EP0119902A1 - Cavité résonnante pour hyperfréquences, en particulier pour générateurs d'énergie électromagnétique - Google Patents

Cavité résonnante pour hyperfréquences, en particulier pour générateurs d'énergie électromagnétique Download PDF

Info

Publication number
EP0119902A1
EP0119902A1 EP84400425A EP84400425A EP0119902A1 EP 0119902 A1 EP0119902 A1 EP 0119902A1 EP 84400425 A EP84400425 A EP 84400425A EP 84400425 A EP84400425 A EP 84400425A EP 0119902 A1 EP0119902 A1 EP 0119902A1
Authority
EP
European Patent Office
Prior art keywords
mirror
polygon
resonant cavity
cavity
zones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84400425A
Other languages
German (de)
English (en)
Other versions
EP0119902B1 (fr
Inventor
Georges Mourier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0119902A1 publication Critical patent/EP0119902A1/fr
Application granted granted Critical
Publication of EP0119902B1 publication Critical patent/EP0119902B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators

Definitions

  • the present invention relates to a resonant cavity for microwaves, more particularly a resonant cavity used in a generator operating at several tens of gigahertz, that is to say, in millimeter and submillimeter waves.
  • generators of this type there are in particular generators in which an electron beam propagates along helical paths while being guided by a uniform magnetic field along the axis of the propeller.
  • the beam passes through a resonant cavity in which the transverse velocity components of the electrons interact with a transverse electric field component of the wave so as to amplify it.
  • the cavities usually used in this type of generator are constituted by cylindrical cavities or with two spherical mirrors whose dimensions are calculated to operate in TE on mode.
  • the aim of the present invention is to provide a resonant cavity making it possible to increase the frequency separation of the electromagnetic modes, namely to eliminate a certain number of parasitic modes.
  • the subject of the present invention is a resonant microwave cavity formed by a surface of revolution characterized in that, in a meridian plane, the surface of revolution forms at least four mirror zones facing each other, positioned so that the center of each mirror zone defines the vertex of a polygon and that the normal to said mirror zone at the center is directed along the corresponding bisector of said polygon.
  • the modes propagating in a resonant cavity can be analyzed as plane waves which are reflected a number of times on the walls of the cavity.
  • the waves propagate according to rays.
  • the resonant cavity 1 consists mainly of two curved annular mirrors 3-4 of the same axis ZZ ', more particularly in the form of a spherical zone.
  • the two mirrors 3, 4 which face each other, are positioned so that, in a meridian plane, they delimit four mirror rods 3a, 3b, 4a, 4b facing each other whose respective centers 3'a, 3'b , 4'a, 4'b form the vertices of a polygon, namely the four vertices of a rectangle in the embodiment shown.
  • the four zones are inclined in the meridian plane so that the normal 5a, 5b, 6a, 6b to the said mirror zones at the level of the centers corresponds to the bisector of the angle at the corresponding vertex of the rectangle.
  • the mirrors are inclined at 45 ° relative to the axis ZZ '.
  • the mirror zones 3a, 3b, 4a, 4b have an appropriate curvature in the plane containing the axis whose purpose is to concentrate the energy at the level of the axis ZZ ' on two cd zones, cf of length limited by a side effect due to diffraction.
  • the cavity is constituted by surfaces 7 absorbing the electromagnetic radiation considered, which avoids the reflection of the diffracted rays outside the cavity.
  • the cavity shown in Figure 1 it has two areas of interaction cd, cf with the beam elcc- tronic. It is thus possible to carry out a premodulation of the electron beam during the first interaction, namely at the level of the cd area, most of the energy transfer from the beam to the wave occurring during the second interaction. , namely at the level of the ef zone.
  • the annular mirrors may be, as shown in FIG. 3, constituted by two asymmetrical annular mirrors 8, 9 having different radii in the meridian plane.
  • the polygon of the centers of the mirror zones 8a, 8b, 9a, 9b is constituted by an isosceles trapezoid.
  • Figure 3 there is shown in the same manner as in Figure 1, the path of the electromagnetic propagation and the areas where the energy is concentrated.
  • the path followed by the electromagnetic waves in the cavity of FIG. 3 is identical to that of FIG. 1, the only difference residing in the fact that the interaction zone cd is more important than the interaction zone ef, which causes a greater concentration of energy in the ef zone.
  • the mirror zones 10, 11, 12, 13 are positioned as shown in FIG. 4.
  • the mirror zones 10, 11, 12, 13 are obtained from four mirrors in a spherical or parabolic cap for example arranged around the axis ZZ 'which remains the axis of symmetry of the electron beam and the magnetic field.
  • Each mirror now has its own axis 10a - 10a ', llb - llb', 12c - 12c ', 13d - 13d' and the polygon having the above axes for bisector is formed by two triangles opposite by the vertex.
  • the radial modes successive correspond to a variation of the phase of 2 when it is counted along a complete course of the ray on itself. It follows that one in two radial modes corresponds to fields in phase opposition in the region of the axis. Thus, only one in two radial modes can interact.
  • the surfaces surrounding the mirrors are constituted by elements absorbing the electromagnetic radiation present or by surfaces covered with an absorbent layer produced for example in "carberlox".
  • the cavities described above are used more particularly in generators of radio waves of the gyrotron type. However, it is obvious to those skilled in the art that these cavities can be used in other applications requiring mode separation.

