EP0124396B1 - Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences - Google Patents

Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences Download PDF

Info

Publication number
EP0124396B1
EP0124396B1 EP84400615A EP84400615A EP0124396B1 EP 0124396 B1 EP0124396 B1 EP 0124396B1 EP 84400615 A EP84400615 A EP 84400615A EP 84400615 A EP84400615 A EP 84400615A EP 0124396 B1 EP0124396 B1 EP 0124396B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
zone
electron beam
axis
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400615A
Other languages
German (de)
English (en)
Other versions
EP0124396A1 (fr
Inventor
Georges Mourier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0124396A1 publication Critical patent/EP0124396A1/fr
Application granted granted Critical
Publication of EP0124396B1 publication Critical patent/EP0124396B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/06Electron or ion guns
    • H01J23/075Magnetron injection guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/88Inductor

Definitions

  • the present invention relates to a device for injecting an electron beam for generators of radio waves for microwave frequencies. It relates more particularly to a device for injecting an electron beam propagating along an axis along a cycloidal trajectory under the action of a uniform electric field and subjected to a static magnetic field perpendicular to the axis and to the field electric.
  • This type of injection device can be used, in particular, in the new cyclotronic resonance masers proposed by the applicant in the new patent application filed on the same day as the present one and having for title "wave generator” microwave radio frequencies ”.
  • the injection device consists only of an electron gun subjected to a high magnetic field, identical to that prevailing in the structure resonant.
  • the electron gun used in this generator consists of two facing electrodes, one of which, the anode, is brought to a positive potential and the other, the sole, of which is brought to a negative or zero potential and by a cathode positioned in the plane of the hearth and brought to the same potential as the latter, at least one of the electrodes having a divergent profile such that the distance between electrodes is increasing from the cathode to the outside.
  • the voltage to be applied to the anode in order to obtain an electron beam propagating along a cycloidal trajectory with a substantially constant radius of rotation r L , the voltage to be applied to the anode must be substantially higher than the voltage of power supply giving the energy of the electron beam.
  • the object of the present invention is to remedy this drawback by proposing a new type of injection device.
  • the injection device is a device for injecting an electron beam along a cycloidal path for microwave radio wave generators using an electron beam propagating along an axis under the action of a uniform electric field and subjected to a static magnetic field perpendicular to the axis of propagation and to the electric field, as well as to the electromagnetic field of at least one resonant structure arranged along the axis.
  • This device is characterized in that it includes an electron gun placed in an area where the magnetic field has an intensity lower than that of the field necessary to obtain a cyclotronic type interaction and electrodes positioned between the gun and the area of interaction in an area where the magnetic field has an increasing intensity in the direction of propagation of the beam to create in this area, a static electric field having two components in the plane perpendicular to the magnetic field, namely an Ex component in the direction of l the axis and a component Ey perpendicular to the component Ex and to the magnetic field so as to compensate for the movement perpendicular to the axis due to the increase in the magnetic field, in said zone.
  • the generator represented in FIG. 1a essentially comprises three parts, namely an injection device 1, a resonant structure 2 and a collector 3, the assembly being placed inside a vacuum enclosure 4 brought to a potential no.
  • the injection device 1 is constituted by an electron gun 5 producing an electron beam in the direction x followed by means 6 to create an electric field E without component in the direction z but having two components E x and Ey in the plane of the figure.
  • the injection device 1 is placed in a static magnetic field perpendicular to the plane of the figure, that is to say in the z direction.
  • the magnetic field applied in the present invention is such that the electron gun 5 is subjected to a magnetic field 8 1 of low value and the means 6 to a magnetic field B 2 progressively increasing from the value 8 1 to a value B 3 representing the magnetic field prevailing at the level of the resonant structure 2, as represented respectively by the parts 1, II, III in FIG. 1 b.
