CN106997838B - 一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件 - Google Patents
一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件 Download PDFInfo
- Publication number
- CN106997838B CN106997838B CN201710251057.2A CN201710251057A CN106997838B CN 106997838 B CN106997838 B CN 106997838B CN 201710251057 A CN201710251057 A CN 201710251057A CN 106997838 B CN106997838 B CN 106997838B
- Authority
- CN
- China
- Prior art keywords
- resonator
- core
- electron beam
- circular ring
- ring shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003993 interaction Effects 0.000 title claims abstract description 26
- 238000010894 electron beam technology Methods 0.000 claims abstract description 26
- 230000008878 coupling Effects 0.000 claims abstract description 22
- 238000010168 coupling process Methods 0.000 claims abstract description 22
- 238000005859 coupling reaction Methods 0.000 claims abstract description 22
- 238000007789 sealing Methods 0.000 claims description 3
- 238000001727 in vivo Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 9
- 230000003071 parasitic effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/02—Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
- H01J25/10—Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator
- H01J25/11—Extended interaction klystrons
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
- G02B6/12016—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
- G02F1/035—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
- G02F1/0356—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/18—Resonators
- H01J23/20—Cavity resonators; Adjustment or tuning thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/36—Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/107—Hollow-waveguide/strip-line transitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0421—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Microwave Tubes (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
该发明属于真空电子器件中的毫米波扩展互作用器件,包括由壳体及芯体组成的器件本体,环筒形耦合通道,圆环形谐振腔及电子注通道,输出波导及耦合孔。该发明采用圆柱体形本体及绕芯体轴心线平行等间隔设置的圆环形谐振腔,谐振腔内、外圆周的长度远大于工作波长,可设置5‑19个谐振腔及5‑20个的电子注通道,并可大幅度缩小器件的长度,有效提高器件的阻抗、功率容量及输出功率;该发明通过将各谐振腔的径向尺寸控制在工作波长λ的2/5λ-3/5λ范围内又确保其在基模状态下长时间稳定工作。因而该发明具有可效提高器件工作在基模状态下的输出功率及器件工作性能的稳定性,且器件结构简单、生产工艺简便、生产成本低,工作寿命长等特点。
Description
技术领域
本发明属于真空电子器件中的扩展互作用器件,特别是一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件,该毫米波扩展互作用器件可在基模状态下有效、稳定地工作。
背景技术
