EP2798209B1 - Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs - Google Patents

Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs Download PDF

Info

Publication number
EP2798209B1
EP2798209B1 EP12819095.6A EP12819095A EP2798209B1 EP 2798209 B1 EP2798209 B1 EP 2798209B1 EP 12819095 A EP12819095 A EP 12819095A EP 2798209 B1 EP2798209 B1 EP 2798209B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
plasma
electromagnetic wave
propellant gas
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12819095.6A
Other languages
English (en)
French (fr)
Other versions
EP2798209A1 (de
Inventor
Serge Larigaldie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP2798209A1 publication Critical patent/EP2798209A1/de
Application granted granted Critical
Publication of EP2798209B1 publication Critical patent/EP2798209B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • H05H2007/027Microwave systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/081Sources
    • H05H2007/082Ion sources, e.g. ECR, duoplasmatron, PIG, laser sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/087Arrangements for injecting particles into orbits by magnetic means

Definitions

  • the invention relates to a plasma thruster and a method for generating a propulsive thrust using said plasma thruster.
  • these thrusters provide thrusts of a few newtons or less by using liquid propellants such as hydrazine (N 2 H 2 ) or hydrogen peroxide (hydrogen peroxide).
  • liquid propellants such as hydrazine (N 2 H 2 ) or hydrogen peroxide (hydrogen peroxide).
  • N 2 H 2 hydrazine
  • hydrogen peroxide hydrogen peroxide
  • Plasma thrusters can be classified in different ways depending on whether one considers their plasma initiation mode or the mode of acceleration of the plasma towards the exit of the nozzle. It should be noted that these two criteria are relatively independent of one another and just as important as the other.
  • the priming mode conditions the completeness of the ionization of the propellant gas and the reliability of this priming, thus that of the propellant, and can determine the size of the plasma discharge chamber, the bulk, the weight and the efficiency. thruster energy.
  • the acceleration mode of the plasma it determines the thrust, the specific impulse, the energy efficiency and can determine the size, weight, and life of the thruster.
  • arc-jet propellant
  • This category of thruster is to provide, all things being equal, higher thrusts than those of other types of plasma thrusters, but it has the following major drawbacks: these thrusters have a low specific impulse compared to that of other plasma thrusters; consume a lot of electrical power; have a limited lifetime by the bombardment of electrodes and internal walls of the discharge chamber by ions and electrons that reach temperatures of the order of a few thousand to a few tens of thousands of degrees; need to evacuate excess heat in space which leads to poor energy efficiency. In addition, the priming of the plasma when the partial pressure of propellant gas is low, unreliability.
  • a second category of plasma thruster is that of plasma thrusters initiating their plasma by the single resonance of an electromagnetic wave (EM), often microwave, in a discharge chamber containing a propellant gas to be ionized.
  • EM electromagnetic wave
  • the major disadvantage of propellers in this category is the relatively low energy efficiency since only a small fraction of the EM energy is absorbed by the plasma.
  • the ionization of the propellant gas is rarely complete, especially when the flow of propellant gas is high, and the plasma ignition is unreliable when the partial pressure of propellant gas is low.
  • a third category of plasma thruster is that of the plasma thrusters with "gyromagnetic resonance" of the magnetized free electrons of the plasma or ECR ("Electron Cyclotron Resonance" according to the Anglo-Saxon name).
  • ECR Electro Cyclotron Resonance
  • the length of the discharge chamber is substantially equal to an integer number of half-length of the electromagnetic wave in the vacuum, which raises the problem of the miniaturization of the discharge chamber and therefore thruster.
  • the resonance frequency of the EM wave while having the conditions of the ECR, it is necessary to increase correspondingly the intensity of the magnetic field, which supposes quickly the use of powerful magnetic coils or the congestion and the weight of these coils goes against the goal of miniaturization of the thruster.
  • This problem of miniaturization is also complicated by the multiplicity of sources to emit in the discharge chamber: source of propellant gas, EM wave source and magnetic field source.
  • the patent EP 0 505 327 describes such a propellant.
  • ECR plasma sources such as for example the production of integrated circuits.
  • the patent application US 2005 0 287 discloses an ECR resonance ion source, provided with magnetic coils, for ion implantation in microelectronics.
  • the use of magnetic coils leads to a weight and a large bulk for a relatively low energy efficiency due to losses by Joule effect, which is poorly suited for use as a space thruster.
  • the ionization of the propellant gas is rarely complete, especially when the flow of propellant gas is high, and the plasma ignition is unreliable when the partial pressure of propellant gas is low.
  • these thrusters often deplore the existence of upstream plasma spurious jets known as the ion pump effect.
  • plasma thrusters can also be classified according to the second criterion which is the mode of acceleration of the plasma in the nozzle.
  • a first family is that of so-called “electrostatic" plasma thrusters, which is characterized by the electrostatic nature of the force accelerating the plasma towards the outlet of the nozzle.
  • This family can in turn be divided into three categories: accelerator thrusters, Hall effect thrusters, and field effect thrusters.
  • the category of accelerator gate thrusters is characterized in that ions from a discharge chamber are accelerated by an electrically biased grid system. It should be noted that the ejected plasma is not electrically neutral.
  • the accelerator gate thrusters have the following drawbacks which limit their effectiveness and their lifetime: the positive ion beams crossing the accelerating grid erode it, which limits the life of these thrusters; the ejected ions recombine with the ejected electrons and generate obscuration deposits of matter on the solar panels of the satellites on which they are mounted; the discharge chamber must be of large volume; the energy efficiency is relatively low due to plasma leakage at the walls of the discharge chamber and the acceleration grid; and the thrust is limited by the limitation of the density of the ions inside the grids due to the secondary electrons.
  • accelerator gate thrusters are given in patent applications JP 01 310179 and US 2004/161579 A1 in the patent US 7,400,096 B1 and in the article MORRISON NA et al.
  • High rate deposition of ta-C H using an electron cyclotron wave resonance source plasma, "published in THIN SOLID FILMS, ELSEVIER-SEQUOIA SA LAUSANNE, CH, vol. 337, No.
  • Hall effect thrusters is characterized by a cylindrical anode and a negatively charged plasma. Hall effect thrusters use the drift of charged particles in crossed magnetic and electric fields. Their disadvantages are on the one hand the presence of a continuous electric field which involves polarized electrodes and on the other hand the limitation in plasma density which is related to the formation of sheaths around these electrodes which oppose the penetration of the continuous electric field within the plasma, unlike the microwave field which easily penetrates inside the ionized medium, hence the interest of high frequency discharges (HF).
  • HF high frequency discharges
  • the category of field effect thrusters is characterized by the ionization of a metallic liquid, its acceleration then its electrical neutralization.
  • a second family is that of so-called "electromagnetic" plasma thrusters.
  • This family can be divided into six categories: pulsed induction boosters, magnetoplasmadynamic boosters, electrodeless boosters, electrothermal boosters, helical double layer boosters and mugradB boosters.
  • the category of pulsed induction boosters is characterized by acceleration during discontinuous time intervals.
  • the category of magnetoplasmadynamic thrusters is characterized by electrodes that ionize the propellant gas and create a current that in turn creates a magnetic field that accelerates the plasma via the Lorentz force.
  • the category of thrusters without electrodes is characterized by the absence of electrodes which removes a weak point for the lifetime of the plasma thrusters.
