WO1992003650A1 - Verfahren zur einstellung eines ventils und ventil - Google Patents

Verfahren zur einstellung eines ventils und ventil Download PDF

Info

Publication number
WO1992003650A1
WO1992003650A1 PCT/DE1991/000586 DE9100586W WO9203650A1 WO 1992003650 A1 WO1992003650 A1 WO 1992003650A1 DE 9100586 W DE9100586 W DE 9100586W WO 9203650 A1 WO9203650 A1 WO 9203650A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
housing cover
magnetic
jacket
valve casing
Prior art date
Application number
PCT/DE1991/000586
Other languages
English (en)
French (fr)
Inventor
Stefan Maier
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE59106680T priority Critical patent/DE59106680D1/de
Priority to EP91912502A priority patent/EP0496844B1/de
Publication of WO1992003650A1 publication Critical patent/WO1992003650A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0667Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature acting as a valve or having a short valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/08Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/123Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes

Definitions

  • the invention is based on a method for adjusting the dynamic medium flow rate of an electromagnetically actuated valve or of an electromagnetically actuated valve according to the preamble of claim 1 and 6, respectively, which is released during the opening and closing process the dynamic medium flow quantity emitted during the opening and closing process is set by changing the size of the spring force of a return spring acting on the valve closing body.
  • the valve known from DE-OS 37 27 342 has an adjusting bolt which is displaceably arranged in a longitudinal bore of the inner pole and on one end face of which one end of the return spring rests. The pressing depth of the adjusting bolt into the longitudinal bore of the inner pole determines the size of the spring force.
  • the range of variation of the spring force of the return spring is limited on the one hand by the attraction force of the magnetic circuit and on the other hand by the effect on the tightness of the valve seat.
  • the inventive method with the characterizing features of claim 1 and the electromagnetically actuated valve with the characterizing features of claim 6 have the advantage of a particularly simple, automatable and no access to the return spring setting the dynamic, during the opening and closing process Medium flow quantity of an electromagnetically actuated valve. It is therefore no longer necessary to have access to the return spring on the fully assembled valve. Rather, the return spring has a constant, preset spring force.
  • the dynamic medium flow rate is set by changing a magnetic throttling.
  • the cross sections of the magnetic circuit that is to say the cross sections of the inner pole, of an armature interacting with the inner pole, of the valve jacket and of the housing cover, are designed in such a way that the critical magnetic throttle cross section, which limits the magnetic force in the excited state, is preferably designed as a saturated cross section Area between the valve jacket and the housing cover. If the housing cover and the valve jacket are moved against each other, the magnetic throttling and the magnetic flux of the magnetic circuit change, and thus also the magnetic force determining the dynamic medium flow rate.
  • the setting process can be fully automated and is therefore well suited for large series production.
  • the housing cover protrudes from the valve jacket in the axial direction and the housing cover and the valve jacket in the axial direction to change the overlap of the housing cover and valve jacket influencing the magnetic throttling can be shifted against one another.
  • At least one partially circumferential recess is formed in the housing cover and at least one partially circumferential recess is formed in the valve jacket and that the housing cover and the valve jacket change the overlap influencing the magnetic throttling Housing cover and valve jacket are rotated against each other.
  • the at least one partially circumferential recess is formed on the circumference of the housing cover and the at least one partially circumferential recess is formed in the region of the wall of the valve casing which cooperates with the housing cover. It is also advantageous if the at least one partially circumferential recess is formed in an end face of the housing cover facing the valve casing and the at least one partially circumferential recess is formed in an end face of the valve casing facing the housing cover.
  • FIG. 1 shows a first exemplary embodiment of an electromagnetically actuable valve which enables the method according to the invention to be carried out
  • FIG. 2 shows a second exemplary embodiment
  • FIG. 3 shows a section along the line III-III in FIG. 2
  • FIG. 4 shows a third exemplary embodiment
  • FIG. 5 shows a section along the line VV in FIG. 4.
  • the electromagnetically actuated valves in the form of fuel injection valves for fuel injection systems of, for example, mixture-compression-ignition internal combustion engines, for example shown in FIGS. 1 to 5, allow the method according to the invention to be set to adjust the dynamic output given during the opening and closing process Amount of medium flow.
  • the three exemplary embodiments shown differ only slightly from one another, so that the same and equivalent parts are identified by the same reference numerals.
  • valves Concentric to a longitudinal valve axis 1, the valves have, for example, a stepped inner pole 2 made of a ferromagnetic material, which is in a coil section 3 of a magnetic coil 4 is partially surrounded.
  • a flange 6 is formed on a lower pole end 5 of the inner pole 2 and has a blind hole opening 7 concentric with the longitudinal valve axis 1.
  • the magnet coil 4 with its coil carrier part 8 is surrounded by a valve jacket 9 which extends in the axial direction beyond the flange 6 of the inner pole 2.
  • a valve jacket 9 which extends in the axial direction beyond the flange 6 of the inner pole 2.
  • annular housing cover 10 is arranged above the magnetic coil 4 in the radial direction between the inner pole 2 and the valve jacket 9.
  • the housing cover 10 is movable with respect to the valve jacket 9 and is guided, for example, in the axial direction at a guide opening 13 formed concentrically to the valve longitudinal axis 1, in that the housing cover 10 with its guide opening 13 engages around the circumference of the inner pole 2 with a slight radial play.
  • the housing cover 10 is formed from a ferromagnetic material and has bushings 11 through which contact tabs 12 run, which, starting from an electrical connector 14, make electrical contact with the magnet coil 4.
  • a nozzle carrier 18 protrudes with an upper flange section 19 into an end of a through opening 20 of the valve jacket 9 which is formed concentrically to the longitudinal axis 1 of the valve cover 9.
  • the flange section 19 is with the valve jacket 9, for example, by a cross-sectional reduction 24 of the valve jacket 9 Weld 25 firmly connected.
  • the nozzle holder 18 of the solenoid 4 facing away from a nozzle body 22.
  • the nozzle body 22 i ⁇ t with the nozzle carrier 18 on its end facing away from the solenoid 4 23 z. B. connected by welding. Downstream of its fixed valve seat 27, the nozzle body 22 has two spray openings 26, for example.
  • the armature 30 is directly connected, for example, by means of a spherical valve closing body 31 which cooperates with the valve seat 27 Welding or soldering connected.
  • the compact and very light movable valve part consisting of the tubular armature 30 and the valve closing body 31 designed as a ball not only enables good dynamic behavior and good endurance behavior, but also a particularly short and compact design of the Ven ⁇ tils.
  • a guide ring 33 is arranged on the end of the nozzle carrier 18 facing away from the nozzle body 22, and is formed from an unmagnetic, for example ceramic material, and is connected to the retaining shoulder 32 of the receiving opening 21 Holding paragraph 32 of the nozzle holder 18 is fixedly connected.
  • the guide ring 33 is narrow in the axial direction and has a guide opening 39 which is concentric with the longitudinal axis 1 of the valve and through which the armature 30 projects with little play in order to guide it.
  • the tubular armature 30 In its stepped through bore 34, the tubular armature 30 has a spring shoulder 35 at its end facing away from the inner pole 2, on which one end of a return spring 36 is supported. With its other end, the return spring 36 abuts an end face 37 of the flange 6 of the inner pole 2.
  • the return spring 36 acts with a constant, preset spring force on the armature 30 and valve closing body 31.
  • a stop pin 38 is arranged in the blind hole opening 7 of the flange 6 and protrudes into the through hole 34 of the armature 30. In the open position of the valve, the valve closing body 31 bears against an end face 41 of the stop pin 38, so that the opening stroke of the valve closing body 31 is limited in a simple manner.
  • the spherical valve closing body 31 is slidably mounted in a sliding bore 40 formed upstream of the valve seat 27 in the nozzle body 22.
  • the wall of the sliding bore 40 is interrupted by flow channels 42, which allow the flow of a medium from the receiving opening 21 of the nozzle carrier 18 to the valve seat 2.7.
  • an intermediate ring 43 is arranged in the radial direction between the flange 6 of the inner pole 2 and the valve jacket 9, said intermediate ring being made of a non-magnetic material having a high specific electrical resistance, for example a ceramic Material is formed. It is possible to tightly connect the intermediate ring 43, for example by soldering on its periphery to the through opening 20 of the valve jacket 9 or at its inner opening 45 to the periphery of the flange 6, so that the risk is reduced that the magnet coil 4 comes into contact with the medium.
  • a carrier ring 52 is arranged directly on the flange section 19, which is used for assembly on account of the circumference of the nozzle carrier 18 on its front side 23 facing end formed radially outward-pointing holding shoulder 28 is formed in two parts in the axial direction.