目前基于真空电子技术的毫米波源的输出功率主要受到两个方面的制约:其一是随着工作频率的增加,基模工作器件的结构尺寸越来越小,限制了毫米波器件中可利用的电子注电流的提高,其输出功率也较低;如公开号为CN1234623A的专利文件公开了一种多注速调管滤波器加载宽带输出回路,由于其工作在基模,漂移管2需要集中分布在直径约为工作波长λ/2的多注速调管输出腔1的中部,这大大限制了可以利用的电子注数目。其二.在高频率及基模状态下工作则要求相应缩小器件中谐振腔的尺寸(谐振腔的尺寸大小与频率成反比),这无疑又增大了互作用器件的加工难度和生产成本;此时,若要采用较大尺寸的器件则须将器件置于高次模式下工作,而在高次模式下工作又会受到模式竞争和耦合阻抗的限制而大幅降低器件工作的稳定性和效率、严重时还可能使得器件不能正常工作。如申请公布号为CN104752125A的专利文件所公开的《一种高次模同轴输出腔》,包括谐振腔体1及谐振腔盖2,漂移管3,径向波导4,扼流波导5,微波吸收材料6,衰减片7,输出波导8,杂模抑制装置9。该同轴输出腔为了使其既能在高频率下工作、又使器件具有较大的体积而便于加工,因而其工作模式设为TMn10模,其中n≥2,这样,同轴谐振腔体1在半径方向的尺寸就可增大到工作波长λ/2的n倍,但这就将会使得同轴谐振腔体1在工作时存在部分频率与工作频率非常接近的高次模式(即非工作模式、亦称杂模);该技术为了增加针对这些广谱杂模的抑制功能,又增设了包括径向波导4,扼流波导5及包含设置有微波吸收材料6的衰减腔7在内的杂模抑制装置9等,以期提高该同轴输出腔工作在高次模的多注速调管运行的稳定性;但该技术由于增设了多个零、部件,不但大大增加了器件加工、装配的复杂性及工艺难度,而且由于零、部件多其故障点亦多,这又从另一方面影响到器件工作的稳定性。因而该高次模同轴输出腔仍存在结构复杂、加工工艺难度大、生产成本高以及器件工作的稳定性差、输出功率小等弊病。
此外,对于输出功率的提高来说,目前基于真空电子技术的毫米波源的输出功率的提升来说,主要有如下三种方法:一是采用多电子注技术,其主要目的是降低器件的工作电压,由于利用的互作用结构是传统的重入式谐振腔,器件的横向分布空间受限,从而限制了最大可利用的多电子注的数目或是所有电子注在横向的截面积总和;第二种方法是采用片状电子注的方法,通过利用电子注在横向的分布提升器件总的工作电流,从而提高器件的输出功率,但其横向提升的空间有限,进一步提升会带来模式竞争的问题;第三种方法是采用环行带状电子注的方法,通过增大电子发射面积及增加电子束通道面积,使得器件获得更大功率,但由于高质量的环行带状电子注实现困难,限制了此方法在实际器件中的应用。
发明内容
本发明的目的在于针对背景技术存在的缺陷,研究设计一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件,以达到在简化毫米波扩展互作用器件结构及生产工艺、降低生产成本的同时,有效提高器件工作在基模状态下的输出功率及器件工作性能的稳定性,延长其使用寿命等目的。
本发明的解决方案是将毫米波扩展互作用器件本体结构设为带芯体及壳体的圆柱体形,在芯体两端之间的柱体表面加工一等深度的圆环形凹槽,该环形凹槽与壳体内表面配合作为扩展互作用器件中的环筒形耦合通道(腔),在圆环形凹槽(环筒形耦合通道)的底面径向绕轴心线平行等间隔设置一组圆环形谐振腔,各圆环形谐振腔的外环口通过环筒形耦合腔联通,同时在各圆环形谐振腔的中环线位置上等弧度开设一组与芯体轴心线平行且与芯体两端面贯通的电子注通道;而在壳体的中部设一输出波导,输出波导底部至壳体内表面开设一耦合孔以与组装后的环筒形耦合腔联通;整个芯体置于壳体内并与壳体内壁密封固定即构成本发明所述毫米波扩展互作用器件。因而,本发明采用同轴谐振腔及多电子注的毫米波扩展互作用器件,包括器件本体,谐振腔及电子注通道,输出波导及耦合孔,关键在于器件本体由壳体及芯体组成,在壳体与芯体之间还设有一环筒形耦合通道,谐振腔为绕芯体轴心线平行等间隔设于芯体内的一组径向高(尺寸)为2/5λ-3/5λ(λ为工作波长)的圆环形谐振腔,电子注通道则为等弧度间隔且平行于芯体轴心线设置的与各圆环形谐振腔连通的一组贯通芯体两端面的电子注通道,输出波导设于壳体中部并通过耦合孔与环筒形耦合通道连通;芯体与壳体内表面密封固定,输出波导则与壳体密封固定。
所述环筒形耦合通道,该通道径向高为1/10-1/5λ、轴向宽与前、后两端谐振腔外侧壁之间的距离相同。所述一组径向高为2/5-3/5λ的圆环形谐振腔,圆环形谐振腔的个数为5-19个,圆环形谐振腔在顺芯体轴向方向的宽度根据器件的工作电压决定,当工作电压为5-40kV时圆环形谐振腔的宽度为0.15-5mm。而所述一组贯通芯体两端面的电子注通道,电子注通道的个数为5-20个,电子注通道的直径为1/7-1/5λ、相邻两电子注通道的间距为对应电子注通道直径的1-3倍。所述耦合孔为矩形孔或圆形孔。
本发明采用由芯体及壳体组成的圆柱体形的扩展互作用器件及绕芯体轴心线平行等间隔设置5-19个圆环形谐振腔,不但可大幅度缩小器件的长度,有效提高器件的阻抗、有利于后续的永磁聚焦;而且圆环形谐振腔内、外圆周的长度远大于工作波长,又可设置更多的电子注通道以有效提高器件的功率容量、输出功率,本发明通过将各圆环形谐振腔的径向尺寸控制在工作波长λ的2/5λ-3/5λ范围内即可确保其在基模状态下长时间稳定工作。因而,本发明毫米波扩展互作用器件具有可效提高器件工作在基模状态下的输出功率及器件工作性能的稳定性,且器件结构简单、生产工艺简便、生产成本低,工作寿命长等特点。本发明扩展互作用器件在电子束通道的入口端可直接与产生多电子注的电子光学器件的输出端连接,使电子束进入互作用器件与其中的高频场产生电磁相互作用;其出口端则可与包括降压收集极在内的收集极连接。本发明与传统毫米波扩展互作用器件相比,可以采用较大结构的谐振腔体在基模条件下工作,从而可以大大提升所采用的电子注的数目及扩展互作用器件的工作容量和线性注真空电子器件的输出功率,解决了基于线性注真空电子器件毫米波源输出功率受限的难题;特别是由于本发明结构简单、另部件少,整体性好,易于加工,装配精度可以得到有效保证。