  • the propulsive gas is ionized in a first chamber by an EM wave and then transferred to a second chamber where the plasma is accelerated by inhomogeneous and oscillating electric and magnetic fields generating a so-called ponderomotive force.
  • the patent US 7,461,502 describes such a propellant.
  • a disadvantage of this class of thrusters is their use of magnetic coils to generate the oscillating magnetic field, because their size, their weight and energy loss Joule effect, relatively high, are poorly suited to space applications.
  • the category of electrothermal thrusters is characterized by heating the plasma at temperatures of the order of one million degrees and then the partial conversion of this temperature into axial speed. These thrusters require high power magnetic coils to generate very intense magnetic fields in order to be able to confine a plasma whose electrons have very high speeds because of their temperature. In addition to the size and weight of these coils, their joule heat dissipation significantly degrades the energy efficiency of these thrusters.
  • the patent US 6,293,090 describes such a thruster, more specifically it is a radio frequency (RF) booster in low hybrid resonance (energy absorption by coupling a very low frequency RF wave via a combined oscillation of the ions and electrons of the plasma) of the VASIMR type (Variable Specific Impulse Magnetoplasma Rocket), where the plasma is not heated by resonance of its electrons as is generally the case for thrusters of this category but by excitation of its ions by an EM wave of strong power.
  • RF radio frequency
  • the category of helical double-layer thrusters is characterized by the injection of the propellant gas into a tubular chamber around which is wound an antenna emitting an electromagnetic wave of sufficiently high power to ionize the gas and then generate, in the plasma thus created, a helicon wave which further increases the temperature of the plasma.
  • the category of "mugradB” thrusters, also called “space charge field” is characterized by the diamagnetic nature of its force. Chapter 5.1 of J.-M. Rax's book “Physics of Plasmas, Course and Application” rigorously exposes the theory of the motion of an electron animated by an electromagnetic HF field in a static or slowly variable magnetic field.
  • XP008133752 describes a propellant with a diamagnetic force, the plasma of which is initiated and maintained by electronic waves generated by an EM wave, of a frequency lower than the gyromagnetic frequency, emitted by two helically-wound antennas, and by a magnetic field, generated by magnetic coils, of an intensity greater than the resonance intensity ECR.
  • the propellant gas is injected into an area where the magnetic field has decreased below the resonance intensity RCC. It raises the problem of the incomplete ionization of the propellant gas of this propellant. To limit this incompleteness of this ionization, the gas chamber is segmented.
  • the thruster comprises an interior cavity, a gas injection nozzle, an electromagnetic wave generator at the ECR frequency, and a magnetic field generator having a local maximum near the outlet end of the injection nozzle.
  • None of the state-of-the-art plasma thrusters combines the advantages of reliable priming (systematic and instantaneous ignition) and complete ionization under all power operating conditions of the electromagnetic wave and propellant gas flow, especially for very low flow and partial pressure of propellant gas; absence of parasitic plasma jet upstream; a discharge chamber of reduced size with respect to the half wavelength of the EM wave used for plasma maintenance; capable of operating with magnetic field intensities permitting the use of permanent magnets thus avoiding the bulk, weight and Joule losses of magnetic coils; allowing a controlled variation of the thrust and the specific impulse; can achieve an energy efficiency close to 1; accelerating a neutral plasma, thus not requiring a neutralizer; and whose service life is not limited by the wear of parts by the plasma or by the deposition of propellant gas on the solar panels.
  • the object of the present invention is to provide a propellant that can have an energy efficiency close to 1, such as ECR-initiated thrusters, and be smaller than the state-of-the-art ECR-ignition thrusters.
  • ECR-initiated thrusters such as ECR-initiated thrusters
  • this propellant has all the advantages mentioned above, in particular by virtue of the implementation of a new type of plasma priming resulting from the conjunction of particular geometrical configurations. magnetic field lines, propellant gas injection and EM wave emission.
  • the principle of the invention is to reduce the size of a plasma thruster ECR on the one hand by reducing the length of its discharge chamber and on the other hand by injecting the propellant gas by means of the antenna emitting the EM wave, the reduction of the length of the discharge chamber being obtained by the use of an electron resonance plasma zone, confined by a magnetic field, as a cavity resonant of the EM wave, since the refractive index of the ECR resonance plasma is 5 to 10 times greater than that of the discharge chamber that the state of the art of plasma thrusters uses as a resonant cavity of the wave EM.
  • the subject of the invention is a plasma thruster according to claim 1 and a method for generating a propulsive thrust by means of a plasma thruster according to claim 9.
  • said local minimum intensity of the magnetic field functions as an electron trap that will allow the initiation of plasma by hollow cathode micro-discharge even at very low pressure.
  • the injection of the propellant gas and the electromagnetic wave (EM) by the same means makes it possible, on the one hand, to have a more compact discharge chamber and, on the other hand, to guarantee that the EM wave radiates a zone where the gas density is maximum, which maximizes the ionization rate of the neutral gas leaving the injection nozzle, which was one of the problems of the "mu.gradB" thruster described by STALLARD BW ET AL.
  • the conjunction of the EM wave antenna and the ECR surface positions allows the irradiation to be concentrated in the volume delimited by the ECR surface where the EM wave resonates, which maximizes the absorption of EM energy by the plasma and thus maximizes the energy efficiency of the propellant.
  • the plasma thruster comprises one or more of the features of the dependent claims.
  • the "mu.gradB" plasma thruster comprises an open cavity of dimensions much smaller than the incident wavelength, a significant loss of power related to the diffraction of the EM wave in the orifice and radiation outside the engine could, in the absence of a sleeve, occur in the ignition phase of the engine.
  • a fraction of the power reflected by the circulator is in turn circularly polarized and absorbed by the ECR resonance plasma, the unabsorbed EM wave fraction at this stage being again subjected to same circulation cycle until all EM energy is absorbed by the ECR resonance plasma.
  • the combination of such a sleeve coupled with such a circulator provides an energy efficiency close to unity in all operating configurations of the thruster. Note that a sleeve can be made of fine wire mesh and therefore be lightweight.
  • the priming of the plasma is not performed by ECR as is commonly the case in the state of the art of the diamagnetic force thrusters, but by hollow cathode micro-discharge.
  • This index of refraction of the EM wave resonance medium makes it possible to reduce the length of the discharge chamber, since the priming of the plasma and its maintenance no longer require that the length of the discharge chamber be equal to a whole number of half a wave EM wave in the vacuum, and secondly to use a magnetic field of lower intensity, achievable with a simple permanent magnet, since a lower frequency of the EM wave can be used.
  • Plasma priming by hollow cathode micro-discharge provides a systematic and almost instantaneous initiation whatever the operating conditions, in particular of gas flow and EM power, and therefore greatly increases the reliability of the thruster.
  • the propellant according to the invention therefore belongs to a new class of plasma thruster.
  • the plasma thruster 2 comprises a support body 4 supporting a discharge chamber 6 opening on an outlet opening 48.
  • the support body 4 is a non-magnetic hollow body open at each of its ends 9, 11. It has a cylindrical inner cavity 14 of axis of revolution AA, hereinafter called predefined axis AA.
  • This cavity 14 comprises a central injection channel 10 coaxial with the predefined axis A-A.
  • This central injection channel 10 is for example constituted by a magnetic metal conduit. It has an outer diameter less than the diameter of the cavity 14 so that it forms with the support body 4, a peripheral injection channel 12 arranged between the inner wall of the support body 4 and the outer wall of the channel. central injection 10.
  • the central injection channel 10 has an internal diameter of between 0.5 and 2 mm, and preferably between 1 mm and 1.5 mm.
  • the peripheral injection channel 12 has an outside diameter of between 3 and 20 mm, and preferably between 6 mm and 12 mm, the inside diameter of the peripheral injection channel 12 being the outside diameter of the central injection channel 10 .
  • the central injection channel 10 has an inner section of between 0.7 square millimeters and 3 square millimeters.
  • the central injection channel 10 and the peripheral injection channel 12 have a square section.
  • the central injection channel 10 is fixed to the support body 4 by means of an insulating block 16 and a clamping ring 20.
  • a portion of the central injection channel 10 is fitted into a hole through the insulating block 16.
  • the insulating block 16 is arranged and fixed in the cavity 14 between a shoulder 18 of the support body 4 and a bearing face 21 of the clamping ring 20.
  • the clamping ring 20 is screwed on the outside rim of the end 9 of the support body 4.
  • a first O-ring 22 is interposed between the insulating block 16 and the shoulder 18.
  • a second O-ring 24 is interposed between the insulating block 16 and the bearing face 21 of the clamping ring 20.
  • the central injection channel 10 and the peripheral injection channel 12 form two propellant gas injection means in the chamber 6, within the meaning of the invention.
  • one end of the central injection channel 10 is connected, by a pipe 28, to a source of propellant gas 30.
  • An opening 31 is arranged in the support body 4. This opening 31 opens into the channel of peripheral injection 12. This opening 31 is connected by a pipe 44 to the source of propellant gas 30 for supplying the peripheral injection channel 12 with propellant gas, during the operation of the plasma thruster in a second "arc-jet" operating mode, as described herein. -after.
  • This source 30 is provided with a device 32 for controlling the gas flow rate.
  • the flow rate of the propellant gas is between 0.1 gram per hour and 40 gram per hour.
  • the flow rate of the propellant gas is between 1 gram per hour and 400 gram per hour, and preferably between 10 gram per hour and 400 gram per hour.
  • the other end of the central injection channel 10 comprises a tip 36, for example, formed by a beveling of the annular stop of the channel.
  • the tip 36 extends outside the support body 4, in the discharge chamber 6. It contributes to the ionization of the propellant gas by an effect called "peak effect".
  • the peak effect makes it possible to concentrate the magnetic field in a volume of the discharge chamber, called the priming volume. It is not a Corona ionization discharge, which concentrates the lines of the electric field, but a hollow cathode micro-discharge between the two mentioned maxima of magnetic field strength in the immediate vicinity of an output an injection nozzle.
  • the presence of a local maximum of the intensity of the magnetic field in the priming volume and therefore inside the injection tube is possible for two reasons.
  • the present diamagnetic force propellant constitutes an open cavity for the magnetic field, or more precisely a coaxial system open at one end.
  • the complex magnetic circuit of the thruster comprises parts whose role is precisely to channel a large part of the magnetic field in this volume via including the injection channel 10 of magnetic material and especially via its tip 36.
  • the priming volume is between 0.5 mm 3 and 5 mm 3 . It is disposed 12 mm to 15 mm downstream of the tip 36 of the central injection channel 10.
  • the central injection channel 10 is further adapted to emit electromagnetic waves, in particular microwaves.
  • the central injection channel 10 is made of an electrically conductive material and is electrically connected to an electromagnetic wave generator 38 via a connector 40 fixed, for example by screwing, to the support body 4
  • the connector 40 is, for example, a connector of the SMA (registered trademark) type.
  • the electromagnetic wave generator 38 is able to irradiate the propulsive gas present in the discharge chamber 6 with at least one electromagnetic wave whose electric field rotates in the same direction and at the same frequency as the magnetized electrons of the propellant gas. in order to obtain a total absorption of the electromagnetic energy by the electrons ECR. More precisely, the electric field has a right circular polarization and a frequency equal to the gyromagnetic resonance frequency of the electrons of the propellant gas magnetized by the magnetic field generator.
  • the electromagnetic wave generator 38 is provided with a device 42 for electromagnetic power modulation. It is capable of generating electromagnetic waves with a power of between 0.5 and 300 Watts, and preferably between 0.5 and 30 Watts in a first so-called “classical” operating mode, and electromagnetic waves with a power of between 50 and and 500 Watts, and preferably between 200 and 500 Watts in the second mode of operation called "arc jet".
  • the power of the electromagnetic waves is large enough to obtain the ECR and eject the electrons before they have time to radiate, but not too high so as to avoid any radiation of these electrons before ejection, which makes it possible to avoid radiant heating and maintain efficiency optimal energy.
  • the electromagnetic power that the propellant can absorb without degrading the energy efficiency is related to the size of the Larmor Rb radius of the electrons in the plasma. This must remain substantially less than the radius of the cavity so that the electrons do not strike at any time the inner wall of the thruster (plasma called "magnetic levitation").
  • the discharge chamber 6 comprises a generator of the magnetic field 46 fixed, for example by screwing, to the end 11 of the support body 4.
  • This generator 46 comprises a source 50 of magnetic field having two poles, a washer 52 secured to an end surface constituting a pole of said source 50, a clamping nut 54 in contact with the washer 52, and a washer 58 integral with an end surface constituting the other pole of said source 50.
  • the discharge chamber 6 further comprises an outlet opening 48 of the plasma.
  • the magnetic field source 50 is constituted, for example, by a permanent magnet of toroidal shape coaxial with the predefined axis A-A. To simplify the description, it is hereinafter referred to as magnet 50.
  • the magnetic field emitted by the magnet 50 has an intensity of between 0.05 Tesla and 1 Tesla, and preferably between 0.085 Tesla and 0.2 Tesla.
  • the washer 52 and the clamping nut 54 form a first magnetic element and the washer 58 forms a second magnetic element within the meaning of the invention.
  • the washers 52, 58 are each secured to an annular face of the magnet 50.
  • the washer 52 is further fixed, for example by screwing, on the outer periphery of the end 11 of the support body.
  • the clamping nut 54 has a protrusion 62 substantially frustoconical axis of revolution, the predefined axis A-A.
  • the protrusion 62 extends towards the central injection channel 10.
  • the washer 52, the clamping nut 54 and the washer 58 consist of paramagnetic steel, and preferably of ferromagnetic steel.
  • the end surface of the protuberance 62 closest to the central injection channel 10 forms a first pole.
  • the end surface of the washer 58 closest to the central injection channel 10 forms a second magnetic pole 66 disposed downstream of the injection nozzle 65 of the channel central injection, considering the direction F1, and a second distance D2 of the predefined axis AA; said second distance D2 being longer than the first distance D1.
  • the field lines 68 of the field emitted by the magnetic field generator 46 have a nozzle shape. They cut the injection nozzle 65 of the central injection channel 10 and form an angle between 10 ° and 70 ° with the predefined axis A-A. In other words, the magnetic field emitted by the magnetic field generator 46 diverges. At the predefined axis A-A, the magnetic field gradient is parallel to the predefined axis A-A. In addition, this magnetic field gradient is negative from upstream to downstream by considering the direction of ejection of the propellant gas.
  • the magnetic field also has a first local maximum intensity of the magnetic field at the injection nozzle 65 of the central injection channel.
  • This intensity is sufficient to completely ionize, by ECR resonance, the propellant gas leaving said injection nozzle 65.
  • This intensity is for example between 0.087 Tesla (ECR for a microwave frequency of 2.45 GHz), and about 0 , 5 Tesla (upper limit achievable with permanent magnets).
  • ECR electromagnetic resonance
  • the particular shape of the field lines 68 causes the ECR surface to be very close to said first local intensity maximum and for this ECR surface to envelop the output end 165 of the injection nozzle 65.
  • the ECR surface is located at a distance of millimeter downstream of the output end 165.
  • ECR surface is a region of the space where the free electron gyration rate in the local magnetic field is substantially equal to the frequency of the exciting electromagnetic wave.
  • the magnetic field generator 46 is further able to accelerate towards the outlet opening 48, by a diamagnetic force, the plasma initiated at the injection nozzle 65, said plasma ejected from said thruster being electrically neutral.
  • ECR plasma sources lie in the possibility of acting only on the free electrons of the plasma and not on the ions, which requires only relatively small magnetic fields, approximately 0, 1 Teslas (1000 Gauss) in our example. Electrical neutrality of the plasma is provided very efficiently by the ambipolar electric field, or space charge field, which appears immediately within the plasma and against any imbalance between the populations of positive ions and electrons. It is therefore not necessary to use a neutralizer.
  • the ambipolar electric field is not disturbed and the electrons subjected to the only diamagnetic force will then carry with them in their movement the non-magnetized positive ions (hence the so-called "diamagnetic" character of the plasma).
  • the electrons connected to the ions by the space charge will be able to escape the residual magnetic field due to the inertia of these previously accelerated ions within the propellant.
  • the acceleration of the plasma in the magnetic nozzle does not require additional power expenditure in the case where, as in this example, the magnetic nozzle is generated by simple permanent magnets. This saving of electrical power is an important asset for a spatial application.
  • the central injection channel 10 opens at the beginning of the diverging portion of the magnetic field, upstream of the resonance zone ECR.
  • the central injection channel 10 serves both as a microwave emission antenna 39 inside the discharge chamber 6 and as an injection nozzle 65 for the injection of the gas to be ionized.
  • Injection nozzle 65 includes an outlet end 165.
  • the magnet 50, the washer 52, the clamping nut 54 and the washer 58 form the discharge chamber 6.
  • This has a diameter of between 6 mm and 60 mm, and preferably between 12 mm and 30 mm. .
  • the discharge chamber 6 thus has an inner section of between 0.7 square centimeters and 30 square centimeters.
  • the length, defined along the predefined axis AA, of the internal cavity 14 of the discharge chamber 6 is 5 to 10 times smaller than the half-wavelength in the vacuum of the electromagnetic wave emitted by the generator. electromagnetic wave 38.
  • the discharge chamber has a very small dimension.
  • the plasma thruster 2 further comprises a fastening flange 70 and a lock nut 72 screwed onto the outer periphery of the support body 4.
  • An O-ring 74 is furthermore disposed between the fastening flange 70 and the lock nut. 72.
  • the plasma thruster according to the invention can be used by means of permanent magnets that do not consume energy.
  • the discharge chamber forms a high frequency resonant cavity having dimensions of the order of one centimeter with a relatively low frequency of the order of 2.3 to 2.8 GHz.
  • This is possible because the optical index of the plasma at the ECR is very high, which makes it possible to have a relatively short wavelength even with a relatively low frequency.
  • the ECR frequency is proportional to the magnetic field, a cavity of this size is therefore possible even with a magnetic field of the order of 0.08 to 0.1 T, easily achievable by annular permanent magnets of small dimensions.
  • the emission step 100 is implemented before the injection step 104 when the user wishes to save the propellant gas, and the injection step 104 is implemented before the transmission step 100 when the user wants to save electricity.
  • the axial injection of the propellant gas is completed in this operating mode by an injection of gas around the central injection duct.
  • This is generally used during a temporary operation with high thrust of the thruster here called second mode of operation called "arc-jet".
  • arc-jet second mode of operation
  • the rise in pressure of the discharge chamber 6 makes it possible to ignite a plasma arc-type - very dense and very hot under the effect of the injection of microwaves of high power (greater than a hundred watts).
  • microwaves of high power greater than a hundred watts.
  • This makes it possible to operate the plasma thruster with much larger surges - of the order of several hundred milli-newtons, but with a much greater heat dissipation and a lower energy efficiency.
  • each mode of propulsion independently or in combination, a combination making it possible, for example, to make fine adjustments to the total thrust, even for large amplitudes of this thrust.
  • the plasma thruster 120 further comprises, on the one hand, a circulator 80 connected to the electromagnetic wave generator 38 and to the connector 40 screwed onto the support body 4 and, on the other hand, an electrically conductive cylindrical sleeve 85 placed downstream of the plane of exit of the plasma thruster 120.
  • the circulator 80 is a device, generally made of ferrite, which is placed in a microwave circuit to protect the electromagnetic generator 38 or a possible amplifier against a return of EM waves, for example reflected by the plasma (which is for the generator). EM wave, the charge to be irradiated). The EM wave flow through the circulator 80 towards the plasma is not absorbed by the circulator. The flux reflected towards the EM wave generator rotates in the circulator 80 and returns towards the plasma so that the electromagnetic generator 38 is protected and there is no loss of EM wave flux by reflection. upstream.
  • the sleeve 85 has a diameter greater than the diameter of the permanent magnet 50 and a flange 86 fixed against the washer 58 of the magnetic field generator 46.
  • the sleeve 85 is, for example, a circular waveguide section of diameter equal to 1/2 wavelength and length equal to 1/4 or 3/4 wavelength of EM wave in vacuum.
  • the sleeve 85 blocks the propagation of the EM wave which would otherwise radiate in the free space by diffraction from the propeller outlet. Instead of being emitted into the free space, the microwave EM wave flux is thus reflected towards the plasma inside the propellant and its non-absorbed part by the plasma is directed towards the circulator 80.
  • the circulator 80 returns then in turn this flow retrograde to the plasma thruster 120, and so on ... until complete absorption of EM wave flux by the plasma.
  • the figure 5 represents the variation of the magnetic field generated by the generator 46 with respect to the distance to the output plane DD of the plasma thruster along the predefined axis AA.
  • the zero of the abscissa axis defines in this figure the output plane DD.
  • the exit plane is the plane parallel to the median plane of the fastening flange 70 located at the outlet opening 48.
  • the magnetic field has a first local maximum, A, and a second local maximum, C, located inside the injection nozzle 65, and a local minimum located between the first local maximum A and the second local maximum C.
  • the first local maximum A is located at the outlet end 165 of the injection nozzle 165.
  • the first local maximum A is sufficient to ionize, by cyclotron resonance, electrons of the propellant gas under the effect of said electromagnetic wave, the propellant gas leaving said injection nozzle 65.
  • the magnetic field generator 50 is able to accelerate towards the outlet opening 48 by the diamagnetic force, the free electrons of the plasma initiated at the injection nozzle (65), the positive ions, not magnetized, following these electrons. free because of the ambipolar electric field, or charge field of space, which appears almost immediately within the plasma and opposes any imbalance between the populations of positive ions and electrons, this electric field, which does not is disturbed by no field applied electrically, ensuring very effectively the electrical neutrality of the plasma ejected said thruster.
  • the tip 36 of the injection means 10 makes it possible, by concentrating the magnetic field lines, to obtain from the magnetic field generator 50, on the one hand, the first local maximum of the intensity A, and on the other hand a hollow cathode micro-discharge between the first local maximum A and the local minimum B of the intensity of the magnetic field. This micro-discharge is sufficient to ionize at least a portion of the propellant gas present in said injection nozzle 65 regardless of its flow rate.
  • the magnetic field generator 50 comprises for example permanent magnets.

Claims (10)

  1. Plasmatriebwerk (2, 120), umfassend eine Entladungskammer (6), die einen inneren Hohlraum (14) und eine Austrittsöffnung (48) aufweist; mindestens ein Einspritzmittel (10, 12), das eine Einspritzdüse (65) aufweist, die geeignet ist, ein Treibgas entlang einer vorgegebenen Achse (A-A) in die Entladungskammer (6) einzuspritzen; wobei die Einspritzdüse (65) ein Auslassende (165) aufweist; einen Magnetfeldgenerator (50, 52, 54, 58), der geeignet ist, Elektronen des Treibgases, die in der Entladungskammer (6) vorhanden sind, in gyromagnetische Drehung zu versetzen; und einen elektromagnetischen Wellengenerator (38), der geeignet ist, das Treibgas, das in der Entladungskammer (6) vorhanden ist, durch Erzeugen von mindestens einer elektromagnetischen Welle, deren elektrisches Feld eine rechtsdrehende Zirkularpolarisation und eine Frequenz aufweist, die gleich der gyromagnetischen Resonanzfrequenz fEGR der Elektronen des Treibgases ist, die durch den Magnetfeldgenerator (50, 52, 54, 58) magnetisiert werden, zu bestrahlen,
    - wobei der Magnetfeldgenerator (50, 52, 54, 58) geeignet ist:
    ∘ einerseits ein Magnetfeld zu erzeugen, das Feldlinien (68) aufweist, die eine Isofeldfläche, die "EZR-Fläche", von gleicher Intensität wie jene, die eine Zyklotronresonanz der Elektronen unter der Wirkung der elektromagnetischen Welle ermöglicht, bestimmen;
    ∘ andererseits den Feldlinien (68) die Form einer Düse derart zu verleihen, dass eine diamagnetische Antriebskraft erzeugt wird;
    - wobei das Einspritzmittel (10) aus einem elektrisch leitenden Material hergestellt ist und elektrisch an dem elektromagnetischen Wellengenerator (38) derart angeschlossen ist, dass es auch als eine elektromagnetische Antenne (39) funktioniert, die die elektromagnetische Welle am Ausgang der Einspritzdüse (65) in das Treibgas emittiert;
    wobei
    - der Magnetfeldgenerator (50, 52, 54, 58) geeignet ist:
    ∘ ein Magnetfeld zu erzeugen, das
    eine EZR-Fläche erzeugt, die das Auslassende (165) der Einspritzdüse (65) umhüllt, wobei das Volumen, das von dieser EZR-Fläche begrenzt ist, der Resonanzhohlraum der elektromagnetischen Welle ist;
    im Innern der Einspritzdüse (65) und am Auslassende (165) der Einspritzdüse (65) ein erstes lokales Maximum (A) der Intensität aufweist;
    ein zweites lokales Maximum (C) der Intensität des Magnetfelds im Inneren der Einspritzdüse (65) aufweist, das von dem ersten lokalen Maximum (A) durch ein lokales Minimum (B) der Intensität des Magnetfelds im Inneren der Einspritzdüse (65) getrennt ist;
    - das Einspritzmittel (10):
    ∘ aus einem magnetischen leitenden Material hergestellt ist, das ermöglicht, im Inneren dieses Letzteren das zweite lokale Maximum (C) der Intensität des Magnetfelds zu erhalten;
    ∘ an dem nachgelagerten Ende der Einspritzdüse (65) einen Einspritzkanal (10) von einem Außendurchmesser aufweist, der unbedingt zwischen 0,5 mm und 3 mm beträgt.
  2. Plasmatriebwerk (2, 120) nach dem vorhergehenden Anspruch, wobei der Magnetfeldgenerator (50, 52, 54, 58) als Magnetfeldquelle mindestens einen Permanentmagneten (50) von torischer Form, der koaxial zu der vorgegebenen Achse (A-A) angeordnet ist und einen ersten Magnetpol (64) und einen zweiten Magnetpol (66) aufweist, ein erstes magnetisches Element (52, 54), das mit dem ersten Magnetpol (64) fest verbunden ist, und ein zweites magnetisches Element (58), das mit dem zweiten Magnetpol (66) fest verbunden ist, aufweist, wobei der erste (64) und zweite (66) Magnetpol jeweils in einem ersten Abstand (D1) und einem zweiten Abstand (D2) von der vorgegebenen Achse (A-A) angeordnet sind; wobei der zweite Abstand (D2) länger als der erste Abstand (D1) ist, wobei der erste Magnetpol (64) und der zweite Magnetpol (66) vorgelagert vor beziehungsweise nachgelagert nach der Einspritzdüse (65) unter Berücksichtigung der Strömungsrichtung (F1) des Treibgases angeordnet sind, wobei die Feldlinien (68) die Einspritzdüse (65) schneiden und einen Winkel, der zwischen 10° und 70 ° beträgt, mit der vorgegebenen Achse (A-A) bilden.
  3. Plasmatriebwerk (2, 120) nach einem der vorhergehenden Ansprüche, wobei die Länge, die nach der vorgegebenen Achse (A-A) definiert ist, des inneren Hohlraums (14) der Entladungskammer (6) 5 bis 10 Mal niedriger als die halbe Wellenlänge der elektromagnetischen Welle im Vakuum ist, wobei die Entladungskammer (6) einen inneren Querschnitt aufweist, der zwischen 0,7 Quadratzentimetern und 30 Quadratzentimetern beträgt; wobei der mittlere Einspritzkanal (10) einen inneren Querschnitt aufweist, der zwischen 0,7 Quadratmillimetern und 3 Quadratmillimetern beträgt.
  4. Plasmatriebwerk (2, 120) nach einem der vorhergehenden Ansprüche, wobei die Magnetfeldstärken des ersten lokalen Maximums (A), des lokalen Minimums (B) und des zweiten lokalen Maximums (C) jeweils etwa 0,18 Tesla, 0,01 Tesla und 0,05 Tesla betragen.
  5. Plasmatriebwerk (2, 120) nach einem der vorhergehenden Ansprüche, wobei die elektromagnetische Welle geeignet ist, sich entlang einer Achse parallel zu der vorgegebenen Achse (A-A) auszubreiten, und wobei an der vorgegebenen Achse (A-A) der Magnetfeldgradient parallel zu der vorgegebenen Achse (A-A) ist; wobei der Magnetfeldgradient von stromaufwärts in Richtung stromabwärts in einer Richtung, die durch die Ausstoßrichtung des Treibgases definiert ist, negativ ist.
  6. Plasmatriebwerk (2, 120) nach einem der vorhergehenden Ansprüche, der eine Vorrichtung (42) zum Modulieren der Leistung der elektromagnetischen Welle und eine Vorrichtung (32) zum Steuern des Durchsatzes des Treibgases aufweist, wobei die Leistung der elektromagnetischen Welle in einem ersten Betriebsmodus zwischen 0,5 Watt und 300 Watt und vorzugsweise zwischen 0,5 Watt und 30 Watt beträgt.
