WO1991016170A1 - Standoff control method and apparatus for plasma cutting machine - Google Patents
Standoff control method and apparatus for plasma cutting machine Download PDFInfo
- Publication number
- WO1991016170A1 WO1991016170A1 PCT/JP1991/000514 JP9100514W WO9116170A1 WO 1991016170 A1 WO1991016170 A1 WO 1991016170A1 JP 9100514 W JP9100514 W JP 9100514W WO 9116170 A1 WO9116170 A1 WO 9116170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- electrode
- stand
- torch
- deviation
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/006—Control circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/126—Controlling the spatial relationship between the work and the gas torch
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3494—Means for controlling discharge parameters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/36—Circuit arrangements
Definitions
- the present invention relates to a stand-off control method for controlling a distance between a torch and a material to be cut of a plasma cutting machine for generating a plasma arc between the electrode and the material to be cut, and cutting the material to be cut.
- a stand-off control method for controlling a distance between a torch and a material to be cut of a plasma cutting machine for generating a plasma arc between the electrode and the material to be cut, and cutting the material to be cut.
- a brass cutting machine is equipped with a nozzle around the electrode to form a working gas o flow path 1 and to squeeze the brass generated between the electrode and the workpiece in front of the tip of the electrode.
- the plasma is heated to a high temperature, and the size of the plasma arc is kept constant so that a good cut surface shape can be obtained.
- the distance between the electrode and the torch which has a force and a force, fluctuates, the bushing arc is brought about, or the size of the plasma mark changes to obtain a good cutting shape. :: Because of the sharpness .. In brass cutting, the distance between the torch and the material to be cut (the lower r. I am able to do
- the amount of stand-off changes according to the degree of electrode wear and the cutting speed. Can not do it.
- a method and an apparatus for detecting the limit of use of an electrode due to arc current and voltage change generated between an electrode and a material to be cut See No. 2 846 6).
- the detection is performed based on changes in the current and voltage waveforms when the electrode is at the limit of use, the detection is performed after the electrode is damaged, and the cutting material is wasted and the nozzle is damaged.
- practical for Waru the voltage value when also changing the cutting condition method of detecting voltage is difficult c
- the present invention has been made to solve the above-mentioned drawbacks of the conventional technology.
- the deviation of the stand-off from the set value is quickly corrected, and the stand-off is kept constant with respect to a change in the cutting speed. And can be used to detect electrode usage limits accurately even when cutting conditions change, without reducing work efficiency when a double arc occurs DISCLOSURE OF THE INVENTION
- An object of the present invention is to provide a method and a device for controlling a stand-off of a cutting machine.
- the first invention detects a voltage between an electrode or a nozzle and a material to be cut, obtains a deviation from a reference voltage, and increases the elevating speed of the torch according to the magnitude of the deviation.
- This is a method for controlling the stand-off of a plasma cutting machine.
- the ascending and descending speed of the torch shall be zero ⁇ 0) when the difference between the voltage between the electrode or the nozzle around the electrode and the material to be cut is within the range of the first predetermined value, and When the deviation exceeds the second value, the torch elevating speed is increased linearly.
- the deviation is greater than or equal to a predetermined second value, i the torch elevating speed is increased.
- the ratio is increased linearly.
- a tom is raised at a high speed. Allows the torch to be quickly returned to the predetermined stand-off position.
- the material to be cut can be satisfactorily and accurately cut.
- the torch is not raised and lowered, so that the cutting accuracy can be improved. -If you try to make adjustments, the tip will always move up and down, and you will not be able to make good cuts or cuts. Therefore, if the fluctuation of the stand-off is within a certain range IS, that is, if the deviation is within a predetermined range ⁇ (dead zone), the stand-off is not adjusted and a good cut surface shape is obtained. Is obtained.
- the torch elevating speed is increased in proportion to the magnitude of the deviation so that the torch can be quickly returned to the predetermined stand-off position.
- the ratio of the torch's ascending and descending speed to be proportional to the deviation is increased, and the torch is set to the predetermined stand-off as soon as possible. So that good cutting can be performed. Moreover, as the deviation decreases, the ascending and descending speed of the torch decreases, thus avoiding the torch overshoot .:
- the deviation exceeds a third predetermined value. Is plasma cutting ⁇ The torch is raised at high speed as a result of an abnormality in the torch to prevent the torch from contacting the workpiece.
- a stand-off correction computing unit outputs a reference voltage between an electrode or a nozzle and a material to be cut for a predetermined stand-off, and a detector for detecting the reference voltage.
- This is a stand-off control device for a plasma cutting machine that includes a deviation calculator for calculating a voltage deviation, and a correction amount calculator for outputting a torch elevating speed signal in accordance with the magnitude of the deviation.
- the stand-off correction calculator includes an electrode wear / stand-off detector that receives the detection voltage and outputs a stand-off signal in which a voltage rise due to electrode wear is corrected and outputs the stand-off signal.
- the reference voltage calculation / setting device calculates the variation of the mark voltage generated in response to the deviation of the cutting speed from the reference cutting speed, in accordance with the arc voltage corresponding to the predetermined stand-off.
- the reference voltage calculation / setting device receives the detection voltage, and when the torch is placed at a predetermined stand-off position and starts cutting L.
- the input detection voltage may be output as the reference voltage c
- the reference voltage calculation setting unit changes the cutting speed: in response to the change of the raw arc voltage, it outputs the reference voltage taking into account the fluctuation of the arc voltage.
- the cutting accuracy is improved by keeping it constant.
- the third invention when the occurrence of a table arc is detected by detecting a decrease in the arc voltage between the workpiece and the torch, one cut is taken from the workpiece until the double arc disappears.
- This is a stand-off control method for a plasma cutting machine that resumes work with safety control that has been separated by a fixed amount, immediately releases this safety control after the disappearance of the gurburu mark, and returns to normal torch control. Also, while separating the torch from the workpiece, Work may be continued by safety control with reduced cutting speed
- the fourth invention measures the arc voltage between the electrode and the material to be cut, and the arc voltage between the nozzle and the material to be cut.
- the voltage component voltage is obtained, and the P-field used by the electrode is detected from the electrode consumption component voltage when the stand-off is controlled so that the stand-off voltage component voltage becomes almost constant.
- the stand-off is controlled so that the stand-off voltage component voltage becomes almost constant.
- the mark voltage at this time is measured, and at the same time, the sheet thickness-.nozzle diameter, cutting speed, etc.
- the arc voltage with respect to the reference cutting speed is calculated using a factor adapted to the cutting conditions, and the calculated value is compared with the measured value to detect that a predetermined difference has occurred and to detect the electrode voltage. It may be used as a carrier.
- the degree of electrode wear can be continuously measured, and the work progress status can be compared with the electrode wear status, so that the electrode replacement time can be detected even when work conditions change.
- FIG. 1 is a chart showing the relationship between the deviation and the ascending and descending speed of the torch according to the first invention
- Fig. 2 is a block diagram of the plasma cutting machine according to the second invention
- Fig. 3 is the second chart.
- Fig. 4 is a chart showing the relationship between stand-off and arc voltage
- Fig. 5 calculates the voltage by the reference voltage calculation setting unit in Fig. 3.
- Fig. 6 shows the relationship between the number of electrodes used and the arc voltage
- Fig. 6 shows the relationship between the cutting speed and the arc voltage
- Fig. 8 shows the first diagram.
- FIG. 9 is a block diagram of the plasma cutting machine according to the third invention
- FIG. 9 is a block diagram of the plasma cutting machine according to the third invention
- FIG. 10 is a diagram showing a change in mark voltage output from the voltage detector. .-I
- the figure is an explanatory view of the plasma cutting machine according to the fourth invention
- FIG. 12 is a chart showing the relationship between the number of times the electrode is used and the arc voltage
- FIG. 13 is the stand-off and stand-off component voltage.
- FIG. 14 is a chart showing the relationship between the electrode consumption component voltage
- FIG. 14 is a chart showing the relationship between the cutting speed and the arc voltage. The best form to carry out the investigation
- Fig. 2 is a process diagram of the plasma cutting machine.
- the torch 10 of the transformer cutting machine forms a working gas flow path (not shown) around the electrode 11.
- Nozzles 14 are arranged.
- Electrode 12 is electrically connected to nozzle ⁇ 4 and workpiece 1 ⁇ via DC power supply 16 to generate a pyro ':' arc between nozzle 14 and nozzle 14; A main mark is generated between the cut material 18 and the mark c.
- the nozzle 14 has a small amount of lower sales. : Let's squeeze the SmaArc 20 to get high temperature plasma.
- the electrode 1 2 and Roh nozzle 1 4 and the workpiece 1 8 it it voltage detection 3 ⁇ 4 ⁇ -.., 2 6 is connected to the c the voltage detector 2 4, the electrode 1 2 and the workpiece 1 8 and the detected voltage e, is input to a stand-off correction calculator 28 described later.
- Other voltage detector 2 6 detects a voltage between the nozzle 1 4 and the workpiece 1 S, inputs the detection voltage e z in static hand-off correction arithmetic unit 2 8.
- the control device 30 drives the elevating device 32 to move the torch 10 up and down based on the control from the stand-off correction arithmetic unit 28. The distance between the torch 10 and the if material 18 to be cut is adjusted.
- the target stand-off H (, so as to become-the stand-off correction calculator 28 is, as shown in FIG. 3, an electrode wear 'smooth' detector 34 and a reference voltage calculator. 3 6 and .. Deviation calculator S to which these signals are input 7 and a correction amount calculator 38 for calculating a correction amount for raising and lowering the torch 10 based on the deviation output from the deviation calculator 37.
- the stand-off detector 3 receives the detection voltages e 1 and e 2 output from the voltage detectors 24 and 26, calculates the amount of consumption of the electrode 12 as described later, and responds to the amount of consumption.
- the electrode wear signal is output to a display device (not shown), and the actual stand-off '-' H is obtained, and the corresponding stand-off signal E H is output to the deviation calculator 37.
- the reference voltage calculator 36 sets the thickness, material, nozzle diameter, and target turn-off H of the material 18 to be cut. Reference voltage signal E based on cutting speed data. To the deviation calculator 3-
- Correction amount calculator 3 8 stores a chart as shown in FIG. 1, the reference voltage E. of static emissions Doo off signal E H deviation calculator: '7 outputs For groups the deviation delta E relative to output a torch 1 0 for returning to the target static emissions offs H 0, the magnitude of the correction voltage signal ⁇ E H corresponding to the deviation ⁇ E to the control device 3 0 That is, the correction amount calculation
- the figure to be stored is between the c deviation ⁇ E which does not output the correction signal and the one ⁇ E :, which does not output the correction signal, in the predetermined first deviation range 2 ⁇ E,.
- the difference between the difference ⁇ ⁇ and one ⁇ ⁇ 2 is It is designed to output a correction voltage signal- ⁇ E H that increases the descent rate of 1-0.
- the deviation ⁇ E exceeds the second value ⁇ delta E 2
- correction voltage signal AE H where the ratio of rising or lowering speed changes of the torch 1 0 was response to the magnitude of the deviation more rather large and c its outputs a, exceeds the third value earth ⁇ E 3 the deviation ⁇ E is predetermined .. and that an abnormality has occurred in the apparatus, sea urchin I to rapidly raise the torch 1 0 Tei You.
- the stand-off control of the plasma cutting machine having such a configuration is performed as follows 3.
- the arc voltage changes in proportion to the value of the stand-off, which is determined by the thickness, material, diameter of the nozzle 14 and the cutting speed of the material 18 to be cut.
- the reference voltage calculation setting unit 36 of the fund-off correction calculation unit 28 is the plate of the material to be cut. Material. Nozzle 14 ⁇ , target standoff H.
- the reference cutting speed V is displayed. (E.g. lm / s) arc voltage e. Is calculated by the following equation (1).
- K s , K S2 , Kt and KK are factors that are determined by preliminary experiments based on the thickness, material, etc. of the material 18 to be cut. Then, it is stored in the correction amount calculator 38.
- the reference voltage calculation setting unit 36 is provided with a start-off which is determined by the respective values of the thickness, material, nozzle, and cutting speed of the material 1S to be cut. J;
- the stored mark den is stored as a chart as shown in Fig. 4.
- the control device 30 is provided with a shape for cutting the material to be cut] 8, a cutting speed, etc. o Cutting ⁇ -gum, and the electrode 12 and the material to be cut i 8 rush become the mark voltage e ⁇ Lower the toe hand 10 through the elevating device 2 until you place it! Length-start cutting-On the other hand, when the cutting starts, the voltage detectors 2 and 26 detect the voltages e,. Detects HEP. 2 between 1 ⁇ and the material 18 to be cut, respectively. Detects HEP. 2 and inputs it to the start-off output unit 34 of the electrode wear of the stand-off correction calculator 28.
- the electrode wear / stand-off detector 34 outputs a stand-off signal E H to the detected voltage e, which is obtained by subtracting a voltage rise due to the consumption of the electrode 12 shown in FIG. 6. Output to deviation calculator 37.
- the reference voltage calculation setting unit 36 displays the cutting speed V detected by a cutting speed sensor (not shown) or the cutting speed data ': cutting speed V from the control unit 30). Is input.
- the reference voltage calculation setting unit 36 determines the cutting speed V—JI and the arc voltage e. Correct the reference voltage E. And output as c .
- the arc voltage e has a relationship between the cutting speed V and the cutting speed V as shown in Fig. 7.
- the cutting voltage V decreases as the cutting speed V increases, and increases as the cutting speed V decreases.
- torch 10 is held at target slide-off HP. If cutting speed V changes, the deviation output by deviation calculator 37 also changes, and torch ⁇ 0 changes to target stand-by.