附图说明
图1为本发明及具体实施方式结构示意图(剖视图);
图2为图1的A-A剖视图;
图3为图1的B-B剖视图。
图中:1.芯体,2.壳体,3.电子注通道,4.圆环形谐振腔,5.环筒形耦合通道,6.耦合孔,7.输出波导。
具体实施方式
本实施方式以工作频率为94GHz(对应的工作波长λ约为3.2mm)、工作电压为20kV、工作在基模(TM010模)状态下的扩展互作用器件为例:
芯体1直径的公称尺寸为Φ8.7mm、轴向长为8.0mm,壳体2内径公称尺寸亦为Φ8.7mm、外径为Φ12mm、轴向长为8.0mm,材质均为无氧铜;本实施方式在芯体1上共设7个圆环形谐振腔4,各圆环形谐振腔的内、外半径均分别为R2.4mm、R4.0mm(即谐振腔的径向高为1/2λ),各圆环形谐振腔的轴向宽均为0.40mm、相邻两谐振腔的间距为0.52mm,环筒形耦合通道5轴向长5.92mm,内、外半径分别为R4.0mm、R4.35mm(即环筒形耦合通道的径向间隙为0.35mm),本实施方式在圆环形谐振腔4的中环线上(即在距芯体的轴心R3.2mm的圆环面上)等弧度间隔设置16个直径为Φ0.5mm且贯通芯体1的电子注通道3;设于外壳2上输出波导7及其耦合孔6,两者的中心线距芯体1两端为4.0mm,其中输出波导7为标准W波段的矩形输出波导、耦合孔6则为直径Φ0.85mm的圆孔。
本实施方式经仿真测试:当工作频率为94GHz、工作电压为20kV、在基模状态下工作时,每个电子注通道3的电流为1.0A、16个电子注通道的总电流达到16A,器件的输入功率为320kW、器件的微波输出功率达16.5kW,输出效率约为5.15%。
Claims (5)
1.一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件,包括器件本体,谐振腔及电子注通道,输出波导及耦合孔,其特征在于器件本体由壳体及芯体组成,在壳体与芯体之间还设有一环筒形耦合通道,谐振腔为绕芯体轴心线平行等间隔设于芯体内的一组径向高为2/5λ-3/5λ的圆环形谐振腔,电子注通道则为等弧度间隔且平行于芯体轴心线设置的与各圆环形谐振腔连通的一组贯通芯体两端面的电子注通道,输出波导设于壳体中部并通过耦合孔与环筒形耦合通道连通;芯体与壳体内表面密封固定,输出波导则与壳体密封固定。
2.按权利要求1所述采用同轴谐振腔及多电子注的毫米波扩展互作用器件,其特征在于所述环筒形耦合通道,该通道径向高为1/10λ-1/5λ、轴向宽与前、后两端谐振腔外侧壁之间的距离相同。
3.按权利要求1所述采用同轴谐振腔及多电子注的毫米波扩展互作用器件,其特征在于所述一组径向高为2/5λ-3/5λ的圆环形谐振腔,圆环形谐振腔的个数为5-19个,圆环形谐振腔在芯体轴向方向的宽度当工作电压为5-40kV时圆环形谐振腔的宽度为0.15-5mm。
4.按权利要求1所述采用同轴谐振腔及多电子注的毫米波扩展互作用器件,其特征在于所述一组贯通芯体两端面的电子注通道,电子注通道的个数为5-20个,电子注通道的直径为1/7λ-1/5λ、相邻两电子注通道的间距为对应电子注通道直径的1-3倍。
5.按权利要求1所述采用同轴谐振腔及多电子注的毫米波扩展互作用器件,其特征在于所述耦合孔为矩形孔或圆形孔。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710251057.2A CN106997838B (zh) | 2017-04-18 | 2017-04-18 | 一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件 |
US15/793,970 US10490384B2 (en) | 2017-04-18 | 2017-10-25 | Extended interaction device comprising a core and shell device body for supporting ring-shaped resonant cavities, electron beam tunnels and a coupling groove therein and an output waveguide at a middle portion of the shell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710251057.2A CN106997838B (zh) | 2017-04-18 | 2017-04-18 | 一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106997838A CN106997838A (zh) | 2017-08-01 |
CN106997838B true CN106997838B (zh) | 2018-05-18 |
Family
ID=59435479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710251057.2A Expired - Fee Related CN106997838B (zh) | 2017-04-18 | 2017-04-18 | 一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10490384B2 (zh) |
CN (1) | CN106997838B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107393789A (zh) * | 2017-09-01 | 2017-11-24 | 广东工业大学 | 一种同轴tm10,1,0模耦合腔链 |