  7. Plasmatriebwerk (120) nach einem der vorhergehenden Ansprüche, das einerseits einen Zirkulator (80), der am Ausgang des elektromagnetischen Wellengenerators (38) angeordnet ist, und andererseits eine elektrisch leitende zylindrische Muffe (85) aufweist, die nachgelagert nach der Ebene, die durch die Austrittsöffnung (48) des Plasmatriebwerks (120) definiert ist, die Austrittsebene (D-D) genannt wird, angeordnet ist, deren Durchmesser im Wesentlichen gleich dem Viertel der Wellenlänge der elektromagnetischen Welle ist und deren Länge im Wesentlichen gleich drei Vierteln der Wellenlänge der elektromagnetischen Welle ist.
  8. Plasmatriebwerk (2, 120) nach einem der vorhergehenden Ansprüche, umfassend zwei Einspritzmittel (10, 12), die koaxial zur Achse (A-A) sind, wobei das eine das zu ionisierende Gas der EZR-Fläche zuführt und das andere den Schub durch einen Durchsatz von Gas und einen Arcjet-Betriebsmodus erhöht.
  9. Verfahren zur Erzeugung eines Antriebsschubs durch ein Plasmatriebwerk (2, 120), umfassend die folgenden Schritte:
    Einspritzen (104) eines Treibgases entlang einer vorgegebenen Achse (A-A) in eine Entladungskammer (6), die einen inneren Hohlraum (14) und eine Austrittsöffnung (48) aufweist, mit Hilfe von mindestens einem Einspritzmittel (10, 12), das ein Auslassende aufweist, das Einspritzdüse (65) genannt wird;
    Erzeugen (90) mittels eines Magnetfeldgenerators (50, 52, 54, 58) eines Magnetfelds (63), das geeignet ist, Elektronen des Treibgases, die in der Entladungskammer (6) vorhanden sind, in gyromagnetische Drehung zu versetzen, wobei das Erzeugen (90) des Magnetfelds derart ist, dass:
    o das Magnetfeld einerseits Feldlinien (68) aufweist, die eine Isofeldfläche, die "EZR-Fläche", von gleicher Intensität wie jene, die eine Zyklotronresonanz der Elektronen unter der Wirkung der elektromagnetischen Welle ermöglicht, bestimmen,
    ∘ das Magnetfeld andererseits den Feldlinien die Form einer Düse derart verleiht, dass eine diamagnetische Antriebskraft erzeugt wird;
    Emittieren (100) in das Treibgas, das in der Entladungskammer (6) vorhanden ist, mittels eines elektromagnetischen Wellengenerators (38) von mindestens einer elektromagnetischen Welle, deren elektrisches Feld eine rechtsdrehende Zirkularpolarisation und eine Frequenz aufweist, die gleich der gyromagnetischen Resonanzfrequenz fECR der Elektronen des Treibgases ist, die durch den Magnetfeldgenerator (50, 52, 54, 58) magnetisiert werden, wobei das Einspritzen (104) des Treibgases und das Emittieren (100) der elektromagnetischen Welle durch ein gleiches Einspritzmittel (10, 12) und an der gleichen Stelle der Entladungskammer durchgeführt werden, wobei das Einspritzmittel (10, 12) aus einem elektrisch leitenden Material hergestellt ist und elektrisch an dem elektromagnetischen Wellengenerator (50, 52, 54, 58) angeschlossen ist, um die elektromagnetische Welle am Ausgang der Einspritzdüse (65) derart in das Treibgas zu emittieren, dass die Ionisationsrate des austretenden Treibgases maximiert wird;
    Zünden (101) des Plasmas durch Ionisieren des Treibgases;
    Aufrechterhalten (103) des Plasmas durch die Elektron-Zyklotron-Resonanz;
    wobei
    - das Zünden (101) des Plasmas durch Mikro-Entladung mit Hohlkathode dank des Einspritzmittels (10) durchgeführt wird, das aus magnetischem Material hergestellt ist und an dem nachgelagerten Ende der Einspritzdüse (65) einen Einspritzkanal (10) von einem Außendurchmesser aufweist, der unbedingt zwischen 0,5 mm und 3 mm beträgt;
    - das Erzeugen (90) des Magnetfelds derart ist, dass das Magnetfeld:
    die EZR-Fläche aufweist, die das Auslassende (165) der Einspritzdüse (65) umhüllt, wobei das Volumen, das von dieser EZR-Fläche begrenzt ist, der Resonanzhohlraum der elektromagnetischen Welle ist;
    ein erstes lokales Maximum (A) der Intensität aufweist, das im Inneren der Einspritzdüse (65) und am Auslassende (165) der Einspritzdüse (65) angeordnet ist;
    ein zweites lokales Maximum (C) der Intensität des Magnetfelds im Inneren der Einspritzdüse (65) aufweist, das von dem ersten lokalen Maximum (A) durch ein lokales Minimum (B) der Intensität des Magnetfelds im Inneren der Einspritzdüse (65) getrennt ist;
    - das Aufrechterhalten (103) des Plasmas durch die Elektron-Zyklotron-Resonanz durch Resonanz der elektromagnetischen Welle in dem Volumen, das von der Fläche (EZR) begrenzt ist, durchgeführt wird.
  10. Verfahren nach dem vorhergehenden Anspruch, wobei das Plasmatriebwerk (2, 120) ferner eine Vorrichtung (42) zum Modulieren der Leistung der elektromagnetischen Welle, eine Vorrichtung (32) zum Steuern des Durchsatzes des Gases, einen peripheren Einspritzkanal (12) aufweist, der geeignet ist das Treibgas in die Entladungskammer (6) einzuspritzen; und wobei das Verfahren die folgenden Schritte aufweist:
    - Einspritzen (108) des Treibgases in die Entladungskammer (6) durch den peripheren Einspritzkanal (12);
    - Einstellen (110) des Durchsatzes des Treibgases, das über den peripheren Einspritzkanal (12) in die Entladungskammer (6) eingespritzt wird;
    - Modulieren (112) der Leistung der elektromagnetischen Welle.
EP12819095.6A 2011-12-29 2012-12-19 Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs Active EP2798209B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1162545A FR2985292B1 (fr) 2011-12-29 2011-12-29 Propulseur plasmique et procede de generation d'une poussee propulsive plasmique
PCT/FR2012/052983 WO2013098505A1 (fr) 2011-12-29 2012-12-19 Propulseur plasmique et procede de generation d'une poussee propulsive plasmique