  • the carrier ring 52 surrounds a filter element 53, via which the medium can flow from a medium source, for example a fuel pump, to transverse openings 54 which penetrate the wall of the nozzle carrier 18 in such a way that a medium flow into the interior space enclosed by the receiving opening 21 to the valve seat 27 is made possible.
  • housing cover 10 and valve jacket 9 slidable against each other in the axial direction.
  • the cross sections of the magnetic circuit that is to say the cross sections of the inner pole 2, the armature 30, the valve jacket 9 and the housing cover 10, are designed such that the critical throttle cross section of the magnetic circuit, which limits the magnetic force in the excited state, in the region of the overlap between the circumference of the Housing cover 10 and the through opening 20 of the valve jacket 9 is located.
  • the housing cover 10 protrudes from the through opening 20 of the valve jacket 9 and can be pushed into the valve jacket 9 to increase the overlap and thus enlarge the magnetic throttle cross section, or more from the valve jacket to reduce the overlap and thus reduce the magnetic throttle cross section 9 are pulled out.
  • the dynamic medium flow quantity delivered during the opening and closing process is adjusted by changing the magnetic throttling, which determines the magnetic flux and thus the magnetic force of the magnetic circuit.
  • the actual medium quantity delivered by the fully assembled valve is measured by means of a collecting container 73 and compared with the desired, predetermined medium target quantity. If the actual quantity dispensed and the predetermined target quantity do not match, in a second method step the housing cover 10 projecting into the through opening 20 of the valve casing 9 and the valve casing 9 are displaced in the axial direction, for example by means of a pressing tool (not shown), the housing cover being displaced 10 slidably moved in the through opening 20 opposite this, so that the overlap with the valve jacket 9 changes.
  • the covering area of the circumference of the housing cover 10 with the through opening 20 of the valve casing 9 is varied relative to one another by the axial displacement of the housing cover 10 and the valve casing 9, the magnetic throttle cross section and the magnetic throttling which change the magnetic Determine flux and thus the magnetic force of the magnetic circuit.
  • the magnitude of the magnetic force has a decisive influence on the opening and closing speed of the valve and thus on the dynamic medium flow rate of the valve which is emitted during the opening and closing process.
  • the magnetic force is increased by increasing the critical magnetic throttle cross-section that limits the magnetic flux of the magnetic circuit
  • the pull-in time of the armature 30 is reduced, while the fall-off time of the armature 30 is increased, so that the dynamic medium flow rate of the Valve changed.
  • the housing cover 10 and the valve jacket 9 are displaced relative to one another in the axial direction and the critical throttle cross section of the magnetic circuit is varied until the measured actual quantity matches the required target quantity.
  • the housing cover 10 is then fixed to the valve jacket 9, for example by attaching a laser welding point.
  • FIGS. 2 and 3 show a valve according to a second exemplary embodiment of the invention, in which the housing cover 10 and valve jacket 9 can be rotated relative to one another.
  • FIG. 3 shows a section along the line III-III in FIG. 2.
  • the through opening 20 of the valve casing 9 has at least one, in the region interacting with the housing cover 10, four in part according to the second exemplary embodiment circumferential recesses 62, which are at approximately the same distance from one another as the recesses 60 of the housing cover 10.
  • the cross sections of the magnetic circuit that is to say the cross sections of the inner pole 2, the armature 30, the valve jacket 9 and the housing cover 10, are designed such that the critical, the magnetic The flow and thus the magnetic throttle cross section limiting the magnetic force lies in the area of the overlap between the circumference of the housing cover 10 and the passage opening 20 of the valve jacket 9.
  • the quantity of medium emitted from the fully assembled valve is measured by means of the collecting container 73 and compared with the desired, predetermined medium target quantity. If the measured actual quantity does not correspond to the predetermined nominal quantity, the housing cover 10 and the valve jacket 9 arranged in the end of the passage opening 20 of the valve jacket 9 facing away from the valve closing body 31 and the valve jacket 9 are rotated relative to one another until the actual quantity emitted corresponds to the predetermined nominal quantity .
  • the housing cover 10 and the valve casing 9 By rotating the housing cover 10 and the valve casing 9 relative to one another, the overlaps of the partially circumferential recesses 62 of the through opening 20 of the valve casing 9 are replaced by the partially circumferential recesses 60 of the housing cover 10 and thus the magnetic throttle cross-section or the magnetic throttling that determines the magnetic flux and thus the magnetic force varies.
  • the dynamic medium flow rate of the valve depends on the magnitude of the magnetic force, making it easy to set the dynamic medium flow rate.
  • the housing cover 10 is fixed relative to the valve jacket 9, for example by a laser welding point.
  • the setting of the magnetic throttle cross-section just described by rotating the housing cover 10 and the valve casing 9 against one another can of course also be overlaid by an axial displacement of the housing cover 10 and the valve casing 9 already described for the first exemplary embodiment according to FIG.
  • housing cover 10 and valve jacket 9 can be rotated relative to one another.
  • FIG. 5 shows a section along the line V-V in FIG. 4.
  • At least one, for example three partially circumferential recesses 65 are or are formed in an outer region 63 on the end face 64 of the housing cover 10 facing the valve closing body 31.
  • the recesses 65 extend radially outward to the circumference of the housing cover 10.
  • the end face of the housing cover 10 lies against an end face 70 of the valve jacket 9 in its outer region 63.
  • the cross sections of the magnetic circuit i.e. the inner pole 2, the armature 30, the valve jacket 9 and the housing cover 10 are designed in this third exemplary embodiment according to the invention so that the critical, magnetic flux limiting throttle cross section of the magnetic circuit in the region of the overlap between the housing cover 10 and the end face 70 of the valve jacket 9.
  • the actual quantity of medium delivered by the fully assembled valve is measured by means of the collecting container 73 and compared with the desired, specified medium target quantity.
  • the housing cover 10 and the valve jacket 9 are rotated relative to one another in a second method step according to the invention until the actual quantity delivered corresponds to the predetermined target quantity.
  • the overlaps of the partially circumferential recesses 71 of the end face 70 of the valve casing 9 are changed by the partially circumferential recesses 65 of the end face 64 of the housing cover 10.
  • the size of the critical throttle cross section of the magnetic circuit and the magnetic throttling in the region between the housing cover 10 and the valve jacket 9, which determines the magnetic flux and thus the magnetic force of the magnetic circuit is thus varied. Due to the dependency of the dynamic medium flow rate of the valve on the magnitude of the magnetic force, the dynamic medium flow rate can also be set in a simple manner in this third exemplary embodiment.
  • the housing cover 10 is fixed in relation to the valve jacket 9.
  • the recesses 62 and 71 of the valve casing 9 do not extend from the cutouts 60 and 65 of the housing cover 10 be covered.
  • the fully assembled valve, its dynamic volume of medium flow released during the opening and closing process is correctly set, it is finally enclosed in a plastic sheathing 50, which can be achieved by pouring or extrusion coating with plastic.
  • the plastic casing 50 encloses at least part of the valve casing 9 and the front side 77 of the housing cover 10 facing away from the valve closing body 31.
  • the electrical connection plug 14 is also molded onto the plastic casing 50, via which the electrical contacting and thus the excitation of the Magnetic coil 4 takes place.
  • the setting method according to the invention has the advantage that, when the valve is fully assembled, no access to the return spring 36 is required, but the setting can be carried out from the outside.
  • the setting process can be fully automated and is therefore well suited for large-scale production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Bei bekannten elektromagnetisch betätigbaren Ventilen wird die während des Öffnungs- und Schließvorganges abgegebene Mediumströmungsmenge durch die Änderung der Größe der auf den Ventilschließkörper wirkenden Federkraft der Rückstellfeder eingestellt. Dazu ist aber an dem fertig montierten Ventil eine Zugriffsmöglichkeit auf die Rückstellfeder in Form eines leicht zugänglichen Einstellelementes vorzusehen. Bei dem erfindungsgemäßen Verfahren zur Einstellung der während des Öffnungs- und des Schließvorganges abgegebenen Mediumströmungsmenge eines elektromagnetisch betätigbaren Ventils werden der Gehäusedeckel (10) und der Ventilmantel (9) gegeneinander bewegt und damit der kritische, den magnetischen Fluß des Magnetkreises begrenzende magnetische Drosselquerschnitt variiert, bis die gemessene abgegebene Istmenge des Mediums mit der vorgegebenen Sollmenge übereinstimmt. Das erfindungsgemäße Verfahren eignet sich besonders für elektromagnetisch betätigbare Brennstoffeinspritzventile von Brennstoffeinspritzanlagen von Brennkraftmaschinen.

