WO1992001659A1 - Method of removing chloroprene contained in 1,2-dichloroethane - Google Patents

Method of removing chloroprene contained in 1,2-dichloroethane Download PDF

Info

Publication number
WO1992001659A1
WO1992001659A1 PCT/JP1990/000935 JP9000935W WO9201659A1 WO 1992001659 A1 WO1992001659 A1 WO 1992001659A1 JP 9000935 W JP9000935 W JP 9000935W WO 9201659 A1 WO9201659 A1 WO 9201659A1
Authority
WO
WIPO (PCT)
Prior art keywords
edc
heat treatment
dichloroethane
boiling
low
Prior art date
Application number
PCT/JP1990/000935
Other languages
English (en)
French (fr)
Inventor
Kenji Shirai
Seiji Nagae
Tadashi Naito
Atsushi Shirai
Original Assignee
Mitsui Toatsu Chemicals, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals, Incorporated filed Critical Mitsui Toatsu Chemicals, Incorporated
Priority to DE69020572T priority Critical patent/DE69020572T2/de
Priority to EP90910907A priority patent/EP0493594B1/en
Publication of WO1992001659A1 publication Critical patent/WO1992001659A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/395Separation; Purification; Stabilisation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/09Plural feed

Definitions

  • the present invention relates to a method for removing chlorobrene, which may be present as an impurity in 1,2-dichloroethane. More specifically, a method for effectively removing 1,2-dichloroethane by distillation when purifying the 1,2-dichloroethane by distillation is a method for removing 1,2-dichloroethane from the heat of 1,2-dichloroethane. It can be applied to vinyl chloride production technology by the decomposition method.
  • EDC high-purity 1,2-dichloroethane
  • VCM vinyl chloride
  • crude EDC obtained by direct chlorination of ethylene or oxychlorination is used as a dehydration tower, low-boiling substance separation tower, high-boiling
  • the product is subjected to a purification process consisting of a product separation tower, where water is first removed, low-boiling impurities are removed, high-boiling impurities are further removed, and the purified EDC is used as a purified EDC. Supply to the thermal cracking furnace.
  • the remainder obtained after the separation and recovery of VCM contains unreacted EDC as well as by-products from pyrolysis.
  • the unreacted EDC containing this by-product (hereinafter, referred to as unreacted EDC) is supplied to the pyrolysis furnace again as purified EDC through the above-mentioned purification step.
  • chlorobrene is relatively easy to polymerize, and if concentrated in a low-boiling matter separation column during the unreacted EDC purification step, the polymerized column may be blocked in the column. For this reason, it is difficult to increase the degree of concentration of the chloroprene and to increase the efficiency of the separation, and the EDC is discharged into the distillate outside the system while being mixed in a relatively large amount. Therefore, it is difficult to improve the effect of separating the chloroprene in the purification step, and the presence of chlorobrene causes a decrease in the EDC intensity. In order to prevent clogging of the low boiling matter separation tower, the chloroprene concentration in the steam discharged from the top of the tower must be 5 wt% or less.
  • a method is disclosed in which low-boiling substances are not extracted from the purification process of EDC, but are supplied to a pyrolysis furnace together with EDC (Japanese Patent Publication No. 49-16404).
  • EDC Japanese Patent Publication No. 49-16404
  • 450 to 650 low-boiling substances consisting of a mixture of various unsaturated or saturated chlorinated hydrocarbons and benzene.
  • 1,2-dichloroethane it changes to a high boiling point, especially when subjected to thermal decomposition at 500 to 600 ° C.
  • Example 3 of the publication and According to Example 4 the content of chloroprene in the EDC supplied to the pyrolysis furnace is 400 to 100 ppm.
  • the chlorine gas is blown into a low-boiling substance separation tower or a chlorination vessel installed on the distilling side of the low-boiling substance separation tower.
  • the material must be chlorine resistant.
  • low boiling point substances are not extracted from the purification process of EDC, but are supplied to the pyrolysis furnace together with EDC.
  • the content of the macroplane in the purified EDC is too high compared to the preferred level of 1 OOppm or less (Japanese Patent Publication No. 49-16404). In the long term, coking and decomposition of decomposition tubes Inhibition of reaction cannot be avoided.
  • the present inventors have determined the above-mentioned problems, that is, during the purification process of EDC, to separate chlorobrene without causing blockage of the low-boiling matter separation column, and to reduce the chloroprene content.
  • the EDC containing chlorobrene was subjected to heat treatment to reduce the amount of chlorine in the EDC.
  • the inventors have found that it is possible to remove blen, and have completed the present invention.
  • the present invention relates to a method for preparing 1,2-dichloroethane containing 1,2-dichloroethane, which comprises a 1,2-dichloroethane, at a temperature not lower than the boiling point (at 85) and thermal decomposition temperature (not higher than 30 (TC)) of 1,2-dichloroethane.
  • 1, 2 This is a method for removing chloroprene in dichloroethane, which is characterized by removing chlorobenzene by heat treatment within a range.
  • black mouth prene has high volatility (boiling point: 59.4 e C) and is easily polymerized, so that a polymerization reaction easily occurs depending on temperature conditions, concentration conditions, and the like to form a polymer. For this reason, simply performing heat treatment does not cause thermal decomposition of black-mouthed plane, and it is difficult to remove it. This is why, in the past, chlorination treatment was used to remove black-mouthed prene to increase the boiling point, increase stability, and perform separation.
  • the present invention basically, by heating the EDC containing pre-cloth at a temperature higher than the boiling point (85) of the EDC and lower than the thermal decomposition temperature (300 ° C.), It is capable of effectively removing the mouth plane and increasing the EDC concentration accordingly.
  • the chloroprene can be removed without consuming chlorine gas as in the conventional method.
  • the conventional method using chlorine gas there were many high-boiling residues due to chlorination, but in the present invention, there are few high-boiling residues.
  • FIG. 1 is a flow chart showing one embodiment of an EDC purification step according to the method of the present invention.
  • the method of the present invention basically removes the black plane present in the EDC.
  • the present invention is not particularly limited, but any EDC containing about 1 to 10% by weight of clolobrene, that is, EDC containing chloroprene as an impurity, may be used in the present invention. Can be applied.
  • EDC EDC containing chloroprene as an impurity
  • the purification step by distillation of EDC if the above-mentioned heat treatment is performed in a low-boiling substance separation column, unnecessary low-boiling substances can be removed together, which is convenient.
  • the removal of the cross-linked prene requires a sufficient heat treatment within a temperature range in which the EDC is stable, preferably from 100 to 250 ° C, and from 30 minutes to 1 minute.
  • the duration is 5 hours, more preferably 100 to 150 ° C. and 1 to 10 hours, but may be appropriately determined depending on the desired EDC purity, heat treatment means and the like. Insufficient heat treatment cannot provide a sufficient effect, and excessive heat treatment will increase the amount of other impurities (chlorinated hydrocarbons) even if the concentration of chloroprene decreases.
  • chloroprene is effectively removed without high concentration in the low-boiling matter separation column. This will be possible.
  • FIG. 1 is a flow chart showing one embodiment of an EDC purification step according to the method of the present invention.
  • the number of stages of the dehydration tower 1, the low-boiling matter separation tower 2, and the high-boiling matter separation tower 3, the raw material charging stage, the bottoms amount, the distillate amount, the reflux ratio, and the like are unless otherwise specified. That is, it can be set based on a known technique.