Landscapes

  • Particle Accelerators (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Microwave Tubes (AREA)

Abstract

La présente invention concerne une nouvelle cavité résonnante pour hyperfréquences. Cette cavité est constituée par une surface de révolution. Dans un plan méridien, la surface de révolution forme au moins quatre zones-miroirs (3a, 3b, 4a, 4b) se faisant face, positionnée de sorte que le centre (3'a, 3'b, 4'a, 4'b) de chaque zone-miroir définisse le sommet d'un polygone et que la normale (5a, 5b, 6a, 6b) à ladite zone-miroir au niveau du centre soit dirigée suivant la bissectrice correspondante dudit polygone. La cavité objet de la présente invention est utilisée en particulier dans les gyrotrons.

Description

  • La présente invention concerne une cavité résonnante pour hyperfréquences, plus particulièrement une cavité résonnante utilisée dans un générateur fonctionnant à plusieurs dizaines de giga- hertz, c'est-à-dire, en ondes millimétriques et submillimétriques.
  • Parmi les générateurs de ce type, on connait en particulier des générateurs dans lesquels un faisceau d'électrons se propage selon des trajets hélicoïdaux en étant guidé par un champ magnétique uniforme suivant l'axe de l'hélice. Le faisceau traverse une cavité résonnante dans laquelle les composantes de vitesse transversales des électrons interagissent avec une composante de champ électrique transversale de l'onde de manière à l'amplifier. Les cavités habituellement employées dans ce type de générateurs sont constituées par des cavités cylindriques ou à deux miroirs sphériques dont les dimensions sont calculées pour fonctionner en mode TEon.
  • L'un des problèmes rencontrés avec ce type de cavités, en particulier lorsque l'on désire fonctionner en mode élevé, provient de la coexistence de plusieurs modes dans la cavité, ce qui entraine une probabilité importante d'oscillations sur un mode non désiré.
  • En conséquence, le but de la présente invention est de fournir une cavité résonnante permettant d'augmenter la séparation en fréquence des modes électromagnétiques, à savoir d'éliminer un certain nombre de modes parasites.
  • Ainsi, la présente invention a pour objet une cavité résonnante pour hyperfréquences formée par une surface de révolution caractérisée en ce que, dans un plan méridien, la surface de révolution forme au moins quatre zones-miroir se faisant face, positionnées de sorte que le centre de chaque zone-miroir définisse le sommet d'un polygone et que la normale à la dite zone-miroir au niveau du centre soit dirigée suivant la bissectrice correspondante dudit polygone.
  • Avec une telle structure en utilisant les propriétés de réflexion et de diffraction des ondes se propageant dans la cavité, il est possible d'éliminer un certain nombre de modes non-radiaux.
  • D'autres caractéristiques et avantages de la présente invention apparaitront à la lecture de la description de divers modes de réalisation faite ci-après avec référence aux dessins ci-annexés dans lesquels :
    • - la figure 1 est une vue en coupe axiale d'un premier mode de réalisation d'une cavité conforme à la présent invention ;
    • - les figures 2a et 2b représentent schématiquement une vue en coupe et une vue en plan de dessus d'un miroir annulaire utilisé dans la cavité de la figure 1, vues sur lesquelles on a représenté certains trajets d'ondes ;
    • - la figure 3 est une vue en coupe axiale d'un deuxième mode de réalisation d'une cavité conforme à la présente invention ;
    • - la figure 4 est une vue en coupe axiale d'un troisième mode de réalisation d'une cavité conforme à la présente invention.
  • On rappelera tout d'abord pour bien comprendre la présente invention que les modes se propageant dans une cavité résonnante peuvent être analysés comme des ondes planes qui se réfléchissent un certain nombre de fois sur les parois de la cavité.
  • D'autre part, dans le cas des modes TE , les ondes se propagent selon des rayons.
  • Selon un premier mode de réalisation représenté sur la figure 1, la cavité résonnante 1 conforme à la présente invention est constituée principalement par deux miroirs annulaires incurvés 3-4 de même axe ZZ', plus particulièrement en forme de zone sphérique. Les deux miroirs 3, 4 qui se font face, sont positionnés de telle sorte que, dans un plan méridien, ils délimitent quatre zoncs-miroir 3a, 3b, 4a, 4b se faisant face dont les centres respectifs 3'a, 3'b, 4'a, 4'b forment les sommets d'un polygone, à savoir les quatre sommets d'un rectangle dans le mode de réalisation représenté. D'autre part, les quatre zones sont inclinées dans le plan méridien de telle sorte que la normale 5a, 5b, 6a, 6b aux dites zones-miroir au niveau des centres correspond à la bissectrice de l'angle au sommet correspondant du rectangle. Ainsi dans le mode de réalisation représenté, les miroirs sont inclinés à 45° par rapport à l'axe ZZ'. De ce fait les ondes électromagnétiques utiles, comme expliqué ci-après, qui se réfléchissent successivement sur les différentes zones-miroir suivent les trajets représentés par des flèches sur la figure 1, les hachures représentant les zones où l'énergie correspondante est concentrée. D'autre part, comme mentionné ci-dessus, les zones-miroir 3a, 3b, 4a, 4b présentent une courbure appropriée dans le plan contenant l'axe dont le but est de concentrer l'énergie au niveau de l'axe ZZ' sur deux zones cd, cf de longueur limitée par un effet secondaire du à la diffraction.