  • the electron gun 5 consists of two planar electrodes 7, 8 facing each other, one of which 7, called the anode, is brought to a positive potential V and the other, called sole, is formed of two parts 8, 8 ′ and is brought to a negative potential V c and of a cathode 9 heated by a filament 10 and brought to the same potential V c as the sole 8.
  • This type of electron gun provides in known manner a beam following, in the direction x, a cycloidal path.
  • the means 6 are produced by four electrodes 11, 12, 13, 14 brought to continuous potentials such as, for example,
  • the electrons being in an electric field having two components Ex and Ey and being subjected to a uniformly increasing static magnetic field of direction x, are brought to follow a cycloidal trajectory whose the radius of rotation gradually decreases as shown in Figure 1a.
  • the electron beam is then injected into the resonant structure 2 in which it interacts with a high frequency electromagnetic field.
  • the enclosure 4 has the shape of a cylinder of axis z inside which the static magnetic field B 3 is almost uniform.
  • the resonant structure 2 is constituted, in a known manner, by two spherical mirrors 15, 16 facing each other and positioned so that the distance H verifies the relationship with n an integer and At the operating wavelength.
  • the two mirrors 15, 16 constitute a "quasi-optical" resonator.
  • One of the mirrors, namely the mirror 15, is provided with an orifice 17 connected to a waveguide 18.
  • This waveguide 18 is used to send out, the electromagnetic energy given off by the electron beam to the electromagnetic beam which appears as a standing wave in the y direction with a high frequency electric field polarized in the x direction.
  • the two mirrors 15, 16 are preceded and followed by grids 19, 20 which are non-reflective at the operating frequency of the resonator and separated from a distance h such that
  • the two mirrors 15 and 16 are brought respectively to ground and to a negative potential so as to create between them a continuous electric field Ec of direction y which ensures the drift of the electron beam in the direction x.
  • the cylindrical part of the envelope 4 is preferably covered with absorbent substances 21 at the operating frequency to avoid parasitic resonances.
  • absorbent substances 21 are, for example, in "carberlox” (brand).
  • the electrons having given up energy are then evacuated towards a collector 3 constituted by a part of the envelope 4 having a section in section in the plane x y in the shape of U.
  • Figure 2a shows an alternative embodiment of the generator of Figure la which then constitutes an amplifier. In this embodiment, only the resonant structure has been modified, the other parts remaining identical.
  • the new structure is formed by two flat parallel plates 22, 23 spaced from each other by a distance H 'such that so as to guide in the x direction a high frequency traveling wave having at least one high frequency electric field component in the x y plane.
  • the traveling wave is injected into the structure via the input one guide 24 and it is discharged, after having received the energy given up by the electron beam, via the wave guide. output 25.
  • the two plates are polarized so as to create between them a continuous electric field of direction y.
  • FIG. 2b it is identical to FIG. 1b and gives the variation of the static magnetic field B in the direction x.
  • the magnetic field is created in known manner using superconductive coils, for example.
  • the electron gun 5 placed in a region of weak magnetic field B 1 produces a beam of electrons progressing towards the central region of said field, where it is maximum, by moving perpendicular to its direction.
  • the progression along a cycloidal trajectory is ensured by the electrodes placed in the vicinity of its trajectory and brought to appropriate potentials, which creates between the electrodes a uniform continuous electric field giving the electrons a speed of drift.
  • the electron beam is then subjected in the region of the means 6 to a magnetic field of direction B z progressively increasing.
  • the different potentials of the electrodes 11, 12, 13, 14 have been chosen so as to create an electric field having components in the directions x and y and to satisfy the equations below. with so that the electron beam propagates in the x direction.
  • the electron beam will be brought into the region of the increasing magnetic field to follow a cycloidal trajectory whose radius decreases progressively due to equation (1) in the direction x with a constant drift speed if the component Ey believes as B z whose variation along x is given in Figures 1b and 2b.
  • equation (5) avoids transverse drift and allows electrons to enter the increasing magnetic field which normally tends to repel electrons endowed with a speed of rotation towards the regions where B is more small, namely towards the barrel.

Landscapes

  • Particle Accelerators (AREA)
  • Lasers (AREA)
  • Radiation-Therapy Devices (AREA)
  • Surgical Instruments (AREA)

Description

  • La présente invention concerne un dispositif d'injection d'un faisceau d'éléctrons pour générateurs d'ondes radioélectriques pour hyperfréquences. Elle concerne plus particulièrement un dispositif d'injection d'un faisceau d'électrons se propageant suivant un axe selon une trajectoire cycloïdale sous l'action d'un champ électrique uniforme et soumis à un champ magnétique statique perpendiculaire à l'axe et au champ électrique.
  • Ce type de dispositif d'injection peut être utilisé, en particulier, dans le nouveaux masers à ré- sonnance cyclotronique proposés par la demanderesse dans la nouvelle demande de brevet déposée le même jour que la présente et ayant pour titre «générateur» d'ondes radioélectriques pour hyperfréquences». Dans ces générateurs basés sur une interaction de type cyclotronique entre un faisceau d'électrons se propageant entre un canon à électrons et un collecteur et un champ électromagnétique haute fréquence dans une structure résonnante, générateurs dans lesquels le faisceau d'électrons se déplace selon une trajectoire cycloïdale dans un champ magnétique transversal sous l'effet d'une vitesse de dérive créée par un champ électrique uniforme, le dispositif d'injection est constitué uniquement par un canon à électrons soumis à un champ magnétique élevé, identique à celui régnant dans la structure résonnante.
  • Le canon à électrons utilisé dans ce générateur est constitué par deux électrodes se faisant face dont l'une, l'anode, est portée à un potentiel positif et dont l'autre, la sole, est portée à un potentiel négatif ou nul et par une cathode positionnée dans le plan de la sole et portée au même potentiel que celle-ci, au moins une des électrodes présentant un profil divergent tel que la distance entre électrodes soit croissante de la cathode vers l'extérieur. Or avec ce type de canon à électrons, pour obtenir un faisceau d'électrons se propageant selon une trajectoire cycloïdale avec un rayon de rotation rL sensiblement constant, le tension à appliquer sur l'anode doit être sensiblement plus élevée que la tension d'alimentation donnant l'énergie du faisceau d'électrons.
  • La présente invention a pour but de remédier à cet inconvénient en proposant un nouveau type de dispositif d'injection.
  • Elle permet en outre d'utiliser dans le canon un champ magnétique plus petit que dans la structure résonnante.
  • Le dispositif d'injection conforme à la présente invention est un dispositif d'injection d'un faisceau d'électrons suivant une trajectoire cycloïdale pour générateurs d'ondes radioélectriques pour hyperfréquences utilisant un faisceau d'électrons se propageant suivant un axe sous l'action d'un champ électrique uniforme et soumis à un champ magnétique statique perpendiculaire à l'axe de propagation et au champ électrique, ainsi qu'au champ électromagnétique d'au moins une structure résonnante disposée le long de l'axe. Ce dispositif est caractérisé en ce qu'il comporte un canon à électrons placé dans une zone où le champ magnétique a une intensité inférieure à celle du champ nécessaire pour obtenir une interaction de type cyclotronique et des électrodes positionnées entre le canon et la zone d'interaction dans une zone où le champ magnétique a une intensité croissant dans le sens de propagation du faisceau pour créer dans cette zone, un champ électrique statique présentant deux composantes dans le plan perpendiculaire au champ magnétique, à savoir une composante Ex dans la direction de l'axe et une composante Ey perpendiculaire à la composante Ex et au champ magnétique de manière à compenser le mouvement perpendiculaire à l'axe dû à l'accroissement du champ magnétique, dans ladite zone.
  • D'autres caractéristiques et avantages de la présente invention apparaitront à la lecture de la description de deux modes de réalisation de générateurs d'ondes radioélectrique pour hyperfréquences munis d'un dispositif d'injection conforme à la présente invention.
  • Cette description est faite avec référence aux
  • dessins ci-annexés dans lesquels:
    • - la figure 1 a est une vue en coupe schématique, dans un plan perpendiculaire au champ magnétique, d'un générateur d'ondes radioélectriques pour hyperfréquences comportant un dispositif d'injection conforme à la présente invention et la figure 1 b est une courbe représentant la variation du champ magnétique appliqué, selon l'axe de propagation;
    • - la figure 2a est une vue semblable à celle de figure 1a d'un autre mode de réalisation du générateur et la figure 2b est une courbe semblable à celle de figure 1 b.
  • Dans les dessins, les mêmes éléments portent les mêmes références.