Description

Verfahren zur Einstellung eines Ventils und Ventil
Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Einstellung der dyna¬ mischen, während des Offnungs- und des Schließvorganges abgegebenen Mediumströmungsmenge eines elektromagnetisch betätigbaren Ventils bzw. von einem elektromagnetisch betätigbaren Ventil nach dem Ober¬ begriff des Anspruches 1 bzw. 6. Bei bekannten Ventilen wird die dy¬ namische, während des Offnungs- und des Schließvorganges abgegebene Mediumströmungsmenge durch die Änderung der Größe der Federkraft einer auf den Ventilschließkörper wirkenden Rückstellfeder einge¬ stellt. Das aus der DE-OS 37 27 342 bekannte Ventil weist einen in einer Längsbohrung des Innenpols verschiebbar angeordneten Einstell¬ bolzen auf, an dessen einer Stirnseite das eine Ende der Rückstell¬ feder anliegt. Die Einpreßtiefe des Einstellbolzens in die Längs¬ bohrung des Innenpols bestimmt die Größe der Federkraft. Aus der DE-OS 29 42 853 ist ein Ventil bekannt, bei dem die Federkraft der Rückstellfeder durch die Einschraubtiefe einer in die Längsbohrung des Innenpols einschraubbaren Einstellschraube eingestellt wird. Das eine Ende der Rückstellfeder liegt dabei an der einen Stirnseite der Einstellschraube an. Die Einstellung der dynamischen, während des Offnungs- und des Schließvorganges abgegebenen Mediumströmungsmenge durch die Ein¬ stellung der auf den Ventilschließkörper wirkenden Federkraft der Rückstellfeder hat aber den Nachteil, daß an dem fertig montierten Ventil eine Zugriffsmoglichkeit auf die Rückstellfeder in Form eines leicht zugänglichen Einstellelementes vorzusehen ist, an dem zusätz¬ lich abgedichtet werden muß.
Zudem ist der Variationsbereich der Federkraft der Rückstellfeder einerseits durch die Anzugskraft des magnetischen Kreises und an¬ dererseits durch die Auswirkung auf die Dichtheit des Ventilsitzes begrenzt.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Anspruches 1 bzw. das elektromagnetisch betätigbare Ventil mit den kennzeichnenden Merkmalen des Anspruches 6 haben den Vorteil einer besonders einfachen, automatisierbaren und keine Zugriffsmoglichkeit auf die Rückstellfeder erfordernden Einstellung der dynamischen, während des Offnungs- und des Schließvorganges abgegebenen Medium¬ strömungsmenge eines elektromagnetisch betätigbaren Ventils. An dem fertig montierten Ventil ist also keine Zugriffsmoglichkeit auf die Rückstellfeder mehr erforderlich. Die Rückstellfeder weist vielmehr eine konstante, voreingestellte Federkraft auf.
Die Einstellung der dynamischen Mediumströmungsmenge erfolgt durch die Veränderung einer magnetischen Drosselung. Die Querschnitte des Magnetkreises, also die Querschnitte des Innenpols, eines mit dem Innenpol zusammenwirkenden Ankers, des Ventilmantels und des Gehäu¬ sedeckels sind so ausgelegt, daß der kritische, die Magnetkraft im erregten Zustand begrenzende magnetische Drosselguerschnitt, vor¬ zugsweise als Sattigungsguerschnitt ausgebildet, im Bereich zwischen dem Ventilmantel und dem Gehäusedeckel liegt. Werden Gehäusedeckel und Ventilmantel gegeneinander bewegt, so verändern sich die magne¬ tische Drosselung und der magnetische Fluß des Magnetkreises und damit auch die die dynamische Mediumströmungsmenge bestimmende Magnetkraft.
Der Einstellvorgang ist voll automatisierbar und damit für eine Großserienfertigung gut geeignet.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vor¬ teilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 an¬ gegebenen Verfahrens bzw. des im Anspruch 6 angegebenen Ventils möglich.
Zur einfachen, genauen und automatisierbaren Einstellung der dyna¬ mischen, während des Offnungs- und des Schließvorganges abgegebene Mediumströmungsmenge ist es besonders vorteilhaft, wenn der Gehäuse¬ deckel aus dem Ventilmantel in axialer Richtung herausragt und der Gehäusedeckel und der Ventilmantel in axialer Richtung zur Änderung der die magnetische Drosselung beeinflussenden Überdeckung von Gehäusedeckel und Ventilmantel gegeneinander verschoben werden.
Aus dem gleichen Grund ist es ebenfalls besonders vorteilhaft, wenn in dem Gehäusedeckel wenigstens eine teilweise umlaufende Aussparung und in dem Ventilmantel wenigstens eine teilweise umlaufende Aus¬ nehmung ausgeformt sind und daß der Gehäusedeckel und der Ventil¬ mantel zur Änderung der die magnetische Drosselung beeinflussenden Überdeckung von Gehäusedeckel und Ventilmantel gegeneinander ver¬ dreht werden.
Dabei ist es von Vorteil, wenn an dem Umfang des Gehäusedeckels die wenigstens eine teilweise umlaufende Aussparung und in dem mit dem Gehäusedeckel zusammenwirkenden Bereich der Wandung des Ventil¬ mantels die wenigstens eine teilweise umlaufende Ausnehmung aus¬ geformt sind. Es ist ebenfalls vorteilhaft, wenn in einer dem Ventilmantel zuge¬ wandten Stirnseite des Gehäusedeckels die wenigstens eine teilweise umlaufende Aussparung und in einer dem Gehäusedeckel zugewandten Stirnseite des Ventilmantels die wenigstens eine teilweise um¬ laufende Ausnehmung ausgeformt sind.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein erstes Ausführungsbeispiel eines die Durch¬ führung des erfindungsgemäßen Verfahrens ermöglichenden elektro¬ magnetisch betätigbaren Ventils, Figur 2 ein zweites Ausführungs¬ beispiel, Figur 3 einen Schnitt entlang der Linie III-III in Figur 2, Figur 4 ein drittes Ausführungsbeispiel sowie Figur 5 einen Schnitt entlang der Linie V-V in Figur 4.
Beschreibung der Ausführungsbeispiele