CN108770175B (zh) * | 2018-05-25 | 2019-07-16 | 中国科学院微电子研究所 | 用于微波等离子体发生装置的微孔微纳结构双耦合谐振腔 |
CN108770174B (zh) * | 2018-05-25 | 2019-07-19 | 中国科学院微电子研究所 | 具有微孔微纳结构双耦合谐振腔的微波等离子体发生装置 |
RU2714508C1 (ru) * | 2019-07-09 | 2020-02-18 | Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") | Миниатюрный многолучевой клистрон |
CN111180296B (zh) * | 2020-01-07 | 2020-11-24 | 电子科技大学 | 一种宽带扩展互作用放大器电路 |
CN111741586A (zh) * | 2020-06-15 | 2020-10-02 | 电子科技大学 | 一种基于扩展互作用自激振荡器(eio)的电子加速器 |
CN111640637B (zh) * | 2020-06-15 | 2021-05-14 | 电子科技大学 | 一种多注太赫兹同轴谐振腔反射速调管 |
RU2749453C1 (ru) * | 2020-11-12 | 2021-06-11 | Акционерное общество "Плутон" | Широкополосный клистрон |
CN114724906B (zh) * | 2022-05-11 | 2023-04-18 | 电子科技大学 | 一种光栅扩展互作用腔结构 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3375397A (en) * | 1964-04-30 | 1968-03-26 | Varian Associates | Extended interaction klystron having inductive coupling means communicating between adjacent cavity resonators |
US3716746A (en) * | 1970-07-24 | 1973-02-13 | Siemens Ag | Klystron |
US4737738A (en) * | 1987-05-11 | 1988-04-12 | Agence Spatiale Europeenne | Extended interaction device tuned by movable delay line structure |
TW444981U (en) * | 1999-05-20 | 2001-07-01 | Ju Guo Ruei | Complex extended interaction resonator and complex extended interaction oscillator |
CN103516327A (zh) * | 2013-09-26 | 2014-01-15 | 西北核技术研究所 | 高功率同轴结构过模表面波振荡器及太赫兹波产生方法 |
CN105470074A (zh) * | 2016-01-20 | 2016-04-06 | 中国工程物理研究院应用电子学研究所 | 一种磁绝缘线振荡器 |
CN105869972A (zh) * | 2016-04-14 | 2016-08-17 | 中国工程物理研究院应用电子学研究所 | 一种大跨波段双频可控相对论返波振荡器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2408409A (en) * | 1941-04-08 | 1946-10-01 | Bell Telephone Labor Inc | Ultra high frequency electronic device |
FR2599554A1 (fr) * | 1986-05-30 | 1987-12-04 | Thomson Csf | Klystron a faisceaux multiples fonctionnant au mode tm02 |
FR2658001B1 (fr) * | 1990-02-02 | 1996-08-14 | Thomson Tubes Electroniques | Tube hyperfrequence multifaisceau a sortie coaxiale. |
FR2925217B1 (fr) * | 2007-12-14 | 2013-05-24 | Thales Sa | Structure hyperfrequences pour tube microondes avec dispositif de confinement du faisceau a aimants permanents et refroidissement ameliore |
-
2017
- 2017-04-18 CN CN201710251057.2A patent/CN106997838B/zh not_active Expired - Fee Related
- 2017-10-25 US US15/793,970 patent/US10490384B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3375397A (en) * | 1964-04-30 | 1968-03-26 | Varian Associates | Extended interaction klystron having inductive coupling means communicating between adjacent cavity resonators |