  • De plus entre les deux miroirs annulaires, la cavité est constituée par des surfaces 7 absorbant le rayonnement électromagnétique considéré, ce qui évite la réflexion des rayons diffractés hors de la cavité.
  • On expliquera maintenant le fonctionnement de la cavité objet de la présente invention avec référence aux figures 2 qui illustrent la réflexion de deux rayons incidents sur la surface d'un des miroirs 3 ou 4 constituant la cavité de la figure 1. Dans le cas d'un rayon centrifuge A, celui-ci frappe la zone-miroir 3a en A' et est réfléchi verticalement en A" du fait de l'inclinaison du miroir à 45° comme représenté sur la figure 2a, le rayon suivant ensuite le trajet de propagation représenté sur la figure 1. Dans le cas d'un rayon B ne passant pas par l'axe et frappant la zone miroir également en A', celui-ci se réfléchit suivant une direction B". Il en résulte que les rayons B" ne viendront pas tous frapper le second miroir annulaire et que les modes non radiaux subiront des pertes par diffraction plus importantes que les modes radiaux, ce qui empèchera leur excitation. On obtient donc avec ce type de cavités une augmentation de la séparation des fréquences par élimination d'une partie des modes autres que les modes TEon.
  • Dans le cas de la cavité représentée à la figure 1, celle-ci présente deux zones d'interaction cd, cf avec le faisceau élcc- tronique. Il est ainsi possible de réaliser une prémodulation du faisceau électronique au cours de la première interaction, à savoir au niveau de la zone cd, l'essentiel de la cession d'énergie du faisceau à l'onde se produisant au cours de la seconde interaction, a savoir au niveau de la zone ef. Pour améliorer, l'efficacité de ce processus, les miroirs annulaires peuvent être, comme représente sur la figure 3, constitués par deux miroirs annulaires dissymétriques 8, 9 possédant des rayons différents dans le plan méridien. Dans ce cas, le polygone des centres des zones-miroir 8a, 8b, 9a, 9b est constitué par un trapèze isocele. Sur la figure 3, on a représenté de la même manière que sur la figure 1, le trajet de la propagation électromagnétique et les zones où l'énergie est concentrée. Le trajet suivi par les ondes électromagnétiques dans la cavité de la figure 3 est identique à celui de la figure 1, la seule différence résidant dans le fait que la zone d'interaction cd est plus importante que la zone d'interaction ef, ce qui entraine une concentration d'énergie plus importante au niveau de la zone ef.
  • Dans certains cas, il est avantageux de n'avoir qu'une seule zone d'interaction. Pour réaliser cette condition, les zones-miroir 10, 11, 12, 13 sont positionnées comme représenté sur la figure 4. Les zones-miroir 10, 11, 12, 13 sont obtenues à partir de quatre miroirs en calotte sphérique ou parabolique par exemple disposés autour de l'axe ZZ' qui reste l'axe de symmétrie du faisceau électronique et du champ magnétique. Chaque miroir possède maintenant son axe propre lOa - 10a', llb - llb', 12c - 12c', 13d - 13d' et le polygone ayant les axes ci-dessus pour bissectrice est formé par deux triangles opposés par le sommet.
  • Il est aussi possible d'obtenir une zone d'interaction unique, en utilisant à la place de quatre miroirs en calotte spherique ayant chacun leur axe de symmétrie, deux miroirs en forme de zone sphérique, inclinés de manière appropriée dans le plan méridien.
  • Avec cette disposition on obtient une concentration plus importante de l'énergie électromagnétique dans la région gh du faisceau électronique. En outre, à la résonnancc, les modes radiaux successifs correspondent à une variation de la phase de 2 lorsqu'elle est comptée le long d'un parcours complet du rayon sur lui- même. Il en résulte qu'un mode radial sur deux correspond à des champs en opposition de phase dans la région de l'axe. Ainsi, seulement un mode radial sur deux peut interagir.
  • Dans les cavités des figures 3 et 4 les surfaces entourant les miroirs sont constituées par des éléments absorbant le rayonnement électromagnétique présent ou par des surfaces recouvertes d'une couche absorbante réalisée par exemple en "carberlox".
  • Les cavités décrites ci-dessus sont utilisées plus particulièrement dans des générateurs d'ondes radioélectriques du type gyrotrons. Toutefois, il est évident pour l'homme de l'art que ces cavités peuvent être utilisées dans d'autres applications nécessitant une séparation des modes.