Publications (2)

Publication Number Publication Date
EP2798209A1 EP2798209A1 (de) 2014-11-05
EP2798209B1 true EP2798209B1 (de) 2016-09-28

Family

ID=47628312

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12819095.6A Active EP2798209B1 (de) 2011-12-29 2012-12-19 Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs

Country Status (7)

Country Link
US (1) US9591741B2 (de)
EP (1) EP2798209B1 (de)
JP (1) JP6120878B2 (de)
CN (1) CN104114862B (de)
FR (1) FR2985292B1 (de)
RU (1) RU2610162C2 (de)
WO (1) WO2013098505A1 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150841A4 (de) * 2014-05-29 2017-06-21 Imagineering, Inc. Injektor mit eingebautem zündsystem
CN104454417B (zh) * 2014-10-29 2017-04-12 大连理工大学 双阶栅极螺旋波离子推进装置
CN104696180B (zh) * 2014-12-29 2017-07-28 中国空间技术研究院 磁场调控型液相工质大面积微腔放电等离子体微推进器
CN104863811B (zh) * 2015-04-15 2017-06-27 大连理工大学 负粒子推力器
CN104947102B (zh) * 2015-07-08 2017-04-19 浙江大学 基于等离子体磁场推进的金属粉末喷射装置
CN105575584B (zh) * 2016-02-16 2017-08-29 兰州空间技术物理研究所 一种环形磁体的安装装置
CN105781921B (zh) * 2016-03-16 2018-06-19 中国空间技术研究院 一种基于周期结构的电磁推力器腔体
US10271415B2 (en) * 2016-04-30 2019-04-23 The Boeing Company Semiconductor micro-hollow cathode discharge device for plasma jet generation
CN106304595B (zh) * 2016-08-26 2019-02-05 大连理工大学 表面等离子体共振与电子回旋共振双激励式微波推力器
CN106337791B (zh) * 2016-08-31 2018-09-11 北京航空航天大学 一种带有锥型多孔空心阴极的磁等离子体推力器
WO2018118223A1 (en) * 2016-12-21 2018-06-28 Phase Four, Inc. Plasma production and control device
US9934929B1 (en) 2017-02-03 2018-04-03 Colorado State University Research Foundation Hall current plasma source having a center-mounted or a surface-mounted cathode
US11828273B2 (en) 2017-03-23 2023-11-28 The Board Of Trustees Of The Leland Stanford Junior University Compact plasma thruster
US20190107103A1 (en) 2017-10-09 2019-04-11 Phase Four, Inc. Electrothermal radio frequency thruster and components
CN109979794A (zh) * 2017-12-27 2019-07-05 核工业西南物理研究院 一种射频感应耦合等离子体中和器
CN108417472B (zh) * 2018-02-26 2019-09-20 温州职业技术学院 一种多场增强空心阴极离子源
WO2019213630A1 (en) * 2018-05-03 2019-11-07 Neiser Paul Filtration apparatus and method
ES2696227B2 (es) * 2018-07-10 2019-06-12 Centro De Investig Energeticas Medioambientales Y Tecnologicas Ciemat Fuente de iones interna para ciclotrones de baja erosion
CN111456921B (zh) * 2019-01-22 2021-10-15 哈尔滨工业大学 一种基于微波增强的胶体推力器
CN109779864B (zh) * 2019-03-11 2021-10-29 哈尔滨工业大学 一种霍尔推力器供气管路绝缘结构
CN111765058B (zh) * 2019-04-02 2022-07-05 哈尔滨工业大学 一种微波增强辅助电离的会切场推力器
DE102019111908B4 (de) * 2019-05-08 2021-08-12 Dreebit Gmbh ECR-Ionenquelle und Verfahren zum Betreiben einer ECR-Ionenquelle
CN110469474B (zh) * 2019-09-04 2020-11-17 北京航空航天大学 一种用于微小卫星的射频等离子体源
US11699575B2 (en) * 2019-09-16 2023-07-11 The Regents Of The University Of Michigan Multiple frequency electron cyclotron resonance thruster
CN112523984B (zh) * 2019-09-19 2022-04-05 哈尔滨工业大学 一种用于微型会切场推力器的微波电离式阴极
WO2021205526A1 (ja) * 2020-04-07 2021-10-14 株式会社日立ハイテク 荷電粒子銃、荷電粒子ビームシステム、およびロックナット
CN111452999A (zh) * 2020-04-24 2020-07-28 北京卫星环境工程研究所 一种适于空间站气体资源循环补给的装置及方法
CN111502940B (zh) * 2020-04-29 2021-09-24 武汉大学 一种微波空气等离子体水蒸气喷射推动装置
CN113423168A (zh) * 2021-06-25 2021-09-21 中国人民解放军国防科技大学 一种磁控矢量高速等离子体合成射流激励器
US11930583B1 (en) * 2022-09-08 2024-03-12 Ali Kaddoura Heat conditioning through deflection/reflection/absorption of electromagnetic waves