US3716746A (en) * | 1970-07-24 | 1973-02-13 | Siemens Ag | Klystron |
US4737738A (en) * | 1987-05-11 | 1988-04-12 | Agence Spatiale Europeenne | Extended interaction device tuned by movable delay line structure |
TW444981U (en) * | 1999-05-20 | 2001-07-01 | Ju Guo Ruei | Complex extended interaction resonator and complex extended interaction oscillator |
CN103516327A (zh) * | 2013-09-26 | 2014-01-15 | 西北核技术研究所 | 高功率同轴结构过模表面波振荡器及太赫兹波产生方法 |
CN105470074A (zh) * | 2016-01-20 | 2016-04-06 | 中国工程物理研究院应用电子学研究所 | 一种磁绝缘线振荡器 |
CN105869972A (zh) * | 2016-04-14 | 2016-08-17 | 中国工程物理研究院应用电子学研究所 | 一种大跨波段双频可控相对论返波振荡器 |
Non-Patent Citations (1)
Title |
---|
0.14THz低电压扩展互作用速调管慢波谐振系统的研究;朱勇杰等;《真空科学与技术学报》;20150331;第35卷(第3期);344-348页 * |
Also Published As
Publication number | Publication date |
---|---|
US10490384B2 (en) | 2019-11-26 |
CN106997838A (zh) | 2017-08-01 |
US20180301311A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106997838B (zh) | 一种采用同轴谐振腔及多电子注的毫米波扩展互作用器件 | |
CN106992106B (zh) | 一种功率可调的返波振荡器 | |
JPH04229701A (ja) | 空間電界電力結合器 | |
CN101770921B (zh) | 倍频速调管及制作方法 | |
CN109473775A (zh) | Ku/E波段双频一体馈源 | |
CN112904243A (zh) | 一种高效集中微波磁场谐振腔 | |
US3310704A (en) | Output coupling circuit for microwave tube apparatus | |
CN108550510B (zh) | 一种具有高电子束流通率的回旋行波管输入耦合器 | |
CN105789801A (zh) | 一种基于基片集成波导馈电的旋转关节 | |
CN113838727B (zh) | 一种基于单脊CeSRR单元的小型化大功率速调管 | |
CN114664615B (zh) | 一种四腔高功率输出te01模式的回旋速调管高频结构 | |
US3334266A (en) | Coaxial output line for a magnetron | |
CN113871277B (zh) | 一种高频结构 | |
US4531103A (en) | Multidiameter cavity for reduced mode competition in gyrotron oscillator | |
CN209461632U (zh) | Ku/E波段双频一体馈源 | |
CN109786191B (zh) | 一种速调管非对称输出腔结构 | |
CN216054563U (zh) | 扩展互作用速调管 | |
CN114937584B (zh) | 一种用于高阶模回旋行波管的高频介质加载结构 | |
CN113345779B (zh) | 一种适用于宽介质基底的微带慢波结构传输系统 | |
CN114242544B (zh) | 一种用于速调管的输入结构及速调管 | |
JP2928113B2 (ja) | ピルボックス型真空窓 | |
CN114724906B (zh) | 一种光栅扩展互作用腔结构 | |
CN109742005B (zh) | 一种适用于宽带大功率的同轴输能窗 | |
CN111293015B (zh) | 一种紧凑型回旋行波管输入系统 | |
CN113594008A (zh) | 扩展互作用速调管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Yin Yong Inventor after: Meng Lin Inventor after: Wang Bin Inventor after: Li Hailong Inventor before: Meng Lin Inventor before: Wang Bin Inventor before: Yin Yong Inventor before: Li Hailong |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180518 Termination date: 20210418 |
|
CF01 | Termination of patent right due to non-payment of annual fee |