Claims (7)

1. Une cavité résonnante pour hyperfréquences formée par une surface de révolution caractérisée en ce que, dans un plan méridien, la surface de révolution forme au moins quatre zones-miroirs (3a, 3b, 4a, 4b, 8, 9, 10, 11, 12, 13) se faisant face, positionnées de sorte que le centre (3'a, 3'b, 4'b ; 8a, 8b, 9a, 9b) de chaque zone-miroir définisse le sommet d'un polygone et que la normale (5a, 5b, 6a, 6b, 10a - 10a', llb - llb', 12c - 12c', 13d - 13d') à ladite zone-miroir au niveau du centre soit dirigée suivant la bissectrice correspondante dudit polygone.
2. Une cavité résonnante selon la revendication 1 caractérisée en ce que les zones-miroir sont réalisées par des miroirs annulaires (3, 4 ; 8, 9).
3. Une cavité résonnante selon l'une quelconque des revendications 1 et 2 caractérisée en ce que les zones-miroir sont incurvées.
4. Une cavité résonnante selon l'une quelconque des revendications 1 à 3 caractérisée en ce que le polygone est un carré, un rectangle ou un trapèze.
5. Une cavité résonnante selon la revendication 1, caractérisée en ce que chaque zone-miroir (10, 11, 12, 13) est constituée par un miroir en calotte sphérique, parabolique élliptique ou en ellipsoide.
6. Une cavité résonnante selon l'une quelconque des revendications 2 et 5 caractérisé en ce que le polygone est constitué par deux triangles opposés par le sommet.
7. Une cavité résonnante selon l'une quelconque des revendications 1 a 6 caractérisée en ce que les surfaces de la cavité autres que les miroirs sont des surfaces absorbant le rayonnement électromagnétique considéré.
EP84400425A 1983-03-11 1984-03-02 Cavité résonnante pour hyperfréquences, en particulier pour générateurs d'énergie électromagnétique Expired EP0119902B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8304056 1983-03-11
FR8304056A FR2542504B1 (fr) 1983-03-11 1983-03-11 Cavite resonnante pour hyperfrequences, en particulier pour generateurs d'energie electromagnetique