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856740B2 (ja) 1988-06-09 1999-02-10 株式会社東芝 Ecr型イオンスラスタ
EP0463408A3 (en) * 1990-06-22 1992-07-08 Hauzer Techno Coating Europe Bv Plasma accelerator with closed electron drift
IT1246684B (it) 1991-03-07 1994-11-24 Proel Tecnologie Spa Propulsore ionico a risonanza ciclotronica.
WO1996006518A1 (fr) * 1994-08-25 1996-02-29 Aeorospatiale Societe Nationale Industrielle Accelerateur plasmatique a flux electronique ferme
US5640843A (en) 1995-03-08 1997-06-24 Electric Propulsion Laboratory, Inc. Et Al. Integrated arcjet having a heat exchanger and supersonic energy recovery chamber
US5858477A (en) 1996-12-10 1999-01-12 Akashic Memories Corporation Method for producing recording media having protective overcoats of highly tetrahedral amorphous carbon
IL118638A (en) * 1996-06-12 2002-02-10 Fruchtman Amnon Beam source
RU2120061C1 (ru) * 1997-07-10 1998-10-10 Илья Иванович Лаптев Плазменный двигатель
US6293090B1 (en) 1998-07-22 2001-09-25 New England Space Works, Inc. More efficient RF plasma electric thruster
DE19835512C1 (de) * 1998-08-06 1999-12-16 Daimlerchrysler Aerospace Ag Ionentriebwerk
RU2188337C2 (ru) * 2000-07-12 2002-08-27 Федеральное государственное унитарное предприятие Российского авиационно-космического агентства "Опытное конструкторское бюро "Факел" Плазменный двигатель с замкнутым дрейфом электронов
US7461502B2 (en) * 2003-03-20 2008-12-09 Elwing Llc Spacecraft thruster
ATE335928T1 (de) * 2003-03-20 2006-09-15 Elwing Llc Antriebssystem für raumfahrzeuge
JP4200827B2 (ja) 2003-06-20 2008-12-24 株式会社デンソー 衝撃検知装置
US7400096B1 (en) 2004-07-19 2008-07-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Large area plasma source
ATE454553T1 (de) * 2004-09-22 2010-01-15 Elwing Llc Antriebssystem für raumfahrzeuge
JP2006147449A (ja) 2004-11-24 2006-06-08 Japan Aerospace Exploration Agency 高周波放電プラズマ生成型二段式ホール効果プラズマ加速器
FR2933532B1 (fr) * 2008-07-02 2010-09-03 Commissariat Energie Atomique Dispositif generateur d'ions a resonance cyclotronique electronique

Also Published As

Publication number Publication date
FR2985292A1 (fr) 2013-07-05
FR2985292B1 (fr) 2014-01-24
RU2014131219A (ru) 2016-02-20
EP2798209A1 (de) 2014-11-05
US20150020502A1 (en) 2015-01-22
RU2610162C2 (ru) 2017-02-08
CN104114862A (zh) 2014-10-22
WO2013098505A1 (fr) 2013-07-04
JP2015509262A (ja) 2015-03-26
JP6120878B2 (ja) 2017-04-26
US9591741B2 (en) 2017-03-07
CN104114862B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
EP2798209B1 (de) Plasmatriebwerk und verfahren zur erzeugung eines plasmaantriebsschubs
EP0650557B1 (de) Plasmatriebwerk mit geschlossener elektronenlaufbahn
RU2445510C2 (ru) Ракетный двигатель малой тяги для космического летательного аппарата
EP0662195B1 (de) Plasmamotor geringer länge mit geschlossenem elektronendrift
EP0013242B1 (de) Generator für elektromagnetische Wellen sehr hoher Frequenz
EP2812571B1 (de) Hall-effekt-antrieb
WO2017037062A1 (fr) Propulseur ionique a grille avec agent propulsif solide integre
EP2353347A1 (de) Einrichtung und verfahren zum erzeugen und/oder eingrenzen eines plasmas
EP0711100A1 (de) Plasmaerzeugungsvorrichtung, ermöglichend eine Trennung zwischen Mikrowellenübertragung und -absorptionszonen
EP2873306B1 (de) Koaxialer mikrowellenapplikator zur plasmaerzeugung
EP0184475A1 (de) Verfahren und Vorrichtung zum Starten einer Mikrowellenionenquelle
EP2652766B1 (de) Elektron-zyklotron-resonanzionenquelle
EP0499514B1 (de) Modenwandler und Leistungsteiler-Einrichtung für eine Mikrowellenröhre, und Mikrowellenröhre mit einer solchen Einrichtung
EP3574719B1 (de) System zur erzeugung eines plasmastrahls von metallionen
EP2311061B1 (de) Elektronenzyklotronresonanzionengenerator
FR2969372A1 (fr) Dispositif d’ionisation a la resonance cyclotron electronique
EP0813223B1 (de) Magnetfelderzeugungsvorrichtung und ECR Ionenquelle dafür
EP2747118A1 (de) Kathde für einen Erzeuger elektromagnetischer Wellen mit gegenseitig verschiebbaren Teilen
FR2985366A1 (fr) Generateur d'ondes hyperfrequences et procede de generation d'une onde hyperfrequence associe
FR2906674A1 (fr) Dispositif pour prolonger dans le vide un plasma conducteur d'electricite
EP2747117A2 (de) Vorrichtung zur Erzeugung von Hyperfrequenzwellen mit zwei Kathoden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPAT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 833013

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012023594

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 833013

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012023594

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 12

Ref country code: DE

Payment date: 20231121

Year of fee payment: 12