Die in den Figuren 1 bis 5 beispielsweise dargestellten elektro¬ magnetisch betätigbaren Ventile in Form von Brennstoffeinspritz¬ ventilen für Brennstoffeinspritzanlagen von beispielsweise gemisch- verdichtenden fremdgezündeten Brennkraftmaschinen erlauben die Durchführung des erfindungsgemäßen Verfahrens zur Einstellung der dynamischen, während des Offnungs- und des Schließvorganges ab¬ gegebenen Mediumströmungsmenge. Die dargestellten drei Ausführungs¬ beispiele unterscheiden sich nur geringfügig voneinander, so daß gleiche und gleichwirkende Teile durch die gleichen Bezugszeichen gekennzeichnet sind.
Konzentrisch zu einer Ventillängsachse 1 weisen die Ventile einen beispielsweise abgestuften Innenpol 2 aus einem ferromagnetischen Werkstoff auf, der in einem Spulenabschnitt 3 von einer Magnetspule 4 teilweise umgeben ist. An einem unteren Polende 5 des Innenpols 2 ist ein Flansch 6 ausgebildet, der konzentrisch zu der Ventillängs¬ achse 1 eine Sacklochöffnung 7 aufweist.
Die Magnetspule 4 mit ihrem Spulenträgerteil 8 ist von einem Ventil¬ mantel 9 umgeben, der sich in axialer Richtung über den Flansch 6 des Innenpols 2 hinaus erstreckt. An dem dem Flansch 6 abgewandten Ende des Innenpols 2 ist oberhalb der Magnetspule 4 in radialer Richtung zwischen dem Innenpol 2 und dem Ventilmantel 9 ein kreis¬ ringförmiger Gehäusedeckel 10 angeordnet. Der Gehäusedeckel 10 ist gegenüber dem Ventilmantel 9 bewegbar und ist beispielsweise an einer konzentrisch zu der Ventillängsachse 1 ausgebildeten Führungs¬ öffnung 13 in axialer Richtung geführt, indem der Gehäusedeckel 10 mit seiner Führungsöffnung 13 den Umfang des Innenpols 2 mit gerin¬ gem radialen Spiel umgreift. Es ist aber auch möglich, daß der Gehäusedeckel 10 an seinem Umfang in radialer Richtung von dem Ven¬ tilmantel 9 mit engem Spiel umgeben und dadurch in axialer Richtung geführt ist. Der Gehäusedeckel 10 ist aus einem ferromagnetischen Werkstoff ausgebildet und weist Durchführungen 11 auf, durch die Kontaktfahnen 12 verlaufen, die von einem elektrischen Anschlu߬ stecker 14 ausgehend die Magnetspule 4 elektrisch kontaktieren.
Ein Düsenträger 18 ragt mit einem oberen Flanschabschnitt 19 in ein dem Gehäusedeckel 10 abgewandtes Ende einer konzentrisch zu der Ven¬ tillängsachse 1 ausgebildeten Durchgangsöffnung 20 des Ventilmantels 9. Der Flanschabschnitt 19 ist mit dem Ventilmantel 9 beispielsweise durch eine in einer Querschnittsverringerung 24 des Ventilmantels 9 verlaufende Schweißnaht 25 fest verbunden. In einer konzentrisch zu der Ventillängsachse 1 ausgebildeten Au nahmeöffnung 21 weist der Düsenträger 18 der Magnetspule 4 abgewandt einen Düsenkörper 22 auf. Der Düsenkörper 22 i≤t mit dem Düsenträger 18 an dessen der Magnet¬ spule 4 abgewandten Stirnseite 23 z. B. durch Schweißen verbunden. Stromabwärts seines festen Ventilsitzes 27 hat der Düsenkörper 22 beispielsweise zwei Abspritzöffnungen 26. In die Aufnahmeöffnung 21 des Düsenträgers 18 ragt ein rohrförmiger, mit dem unteren Polende 5 des Innenpols 2 zusammenwirkender Anker 30. An seinem dem Ventilsitz 27 zugewandten Ende ist der Anker 30 unmittelbar mit einem kugelförmigen, mit dem Ventilsitz 27 zusammen¬ wirkenden Ventilschließkörper 31 beispielsweise mittels Schweißen oder Löten verbunden. Das kompakte und sehr leichte, aus dem rohr- förmigen Anker 30 und dem als Kugel ausgebildeten Ventilschlie߬ körper 31 bestehende bewegliche Ventilteil ermöglicht nicht nur ein gutes dynamisches Verhalten und ein gutes Dauerlaufverhalten, son¬ dern zudem auch eine besonders kurze und kompakte Bauform des Ven¬ tils.
Zur Führung des aus Anker 30 und Ventilschließkörper 31 bestehenden beweglichen Ventilteils ist an dem dem Düsenkörper 22 abgewandten Ende des Düsenträgers 18 an einem Halteabsatz 32 der Aufnahmeöffnung 21 anliegend ein Führungsring 33 angeordnet, der aus einem unmagne¬ tischen, beispielsweise keramischen Werkstoff ausgebildet und mit dem Halteabsatz 32 des Düsenträgers 18 fest verbunden ist. Der Führungsring 33 ist in axialer Richtung schmal ausgebildet und weist eine zur Ventillängsachse 1 konzentrische Führungsöffnung 39 auf, die der Anker 30 zu seiner Führung mit geringem Spiel durchragt.
Der rohrförmige Anker 30 weist in seiner abgestuften Durchgangs¬ bohrung 34 an seinem dem Innenpol 2 abgewandten Ende einen Feder- absatz 35 auf, an dem sich das eine Ende einer Rückstellfeder 36 abstützt. Mit ihrem anderen Ende liegt die Rückstellfeder 36 an einer Stirnseite 37 des Flansches 6 des Innenpols 2 an. Die Rück¬ stellfeder 36 wirkt mit einer konstanten, voreingestellten Feder¬ kraft auf Anker 30 und Ventilschließkörper 31. In der Sackloch¬ öffnung 7 des Flansches 6 ist ein Anschlagstift 38 angeordnet, der in die Durchgangsbohrung 34 des Ankers 30 ragt. In Öffnungsstellung des Ventils liegt der Ventilschließkörper 31 an einer Stirnseite 41 des Anschlagstiftes 38 an, so daß der Öffnungshub des Ventilschlie߬ körpers 31 auf -einfache Art und Weise begrenzt wird. Der kugelförmige Ventilschließkörper 31 ist in einer stromaufwärts des Ventilsitzes 27 in dem Düsenkörper 22 ausgebildeten Gleitbohrung 40 gleitbar gelagert. Die Wandung der Gleitbohrung 40 ist durch Strömungskanäle 42 unterbrochen, die die Strömung eines Mediums von der Aufnahmeöffnung 21 des Düsenträgers 18 zu dem Ventilsitz 2.7 er¬ möglichen.
An der dem Düsenträger 18 zugewandten Seite der Magnetspule 4 ist in radialer Richtung zwischen dem Flansch 6 des Innenpols 2 und dem Ventilmantel 9 ein Zwischenring 43 angeordnet, der aus einem nicht¬ magnetischen, einen hohen spezifischen elektrischen Widerstand auf¬ weisenden Werkstoff, beispielsweise einem keramischen Werkstoff aus¬ gebildet ist. Es ist möglich, den Zwischenring 43 beispielsweise durch Löten an seinem Umfang mit der Durchgangsöffnung 20 des Ven¬ tilmantels 9 oder an seiner Innenöffnung 45 mit dem Umfang des Flan¬ sches 6 dicht zu verbinden, so daß die Gefahr verringert wird, daß die Magnetspule 4 mit dem Medium in Kontakt kommt.