Publications (2)

Publication Number Publication Date
EP0119902A1 true EP0119902A1 (fr) 1984-09-26
EP0119902B1 EP0119902B1 (fr) 1987-10-14

Family

ID=9286781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400425A Expired EP0119902B1 (fr) 1983-03-11 1984-03-02 Cavité résonnante pour hyperfréquences, en particulier pour générateurs d'énergie électromagnétique

Country Status (5)

Country Link
US (1) US4661744A (fr)
EP (1) EP0119902B1 (fr)
JP (1) JPS59175202A (fr)
DE (1) DE3466830D1 (fr)
FR (1) FR2542504B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141525A2 (fr) * 1983-09-30 1985-05-15 Kabushiki Kaisha Toshiba Gyrotron
US4839561A (en) * 1984-12-26 1989-06-13 Kabushiki Kaisha Toshiba Gyrotron device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3863661D1 (de) * 1987-03-03 1991-08-22 En Physique Des Plasmas Centre Hochleistungs-gyrotron zur erzeugung elektromagnetischer millimeter- oder submillimeterwellen.
FR2625836B1 (fr) * 1988-01-13 1996-01-26 Thomson Csf Collecteur d'electrons pour tube electronique
EP0393485A1 (fr) * 1989-04-19 1990-10-24 Asea Brown Boveri Ag Gyrotron quasi-optique
FR2672730B1 (fr) * 1991-02-12 1993-04-23 Thomson Tubes Electroniques Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfrequence et tube hyperfrequence comprenant un tel dispositif.
CN102956415B (zh) * 2011-08-29 2015-11-04 中国科学院电子学研究所 一种回旋管准光输出系统的反射镜曲面的设计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707253C (de) * 1934-05-16 1941-06-17 Julius Pintsch Kom Ges Reflektoranordnung fuer drahtlose Zeichenuebertragung
GB576442A (en) * 1941-01-27 1946-04-04 Harry Melville Dowsett Improvements in radiating systems of electro-magnetic waves

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE636587A (fr) * 1960-10-07
US3267383A (en) * 1963-05-27 1966-08-16 Ibm Particle accelerator utilizing coherent light
US3518427A (en) * 1968-06-05 1970-06-30 Atomic Energy Commission Universal planar x-ray resonator
US3688218A (en) * 1971-01-29 1972-08-29 Us Army Stimulated radiation cavity reflector
US3979695A (en) * 1974-12-20 1976-09-07 Honeywell Inc. High order beam mode resonator
SU530606A1 (ru) * 1975-04-04 1980-12-30 Ananev Yu A Неустойчивый резонатор оптического квантовоно генератора
US4179192A (en) * 1976-06-14 1979-12-18 The Perkin-Elmer Corporation Laser fusion optical system
US4189660A (en) * 1978-11-16 1980-02-19 The United States Of America As Represented By The United States Department Of Energy Electron beam collector for a microwave power tube
SU777763A1 (ru) * 1978-12-26 1980-11-07 Днепропетровское Отделение Института Механики Ан Украинской Сср Открытый резонатор
US4287488A (en) * 1979-11-02 1981-09-01 The United States Of America As Represented By The United States Department Of Energy Rf Feedback free electron laser
SU938333A1 (ru) * 1980-10-17 1982-06-23 Ордена Трудового Красного Знамени Институт Радиотехники И Электроники Ан Ссср Генератор СВЧ-колебаний
GB2096392B (en) * 1981-04-06 1985-04-03 Varian Associates Collector-output for hollow beam electron tubes
US4496913A (en) * 1982-11-24 1985-01-29 The United States Of America As Represented By The Secretary Of The Army Millimeter wave power combiner using concave reflectors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE707253C (de) * 1934-05-16 1941-06-17 Julius Pintsch Kom Ges Reflektoranordnung fuer drahtlose Zeichenuebertragung
GB576442A (en) * 1941-01-27 1946-04-04 Harry Melville Dowsett Improvements in radiating systems of electro-magnetic waves