  • crude EDC obtained by direct chlorination of ethylene and oxychlorination is introduced into dehydration column 1 through line 13 to separate water. After that, it is supplied to a low-boiling matter separation column 2 via a line 14. Unreacted EDC from the pyrolysis step containing chlorobrene and other pyrolysis by-products is also supplied to the low-boiling matter separation column 2 via line 30.
  • Crude EDC usually does not contain black-mouth plane, but unreacted EDC contains more than 1 OOOppm of chloroblen, and both of them are combined in a low-boiling matter separation column.
  • the ratio of crude EDC to unreacted EDC is set according to the separation efficiency of the column.
  • unreacted EDC is introduced into the column at a higher stage than crude EDC.
  • only the unreacted EDC may be retained in a dedicated rectification column.
  • the black mouth prene and other low-boiling substances are distilled off as steam together with part of the EDC.
  • the EDC containing black-mouthed plane is condensed in the condenser 5 and stored in the container 9 (this is called a distillate).
  • Other low-boiling substances are cooled to the condenser 16.
  • the condensed liquid at this time passes through line 16, and the uncondensed gas is discharged out of the system by vent 19.
  • the composition of steam (this is called distillate) from the top of the low-boiling matter separation tower 2 at about 20 to 40% by weight of EDC and about 5% by weight of chloroprene.
  • the low-boiling matter separation column 2 is usually operated at a column pressure of 1 to 2 kg / cm 2 and a distillation temperature of 50 to 6 (TC.
  • a part of the EDC containing the chloroprene stored in the receiver 9 is refluxed to the top of the low-boiling matter separation column 2 (this is referred to as reflux liquid). And adjusted to maintain a predetermined temperature. The remainder is supplied to the heat treatment tank 12 and stays for a predetermined time. After that, it is returned to the receiver 9 again.
  • the clos plane in the EDC is subjected to heat treatment, and as a result, a decrease in the clos plane and an increase in EDC are observed.
  • the heater 11 is supplied with steam or the like so that the temperature of the EDC containing the clos plane in the heat treatment tank 12 is adjusted to a predetermined heat treatment temperature.
  • the heat treatment temperature is preferably from 100 to 250 ° C, and more preferably from 100 to 150 ° C.
  • the heat treatment time is preferably from 30 minutes to 15 hours, more preferably from 1 to 10 hours. After the heat treatment, the heat treatment time is set according to the volume of the heat treatment tank and the heat treatment temperature.
  • the pressure in the heat treatment tank is about 2 to 15 kg / cm 2 .
  • Examples of the heat treatment method include a pre-heating method such as the heater 11, a direct heating method in which heating is performed in a heat treatment tank, and a pump circulation between a heater provided outside and the heat treatment tank. There is a heating method.
  • the ratio of the balance to the reflux liquid may be about 1:10 to 1:30. If the amount of the remaining portion is too small, the effect of thermal decomposition of chlorobrene by heat treatment is small, and if it is too large, energy is wasted.
  • a configuration may be adopted in which the liquid is supplied from the heat treatment tank 12 directly to the top of the column as the reflux liquid without being returned to the receiver 9. In this case, under the same heat treatment conditions, the thermal decomposition of the kuoruporen plate is further promoted, and the concentration of kroropene in the reflux liquid at the top of the column is further reduced. The receiving When chloroprene is polymerized in the heat treatment tank as compared with the mode of reflux to the vessel 9, it may directly affect the distillation column.
  • the entire amount of the distillate discharged from the receiver 9 may be subjected to a heat treatment, and the entire amount may be supplied to the top as a reflux liquid. In this case, it is necessary to cool again after heating, and the thermal efficiency will decrease.
  • a part or all of the distillate is subjected to heat treatment.
  • the amount of clot opening plane in the distillate can be significantly reduced.
  • the amount of chloroprene in the reflux liquid to the reactor is greatly reduced to 2 to 4 wt%, and as a result, the chlorobrene concentration in the distillate at the top of the column is maintained at 5 wt% or less. Therefore, a sufficient chloroprene separation effect can be obtained even if the reflux ratio (reflux amount / supply amount) is smaller than before.
  • Table 1 shows the material balance when the apparatus shown in Fig. 1 was operated without performing heat treatment.
  • the concentration of the chloroprene in the reflux liquid was 8.5 wt%, and a high chlorobrene rectification effect in the low-boiling fractionation column was observed.
  • the concentration of chlorobrene in the purified EDC was reduced to about 90 ppm, but long-term operation in this state may lead to blockage of the low-boiling matter separation column.
  • Table 2 shows the results of heat treatment of the distillate from the low-boiling matter separation column according to the present invention.
  • the conditions of the low-boiling matter separation column are as follows.
  • Table 3 shows the material balance when the apparatus shown in Fig. 1 was operated with the operating conditions of the low-boiling matter separation column set as follows. The operation was continued for 335 days, but no blockage of the tower was found. The concentration of chloroprene in the reflux liquid was 4 wt%, and that in the crude EDC was as good as 90 ppm.
  • Table 4 shows the material balance when the apparatus shown in Fig. 1 was operated without heat treatment with the operating conditions of the low-boiling matter separation column set as follows.
  • the concentration of the macroplane in the reflux liquid was as high as 1 lwt%, the rectification effect was high, and the concentration of the liquid in the purified EDC was as good as 90 ppm, but the operation was continued for 67 days.
  • the operation was interrupted because the tower was found to be blocked. This is due to too high a concentration of chloroprene in the reflux liquid.
  • the method for removing black mouth prene of the present invention can be applied to a system in which black mouth prene is contained as an impurity in EDC.
  • the present invention can be used in most fields of industries where the chlorination method or the like is adopted from the viewpoint of enrichment of technology instead of the law.
  • the present invention can be suitably applied to the technical field of producing vinyl chloride by pyrolysis from EDC, improving the production stability of vinyl chloride, and effectively using unreacted EDC as a raw material. Therefore, production economics can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
1 , 2 — ジク ロルェタ ン中のク ロ 口 プ レ ン除去方法 [技術分野 ]
本発明 は、 1 , 2 — ジク ロ ルェタ ン中に不純物と し て存在す る こ と のある ク ロ ロ ブ レ ンを除去する方法に 関す る 。 更に詳 し く は、 1 , 2 — ジク ロ ルエタ ン を蒸 留 に よ り 精製する する際に有効に ク ロ 口 プレ ン を除去 す る方法であっ て、 1 , 2 — ジク ロルェタ ンの熱分解 法 に よ る 塩化 ビニル製造技術に適用 で き る も のであ る 。
[背景技術 ]
高純度の 1 , 2 — ジク ロルェタ ン (以下、 E D C と 記す。 ) を熱分解して塩化ビニル (以下、 V C M と記 す。 ) を得る 、 所請熱分解法に よ る V C Mの合成はェ 業的に大規模に行われている 。
上記 V C Mの一般的製造工程と しては、 エチ レ ンの 直接塩素化ま たはォキシク ロ リ ネーシ ョ ン に よ り 得ら れた粗 E D C を、 脱水塔、 低沸物分離塔、 高沸物分離 塔よ り 構成される精製工程に供し、 先ず水分を除去、 次に低沸点不純物を除去、 更に高沸点不純物を除去し て 、 精製 E D C と して後、 こ の精製 E D C を V C M製 造用熱分解炉に供給する 。
熱分解炉 に お い て精製 E D C の約 50〜 6 Q % が分解 し 、 V C M と塩化水素を含有する分解ガスが得られ る。 こ の分解ガスは急冷、 凝縮され、 先ず塩化水素、 次いで V C Mが分離、 回収される 。 塩化水素、 次いで
V C Mが分離、 回収された後得られる残部には未反応 の E D C の他熱分解時の副反応生成物が含まれてい ' る。 こ の副反応生成物を含有した未反応の E D C (以 ' 下、 未反応 E D C という 。 ) は前記した精製工程を経 て、 精製 E D C と して再び熱分解炉に供給される。
しか しながらこの未反応 E D Cの副反応生成物には 低沸点不純物と してクロロブレンが含有されている。
E D C中にクロ口プレンが含まれてレヽる と、 2つの 大き な問題が生じる。
まず、 熱分解炉に供給される精製 E D C中にクロ口 プレンが存在する場合、 分解管のコ 一キング促進およ び分解反応の抑制が認められる。 これを防止するため には精製 E D C (精製 E D C中の E D C含量は 9 9 %以 上である。 ) 中のクロ口プレン含有量を l O O p p m以下に 抑える こ とが必要である。 .
第 2 に、 クロロブレンは比較的重合し易いため、 未 反応 E D C精製工程の際低沸物分離塔において濃縮さ れた場合、 塔内で重合した塔の閉塞を引き起こす恐れ がある。 このためクロ口プレンの濃縮程度を上げ分離 の効率を上げる こ とが困難で留出物中に E D Cが比較 1 的多 く 混合 し た ま ま系外に排出される こ と に な る 。 従っ て 、 精製工程において ク ロ 口 プレン分離効果を上 げる こ と は困難であ り 、 又ク ロ ロ ブレ ンの存在は E D C の原単位を低下させる原因 と なる 。 低沸物分離塔の 閉塞を防ぐ ためには、 塔頂か ら排出される蒸気中のク ロ ロ プ レ ン濃度を 5 wt%以下と する必要があ る 。
即ち 、 従来技術においては、 低沸物分離塔の閉塞等 の問題を回避し、 ガス熱分解炉へ供給す る精製 E D C 中 の ク ロ ロ ブ レ ン を l OOppm以下 にす る こ と は困難で あ つ たのである 。
上記問題を回避し ク ロ 口 プレ ンの分離効果を改善す る方法 と して、 ①低沸物分離塔に塩素を吹き込む、 ま たは②低沸物分離塔の留出物の一部に塩素を吹き込ん で塔内へ循環させる こ と に よ り 、 ク ロ ロ ブレ ンを塩素 ィ匕 し て E D じ ょ り も高沸点物に転化し た後高沸物分離 塔 に お い て分離す る 方法が開示さ れて い る (特閧昭 54 - 61105 、 特閧昭 57— 48127 、 特閧昭 59— 24968 、 特公昭 57 - 61331 ) 。
E D C の 精製工程 か ら 低沸点物 を 抜 き 出 さ ず 、 E D C と 共に熱分解炉に供給する方法が開示されてい る (特公昭 49— 16404 ) 。 この方法に よれば、 種々 の 不飽和ま たは飽和塩素化炭化水素と ベン ゾールと の混 合物よ り なる低沸点物は、 450 〜 650 。 、 特に 500 〜 600 °Cで熱分解に付す際に、 1 , 2 — ジク ロ ルエタ ン の存在下で高沸点物に変化する 。 該公報の例 3 お及び 例 4 によれば、 熱分解炉に供給される E D C中のクロ 口プレン含有量は 4 0 0 ~ 1 0 0 0 p p mである。
以上説明 した従来技術は、 クロ口プレ ン に起因する 問題点のいく つかを解決する ものであるが、 以下に述 ベる課題が残されている。
まず、 クロ口プレンを塩素化し分離する方法におい ては、 低沸物分離塔または低沸物分離塔の留出側に設 けた塩素化容器等に塩素ガスを吹き込むために、 装置 の防食上、 材質については耐塩素的にす る必要があ る。
更に低沸点物およびクロロブレンが塩素化される だ けでな く 、 E D Cの一部も塩素化され高沸点物の ト リ ク ロルェタン等が生成し、 E D Cが消費される。 従つ て この方法は経済性においても不利である。 このため o — ク レゾールまたはメ タク レゾ一ルを添加して低沸 点物の塩素化選択性を高め、 E D Cの塩素化を防止す る方法が提案されている (特公昭 5 7— 6 1 3 3 1 ) 。 しか しながら この方法では添加薬剤を前もって溶液に調製 しておき 、 予備タンクから定量ポンプを使用 して連続 的に定量注入する等の設備を必要とする。 こ の方法は 添加薬剤の消費と共に経済性において不利であ り 、 操 作上も煩雑である。
又、 E D C の精製工程から低沸点物を抜き出さず、 E D C と共に熱分解炉に供給する方法では、 得られる 精製 E D C の中のク ロ 口 プレ ンの含有量は、 好ま し い レベルである 1 OOppm以下 と比べて多すぎ (特公昭 49— 16404 ) 、 長期的には分解管の コ ーキ ング、 分解反応 の抑制等を回避で き ない。
[発明の開示 ]
本発明者 らは、 上記し た課題即ち、 E D C の精製ェ 程中、 低沸物分離塔の閉塞を起こ す こ と な く ク ロ ロ ブ レ ン を分離 し、 ク ロ 口 プレ ン含量を lOOppm以下と し た 精製 E D C を得る と い う 課題を解決する ために鋭意検 討を行っ た結果、 ク ロ ロ ブレン を含有する E D C を加 熱処理す る こ と に よ り E D C中のク ロ ロ ブレ ン を除去 で き る こ と を見出 し、 本発明を完成させる に至っ た。
すなわち、 本発明は、 ク ロ 口 プレン を含有する 1 , 2 — ジ ク ロルエタ ンを、 1 , 2 — ジク ロルェタ ンの沸 点 ( 85で) 以上かつ熱分解温度 (30(TC ) 以下の温度範 囲で加熱処理し、 ク ロ ロ ブレ ン を除去す る こ と を特徴 と す る 1 , 2 — ジク ロルェタ ン中のク ロ 口 プレ ン除去 方法であ り 、 更には留塔に よ り 、 ク ロ 口 プレンを含有 す る 1 , 2 — ジク ロルエタ ン を蒸留 して低沸点物を除 去す る に 際 し 、 塔頂か ら の留出液の少な く と も一部 を、 1 , 2 — ジク ロルェタ ンの沸点以上かつ熱分解温 度以下の温度範囲で加熱処理し、 こ の少な く と も一部 を精留塔に還流する こ と を特徴 と する 1 , 2 — ジク ロ ルェ タ ン 中のク ロ 口 プレ ン除去方法である 。 又、 好ま し い加熱処理の温度範囲 と は 100 〜 250 °C、 処理時間は 30分〜 15時間であ り 、 有効に、 クロ 口 プレン を除去する こ とができる。
このよ う にクロ口プレンを含有する E D Cを加熱処 理する こ と によ り クロ口プレンを除去する こ とが可能 と なる と いう知見は、 産業上利用される技術と しては 知られておらず、 本発明者らの研究によ り初めて技術 と して実現できたものである。
即ち、 クロ口プレンは揮発性が高く (沸点 59.4eC ) 重合し易いため、 温度条件、 濃度条件等によ り容易に 重合反応を起こ し重合体を形成する。 このため単に加 熱処理を施しただけではクロ口プレンは熱分解を起さ ず、 除去する こ とは困難である。 従来、 クロ口プレン の除去に、 塩素化処理を施すこ と によ り沸点を上げ安 定性を高め分離する手段がと られていたのはこのため である。
本発明では上記したよ う に基本的に、 E D Cの沸点 ( 85 ) 以上、 熱分解温度(300°C ) 以下の温度範囲で ク ロ 口プレン含有 E D Cを加熱処理する こ によ り 、 ク ロ 口プレンを有効に除去し、 それに伴い E D C濃度 を増加させる こ とを可能とする ものである。
本発明の方法によ り以下の効果が得られる。
(1) 本発明では従来法のよ う に塩素ガスを消費する こ と な く クロ口プレンを除去でき る。 (2) 塩素ガスを使用 し た従来法では塩素化に よ る高沸 点残渣が多かっ たが、 本発明では高沸点残渣は少な い。
(3) 本発明ではク ロ 口 プレ ンの減少お よび E D C の原 単位の増加が認め られる 。 精製 E D C 中のク ロ ロ ブ レ ン の含有量は 50〜 95 ppmを維持す る こ と がで き る 。
(4) 本発明では低沸物分離塔でのク ロ 口 プレ ン濃度が 低いので、 ク ロ 口 プレ ンの重合に よ る 閉塞等の ト ラ ブルが防止される 。
(5) 本発明では精製 E D C 中のク ロ ロ ブレ ンの含有量 が少ないので、 熱分解炉の分解管のコ ーキングが抑 制さ れ、 分解反応が安定 して行なえ る 。
[図面の簡単な説明 ]
第 1 図は本発明の方法に よ る E D C精製工程の一実 施例を示すフ ローチ ヤ一 卜 であ る。
1 は脱水塔、 2 は低沸物分離塔、 3 は高沸物分離 塔で あ り 、 粗 E D C は ラ イ ン 13か ら装入さ れ、 精製 E D C は ラ イ ン 17か ら留出物と して排出される 。 11は 加熱器であ り 12は熱処理槽である 。 又、 4〜 7 は コ ン デンサ一、 8〜 10は受器である 。
[発明 を実施する ための最良の形態 ]
本発明の方法は、 基本的に E D C 中に存在する ク ロ 口 プ レ ン を除去する も のであ り 、 その実施態様につい ては特に限定される ものではないが、 ク ロ ロブレ ンを 1 〜 1 0重量%程度含有している E D C、 即ち、 クロ 口 プレンが不純物と して存在している E D Cであれば、 本発明を適用する こ とができる。 E D Cの蒸留による 精製工程において、 低沸物分離塔で前記加熱処理を施 してやれば不要な低沸点物質を併せて除去でき るため · 都合がよい。 いずれに しても、 クロ口プレンの除去に は E D Cが安定な温度範囲内で充分な加熱処理が必要 であ り 、 好ま し く は 1 0 0 〜 2 5 0 °C , 3 0分〜 1 5時間、 更 に好ま し く は 1 0 0 〜 1 50 °C、 1 〜 1 0時間であるが、 目 的の E D C純度、 加熱処理手段等によ り適宜決定すれ ばよい。 不足な加熱処理では充分な効果が得られず、 又過度な加熱処理ではクロ 口プレン濃度が低下しても その他不純物量 (塩素化炭化水素) が増加する こ と に なる。
本発明の代表的な実施の態様と しては、 熱分解法に よ り 塩化ビニルを製造するための原料と して用いられ る E D Cの精製工程における ものを挙げる こ とができ る。
以下、 本発明を塩化ビニル製造用 E D Cの精製にお いて説明する。
本態様においては、 前述した従来技術の問題点を解 決する こ とができ る。 即ち、 低沸物分離塔においてク ロ ロプレンを高度に濃縮する こ となく有効に除去する こ と が可能と な る 。
本発明 を図に よ っ て詳 し く 説明する 。
第 1 図は本発明の方法に よ る E D C精製工程の一実 施例を示すフ ローチ ヤ一 卜 である 。
尚、 図中、 脱水塔 1 、 低沸物分離塔 2 、 高沸物分離 塔 3 の段数、 原料投入段、 缶出液量、 留出液量、 還流 比等は、 以下で特に言及 しない限 り 、 公知技術に基づ いて設定で き る ものであ る 。
ま ず 、 エチ レ ン の 直接塩素化お よ びォ キ シ ク ロ リ ネー シ ヨ ン に よ り 得られた粗 E D C はラ イ ン 1 3を経て 脱水塔 1 に導入され、 水分を分離 し た後、 ラ イ ン 1 4を 経て低沸物分離塔 2 に供給される 。 ク ロ ロ ブレンおよ びその他の熱分解副生物を含有する熱分解工程からの 未反応 E D C も ラ イ ン 3 0を経て低沸物分離塔 2 に供給 される 。
粗 E D C は通常ク ロ 口 プレン を含有し ないが、 未反 応 E D C は 1 O O O p pm 以上のク ロ ロ ブレ ンを含有してお り 、 こ れ ら両者を合せて低沸物分離塔で精留する 。 粗 E D C と 未反応 E D C の比は塔の分離効率に従い設定 する が、 通常、 未反応 E D C は粗 E D C よ り 上段で塔 に投入す る 。 又、 未反応 E D C のみを専用の精留塔で お 留す る 態様と して も よ い。
次に 、 低沸物分離塔 2 の塔頂よ り ク ロ 口 プレンその 他の低沸点物が E D C の一部 と 共 に蒸気 と し て留出 し、 コ ンデンサ一 5でクロ口プレンを含む E D Cが凝 縮し、 容器 9 に貯え られる (これを留出液という 。 ) その他の低沸点物はコ ンデンサ一 6 に至 り 冷却され る。 こ の と きの凝縮液はライ ン 16を経て、 また未凝縮 ガスはベン 卜 19によ り 系外へ排出される。
こ こ で、 低沸物分離塔 2 の塔頂から出る蒸気 (これ を留出物と いう ) 組成を E D C 20〜 40wt%、 クロ口 プレン 5 wt%以下程度に維持する と よい。 これによ り 、 ク ロ 口 プレ ンの重合は抑制され塔の閉塞等を回 避する こ とができ る。 従来は、 クロ口プレンの分離効 果を高め る ため塔頂の蒸気中のク ロ 口 プレ ン濃度を 1 Owt %程度にまでは上げる必要があっ た。 このため上 記ク ロ 口 プレンの重合の問題を生じるわけである。 本 発明においては、 以下の加熱処理によ り塔頂における ク ロ 口プレン濃度を 5 wt%以下に抑え、 重合反応に起 因する弊害を防止するにもかかわらず、 クロ口プレン の充分な除去を実現する 。
尚、 低沸物分離塔 2 は通常塔内圧力 1 〜 2 kgノ cm2、 留出温度 50〜 6 (TCで操作される。
受器 9 に貯えられたクロ口プレンを含有する E D C の一部は、 低沸物分離塔 2 の塔頂に還流される (これ を還流液という 。 ) 残部はライ ン 20を経て加熱器 11に 供給され、 所定の温度を維持するよ う に調整される。 こ の残部は熱処理槽 12に供給され、 所定時間滞留した 後、 再び受器 9 に還流される。
こ の過程で E D C 中のク ロ 口 プレ ンは加熱処理され そ の結果 と して ク ロ 口 プレ ンの減少および E D C の增 加が認め られる 。
加熱器 11はスチーム等を供給する こ と に よ り 、 熱処 理槽 12内のク ロ 口 プレ ン を含有する E D C の温度が所 定の熱処理温度になる よ う に調節される 。 熱処理温度 は好 ま し く は 100 〜 250 °Cであ り 、 更に好 ま し く は 100 〜 150 °Cである 。 熱処理時間は好ま し く は 30分〜 15時間である が、 更に好ま し く は 1 〜 10時間である 。 熱処理時間は処理後、 熱処理槽の容積、 熱処理温度に よ り 設定される 。 熱処理槽内の圧力は 2〜 15kg/cm2程 度に なっ ている 。 加熱処理の方法と しては加熱器 11の よ う な前段加熱方式、 熱処理槽において加熱を行う 直 接加熱方式、 および外部に設けた加熱器と熱処理槽と の間でポ ンプ循環を行う 外部加熱方式等がある 。
こ こ で、 残部と還流液と の比は概ね 1 : 10〜 1 : 30 程度で よ い。 残部の量が少なすぎれば加熱処理に よ る ク ロ ロ ブ レンの熱分解の効果が小さ く 、 多すぎればェ ネルギ一の無駄と なる。 一方、 熱処理槽 12か ら受器 9 へ還流させずに直接、 塔頂へ還流液と して供給する態 様 と して も よい。 こ の場合、 同一の加熱処理条件であ ればク 口 口 プレ ンの熱分解はよ り 促進さ れ塔頂への還 流液中の ク ロ 口 プレ ン濃度はよ り 低減す る が、 前記受 器 9 へ還流させる態様と比較し熱処理槽でクロロプレ ンが重合した場合、 直接蒸留塔に影響を与える可能性 がある。
更に、 別の態様と して受器 9 から出る留出液全量を 加熱処理し、 その全量を還流液と して塔頂へ供給して も よい。 この場合は加熱後再度冷却する必要があ り熱 効率が低下する。
いずれの態様によっても留出液の一部ま たは全部を 加熱処理する、 こ の段階で留出液中のク ロ口プレ ン量 を著し く 減少させる こ とができ るため、 塔頂への還流 液中のクロ口プレン量を大幅に減少し 2 〜 4 wt%まで にな り 、 この結果塔頂における留出物中のクロロブレ ン濃度は 5 wt%以下に維持される。 従って、 還流比 ( 還流量ノ供給量) も従来と比べ、 小さ く ても充分なク ロ ロプレン分離効果を得る こ とができ る。
次に、 クロ口プレンおよびその他の低沸点物が分離 された E D C (缶出液) 中のクロ口プレン濃度はすで にほぼ 100 Oppm 以下となっているが、 相当量の高沸点 物を含有している。 この E D Cは低沸物分離塔 2 の塔 底よ り抜き出され、 ライ ン 15を経て高沸物分離塔 3 に 供給される。 こ の E D Cは高沸点物が分離され、 精製 E D C と して抜き出しライ ン Πを経て熱分解炉に供給 される。 即ち、 精製 E D Cの一部は未反応 E D Cだつ たので、 再利用される こ と になる。 高沸点物はライ ン
人■, 18を 経 て 残渣 と し て 排 出 さ れ る 。 こ の よ う に し て 100 ppm 以下のク ロ 口 プレ ン を含有す る精製 E D C が 得 られる 。 その結果と して、 熱分解炉の分解管の コ 一 キ ン グ促進および分解反応の抑制が防止される 。
[実施例 ]
以下の実施例に よ り 本発明を更に説明す る 。 ただ し 本発明は以下の実施例に よ っ て限定される ものではな い。
実施例 1
ま ず、 第 1 図の装置を加熱処理を行う こ と な く 操作 し た場合の物質収支を第 1 表に示す。 こ の結果、 還流 液中の ク ロ 口 プレン濃度は 8.5 wt%であ り 、 低沸物分 離塔での高いク ロ ロ ブレ ン精留効果が認め られた。 こ れに よ り 、 精製 E D C中のク ロ ロ ブレ ン濃度は 90 ppm 程度 と 低減 していたが、 この状態での長期間運転は低 沸物分離塔の閉塞を招 く 可能性がある 。
次に、 本発明 に基づき低沸物分離塔の留出液を加熱 処理 し た結果を第 2 表に示す。
低沸物分離塔の条件は以下の と お り である 。
塔 内 径 1.5 m
塔 高 35 m
塔内圧力 1.2 kg/cm2
留出温度 60 °C、 塔底温度 100 。C 還 流 比 0.6 第 1 表
Figure imgf000016_0001
C P : ク ロ ロ フ。 レ ン
etc : その他の塩素化炭化水素
第 2 表
§理 処理 組 成 ( % ) 例 ¾ &. 時間
。C hr E D C C r etc 液 35. 1 8. 5 56.4 孰、、、タ几理 1 250 2 37. 0 0. 4 62.6 熱処理 2 200 3 37. 4 0. 5 62.1 熱処理 3 150 5 39. 5 1. 1 59.4 熱処理 4 100 10 38. 4 2. 9 58.7
C P : ク ロ ロ ブ レ ン
etc : その他の塩素化炭化水素
実施例 2
第 1 図の装置を低沸物分離塔の操作条件を以下の と お り に設定して操作した場合の物質収支を第 3表に示 す。 更に、 335 日操作を続行したが、 塔の閉塞は認め られなかっ た。 還流液中のクロ口プレン濃度は 4 wt % であ り 、 粗製 E D C 中のそれは 90 ppmと良好であつ た。
塔内圧力 1.2 kg/cm2
留出温度 57 °C、 塔底温度 100 °C 還 流 比 0.6
加熱処理 150 。に
ただし留出液の約 3 wt%だけ加熱処理を行つ た。
第 3 表
Figure imgf000019_0001
C P : ク ロ 口 プレン
etc : その他の塩素化炭化水素
比較例 1
第 1 図の装置を加熱処理なしで低沸物分離塔の操作 条件を以下のとお り に設定して操作した場合の物質収 支を第 4 表に示す。 還流液中のク ロ 口 プレ ン濃度は 1 lwt% と高く 、 精留効果は高く 、 精製 E D C中の液濃 度は 90 ppmと良好であつ たが、 更に、 67日操作を続行 したと こ ろ、 塔の閉塞が認められたため操作を中断し た。 還流液中のクロ口プレン濃度が高すぎたためであ る
塔内圧力 1.2 kg/cm2
留出温度 57 で、 塔底温度 100 °C 還 流 比 0.8
加熱処理 な し
第 4 表
Figure imgf000021_0001
C P クロロブレ ン
etc その他の塩素化炭化水素 還流液中
[産業上の利用可能性]
以上説明 したよ う に、 本発明のクロ口プレン除去方 法は、 ク ロ 口プレンが不純物と して E D C中に含有さ れている系について適用でき る ものであ り 、 従来の塩 素化法等に代え、 技術の豊富化と いう観点から、 塩素 化法等が採用されている産業のほ とんどの分野におい て、 本発明の利用が可能である。
特に、 熱分解法による塩化ビニルを E D Cから製造 する技術分野において本発明を好適に適用でき、 塩化 ビニルの生産安定性を向上させ、 又未反応 E D C も有 効に原料と して用いう る こ とから生産経済性も高める こ と ができ る。

Claims

請 求 の 範 囲
1. ク ロ 口 プ レ ンを含有する 1 , 2 — ジク ロルェタ ン を、 1 , 2 — ジク ロルェタ ン の沸点以上かつ熱分解 温度以下の温度範囲で加熱処理 し、 ク ロ ロ ブ レ ン を 熱分解す る こ と に よ り 除去す る こ と を特徴 と す る 1 , 2 — ジ ク ロ ルェ 夕 ン 中の ク ロ 口 プ レ ン 除去方 法。
2. 加熱処理の温度範囲が 10Q 〜 250 eCであ る請求項 1 に記載の方法。
3. 加熱処理に要する時間が 30分〜 15時間である請求 項 1 に記載の方法。
4. 精留塔によ り ク ロ ロ ブレ ンを含有する 1 . 2 — ジ ク ロ ルエ タ ン を蒸留 し て低沸点物を除去す る に際 し 、 塔頂か ら の留出液の少な く と も一部を、 1 , 2 ー ジ ク ロルェタ ンの沸点以上かつ熱分解以下の温 度範囲で加熱処理 し、 その少な く と も一部を精留塔 に還流する こ と を特徴 と する 1 , 2 — ジク ロ ルェ夕 ン中の ク ロ ロ ブレ ン除去方法。
5. 加熱処理の温度範囲が 100 〜 250 でである請求項 4 に記載の方法。
6. 加熱処理に要する時間が 30分〜 15時間である請求 項 4 に記載の方法。
7. 加熱処理 し た留出液を加熱処理前の留出液へ還流 さ せ る 請求項 4 に記載の方法。 精留塔からの留出物中に含有される ク ロ 口 プレ ン 濃度が 5 重量%以下である請求項 4 に記載の方法。
. -:
PCT/JP1990/000935 1989-04-28 1990-07-20 Method of removing chloroprene contained in 1,2-dichloroethane WO1992001659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69020572T DE69020572T2 (de) 1989-04-28 1990-07-20 Verfahren zur entfernung von chloropren aus 1,2-dichlorethan.
EP90910907A EP0493594B1 (en) 1989-04-28 1990-07-20 Method of removing chloroprene contained in 1,2-dichloroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107491A JP2716520B2 (ja) 1989-04-28 1989-04-28 1.2ジクロルエタン中のクロロプレンの除去方法

Publications (1)

Publication Number Publication Date
WO1992001659A1 true WO1992001659A1 (en) 1992-02-06

Family

ID=14460556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000935 WO1992001659A1 (en) 1989-04-28 1990-07-20 Method of removing chloroprene contained in 1,2-dichloroethane

Country Status (5)

