A1 (de) * 2004-07-15 2006-02-09 Levin, Felix, Dr. Universell einsetzbare Testvorrichtung zur schnellen Analysen von Flüssigkeiten
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
JP6217952B2 (ja) 2013-04-15 2017-10-25 アクティエボラゲット エレクトロラックス ロボット真空掃除機
EP2986193B1 (de) 2013-04-15 2020-07-29 Aktiebolaget Electrolux Robotischer staubsauger mit vorstehenden seitenbürsten
JP6638988B2 (ja) 2013-12-19 2020-02-05 アクチエボラゲット エレクトロルックス サイドブラシを有し、渦巻きパターンで動くロボットバキュームクリーナ
JP6638987B2 (ja) 2013-12-19 2020-02-05 アクチエボラゲット エレクトロルックス 回転側面ブラシの適応速度制御
CN105813528B (zh) 2013-12-19 2019-05-07 伊莱克斯公司 机器人清洁设备的障碍物感测爬行
EP3084538B1 (de) 2013-12-19 2017-11-01 Aktiebolaget Electrolux Robotische reinigungsvorrichtung mit umgebungsaufzeichnungsfunktion
JP6750921B2 (ja) 2013-12-19 2020-09-02 アクチエボラゲット エレクトロルックス ロボット掃除機
EP3084539B1 (de) 2013-12-19 2019-02-20 Aktiebolaget Electrolux Priorisierung von reinigungsbereichen
JP6687286B2 (ja) 2013-12-19 2020-04-22 アクチエボラゲット エレクトロルックス ロボット掃除機およびランドマーク認識方法
JP6336063B2 (ja) 2013-12-20 2018-06-06 アクチエボラゲット エレクトロルックス ダスト容器
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
CN106998980B (zh) 2014-12-10 2021-12-17 伊莱克斯公司 使用激光传感器检测地板类型
CN114668335A (zh) 2014-12-12 2022-06-28 伊莱克斯公司 侧刷和机器人吸尘器
KR102339531B1 (ko) 2014-12-16 2021-12-16 에이비 엘렉트로룩스 로봇 청소 장치를 위한 경험-기반의 로드맵
JP6532530B2 (ja) 2014-12-16 2019-06-19 アクチエボラゲット エレクトロルックス ロボット掃除機の掃除方法
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
EP3344104B1 (de) 2015-09-03 2020-12-30 Aktiebolaget Electrolux System aus robotischen reinigungsvorrichtungen
KR102588486B1 (ko) 2016-03-15 2023-10-11 에이비 엘렉트로룩스 로봇 청소 장치 및 로봇 청소 장치에서의 절벽 검출 실시 방법
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
JP7243967B2 (ja) 2017-06-02 2023-03-22 アクチエボラゲット エレクトロルックス ロボット清掃デバイスの前方の表面のレベル差を検出する方法
CN111093447B (zh) 2017-09-26 2022-09-02 伊莱克斯公司 机器人清洁设备的移动控制

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR672E (fr) * 1902-04-02 1903-02-25 Henn Junior Wilhelm Dispositif pour nettoyage de bicyclettes
US2305883A (en) * 1940-07-13 1942-12-22 Int Standard Electric Corp Frequency multiplier
US2395560A (en) * 1940-10-19 1946-02-26 Bell Telephone Labor Inc Wave guide
GB640898A (en) * 1941-10-23 1950-08-02 Sperry Corp Improvements in or relating to gang tuning means for electron discharge apparatus
US2494721A (en) * 1947-06-18 1950-01-17 Bell Telephone Labor Inc Electron velocity variation device with noise reducing resonator
US3218503A (en) * 1962-06-27 1965-11-16 Zenith Radio Corp Electron beam devices
GB1096921A (en) * 1963-03-28 1967-12-29 Nat Res Dev Radiation generators
US3457450A (en) * 1966-08-31 1969-07-22 Varian Associates High frequency electron discharge device
US3463959A (en) * 1967-05-25 1969-08-26 Varian Associates Charged particle accelerator apparatus including means for converting a rotating helical beam of charged particles having axial motion into a nonrotating beam of charged particles
FR2396407A1 (fr) * 1977-06-27 1979-01-26 Commissariat Energie Atomique Generateur d'ondes metriques et decimetriques
FR2401508A1 (fr) * 1977-06-27 1979-03-23 Commissariat Energie Atomique Injecteur d'electrons pour generateur hyperfrequence
US4200820A (en) * 1978-06-30 1980-04-29 Varian Associates, Inc. High power electron beam gyro device

Also Published As

Publication number Publication date
US4306174A (en) 1981-12-15
JPS5593638A (en) 1980-07-16
DE2964334D1 (en) 1983-01-20
EP0013242A1 (de) 1980-07-09
FR2445611B1 (de) 1982-06-04
FR2445611A1 (fr) 1980-07-25

Similar Documents

Publication Publication Date Title
EP0013242B1 (de) Generator für elektromagnetische Wellen sehr hoher Frequenz
EP2798209B1 (de) Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs
FR2547456A1 (fr) Tube a faisceau d'electrons module en densite avec un gain accru
FR2499312A1 (fr) Dispositif d'attenuation de modes pour des cavites de gyrotrons
BE1005864A5 (fr) Accelerateur d'electrons a cavite resonante.
EP0239466A1 (de) Klystronausgangskopplungsvorrichtung und Klystron mit derselben
EP0049198B1 (de) Elektronenbeschleuniger sowie Millimeter- und Submillimeterwellengenerator mit einem solchen Beschleuniger
FR2643507A1 (fr) Canon a electrons a faisceau electronique module par un dispositif optique
FR2492158A1 (fr) Tube a electrons pour gyrotron
EP0499514B1 (de) Modenwandler und Leistungsteiler-Einrichtung für eine Mikrowellenröhre, und Mikrowellenröhre mit einer solchen Einrichtung
EP0082769A1 (de) Frequenzvervielfacher
EP0407558B1 (de) Mikrowellen-verstärker oder oszillator-anordnung
FR2501413A1 (fr) Tube a vide du type gyrotron a stabilite elevee
FR2830371A1 (fr) Generateur d'ondes hyperfrequences a cathode virtuelle
FR2530075A1 (fr) Tube electronique avec interaction transversale du type cyclotron
EP0413018B1 (de) Mikrowellengenerator mit einer virtuellen kathode
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
FR2544128A1 (fr) Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences
EP0122186B1 (de) Mikrowellenerzeuger
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
FR2936648A1 (fr) Tube micro-ondes compact de forte puissance
FR2789800A1 (fr) Generateur radiofrequence de tres grande puissance
FR2815810A1 (fr) Accelerateur d'electrons compact a cavite resonante
FR2749703A1 (fr) Dispositif pour engendrer un champ magnetique et source ecr comportant ce dispositif
FR2528626A2 (fr) Generateur d'ondes radioelectriques pour hyperfrequence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 2964334

Country of ref document: DE

Date of ref document: 19830120

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951117

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951121

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961221

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT