EP0248689A1 - Klystron à faisceaux multiples - Google Patents

Klystron à faisceaux multiples Download PDF

Info

Publication number
EP0248689A1
EP0248689A1 EP87401023A EP87401023A EP0248689A1 EP 0248689 A1 EP0248689 A1 EP 0248689A1 EP 87401023 A EP87401023 A EP 87401023A EP 87401023 A EP87401023 A EP 87401023A EP 0248689 A1 EP0248689 A1 EP 0248689A1
Authority
EP
European Patent Office
Prior art keywords
klystron
cavities
mode
beams
klystrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP87401023A
Other languages
German (de)
English (en)
Inventor
Duc Tien Tran
Georges Faillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0248689A1 publication Critical patent/EP0248689A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator

Definitions

  • the present invention relates to multi-beam klystrons.
  • Multibeam klystrons are well known in the art; in the description of Figures 1 and 2 the principle of these klystrons and their structure will be recalled.
  • the acceleration voltage applied between the anode and a cathode of the klystron is much lower in a klystron with multiple beams than in a klystron with a single beam.
  • the need to modulate the speed of the electron beam imposes on this acceleration voltage the same upper limit from which the beam is no longer modular. Consequently, one can obtain with a multibeam klystron a much higher high frequency power than that which can be obtained with a klystron with a single beam.
  • the present invention makes it possible to produce klystrons with multiple beams, of very high power, and at frequencies very high.
  • a klystron with multiple beams comprising several resonant cavities, is characterized in that these cavities are dimensioned in such a way that the klystron works, optimally, in TM On mode (n: whole number greater than 1) and in that the sliding tubes of the klystron pass through the cavities passing through a region where, even in the absence of these tubes, the electric field would pass through an absolute maximum.
  • the klystrons with several beams are perfected klystrons for which we seek at the same time compactness, high efficiency while using only a low accelerating voltage.
  • the acceleration voltage applied between the anode and the cathode is therefore divided by the factor N 2/5 .
  • the acceleration voltage is divided by 6 2/5 , that is to say substantially by a factor of 2.
  • Figure 1 schematically shows a longitudinal sectional view of an embodiment of a klystron with several beams.
  • This tube comprises an electron gun with cathodes which bear the reference 1 and an anode which bears the reference 2.
  • This anode is pierced with holes arranged opposite the cathodes.
  • This klystron has four resonance cavities 3 which are used to modulate the beams in speed.
  • Sliding tubes 4 connect the cavities to each other and ensure sealing.
  • the resonance cavities 3 are of the re-entering type. They interact with the electromagnetic field excited in these cavities, by an external source, not shown in the case of the first cavity which is closest to the electron gun, or by these beams themselves in the following cavities.
  • the beams are focused by a set of coils 5, arranged around the cavities 3. It can be seen in FIG. 1 that two shielding plates 6 have been placed on either side of the coil set 5, made of magnetic material, for example soft iron. These plates are pierced with holes of diameter very close to those of the beams, so as to allow the passage of the beams of the electron guns into the cavities then from the cavities to the collector 7.
  • FIG. 1 two electron beams 8 and 9 are shown.
  • These plates 6 are equipotential surfaces from a magnetic point of view and contribute to creating along the tube a magnetic field as constant as possible.
  • the shielding plate 6 located on the side of the barrels makes it possible to prevent the leakage field of the coils from reaching the cathodes.
  • this shielding plate 6 carries include a bulge 10 directed towards the cathodes.
  • a cylinder 11 made of magnetic material is attached to this shielding plate 6. This cylinder 11 is connected to other parts 12, which are made of ceramic, for reasons of insulation.
  • an anode 2 made of magnetic material can be used to perfect the shielding of the cathodes.
  • Figure 2 is a sectional view along the direction AA ⁇ shown in Figure 1.
  • the klystron of Figure 1 has six sliding tubes 4, so has six electron beams.
  • the ends of a cavity 3 have been shown, but the focusing device has not been shown.
  • the sliding tubes are arranged in a circle centered on the longitudinal axis XX ⁇ of the tube.
  • the angular difference between the tubes is constant.
  • the electric field has an identical configuration, in each cavity, between the parts of the sliding tubes which face each other.
  • the multi-beam klystrons known from the prior art always operate in TM01 mode, that is to say at the lowest frequency.
  • FIG. 3 shows the variation of the longitudinal electric field E z , after the introduction of sliding tubes, in a cavity when one moves along an axis r, which shares the cavity in its middle and which is perpendicular to the axis longitudinal XX ⁇ of the klystron, as shown in Figure 1.
  • This field presents two maxima located in the interaction space separating the sliding tubes as it is understood by considering FIG. 4, where we have represented, schematically, and in correspondence with FIG. 3, the distribution of electric and magnetic fields in a cavity, section view.
  • the field E z has a single maximum which is situated on the axis XX ⁇ and the sliding tubes are placed as close as possible to this maximum to avoid disturbing the field; they however disturb the field since they cannot, because of their number and their dimensions be placed according to XX4.
  • the multiple beam klystrons according to the invention operate in TM02 mode.
  • the whole klystron, and the cavities in particular, are sized so that the klystron works optimally in TM02 mode.
  • the modification of the dimensions of the cavities necessarily involves modifications of the other parts of the klystron, such as for example the cathodes or the focusing device.
  • the cavities resonate at a frequency at least twice as high as in the case of operation in TM01 mode.
  • Figures 5 and 6 established in the case of a klystron with multiple beams operating in TM02 mode, correspond to Figures 3 and 4 established in the case of operation in TM01 mode.
  • FIG. 5 therefore represents the variations of the longitudinal electric field E z along the axis r, both before and after the introduction of the sliding tubes into the cavity.
  • FIG. 6 represents the distribution of the electric and magnetic fields in a cavity seen in section.
  • the longitudinal electric field E z has two maxima along the axis r, that is to say that the field is maximum in a region in the shape of a cylinder of axis XX ⁇ ; the sliding tubes pass through the cavity passing through this region, that is to say passing where the electric field is as constant as possible.
  • the magnetic field is practically zero, which is favorable for maintaining the trajectories of the electron beams in the right direction.
  • the axes YY ⁇ and ZZ ⁇ of the sliding tubes are relatively more distant from the axis XX ⁇ than in the case of operation in TM01 mode.
  • the sliding tubes are therefore relatively further apart from one another in the case of operation in TM02 mode. It is therefore possible to increase the diameter of their orifice through which an electron beam propagates, which makes it possible to increase in power.
  • the TM02 mode facilitates the realization of klystrons with multiple beams compared to TM01 mode.
  • this invention is not limited to the case of a klystron operating in TM02 mode but can extend to all TM 0n modes, with n integer greater than 1; the sliding tubes will then be placed in the area of an absolute maximum (ie of a maximum positive or negative value) of the electric field as is the case described with the TM02 mode.

Abstract

Les cavités résonnantes (3) du klystron à faisceaux multiples sont dimensionnées de manière à fonctionner, de façon optimale, en mode TM₀₂ et les tubes de glissement relatifs aux faisceaux, traversent les cavités du klystron aux endroits où le champ élec­trique, dans les cavités, passe par un maximum absolu.Une telle réalisation permet d'obtenir des klystrons de grande puissance, capables de fonctionner à des fréquences élevées.

Description

  • La présente invention concerne les klystrons à faisceaux multiples.
  • Les klystrons à faisceaux multiples sont bien connus de l'art antérieur ; dans la description des figures 1 et 2 le principe de ces klystrons et leur structure seront rappelés.
  • Un grand avantage de ces klystrons est qu'ils sont particu­lièrement adaptés à un fonctionnement à grande puissance.
  • En effet, on démontre que pour une même puissance haute fréquence, la tension d'accélération appliquée entre l'anode et une cathode du klystron est beaucoup plus faible dans un klystron à faisceaux multiples que dans un klystron à un seul faisceau. Or quel que soit le type de klystron, la nécessité de moduler la vitesse du faisceau d'électrons impose à cette tension d'accélération une même limite supérieure à partir de laquelle le faisceau n'est plus modu­lable. En conséquence, on peut obtenir avec un klystron à faisceaux multiples une puissance haute fréquence beaucoup plus élevée que celle qu'il est possible d'obtenir avec un klystron à un seul faisceau.
  • Le problème qui se pose est qu'il n'est pas possible avec les klystrons à faiceaux multiples de l'art antérieur d'obtenir des grandes puissances à des fréquences élevées.
  • En effet aux fréquences élevées, les dimensions des klystrons deviennent très petites. On est alors limité par les dimensions des tubes de glissement des cavités dont les orifices doivent être suffisamment grands pour permettre le passage d'un faisceau d'élec­trons, dont la densité ne doit pas atteindre un niveau prohibitif, et cela d'autant plus qu'on veut obtenir des puissances élevées.
  • En pratique, des problèmes se posent lorsque l'on cherche à produire des puissances de plusieurs dizaines de mégawatts, à des fréquences de plusieurs milliers de mégahertz.
  • La présente invention permet de réaliser des klystrons à faisceaux multiples, de très grande puissance, et à des fréquences très élevées.
  • Selon l'invention un klystron à faisceaux multiples, comportant plusieurs cavités résonnantes, est caractérisé en ce que ces cavités sont dimensionnées de telle façon que le klystron fonctionne, de façon optimale, en mode TMOn (n : nombre entier supérieur à 1) et en ce que les tubes de glissement du klystron traversent les cavités en passant par une région où, même en l'absence de ces tubes, le champ électrique passerait par un maximum absolu.
  • D'autres objets, caractéristiques et résultats de l'invention ressortiront de la description suivante, donnée à titre d'exemple non limitatif et illustrée par les figures annexées qui représentent :
    • - la figure 1, une vue en coupe longitudinale d'un mode de réalisation d'un klystron à faisceaux multiples ;
    • la figure 2, une vue en coupe selon la direction AAʹ indiquée sur la figure 1 ;
    • - les figures 3 et 5, la variation du champ électrique longi­tudinal dans une cavité, respectivement, dans le cas d'un klystron fonctionnant en mode TM₀₁ et en mode TM₀₂ ;
    • - les figures 4 et 6, une vue en coupe d'une cavité d'un klystron à faisceaux multiples dans laquelle a été représentée la distribution des champ électrique et magnétique, respectivement, dans le cas d'un klystron fonctionnant en mode TM₀₁ et en mode TM₀₂.
  • Sur les différentes figures, les mêmes repères désignent les mêmes éléments, mais, pour des raisons de clarté, les cotes et proportions des divers éléments ne sont pas respectées.
  • Les klystrons à plusieurs faisceaux sont des klystrons perfec­tionnés pour lesquels on cherche à la fois la compacité, le haut rendement tout en n'utilisant qu'une faible tension accélératrice.
  • On sait qu'avec la conception conventionnelle des klystrons, ces trois dernières exigences sont contradictoires. En effet, le haut rendement ne peut être obtenu qu'avec un faisceau de faible pervéance, c'est-à-dire de haute tension. Or, la longueur des klystrons croît comme la racine carrée de la haute tension.
  • Pour contourner cette difficulté, on peut diviser le faisceau en plusieurs faisceaux élémentaires.
  • Le principe peut être expliqué comme suit : soit un faisceau divisé en N faisceaux élémentaires, de courant I, accéléré à une tension V et soit p la pervéance et n le rendement de conversion entre la puissance d'alimentation VI et la puissance de haute fréquence P. Les relations suivantes sont vérifiées :
        I = p V3/2
        P = np V5/2
  • Si l'on accélère N de ces faisceaux élémentaires, en parallèle, par la même tension V, la puissance de haute fréquence totale PTOT égale :
    Figure imgb0001
  • Pour une même puissance de haute fréquence, la tension d'accélération appliquée entre l'anode et la cathode est donc divisée par le facteur N2/5.
  • Pour N = 6, la tension d'accélération est divisée par 62/5, c'est-à-dire sensiblement par un facteur 2.
  • La figure 1 représente de façon schématique une vue en coupe longitudinale d'un mode de réalisation d'un klystron à plusieurs faisceaux.
  • Ce tube comporte un canon à électrons avec des cathodes qui portent la référence 1 et une anode qui porte la référence 2. Cette anode est percées de trous disposés en face des cathodes.
  • Ce klystron comporte quatre cavités de résonnance 3 qui servent à moduler les faisceaux en vitesse. Des tubes de glissement 4 relient les cavités entre elles et permettent d'assurer l'étanchéïté.
  • Les cavités de résonnance 3 sont de type ré-entrant. Elles interagissent avec le champ électromagnétique excité dans ces cavités, par une source extérieure, non représentée dans le cas de la première cavité qui est la plus proche du canon à électrons, ou par ces faisceaux eux-mêmes dans les cavités suivantes.
  • La focalisation des faisceaux est réalisée par un ensemble de bobines 5, disposées autour des cavités 3. On voit sur la figure 1 qu'on a disposé de part et d'autre de l'ensemble de bobines 5, deux plaques de blindage 6, en matériau magnétique, par exemple en fer doux. Ces plaques sont percées de trous de diamètre très voisin de ceux des faisceaux, de façon à permettre le passage des faisceaux des canons à électrons dans les cavités puis des cavités vers le collecteur 7.
  • Sur la figure 1, on a représenté deux faisceaux d'électrons 8 et 9.
  • Ces plaques 6 sont des surfaces équipotentielles d'un point de vue magnétique et contribuent à créer le long du tube un champ magnétique aussi constant que possible.
  • La plaque de blindage 6 située du côté des canons permet d'empêcher le champ de fuite des bobines d'atteindre les cathodes.
  • Pour cela les orifices que porte cette plaque de blindage 6 comportent un renflement 10 dirigé vers les cathodes. De plus, un cylindre 11 en matériau magnétique est accolé à cette plaque de blindage 6. Ce cylindre 11 est relié à d'autres pièces 12, qui sont en céramique, pour des raisons d'isolation. Enfin, on peut utiliser une anode 2 en matériau magnétique pour parfaire le blindage des cathodes.
  • La figure 2 est une vue en coupe selon la direction AAʹ indiquée sur la figure 1. On voit sur cette coupe que le klystron de la figure 1 comporte six tubes de glissement 4, donc comporte six faisceaux d'électrons. On a représenté les extrémités d'une cavité 3, mais le dispositif de focalisation n'a pas été représenté.
  • Les tubes de glissement sont disposés selon un cercle centré sur l'axe longitudinal XXʹ du tube. L'écart angulaire entre les tubes est constant. Ainsi, le champ électrique a une configuration iden­tique, dans chaque cavité, entre les parties des tubes de glissement qui se font face.
  • Les klystrons à faisceaux multiples connus de l'art antérieur fonctionnent toujours en mode TM₀₁, c'est-à-dire à la fréquence la plus basse.
  • Il est d'usage dans les tubes hyperfréquences de fonctionner au mode fondamental.
  • La figure 3 montre la variation du champ électrique longi­tudinal Ez, après l'introduction de tubes de glissement, dans une cavité lorsqu'on se déplace selon un axe r, qui partage la cavité en son milieu et qui est perpendiculaire à l'axe longitudinal XXʹ du klystron, tel qu'il est représenté sur la figure 1.
  • Ce champ présente deux maxima situés dans l'espace d'in­teraction séparant les tubes de glissement comme cela se comprend en considérant la figure 4, où l'on a représenté, de façon sché­matique, et en correspondance avec la figure 3, la distribution des champs électrique et magnétique dans une cavité, vue en coupe. Avant l'introduction des tubes de glissement le champ Ez présente un seul maximum qui est situé sur l'axe XXʹ et les tubes de glissement sont placés aussi près possible de ce maximum pour éviter de perturber le champ ; ils perturbent cependant le champ puisqu'ils ne peuvent, du fait de leur nombre et de leurs dimensions être placés selon XX4.
  • Les klystrons à faisceaux multiples selon l'invention fonction­nent en mode TM₀₂.
  • L'ensemble du klystron, et les cavités en particulier, sont dimensionnés pour que le klystron fonctionne de façon optimale en mode TM₀₂.
  • La modification des dimensions des cavités entraîne nécessai­rement des modifications des autres parties du klystron, telles que par exemple les cathodes ou le dispositif de focalisation.
  • Ainsi, à dimensions égales, et donc pour une puissance maximum donnée, les cavités résonnent à une fréquence au moins deux fois plus élevée que dans le cas d'un fonctionnement en mode TM₀₁.
  • Il est également possible si l'on conserve la même fréquence que dans le cas d'un fonctionnement en mode TM₀₁ d'augmenter les dimensions des cavités pour obtenir plus de puissance.
  • Le fonctionnement en mode TM₀₂ permet donc d'obtenir des klystrons à faisceaux multiples, de plus grande puissance, et à une fréquence plus élevée, que ne le permet le fonctionnement en mode TM₀₁.
  • Les figures 5 et 6, établies dans le cas d'un klystron à faisceaux multiples fonctionnant en mode TM₀₂, correspondent aux figures 3 et 4 établies dans le cas d'un fonctionnement en mode TM₀₁.
  • La figure 5 représente donc les variations du champ électrique longitudinal Ez selon l'axe r, aussi bien avant qu'après l'introduction des tubes de glissement dans la cavité.
  • La figure 6 représente la distribution des champs électrique et magnétique dans une cavité vue en coupe.
  • Avant même l'introduction des tubes de glissement dans la cavité, le champ électrique longitudinal Ez présente deux maxima selon l'axe r, c'est à dire que le champ est maximum dans une région en forme de cylindre d'axe XXʹ ; les tubes de glissement traversent la cavité en passant par cette région, c'est à dire en passant là où le champ électrique est aussi constant que possible.
  • Dans les espaces d'interaction situés entre les tubes de glis­sement le champ magnétique est pratiquement nul, ce qui est favorable au maintien des trajectoires des faisceaux d'électrons dans la bonne direction.
  • Dans le cas d'un fonctionnement en mode TM₀₂ les axes YYʹ et ZZʹ des tubes de glissement sont relativement plus éloignés de l'axe XXʹ que dans le cas d'un fonctionnement en mode TM₀₁. Les tubes de glissement sont donc relativement plus écartés les uns des autres dans le cas d'un fonctionnement en mode TM₀₂. Il est donc possible d'augmenter le diamètre de leur orifice à travers lequel se propage un faisceau d'électrons, ce qui permet de monter en puissance.
  • En conséquence, le mode TM₀₂ facilite la réalisation de klystrons à faisceaux multiples par rapport au mode TM₀₁.
  • Dans le cas des klystrons à faisceaux multiples, on peut sans problème choisir de fonctionner en mode TM₀₂ car les faisceaux modulés ne contiennent pas de sous-harmoniques. On ne risque donc pas un fonctionnement en mode TM₀₁, avec de mauvaises perfor­mances. Même s'il y a des sous-harmoniques, on peut éviter aisé­ment qu'ils soient égaux à la fréquence du mode TM₀₁.
  • Il est à noter que cette invention n'est pas limitée au cas d'un klystron fonctionnant en mode TM₀₂ mais peut s'étendre à tous les modes TM0n, avec n entier supérieur à 1 ; les tubes de glissement seront alors placés dans la zone d'un maximum absolu (c'est à dire d'une valeur positive ou négative maximum) du champ électrique comme c'est le cas décrit avec le mode TM₀₂.

Claims (2)

1. Klystron à faisceaux multiples, comportant plusieurs cavités résonnantes (3), caractérisé en ce que ces cavités (3) sont dimen­sionnées de telle façon que le klystron fonctionne, de façon opti­male, en mode TM0n (n : nombre entier supérieur à 1) et en ce que les tubes de glissement du klystron traversent les cavités en passant par une région où, même en l'absence de ces tubes, le champ électrique passerait par un maximum absolu.
2. Klystron selon la revendication 1, caractérisé en ce qu'il comporte un dispositif de focalisation (5), disposé autour de ses cavités (3) et en ce qu'il comporte un dispositif de blindage constitué :
    - de deux plaques (6), en matériau magnétique, disposées de part et d'autre du dispositif de focalisation (5), et percées de trous permettant le passage des faisceaux, l'une des deux plaques étant disposée entre les canons du klystron et les cavités ;
    - d'un cylindre (11), en matériau magnétique, accolé à la plaque (6) située entre les canons et les cavités ;
    - d'une anode (2), en matériau magnétique.
EP87401023A 1986-05-30 1987-05-05 Klystron à faisceaux multiples Ceased EP0248689A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8607825A FR2599554A1 (fr) 1986-05-30 1986-05-30 Klystron a faisceaux multiples fonctionnant au mode tm02
FR8607825 1986-05-30

Publications (1)

Publication Number Publication Date
EP0248689A1 true EP0248689A1 (fr) 1987-12-09

Family

ID=9335848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87401023A Ceased EP0248689A1 (fr) 1986-05-30 1987-05-05 Klystron à faisceaux multiples

Country Status (3)

Country Link
US (1) US4733131A (fr)
EP (1) EP0248689A1 (fr)
FR (1) FR2599554A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440529A1 (fr) * 1990-02-02 1991-08-07 Thomson Tubes Electroniques Tube hyperfréquence multifaisceau à groupes de cavités adjacentes
EP0764339A2 (fr) * 1995-03-28 1997-03-26 Communications & Power Industries, Inc. CANON A ELECTRONS EN FAISCEAU CREUX POURVU DE RESONATEURS EN MODE TM 0x0? POUR LESQUELS x EST SUPERIEUR A 1
EP2491570A1 (fr) * 2009-10-21 2012-08-29 Omega-P, Inc. Klystron multifaisceau à basse tension
CN110797243A (zh) * 2019-11-05 2020-02-14 电子科技大学 一种嵌套式同轴发射异步电子注的电子光学系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625836B1 (fr) * 1988-01-13 1996-01-26 Thomson Csf Collecteur d'electrons pour tube electronique
FR2637122A1 (fr) * 1988-09-23 1990-03-30 Thomson Csf Dispositif correcteur de trajectoires pour tube electronique
US4910456A (en) * 1988-12-22 1990-03-20 Asea Brown Boveri Inc. Electronic watt-hour meter with combined multiplier/integrator circuit
FR2658001B1 (fr) * 1990-02-02 1996-08-14 Thomson Tubes Electroniques Tube hyperfrequence multifaisceau a sortie coaxiale.
GB2292001B (en) * 1994-08-03 1998-04-22 Eev Ltd Electron beam tubes
FR2737340B1 (fr) * 1995-07-28 1997-08-22 Thomson Tubes Electroniques Tube electronique multifaisceau a couplage cavite/faisceau ameliore
US5811943A (en) * 1996-09-23 1998-09-22 Schonberg Research Corporation Hollow-beam microwave linear accelerator
FR2756970B1 (fr) * 1996-12-10 2003-03-07 Thomson Tubes Electroniques Tube hyperfrequence a interaction longitudinale a cavite a sortie au dela du collecteur
US5932972A (en) * 1997-02-24 1999-08-03 Litton Systems, Inc. Electron gun for a multiple beam klystron
FR2764730B1 (fr) * 1997-06-13 1999-09-17 Thomson Tubes Electroniques Canon electronique pour tube electronique multifaisceau et tube electronique multifaisceau equipe de ce canon
FR2780809B1 (fr) 1998-07-03 2003-11-07 Thomson Tubes Electroniques Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
FR2803454B1 (fr) * 1999-12-30 2003-05-16 Thomson Tubes Electroniques Generateur d'impulsions hyperfrequences integrant un compresseur d'impulsions
US6847168B1 (en) * 2000-08-01 2005-01-25 Calabazas Creek Research, Inc. Electron gun for a multiple beam klystron using magnetic focusing with a magnetic field corrector
US6856081B2 (en) * 2002-07-09 2005-02-15 Communications & Power Industries, Inc. Method and apparatus for magnetic focusing of off-axis electron beam
JP4991266B2 (ja) * 2006-12-11 2012-08-01 株式会社東芝 マルチビームクライストロン
US8975816B2 (en) * 2009-05-05 2015-03-10 Varian Medical Systems, Inc. Multiple output cavities in sheet beam klystron
US8547006B1 (en) 2010-02-12 2013-10-01 Calabazas Creek Research, Inc. Electron gun for a multiple beam klystron with magnetic compression of the electron beams
US9013104B1 (en) * 2013-04-22 2015-04-21 Calabazas Creek Research, Inc. Periodic permanent magnet focused klystron
US9819320B1 (en) 2016-04-21 2017-11-14 The Government Of The United States Of America As Represented By The Secretary Of The Air Force Coaxial amplifier device
CN106997838B (zh) * 2017-04-18 2018-05-18 电子科技大学 一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305884A (en) * 1940-07-13 1942-12-22 Int Standard Electric Corp Electron beam concentrating system
US2500944A (en) * 1942-07-21 1950-03-21 Sperry Corp High-frequency tube structure
EP0121294A2 (fr) * 1983-01-26 1984-10-10 Fujitsu Limited Diviseur/additionneur de puissance du type à cavités résonnantes couplées