  • Le générateur représenté à la figure 1a comporte essentiellement trios parties, à savoir un dispositif d'injection 1, une structure résonnante 2 et un collecteur 3, l'ensemble étant placé à l'intérieur d'une enceinte à vide 4 portée à un potentiel nul. Conformément à la présente invention, le dispositif d'injection 1 est constitué par un canon à électrons 5 produisant un faisceau d'électrons suivant la direction x suivi de moyens 6 pour créer un champ électrique E sans composante dans la direction z mais présentant deux composantes Ex et Ey dans le plan de la figure. Le dispositif d'injection 1 est placé dans un champ magnétique statique perpendiculaire au plan de la figure, c'est-à-dire de direction z. Le champ magnétique appliqué dans la présente invention est tel que le canon à électrons 5 soit soumis à un champ magnétique 81 de faible valeur et les moyens 6 à un champ magnétique B2 croissant progressivement de la valeur 81 jusqu'à une valeur B3 représentant le champ magnétique régnant au niveau de la structure résonnante 2, comme représenté respectivement par les parties 1, Il, III sur la figure 1 b. De manière plus précise, le canon à électrons 5 est constitué par deux électrodes planes 7, 8 se faisant face dont l'une 7 appelée anode est portée à un potentiel positif V et l'autre appelée sole est formée de deux parties 8, 8' et est portée à un potentiel négatif Vc et d'une cathode 9 chauffé par un filament 10 et portée au même potentiel Vc que la sole 8. Ce type de canon à électrons fournit de manière connue un faisceau suivant, selon la direction x, une trajectoir cycloïdale. Dans le mode de réalisation représenté, les moyens 6 sont réalisés par quatre électrodes 11, 12, 13, 14 portées à des potentiels continus tels que, par exemple,
    Figure imgb0001
  • Dans cette partie, comme expliqué de manière plus détaillée ci-après, les électrons se trouvant dans un champ électrique présentant deux composantes Ex et Ey et étant soumis à un champ magnétique statique uniformément croissant de direction x, sont amenés à suivre une trajectoire cycloïdale dont le rayon de rotation diminue progressivement comme représenté sur la figure 1a.
  • Le faisceau d'électrons est alors injecté dans la structure résonnante 2 dans laquelle il interagit avec un champ électromagnétique haute fréquence. Au niveau de la structure résonnante 2, l'enceinte 4 présente la forme d'un cylindre d'axe z à l'intérieur duquel le champ magnétique statique B3 est à peu près uniforme. La structure résonnante 2 est constituée, de manière connue, par deux miroirs sphériques 15,16 se faisant face et positionnés de telle sorte que la distance H veri- fie la relation
    Figure imgb0002
    avec n un entier et À la longueur d'onde de fonctionnement.
  • Dans ce cas, les deux miroirs 15,16 constituent un résonnateur «quasi-optique». L'un des miroirs, à savoir le miroir 15, est pourvu d'un orifice 17 relié à un guide d'onde 18. Ce guide d'onde 18 est utilisé pour envoyer vers l'extérieur, l'énergie électromagnétique cédée par le faisceau d'électrons au faisceau électromagnétique qui se présente comme une onde stationnaire dans la direction y avec un champ électrique haute fréquence polarisé dans la direction x. Pour assurer la propagation du faisceau d'électrons suivant la direction x dans la partie cylindrique de l'enveloppe 4, les deux miroirs 15, 16 sont précédés et suivis par des grilles 19, 20 non réfléchissantes à la fréquence de fonctionnement du résonnateur et écartées d'une distance h telle que
    Figure imgb0003
    D'autre part, les deux miroirs 15 et 16 sont portés respectivement à la masse et à un potentiel négatif de manière à créer entre eux un champ électrique continu Ec de direction y qui assure la dérive du faisceau d'électrons suivant la direction x.
  • La partie cylindrique de l'enveloppe 4 est, de préférence, recouverte de substances absorbantes 21 à la fréquence de fonctionnement pour éviter les résonnances parasites. Ces substances sont, par exemple, en «carberlox» (marque).
  • Les électrons ayant cédé lur énergie sont alors évacués vers un collecteur 3 constitué par une partie de l'enveloppe 4 présentant une section en coupe dans le plan x y en forme de U.
  • La figure 2a représente une variante de réalisation du générateur de la figure la qui constitue alors un amplificateur. Dans ce mode de réalisation, seule la structure résonnante a été modifiée, les autres parties restant identiques.
  • La nouvelle structure est formée de deux plaques parallèles planes 22, 23 écartées l'une de l'autre d'une distance H' telle que
    Figure imgb0004