An dem Umfang des Düsenträgers 18 ist in Richtung zu den Abspritz¬ öffnungen 26 des Düsenkörpers 22 hin unmittelbar an den Flansch¬ abschnitt 19 anschließend ein Trägerring 52 angeordnet, der zur Mon¬ tage wegen eines am Umfang des Düsenträgers 18 an seinem der Stirn¬ seite 23 zugewandten Ende ausgebildeten radial nach außen weisenden Halteabsatzes 28 in axialer Richtung zweigeteilt ausgebildet ist. Der Trägerring 52 umschließt ein Filterelement 53, über das das Medium von einer Mediumquelle, beispielsweise einer Brennstoffpumpe, zu Queröffnungen 54 strömen kann, die die Wandung des Düsenträgers 18 derart durchdringen, daß eine Mediumströmung in den von der Auf¬ nahmeöffnung 21 umschlossenen Innenraum zum Ventilsitz 27 ermöglicht wird.
Bei dem in der Figur 1 dargestellten ersten Ausführungsbeispiel eines erfindungsgemäßen Ventils sind Gehäusedeckel 10 und Ventil- mantel 9 in axialer Richtung gegeneinander verschiebbar. Die Quer¬ schnitte des Magnetkreises, also die Querschnitte des Innenpols 2, des Ankers 30, des Ventilmantels 9 und des Gehäusedeckels 10 sind so ausgelegt, daß der kritische, die Magnetkraft im erregten Zustand begrenzende Drosselguerschnitt des Magnetkreises im Bereich der Uberdeckung zwischen dem Umfang des Gehäusedeckels 10 und der Durch¬ gangsöffnung 20 des Ventilmantels 9 liegt. So ragt in aller Regel der Gehäusedeckel 10 aus der Durchgangsöffnung 20 des Ventilmantels 9 heraus und kann zur Vergrößerung der Überdeckung und damit Ver¬ größerung des magnetischen Drosselquerschnittes in den Ventilmantel 9 hineingeschoben oder zur Verringerung der Uberdeckung und damit Verringerung des magnetischen Drosselquerschnittes mehr aus dem Ventilmantel 9 herausgezogen werden.
Die Einstellung der dynamischen, während des Offnungs- und des Schließvorganges abgegebenen Mediumströmungsmenge erfolgt durch die Veränderung der magnetischen Drosselung, die den magnetischen Fluß und damit die Magnetkraft des Magnetkreises bestimmt. In einem er¬ sten Verfahrensschritt wird die abgegebene Mediumistmenge des fertig montierten Ventils mittels eines Auffangbehälters 73 gemessen und mit der gewünschten, vorgegebenen Mediumsollmenge verglichen. Stim¬ men die abgegebene Istmenge und die vorgegebene Sollmenge nicht überein, so werden in einem zweiten Verfahrensschritt der in die Durchgangsöffnung 20 des Ventilmantels 9 ragende Gehäusedeckel 10 und der Ventilmantel 9 in axialer Richtung beispielsweise mittels eines nicht dargestellten Preßwerkzeuges gegeneinander verschoben, wobei sich der Gehäusedeckel 10 in der Durchgangsöffnung 20 gegen¬ über dieser gleitend bewegt, so daß sich die Überdeckung mit dem Ventilmantel 9 ändert. Wird die Überdeckungsfläche des Umfanges des Gehäusedeckels 10 mit der Durchgangsöffnung 20 des Ventilmantels 9 durch das axiale Verschieben von Gehäusedeckel 10 und Ventilmantel 9 gegeneinander variiert, so verändert sich der magnetische Drossel¬ guerschnitt und die magnetische Drosselung, die den magnetischen Fluß und damit die Magnetkraft des Magnetkreises bestimmen. Die Höhe der Magnetkraft hat einen entscheidenden Einfluß auf die Off¬ nungs- und Schließgeschwindigkeit des Ventils und damit auf die dynamische, während des Offnungs- und des Schließvorganges abgege¬ bene Mediumströmungsmenge des Ventils.
Wird beispielsweise die Magnetkraft durch eine Vergrößerung des den magnetischen Fluß des Magnetkreises begrenzenden kritischen magne¬ tischen Drosselguerschnittes erhöht, so verringert sich die Anzugs¬ zeit des Anker 30, während sich die Abfallzeit des Ankers 30 ver¬ größert, so daß sich die dynamische Mediumströmungsmenge des Ventils verändert. Der Gehäusedeckel 10 und der Ventilmantel 9 werden in axialer Richtung so lange gegeneinander verschoben und damit der kritische Drosselguerschnitt des Magnetkreises variiert, bis die gemessene Istmenge mit der geforderten Sollmenge übereinstimmt. Abschließend wird dann der Gehäusedeckel 10 am Ventilmantel 9, bei¬ spielsweise durch Anbringung eines Laserschweißpunktes fixiert.
In den Figuren 2 und 3 ist ein Ventil gemäß eines zweiten Ausfüh¬ rungsbeispiels der Erfindung dargestellt, bei dem Gehäusedeckel 10 und Ventilmantel 9 gegeneinander verdrehbar sind. Die Figur 3 zeigt einen Schnitt entlang der Linie III-III in Figur 2.
An dem Umfang des Gehäusedeckels 10 ist bzw. sind bei dem zweiten Ausführungsbeispiel wenigstens eine, beispielsweise vier teilweise umlaufende Aussparungen 60 ausgebildet. Die Aussparungen 60 er¬ strecken sich in axialer Richtung beispielsweise vollständig über den Umfang des Gehäusedeckels 10. An dem dem Ventilschließkörper 31 abgewandten Ende hat die Durchgangsöffnung 20 des Ventilmantels 9 in dem mit dem Gehäusedeckel 10 zusammenwirkenden Bereich wenigstens eine, gemäß des zweiten Ausführungsbeispiels vier teilweise um¬ laufende Ausnehmungen 62, die zueinander etwa den gleichen Abstand wie die Aussparungen 60 des Gehäusedeckels 10 haben. Ebenso wie bei dern ersten, in der Figur 1 dargestellten Ausführungsbeispiel sind bei dem zweiten Ausführungsbeispiel die Querschnitte des Magnet¬ kreises, also die Querschnitte des Innenpols 2, des Ankers 30, des Ventilmantels 9 und des Gehäusedeckels 10 so ausgelegt, daß der kri¬ tische, den magnetischen Fluß und damit die Magnetkraft begrenzende magnetische Drosselquerschnitt in dem Bereich der Überdeckung zwi¬ schen dem Umfang des Gehäusedeckels 10 und der Durchgangsoffnung 20 des Ventilmantels 9 liegt.
Zur Einstellung der dynamischen, während des Offnungs- und des Schließvorganges abgegebenen Mediumströmungsmenge wird in einem ersten erfindungsgemäßen Verfahrensschritt die abgegebene Medium¬ istmenge des fertig montierten Ventils mittels des Auffangbehälters 73 gemessen und mit der gewünschten, vorgegebenen Mediumsollmenge verglichen. Entspricht die gemessene Istmenge nicht der vorgegebenen Sollmenge, so werden in einem zweiten Verfahrensschritt der in dem dem Ventilschließkörper 31 abgewandten Ende der Durchgangsoffnung 20 des Ventilmantels 9 angeordnete Gehäusedeckel 10 und der Ventilman¬ tel 9 gegeneinander verdreht, bis die abgegebene Istmenge mit der vorgegebenen Sollmenge übereinstimmt. Durch das Verdrehen von Ge¬ häusedeckel 10 und Ventilmantel 9 gegeneinander werden die Über¬ deckungen der teilweise umlaufenden Ausnehmungen 62 der Durchgangs- öffnung 20 des Ventilmantels 9 durch die teilweise umlaufenden Aus¬ sparungen 60 des Gehäusedeckels 10 und damit der magnetische Dros¬ selquerschnitt bzw. die magnetische Drosselung, die den magnetischen Fluß und damit die Magnetkraft bestimmen, variiert. Durch die Ab¬ hängigkeit der dynamischen Mediumströmungsmenge des Ventils von der Größe der Magnetkraft läßt sich auf einfache Art und Weise die dy¬ namische Mediumströmungsmenge einstellen. Abschließend wird der Gehäusedeckel 10 gegenüber dem Ventilmantel 9 beispielsweise durch einen Laserschweißpunkt fixiert. Der soeben beschriebenen Einstellung des magnetischen Drosselquer¬ schnittes durch Verdrehen von Gehäusedeckel 10 und Ventilmantel 9 gegeneinander kann natürlich auch eine bereits zum ersten Ausfüh¬ rungsbeispiel nach Figur 1 beschriebene axiale Verschiebung von Gehäusedeckel 10 und Ventilmantel 9 überlagert werden.
Bei dem in den Figuren 4 und 5 dargestellten erfindungsgemäßen Ven¬ til gemäß eines dritten Ausführungsbeispiels sind Gehäusedeckel 10 und Ventilmantel 9 gegeneinander verdrehbar. Die Figur 5 zeigt einen Schnitt entlang der Linie V-V in Figur 4.
An der dem Ventilschließkörper 31 zugewandten Stirnseite 64 des Gehäusedeckels 10 ist bzw. sind in einem äußeren Bereich 63 wenig¬ stens eine, beispielsweise drei teilweise umlaufende Aussparungen 65 ausgebildet. Die Aussparungen 65 erstrecken sich in radialer Rich¬ tung nach außen bis zum Umfang des Gehäusedeckels 10.
Der Gehäusedeckel 10 liegt mit seiner Stirnseite 64 in ihrem äußeren Bereich 63 an einer Stirnseite 70 des Ventilmantels 9 an. In der Stirnseite 70 des Ventilmantels 9 sind wenigstens eine, in dem dar¬ gestellten dritten Ausführungsbeispiel beispielsweise drei teilweise umlaufende Ausnehmungen 71 ausgebildet, die sich, wie beispielsweise dargestellt, in radialer Richtung über die gesamte Stirnseite 70 er¬ strecken und etwa den gleichen Abstand zueinander haben wie die Aus¬ sparungen 65 des Gehäusedeckels 10.
Die Querschnitte des Magnetkreises, also des Innenpols 2, des Ankers 30, des Ventilmantels 9 und des Gehäusedeckels 10 sind bei diesem dritten erfindungsgemäßen Ausführungsbeispiel so ausgelegt, daß der kritische, den magnetischen Fluß begrenzende Drosselquerschnitt des Magnetkreises in dem Bereich der Überdeckung zwischen dem Gehäuse¬ deckel 10 und der Stirnseite 70 des Ventilmantels 9 liegt. Zur Einstellung der dynamischen, während des Offnungs- und des Schließvorganges abgegebenen Mediumstromungsmenge wird in einem ersten erfindungsgemäßen Verfahrensschritt die abgegebene Medium¬ istmenge des fertig montierten Ventils mittels des Auffangbehälters 73 gemessen und mit der gewünschten, vorgegebenen Mediumsollmenge verglichen. Stimmen die gemessene Istmenge und die vorgegebene Soll¬ menge nicht überein, so werden in einem zweiten erfindungsgemäßen Verfahrensschritt der Gehäusedeckel 10 und der Ventilmantel 9 gegen¬ einander verdreht, bis die abgegebene Istmenge mit der vorgegebenen Sollmenge übereinstimmt. Durch das Verdrehen von Gehäusedeckel 10 und Ventilmantel 9 gegeneinander werden die Überdeckungen der teil¬ weise umlaufenden Ausnehmungen 71 der Stirnseite 70 des Ventilman¬ tels 9 durch die teilweise umlaufenden Aussparungen 65 der Stirn¬ seite 64 des Gehäusedeckels 10 verändert. Damit wird die Größe des kritischen Drosselguerschnittes des Magnetkreises und der magne¬ tischen Drosselung im Bereich zwischen Gehäusedeckel 10 und Ventil¬ mantel 9, der den magnetischen Fluß und damit die Magnetkraft des Magnetkreises bestimmt, variiert. Durch die Abhängigkeit der dyna¬ mischen Mediumstromungsmenge des Ventils von der Größe der Magnet¬ kraft läßt sich auch bei diesem dritten Ausführungsbeispiel auf ein¬ fache Art und Weise die dynamische Mediumstromungsmenge einstellen. Abschließend wird der Gehäusedeckel 10 gegenüber dem Ventilmantel 9 fixiert.
Bei dem zweiten und dem dritten erfindungsgemäßen Ausführungsbei- spiel ist es aber auch möglich, daß je nach Stellung des Ventil¬ mantels 9 und des Gehäusedeckels 10 zueinander die Ausnehmungen 62 bzw. 71 des Ventilmantels 9 nicht von den Aussparungen 60 bzw. 65 des Gehäusedeckels 10 überdeckt werden.
Das fertig montierte Ventil, dessen dynamische, während des Off¬ nungs- und des Schließvorganges abgegebene Mediumstromungsmenge korrekt eingestellt ist, wird abschließend von einer Kunststoffum- mantelung 50 umschlossen, die durch Ausgießen oder Umspritzen mit Kunststoff erzielt werden kann. Die Kunststoffummantelung 50 um¬ schließt mindestens einen Teil des Ventilmantels 9 sowie die dem Ventilschließkörper 31 abgewandte Stirnseite 77 des Gehäusedeckels 10. An die Kunststoffummantelung 50 ist zugleich der elektrische An¬ schlußstecker 14 mitangeformt, über den die elektrische Kontaktie- rung und damit die Erregung der Magnetspule 4 erfolgt.
Das erfindungsgemäße Einstellverfahren bietet den Vorteil, daß bei dem fertig montierten Ventil keine Zugriffsm glichkeit auf die Rück¬ stellfeder 36 erforderlich ist, sondern die Einstellung von außen vorgenommen werden kann. Zudem ist der Einstellvorgang voll automa¬ tisierbar und damit für die Großenserienfertigung gut geeignet.

Claims

Ansprüche
1. Verfahren zur Einstellung der dynamischen, von einem elektro¬ magnetisch betätigbaren Ventil, insbesondere einem Brennstoffein- spritzventil während des Offnungs- und des Schließvorganges abgege¬ benen Mediumstromungsmenge, das einen Ventilmantel und einen Gehäu¬ sedeckel, welcher an einem einem Ventilschließkörper abgewandten Ende des Ventilmantels anliegt, sowie eine Magnetspule und einen Innenpol aufweist, dadurch gekennzeichnet, daß zunächst das Ventil derart montiert wird, daß zwischen dem Ventilmantel (9) und dem Gehäusedeckel (10) bei Erregung der Magnetspule (4) eine magnetische Drosselung erfolgt, danach die abgegebene Mediumistmenge des fertig montierten Ventils (73) gemessen und mit einer vorgegebenen Medium¬ sollmenge verglichen wird, anschließend der Gehäusedeckel (10) und der Ventilmantel (9) des Ventils gegeneinander bewegt und damit die magnetische Drosselung zwischen Ventilmantel (9) und Gehäusedeckel (10) variiert wird, bis die gemessene Mediumistmenge mit der vor¬ gegebenen Mediumsollmenge übereinstimmt und abschließend Ventil¬ mantel (9) und Gehäusedeckel (10) gegeneinander fixiert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Gehäusedeckel (10) aus dem Ventilmantel (9) in axialer Richtung herausragt und der Gehäusedeckel (10) und der Ventilmantel (9) in axialer Richtung zur Änderung der die magnetische Drosselung beein¬ flussenden Uberdeckung von Gehäusedeckel (10) und Ventilmantel (9) des Ventils gegeneinander verschoben werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in dem Gehäusedeckel (10) wenigstens eine teilweise umlaufende Aussparung (60, 65) und in dem Ventilmantel (9) wenigstens eine teilweise um¬ laufende Ausnehmung (62, 71) ausgeformt sind und daß der Gehäuse¬ deckel (10) und der Ventilmantel (9) zur Änderung der die magne¬ tische Drosselung beeinflussenden Uberdeckung von Gehäusedeckel (10) und Ventilmantel (9) gegeneinander verdreht werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß an dem Um¬ fang des Gehäusedeckels (10) die wenigstens eine teilweise umlau¬ fende Aussparung (60) und in dem mit dem Gehäusedeckel (10) zusam¬ menwirkenden Bereich der Wandung des Ventilmantels (9) die wenig¬ stens eine teilweise umlaufende Ausnehmung (62) ausgeformt sind und daß der Gehäusedeckel (10) und der Ventilmantel (9) zur Änderung der die magnetische Drosselung beeinflussenden Überdeckung von Gehäuse¬ deckel (10) und Ventilmantel (9) gegeneinander verdreht werden.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß in einer dem Ventilmantel (9) zugewandten Stirnseite (64) des Gehäusedeckels (10) die wenigstens eine teilweise umlaufende Aussparung (65) und in einer dem Gehäusedeckel (10) zugewandten Stirnseite (70) des Ventil¬ mantels (9) die wenigstens eine teilweise umlaufende Ausnehmung (71) ausgeformt sind und daß der Gehäusedeckel (10) und der Ventilmantel (9) zur Änderung der die magnetische Drosselung beeinflussenden Überdeckung von Gehäusedeckel (10) und Ventilmantel (9) gegen¬ einander verdreht werden.
6. Elektromagnetisch betätigbares Ventil, insbesondere Brennstoff¬ einspritzventil, mit einem Ventilmantel und einem Gehäusedeckel, der an einem einem Ventilschließkörper abgewandten Ende des Ventil¬ mantels anliegt, sowie einer Magnetspule und einem Innenpol, insbe¬ sondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zwischen dem Ventilmantel (9) und dem Gehäusedeckel (10) bei Erregung der Magnetspule (4) eine magne¬ tische Drosselung erfolgt, daß der Gehäusedeckel (10) und der Ven¬ tilmantel (9) gegeneinander bewegbar und damit die magnetische Dros¬ selung zwischen Ventilmantel (9) und Gehäusedeckel (10) variierbar ist und daß Ventilmantel (9) und Gehäusedeckel (10) gegeneinander fixierbar sind.
7. Ventil nach Anspruch 6, dadurch gekennzeichnet, daß der Gehäuse¬ deckel (10) aus dem Ventilmantel (9) in axialer Richtung herausragt und der Gehäusedeckel (10) und der Ventilmantel (9) zur Änderung der die magnetische Drosselung beeinflussenden Uberdeckung von Gehäuse¬ deckel (10) und Ventilmantel (9) in axialer Richtung gegeneinander verschiebbar sind.
8. Ventil nach Anspruch 6, dadurch gekennzeichnet, daß in dem Gehäusedeckel (10) wenigstens eine teilweise umlaufende Aussparung (60, 65) und in dem Ventilmantel (9) wenigstens eine teilweise um¬ laufende Ausnehmung (62, 71) ausgeformt sind und daß der Gehäuse¬ deckel (10) und der Ventilmantel (9) des Ventils zur Änderung der die magnetische Drosselung beeinflussenden Überdeckung von Gehäuse¬ deckel (10) und Ventilmantel (9) gegeneinander verdrehbar sind.
9. Ventil nach Anspruch 8, dadurch gekennzeichnet, daß an dem Umfang des Gehäusedeckels (10) die wenigstens eine teilweise umlaufende Aussparung (60) und in dem mit dem Gehäusedeckel (10) zusammenwir¬ kenden Bereich der Wandung des Ventilmantels (9) die wenigstens eine teilweise umlaufende Ausnehmung (62) ausgeformt sind und daß der Gehäusedeckel (10) und der Ventilmantel (9) zur Änderung der die magnetische Drosselung beeinflussenden Überdeckung von Gehäusedeckel (10) und Ventilmantel (9) gegeneinander verdrehbar sind.
10. Ventil nach Anspruch 8, dadurch gekennzeichnet, daß in einer dem Ventilmantel (9) zugewandten Stirnseite (64) des Gehäusedeckels (10) die wenigstens eine teilweise umlaufende Aussparung (65) und in einer dem Gehäusedeckel (10) zugewandten Stirnseite (70) des Ventil¬ mantels (9) die wenigstens eine teilweise umlaufende Ausnehmung (71) ausgeformt sind und daß der Gehäusedeckel (10) und der Ventilmantel (9) zur Änderung der die magnetische Drosselung beeinflussenden Überdeckung von Gehäusedeckel (10) und Ventilmantel (9) gegenein¬ ander verdrehbar sind.
11. Ventil nach Anspruch 6, dadurch gekennzeichnet, daß Ventilmantel (9) und Gehäusedeckel (10) so ausgebildet sind, daß im Bereich der Überdeckung zwischen dem Ventilmantel (9) und dem Gehäusedeckel (10) die dortige magnetische Drosselung bei Erregung der Magnetspule (4) zu einer magnetischen Sättigung führt.
PCT/DE1991/000586 1990-08-22 1991-07-17 Verfahren zur einstellung eines ventils und ventil WO1992003650A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE59106680T DE59106680D1 (de) 1990-08-22 1991-07-17 Verfahren zur einstellung eines ventils und ventil.
EP91912502A EP0496844B1 (de) 1990-08-22 1991-07-17 Verfahren zur einstellung eines ventils und ventil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4026531A DE4026531A1 (de) 1990-08-22 1990-08-22 Verfahren zur einstellung eines ventils und ventil
DEP4026531.5 1990-08-22