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278793A (en) * 1962-12-12 1966-10-11 Gen Electric Multiple-beam r.f. apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305884A (en) * 1940-07-13 1942-12-22 Int Standard Electric Corp Electron beam concentrating system
US2500944A (en) * 1942-07-21 1950-03-21 Sperry Corp High-frequency tube structure
EP0121294A2 (fr) * 1983-01-26 1984-10-10 Fujitsu Limited Diviseur/additionneur de puissance du type à cavités résonnantes couplées

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440529A1 (fr) * 1990-02-02 1991-08-07 Thomson Tubes Electroniques Tube hyperfréquence multifaisceau à groupes de cavités adjacentes
FR2658000A1 (fr) * 1990-02-02 1991-08-09 Thomson Tubes Electroniques Tube hyperfrequence multifaisceau a groupes de cavites adjacentes.
US5235249A (en) * 1990-02-02 1993-08-10 Thomson Tubes Electroniques Multiple-beam microwave tube with groups of adjacent cavities
EP0764339A2 (fr) * 1995-03-28 1997-03-26 Communications & Power Industries, Inc. CANON A ELECTRONS EN FAISCEAU CREUX POURVU DE RESONATEURS EN MODE TM 0x0? POUR LESQUELS x EST SUPERIEUR A 1
EP0764339A4 (fr) * 1995-03-28 1998-07-01 Communications & Power Ind Inc CANON A ELECTRONS EN FAISCEAU CREUX POURVU DE RESONATEURS EN MODE TM 0x0? POUR LESQUELS x EST SUPERIEUR A 1
EP2491570A1 (fr) * 2009-10-21 2012-08-29 Omega-P, Inc. Klystron multifaisceau à basse tension
EP2491570A4 (fr) * 2009-10-21 2014-07-16 Omega P Inc Klystron multifaisceau à basse tension
CN110797243A (zh) * 2019-11-05 2020-02-14 电子科技大学 一种嵌套式同轴发射异步电子注的电子光学系统
CN110797243B (zh) * 2019-11-05 2020-10-09 电子科技大学 一种嵌套式同轴发射异步电子注的电子光学系统

Also Published As

Publication number Publication date
US4733131A (en) 1988-03-22
FR2599554A1 (fr) 1987-12-04

Similar Documents

Publication Publication Date Title
EP0248689A1 (fr) Klystron à faisceaux multiples
EP0013242B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquence
EP0389326A1 (fr) Tube à rayons x à balayage avec plaques de déflexion
EP1095390B1 (fr) Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
EP0239466A1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
EP0480518B1 (fr) Source d'électrons présentant un dispositif de rétention de matières
FR2760127A1 (fr) Canon a electrons et klystron le comportant
FR2737340A1 (fr) Tube electronique multifaisceau a couplage cavite/faisceau ameliore
EP2472554A1 (fr) Dispositif de génération d'ondes hyperfréquence ayant une cathode dont chaque extrémité est raccordée à une source de tension
EP0251830B1 (fr) Lasertron à faisceaux multiples
EP2472555B1 (fr) Dispositif de génération d'ondes hyperfréquence comprenant une pluralité de magnétrons
EP0038249A1 (fr) Collecteur déprimé à plusieurs étages pour tube hyperfréquence
EP0407558B1 (fr) Dispositif amplificateur ou oscillateur fonctionnant en hyperfrequence
EP2747118B1 (fr) Cathode pour dispositif de génération d'ondes électromagnétiques, comprenant des régions d'émission mobiles les unes par rapport aux autres
EP0124396B1 (fr) Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences
EP0353153A1 (fr) Dispositif d'oscillation et de guidage magnétiques de particules chargées, destiné à l'amplification d'un rayonnement électromagnétique
FR2691012A1 (fr) Canon de pierce à électrode d'échelonnement.
FR2830371A1 (fr) Generateur d'ondes hyperfrequences a cathode virtuelle
EP0082769A1 (fr) Multiplicateur de fréquence
EP2747117B1 (fr) Dispositif de génération d'ondes hyperfréquences à double cathodes
EP1680799B1 (fr) Tube hyperfrequence a faible rayonnement parasite
WO2014095888A1 (fr) Dispositif d'optique electronique
EP0122186B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquences
WO2009083540A1 (fr) Protection d'une electrode de tube electronique
FR2643506A1 (fr) Dispositif generateur d'ondes hyperfrequences a cathode virtuelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880328

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

17Q First examination report despatched

Effective date: 19891108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19920313

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRAN DUC TIEN

Inventor name: FAILLON, GEORGES