    de manière à guider dans la direction x une onde progressive haute fréquence ayant au moins une composante de champ électrique haute fréquence dans le plan x y. L'onde progressive est injectée dans la structure par l'intermédiaire du guide d'one d'entrée 24 et elle est évacuée, après avoir reçu l'énergie cédée par le faisceau d'électrons, par l'intermédiaire du guide d'onde de sortie 25. D'autre part, pour obtenir la dérive du faisceau d'électrons suivant la direction x, les deux plaques sont polarisées de manière à créer entre elles un champ électrique continu de direction y.
  • On mentionnera, de plus, que tous les éléments représentés en coupe dans le plan x y sont très allongés dans la direction z. Cette caractéristique des générateurs de ce type constitue un avantage par rapport aux structures axiales du type gyrotron. En effet, la dimension des divers éléments dans la direction z peut correspondre à un grand nombre de longueurs d'onde, ce qui permet d'obtenir, pour une tension cathodique donnée, un courant très important avec une densité de courant et une densité de puissance au collecteur limitées.
  • En ce qui concerne la figure 2b elle est identique à la figure 1 b et donne la variation du champ magnétique statique B selon la direction x. Le champ magnétique est crée de manière connue à l'aide de bobine supraconductrices, par exemple.
  • On expliquera maintenant le fonctionnement des deux modes de réalisation des figures 1a et 2a, en particulier le fonctionnement du dispositif d'injection objet de la présente invention.
  • Le fonctionnement du dispositif d'injection est basé sur des principes connus que nous rappele- rons brièvement ci-après.
  • Ainsi lorsqu'un électron est soumis à un champ magnétique axial lentement variable, on montre que la trajectoire s'enroule sur des tubes de force et que l'on se trouve dans un régime dit «adiabatique» pour lequel
    Figure imgb0005
    rL 2 étant le rayon de gyration du faisceau.
  • On montre aussi qu'il existe une propriété analogue dans le cas d'une injection transversale dans un champ magnétique non uniforme.
  • Ainsi, dans le plan x y, la composante Bz est une fonction de x et y, en principe seulement de R =
    Figure imgb0006
    Toutefois, on démontre que pour un système de grandes dimensions devant le rayon d'orbite des électrons, l'équation (1) reste valable.
  • D'autre part, dans le plan x y, le centre de l'orbite des électrons, de coordonées X(t), Y(t), se déplace suivant les équations.
    Figure imgb0007
    Figure imgb0008
  • Dans le dispositif d'injection 1 de la présente invention, le canon à électrons 5 placé dans une région de champ magnétique B1 peu intense, produit un faisceau d'électrons progressant vers la région centrale dudit champ, où il est maximum, en se déplaçant perpendiculairement à sa direction. La progression suivant une trajectoire cycloïdale est assurée par les électrodes placées au voisinage de sa trajectoire et portées à des potentiels appropriés, ce qui crée entre les électrodes un champ électrique continu uniforme donnant aux électrons une vitesse de dérive.
  • Le faisceau d'électrons est ensuite soumis dans la région des moyens 6 à un champ magnétique de direction Bz croissant progressivement. De plus, les différents potentiels des électrodes 11,12,13,14 ont été choisis de manière à créer un champ électrique présentant des composantes selon les directions x et y et à satisfaire les équations ci-après.
    Figure imgb0009
    Figure imgb0010
    avec
    Figure imgb0011
    pour que le faisceau d'électrons se propage dans la direction x.
  • Dans ce cas, le faisceau d'électrons sera amené dans la zone du champ magnétique croissant à suivre une trajectoire cycloïdale dont le rayon diminue progressivement du fait de l'équation (1) selon la direction x avec une vitesse de dérive constante si la composante Ey croit comme Bz dont la variation le long de x est donnée sur les figures 1b et 2b. En effet, la condition donnée par l'équation (5) évite une dérive transversale et permet aux électrons d'entrer dans le champ magnétique croissant qui tend normalement à repousser les électrons doués d'une vitesse de rotation vers les régions où B est plus petit, à savoir vers le canon.
  • Avec le dispositif d'injection ci-dessus on obtient donc en entrée de la structure résonnante, un faisceau d'électrons se déplaçant selon une trajectoire hélicoïdale suivant la direction x dans un champ magnétique transversal fort de manière à ce que la vitesse de rotation des électrons soit égale à
    Figure imgb0012
    • avec e = charge de l'électron
    • m = masse de l'électron
    Figure imgb0013
    pour pouvoir obtenir l'interaction souhaitée dans la structure résonnante 2.
  • Avec ce dispositif d'injection, on obtient les avantages suivants:
    • - possibilité de produire un faisceau d'électrons de grande section selon z donnant un courant et une puissance plus élevés;
    • - absence d'électrons réfléchis vers le canon;
    • - vitesse de dérive des électrons réglée uniquement par la tension appliquée sur les différentes plaques.