Publications (1)

Publication Number Publication Date
WO1992003650A1 true WO1992003650A1 (de) 1992-03-05

Family

ID=6412683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1991/000586 WO1992003650A1 (de) 1990-08-22 1991-07-17 Verfahren zur einstellung eines ventils und ventil

Country Status (8)

Country Link
US (1) US5217036A (de)
EP (1) EP0496844B1 (de)
JP (1) JP3027187B2 (de)
AU (1) AU8181891A (de)
CS (1) CS258391A3 (de)
DE (2) DE4026531A1 (de)
ES (1) ES2079072T3 (de)
WO (1) WO1992003650A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033134A1 (en) * 1994-05-26 1995-12-07 Daniel Sofer Fuel injector with electromagnetically autonomous subassembly
US5758626A (en) * 1995-10-05 1998-06-02 Caterpillar Inc. Magnetically adjustable valve adapted for a fuel injector

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4137994C2 (de) * 1991-11-19 1999-06-02 Bosch Gmbh Robert Elektromagnetisch betätigbares Einspritzventil mit einem Düsenträger und Verfahren zur Herstellung eines Düsenträgers eines Einspritzventils
DE4343879A1 (de) * 1993-12-08 1995-06-14 Rexroth Mannesmann Gmbh Elektromagnet, insbesondere für ein hydraulisches Ventil
JPH09317927A (ja) * 1996-05-30 1997-12-12 Mitsubishi Electric Corp 空気制御バルブ
DE19722216C2 (de) * 1996-06-21 1999-07-08 Mannesmann Sachs Ag Schwingungsdämpfer mit veränderbarer Dämpfkraft
JP2975572B2 (ja) * 1996-06-21 1999-11-10 マンネスマン ザックス アクチエンゲゼルシャフト 可変の減衰力を有する振動ダンパー
DE19710051B4 (de) * 1997-03-12 2005-06-23 Continental Teves Ag & Co. Ohg Verfahren zum Einstellen des Gesamthubes eines Elektromagnetventils und Enstelllehre
US5820099A (en) * 1997-05-20 1998-10-13 Siemens Automotive Corporation Fluid migration inhibitor for fuel injectors
GB2357193A (en) * 1999-08-14 2001-06-13 John Pelham Wren Flux return path for linear motor
DE10029296A1 (de) * 2000-06-14 2001-12-20 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE10216485B4 (de) * 2001-09-07 2014-12-18 Continental Teves Ag & Co. Ohg Verfahren zur Einstellung eines Elektromagnetventils
DE102004035501A1 (de) 2004-07-22 2006-02-09 Bosch Rexroth Aktiengesellschaft Hubmagnet mit einstellbarer Magnetkraft
WO2008034720A1 (de) * 2006-09-22 2008-03-27 Continental Teves Ag & Co. Ohg Elektromagnetventil
US20080295806A1 (en) * 2007-06-04 2008-12-04 Caterpillar Inc. Heat conducting sleeve for a fuel injector
DE102009022538A1 (de) 2009-05-25 2010-12-02 Svm Schultz Verwaltungs-Gmbh & Co. Kg Elektromagnet mit einem mediengefüllten Ankerraum
DE102013203989A1 (de) 2013-03-08 2014-09-11 Robert Bosch Gmbh Verfahren zur Einstellung einer Magnetkraft eines Hubmagneten
DE102013224296A1 (de) * 2013-11-27 2015-05-28 Robert Bosch Gmbh Elektrische Steckvorrichtung zum Anschluss einer Magnetspule und/oder eines Sensorelements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0132030A2 (de) * 1983-06-20 1985-01-23 Borg-Warner Corporation Proportionales Magnetventil
WO1990004099A1 (en) * 1988-10-10 1990-04-19 Siemens-Bendix Automotive Electronics L.P. Electromagnetic fuel injector with diaphragm spring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947887A (en) * 1981-10-16 1990-08-14 Borg-Warner Corporation Proportional solenoid valve
US4967781A (en) * 1989-04-05 1990-11-06 Borg-Warner Automotive Electronic & Mechanical Systems Corporation Proportional solenoid valve
US5065979A (en) * 1990-01-10 1991-11-19 Lectron Products, Inc. Constant current vacuum regulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0132030A2 (de) * 1983-06-20 1985-01-23 Borg-Warner Corporation Proportionales Magnetventil
WO1990004099A1 (en) * 1988-10-10 1990-04-19 Siemens-Bendix Automotive Electronics L.P. Electromagnetic fuel injector with diaphragm spring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033134A1 (en) * 1994-05-26 1995-12-07 Daniel Sofer Fuel injector with electromagnetically autonomous subassembly
US5823445A (en) * 1994-05-26 1998-10-20 Sofer; Daniel Fuel injector with electromagnetically autonomous sub assembly
US5758626A (en) * 1995-10-05 1998-06-02 Caterpillar Inc. Magnetically adjustable valve adapted for a fuel injector

Also Published As

Publication number Publication date
DE4026531A1 (de) 1992-02-27
EP0496844A1 (de) 1992-08-05
JPH05501749A (ja) 1993-04-02
AU8181891A (en) 1992-03-17
US5217036A (en) 1993-06-08
EP0496844B1 (de) 1995-10-11
JP3027187B2 (ja) 2000-03-27
ES2079072T3 (es) 1996-01-01
DE59106680D1 (de) 1995-11-16
CS258391A3 (en) 1992-03-18

Similar Documents

Publication Publication Date Title
EP0944769B1 (de) Brennstoffeinspritzventil
EP0685643B1 (de) Ventilnadel für ein elektromagnetisch betätigbares Ventil
DE19712589C1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstoffeinspritzventils
EP0496844B1 (de) Verfahren zur einstellung eines ventils und ventil
WO1992003653A1 (de) Einspritzventil und verfahren zur herstellung eines einspritzventils
DE2936853A1 (de) Elektromagnetisch betaetigbares ventil
DE4310719C2 (de) Verfahren zur Herstellung eines Magnetkreises für ein Ventil
DE3834444A1 (de) Elektromagnetisches einspritzventil mit membranfeder
DE4109868A1 (de) Einstellbuchse fuer ein elektromagnetisch betaetigbares ventil und verfahren zur herstellung
EP1062421B1 (de) Brennstoffeinspritzventil
DE3723698A1 (de) Kraftstoffeinspritzventil sowie verfahren zu dessen einstellung
DE19537382A1 (de) Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil
EP0460125B1 (de) Elektromagnetisch betätigbares ventil
DE19829380A1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung eines Brennstoffeinspritzventiles
DE4408875A1 (de) Brennstoffeinspritzventil
DE4310819A1 (de) Verfahren zur Einstellung eines Ventils
DE4023828A1 (de) Verfahren zur einstellung eines ventils und ventil
DE10049033B4 (de) Brennstoffeinspritzventil
DE4023826A1 (de) Verfahren zur einstellung eines ventils und ventil
EP0348786A2 (de) Elektromagnetisches Kraftstoffeinspritzventil
EP1068442A1 (de) Brennstoffeinspritzventil
DE4431128A1 (de) Verfahren zur Einstellung eines Ventils und Ventil
DE10046306A1 (de) Brennstoffeinspritzventil
DE19932762A1 (de) Verfahren zur Einstellung des Ventilhubs eines Einspritzventils
DE3111327A1 (de) Treibstoffeinspritzventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991912502

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991912502

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991912502

Country of ref document: EP