Country Link
US (1) US5122235A (ja)
EP (1) EP0493594B1 (ja)
JP (1) JP2716520B2 (ja)
DE (1) DE69020572T2 (ja)
WO (1) WO1992001659A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477440A (ja) * 1990-07-20 1992-03-11 Mitsui Toatsu Chem Inc 1,2―ジクロルエタン中のクロロプレン除去方法
US5537029A (en) * 1992-02-21 1996-07-16 Abb Power T&D Company Inc. Method and apparatus for electronic meter testing
US5507921A (en) * 1994-12-14 1996-04-16 Westlake Monomers Corporation Method for quenching a gas stream in the production of vinyl chloride monomer
JP4691771B2 (ja) * 2000-10-11 2011-06-01 東ソー株式会社 高純度1,2−ジクロルエタンの回収方法
CN104474730B (zh) * 2014-11-20 2016-09-21 新疆中泰化学股份有限公司 高沸物专用vcm精馏分离装置及分离方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037643B1 (ja) * 1970-12-30 1975-12-04
JPS51127007A (en) * 1975-04-24 1976-11-05 Tokuyama Soda Co Ltd Purification of dichloroethane

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752297A (en) * 1952-03-08 1956-06-26 Velsicol Chemical Corp Method of removing hexachlorocyclopentadiene from impurities
US2748176A (en) * 1952-08-23 1956-05-29 Monsanto Chemicals Purification of dichloroethane
US2933539A (en) * 1958-04-23 1960-04-19 Exxon Research Engineering Co Fractionation of cyclodiene monomer vapors
US3017331A (en) * 1959-04-15 1962-01-16 Chemstrand Corp Method for the purification of hexamethylenediamine
DE1242594B (de) * 1965-09-11 1967-06-22 Knapsack Ag Verfahren zur Herstellung von Vinylchlorid durch unvollstaendige thermische Spaltung von 1, 2-Dichloraethan
US3397120A (en) * 1967-01-13 1968-08-13 Exxon Research Engineering Co Purification of dihydroisophorone by plural distillation and isomerization
DE1668336B1 (de) * 1967-08-25 1971-04-22 Knapsack Ag Verfahren zur Verminderung des Gehaltes an 2-Chlorbutadien-(1,3) und Benzol in 1,2-Dichloraethan,das bei der thermischen Spaltung zu Vinylchlorid zurueckgewonnen worden ist
US4252749A (en) * 1975-11-19 1981-02-24 Stauffer Chemical Company Production of 1,2-dichloroethane with purification of dichloroethane recycle
US4145367A (en) * 1975-02-06 1979-03-20 The Dow Chemical Company Process for purifying 1,2-dichloroethane
US4060460A (en) * 1975-05-22 1977-11-29 Allied Chemical Corporation Removal of chloroprenes from ethylene dichloride
DE2754891C3 (de) * 1977-12-09 1981-02-26 Wacker-Chemie Gmbh, 8000 Muenchen Verfahren zur Reinigung von nichtumgesetztem 1.2-Dichloräthan aus der Vinylchloridherstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037643B1 (ja) * 1970-12-30 1975-12-04
JPS51127007A (en) * 1975-04-24 1976-11-05 Tokuyama Soda Co Ltd Purification of dichloroethane

Also Published As

Publication number Publication date
EP0493594A1 (en) 1992-07-08
JP2716520B2 (ja) 1998-02-18
DE69020572D1 (de) 1995-08-03
DE69020572T2 (de) 1996-01-04
US5122235A (en) 1992-06-16
EP0493594B1 (en) 1995-06-28
JPH02286629A (ja) 1990-11-26
EP0493594A4 (en) 1993-07-07

Similar Documents

Publication Publication Date Title
KR100388119B1 (ko) 아크릴산의회수방법
US4788357A (en) Vinyl chloride production
JP4612041B2 (ja) アクリル酸の回収方法
JP4182608B2 (ja) 塩化水素と水の分離回収方法
JPH0578263A (ja) ジシクロペンタジエンの気相熱分解方法および高純度ジシクロペンタジエンの製造方法
JP4859084B2 (ja) 1,2−ジクロロエタンを製造する際に生じる反応熱を利用する方法および装置
JPH0269425A (ja) 純粋なテトラフルオロエチレンの製造方法
KR101076248B1 (ko) 직접 증발에 의해 1,2-디클로로에탄을 촉매로부터 분리시키는 단계를 포함하는 직접 염소화에 의한 1,2-디클로로에탄의 수득 방법 및 이의 실시를 위한 시설
US3174262A (en) Chemical process and apparatus for recovery of ethylene oxide
US8742182B2 (en) Method of operating a distillation column for purifying 1,2-dichloroethane and for coupled sodium hydroxide solution evaporative concentration
US2869989A (en) Method for the recovery of hydrogen peroxide
JP2009519320A (ja) 精製メチルイソブチルケトンを製造するための方法および装置
US4747914A (en) Process for the purification of 1,2-dichloroethane
WO1992001659A1 (en) Method of removing chloroprene contained in 1,2-dichloroethane
US4060460A (en) Removal of chloroprenes from ethylene dichloride
US3221063A (en) Distillation in raschig-phenol process
EP1240128A1 (en) Process for enhanced acetone removal from carbonylation processes
JP4432187B2 (ja) 1,2−ジクロルエタンの回収方法
JPH0477440A (ja) 1,2―ジクロルエタン中のクロロプレン除去方法
US4162201A (en) Purification and recovery of ethylene dichloride
JPH07233104A (ja) テトラフルオロエチレンの製造方法
US6441257B1 (en) Process for the treatment of a cracking gas from the cracking of 1,2-dichloroethane
JP2001261581A (ja) 1,2−ジクロロエタンの熱分解物からの塩化ビニルの蒸留方法
US3154588A (en) Recovery of acetaldehyde
JP2001072623A (ja) 塩素化炭化水素の精製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990910907

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990910907

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990910907

Country of ref document: EP