Claims (3)

1. Un dispositif d'injection dans une zone d'interaction de type cyclotronique d'un faisceau d'électrons se propageant suivant une trajectoire cycloïdale dans la direction d'un axe (x) sous l'action d'un champ électrique uniforme et d'un champ magnétique statique (B) perpendiculaire à l'axe de propagation et au champ électrique, caractérisé en ce qu'il comporte un canon à électrons (5) placé dans une zone (I) où le champ magnétique a une intensité (B1) inférieure à celle (B3) du champ nécessaire pour obtenir une interaction de type cyclotronique et des électrodes (11-14) positionnées entre le canon et la zone d'interaction dans une zone (II) où le champ magnétique a une intensité (B2) croissant dans le sens de propagation du faisceau, pour créer dans cette zone, un champ électrique statique présentant deux composantes (Ex, Ey) dans le plan perpendiculaire au champ magnétique, à savoir une composante Ex dans la direction de l'axe et une composante Ey perpendiculaire à la composant Ex et au champ magnétique, de manière à compenser le mouvement perpendiculaire à l'axe dû à l'accroissement du champ magnétique, dans ladite zone (II).
2. Un dispositif d'injection selon la revendication 1 caractérisé en ce que les électrodes (11-14) sont au nombre de quatre et se font face deux à deux et en ce que des différences de potentiels croissantes sont appliquées entre elles (V11 < V12 < V13 < V14) de manière à créer un champ électrique présentant des composantes selon les directions x et y et choisie pour que les équations:
Figure imgb0014
Figure imgb0015
avec
Figure imgb0016
soient satisfaites.
3. Un dispositif d'injection selon la revendication 2 caractérisé en ce que la variation de la composante Ev est choisie de telle sorte que
Figure imgb0017
= cste dans la zone de champ magnétique croissant.
EP84400615A 1983-04-06 1984-03-27 Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences Expired EP0124396B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8305604A FR2544128B1 (fr) 1983-04-06 1983-04-06 Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences
FR8305604 1983-04-06

Publications (2)

Publication Number Publication Date
EP0124396A1 EP0124396A1 (fr) 1984-11-07
EP0124396B1 true EP0124396B1 (fr) 1988-01-27

Family

ID=9287567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400615A Expired EP0124396B1 (fr) 1983-04-06 1984-03-27 Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences

Country Status (5)

Country Link
US (1) US4567402A (fr)
EP (1) EP0124396B1 (fr)
JP (1) JPS59197179A (fr)
DE (1) DE3469102D1 (fr)
FR (1) FR2544128B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3863661D1 (de) * 1987-03-03 1991-08-22 En Physique Des Plasmas Centre Hochleistungs-gyrotron zur erzeugung elektromagnetischer millimeter- oder submillimeterwellen.
FR2625836B1 (fr) * 1988-01-13 1996-01-26 Thomson Csf Collecteur d'electrons pour tube electronique
FR2672730B1 (fr) * 1991-02-12 1993-04-23 Thomson Tubes Electroniques Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfrequence et tube hyperfrequence comprenant un tel dispositif.
US6504393B1 (en) 1997-07-15 2003-01-07 Applied Materials, Inc. Methods and apparatus for testing semiconductor and integrated circuit structures
US6252412B1 (en) 1999-01-08 2001-06-26 Schlumberger Technologies, Inc. Method of detecting defects in patterned substrates
US7528614B2 (en) * 2004-12-22 2009-05-05 Applied Materials, Inc. Apparatus and method for voltage contrast analysis of a wafer using a tilted pre-charging beam