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-28, no. 12, décembre 1980, pages 1477-1481, New York, US L.R. BARNETT et al.: "Circular-electric mode waveguide couplers and junctions for use in gyrotron traveling-wave amplifiers" *
PROCEEDINGS OF THE IEEE, vol. 62, no. 11, novembre 1974, pages 1611-1613, New York, US P.F. CHECCACCI et al.: "Ring and 90-degree roof open resonators" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141525A2 (fr) * 1983-09-30 1985-05-15 Kabushiki Kaisha Toshiba Gyrotron
US4636688A (en) * 1983-09-30 1987-01-13 Kabushiki Kaisha Toshiba Gyrotron device
EP0141525A3 (en) * 1983-09-30 1987-10-28 Kabushiki Kaisha Toshiba Gyrotron device
US4839561A (en) * 1984-12-26 1989-06-13 Kabushiki Kaisha Toshiba Gyrotron device

Also Published As

Publication number Publication date
FR2542504B1 (fr) 1986-02-21
EP0119902B1 (fr) 1987-10-14
DE3466830D1 (en) 1987-11-19
FR2542504A1 (fr) 1984-09-14
US4661744A (en) 1987-04-28
JPS59175202A (ja) 1984-10-04

Similar Documents

Publication Publication Date Title
EP0564359A1 (fr) Dispositif d'application de micro-ondes et réacteur à plasma utilisant ce dispositif
EP2130266B1 (fr) Antenne à résonateur équipé d'un revêtement filtrant et système incorporant cette antenne
EP0598656A1 (fr) Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources
FR2499312A1 (fr) Dispositif d'attenuation de modes pour des cavites de gyrotrons
EP0575211A1 (fr) Motif élémentaire d'antenne à large bande passante et antenne-réseau le comportant
EP0119902B1 (fr) Cavité résonnante pour hyperfréquences, en particulier pour générateurs d'énergie électromagnétique
EP0296007B1 (fr) Résonateur hyperfréquence en mode de chuchotement en galerie
EP0239466B1 (fr) Circuit de sortie pour klystron, et klystron comportant un tel circuit de sortie
EP1554777B1 (fr) Antenne a materiau bip multi-faisceaux
EP0122834A1 (fr) Transformateur de modes de propagation hyperfréquence
FR2578357A1 (fr) Gyrotron
EP2936537B1 (fr) Générateur de microondes à cathode virtuelle oscillante et à réflecteurs ouverts
FR2568057A1 (fr) Tube a hyperfrequences
EP0049198A1 (fr) Accélérateur d'électrons et générateur d'ondes millimétriques et infra-millimétriques comportant un tel accélérateur
EP0124396B1 (fr) Dispositif d'injection d'un faisceau d'électrons pour générateur d'ondes radioélectriques pour hyperfréquences
EP0407558B1 (fr) Dispositif amplificateur ou oscillateur fonctionnant en hyperfrequence
EP1925056B1 (fr) Filtre a guide d'onde pour micro-ondes a parois non paralleles
WO2003030204A2 (fr) Generateur d'ondes hyperfrequences a cathode virtuelle
BE1003551A3 (fr) Cyclotrons focalises par secteurs.
EP0124395A1 (fr) Canon à électrons pour générateurs d'ondes radioélectriques pour hyperfréquences
EP0122186B1 (fr) Générateur d'ondes radioélectriques pour hyperfréquences
FR2460539A1 (fr) Ligne a retard a pas variable pour tube a onde progressive, et tube a onde progressive muni d'une telle ligne
RU1836748C (ru) Квазиоптический вибрационный гиротрон
FR2832860A1 (fr) Filtre hyperfrequence quadri-modes en guide d'ondes sans reglage et possedant des zeros de transmission
FR2526582A1 (fr) Procede et appareil pour produire des micro-ondes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB LI

17P Request for examination filed

Effective date: 19841004

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI

REF Corresponds to:

Ref document number: 3466830

Country of ref document: DE

Date of ref document: 19871119

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920210

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920220

Year of fee payment: 9

Ref country code: DE

Payment date: 19920220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930331

Ref country code: CH

Effective date: 19930331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201