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2632130A (en) * 1947-11-28 1953-03-17 Joseph F Hull High current density beam tube
US2970241A (en) * 1958-01-08 1961-01-31 Klein Gerald Backward wave tube amplifieroscillator
NL257375A (fr) * 1959-10-29
FR1342263A (fr) * 1961-09-18 1963-11-08 Varian Associates Perfectionnements aux canons électroniques
JPS4921458B1 (fr) * 1963-10-29 1974-06-01
US3325677A (en) * 1963-11-08 1967-06-13 Litton Prec Products Inc Depressed collector for crossed field travelling wave tubes
FR89788E (fr) * 1966-03-31 1967-08-18 Csf Perfectionnements aux lignes à retard électroniques
US3619709A (en) * 1970-07-06 1971-11-09 Ratheon Co Gridded crossed field traveling wave device
US4021697A (en) * 1975-12-10 1977-05-03 Warnecke Electron Tubes, Inc. Crossed-field amplifier

Also Published As

Publication number Publication date
US4567402A (en) 1986-01-28
DE3469102D1 (en) 1988-03-03
FR2544128B1 (fr) 1985-06-14
JPS59197179A (ja) 1984-11-08
EP0124396A1 (fr) 1984-11-07
FR2544128A1 (fr) 1984-10-12

Similar Documents

Publication Publication Date Title
EP0013242B1 (fr) Générateur d&#39;ondes radioélectriques pour hyperfréquence
EP0564359B1 (fr) Dispositif d&#39;application de micro-ondes et réacteur à plasma utilisant ce dispositif
FR2499312A1 (fr) Dispositif d&#39;attenuation de modes pour des cavites de gyrotrons
CH623182A5 (fr)
EP0248689A1 (fr) Klystron à faisceaux multiples
EP0197843B1 (fr) Dispositif pour l&#39;excitation par ondes hyperfréquences d&#39;un plasma dans une colonne de gaz, permettant notamment la réalisation d&#39;un laser ionique
WO2003083893A1 (fr) Dispositif de confinement d&#39;un plasma dans un volume
EP0124396B1 (fr) Dispositif d&#39;injection d&#39;un faisceau d&#39;électrons pour générateur d&#39;ondes radioélectriques pour hyperfréquences
EP0239466B1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
FR2760127A1 (fr) Canon a electrons et klystron le comportant
FR2568057A1 (fr) Tube a hyperfrequences
FR2492158A1 (fr) Tube a electrons pour gyrotron
EP0407558B1 (fr) Dispositif amplificateur ou oscillateur fonctionnant en hyperfrequence
EP0124395B1 (fr) Canon à électrons pour générateurs d&#39;ondes radioélectriques pour hyperfréquences
EP0122186B1 (fr) Générateur d&#39;ondes radioélectriques pour hyperfréquences
EP0155890B1 (fr) Tube convertisseur d&#39;image à balayage de fente
EP0413018B1 (fr) Dispositif generateur d&#39;ondes hyperfrequences a cathode virtuelle
EP0082769A1 (fr) Multiplicateur de fréquence
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes
EP0119902A1 (fr) Cavité résonnante pour hyperfréquences, en particulier pour générateurs d&#39;énergie électromagnétique
EP0295981B1 (fr) Accélérateur d&#39;électrons à nappe
EP0734048B1 (fr) Procédé et dispositif pour revêtir ou nettoyer un substrat
FR2691287A1 (fr) Nouveau circuit de sortie à interaction étendue pour un klystron relativiste large bande.
FR2476908A1 (fr) Tube a ondes progressives pour tres hautes frequences et dispositif amplificateur utilisant un tel tube
EP0482986A1 (fr) Collecteur pour tube hyperfréquence et tube hyperfréquence comportant un tel collecteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19841115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 3469102

Country of ref document: DE

Date of ref document: 19880303

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920210

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920220

Year of fee payment: 9

Ref country code: DE

Payment date: 19920220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201