- ⁇ ⁇ K V2 is the velocity factor shown in Fig. 5 c
- the deviation calculator 37 calculates the reference voltage E of the stand-off signal E H output from the electrode wear / stand-off detector 34. Is calculated and output to the correction amount calculator 38. That is, in the deviation calculator 37, the stand-off of the torch 10 is the target stand-off. When it becomes larger, the stand-off signal E H becomes the reference voltage E. Outputs a positive deviation- ⁇ E according to the magnitude of the stand-off signal E H ⁇ for larger fields.-Outputs a negative deviation- ⁇ E for the opposite case.c
- the correction amount calculator 38 sets the torch 10 to the target stand-off H in accordance with the input deviation.
- Rapid correction voltage signal ⁇ delta E H for returning the control device 3 0 to be e their outputs to the control unit:. 5 receives a correction voltage signal delta E 7 H, the lifting speed of the torch 1 0 asked the torch 1 0 G lifting amount .. lifting So ⁇ :.! 3 2 torch 1 ⁇ lifting of at a speed corresponding to the driving ⁇ ⁇ ⁇ the cell target static down ... O off] back to the ⁇ 0 t .
- the speed of raising and lowering the torch 10 is increased in accordance with the magnitude of the deviation ⁇ E of the reference voltage E_L f , of the detected voltage t, between the electrode 12 and the workpiece 1 S.
- -Hand: 0 is the target time.
- the target sensor is quickly returned to the position where it has deviated from the target, and a good cut is made.:: F can be achieved.
- a dead zone is provided in the portion where the deviation ⁇ E is small, no target signal is output. Standoff I. In the vicinity, unstable fluctuation of the torch 10 can be prevented, and the cut surface can be improved.
- the detection voltages e 1, and e 2 are also input to the reference voltage calculation setting unit 36 of the stand-off correction calculation unit 28 as shown by the broken line in FIG. Reference voltage calculation setter 3-6, the input to have been detected voltage e, or the reference voltage E.
- the controller 30 lowers the torch 10 from the workpiece 18 to a predetermined height (step 150).
- a limit switch (not shown) is operated (step 1552), and it is detected that the torch] 0 has reached the predetermined height. .
- the control device 30 lowers the descent speed of the contact 10 to make the reach 10 the piercing height (S.-; 54), and then performs the piercing (Stenoma. 16 :)
- the controller 30 finishes the piercing
- the torch 10 is further lowered to the target stand-by (step 1558), and the cutting is started (16). 0).
- Target standoff H The value varies depending on the thickness and material of the workpiece 18, the diameter of the nozzle 14, and the like, and values obtained in advance through experiments are given to the control device 30 from an operation panel or the like.
- Torch 10 is target stoma H.
- the voltage is detected at a predetermined time (for example, every 0.1 second), and the detected voltage and e are set to the quasi-voltage control.
- Step 1622 Input from the reference voltage calculation setting unit 36 and the voltage detectors 24 and 26, and read the “ ⁇ e, or e:” (step 1622) and the reference voltage E. Set the dimensions: '-.- ⁇ Step 16 4) Then, the reference voltage calculator 36 sets the reference voltage E that has been corrected for the change in the cutting speed V as the cutting progresses. (Step 1666) Output to the deviation calculator 37. On the other hand, the electrode wear 'stand-off detector 34 also outputs the stand-off signal E corrected by the electrode wear 2 to the deviation calculator 37. Then, the cutting is performed in the same manner as in Example 1. When the cutting is completed (Step 168), the torch is raised 0 (Step 170), and the work is completed.
- the arc voltage of the reference voltage be E. If the influence of electrode wear can be eliminated, the reference voltage E. Easy to become.
- the case where the chart of the correction amount calculator 38 has a point symmetry centered on the origin has been described. However, it is not necessary to make the point symmetry.
- the absolute value of E 3 is ⁇ ⁇ E? Absolute value smaller rather to than, Bok one early 1 0 and c correct reliably prevent the child is desirable from contacting the workpiece 1 8, the chart shown in FIG. 1, delta E 2 -, inclination of ⁇ E 3 and each line segment, Ru can and child suited J? "determined by an experiment or the like c
- 41 is a driving device.
- 42 is a voltage detector for detecting a voltage between one electrode to be cut
- 43 is a voltage detector for detecting a voltage between a cut village and a nozzle
- 45 is a voltage detector.
- An electrode, 46 is a nozzle
- 44 is a lever composed of the electrode 45, the nozzle 46, and the like.
- Reference numeral 51 denotes a sand-off correction computing unit for controlling the stand-off of the torch 44, for determining the generation of I: A by the signal of the voltage detector 43.
- ⁇ , ”Bull mark detector 52 and reference mark turtle E ⁇ ⁇ setting device 5 to input the output of the click-generation signal output from the mark detector 52 2: 2.
- Voltage detector 4 '
- the control signal generator 57 generates a drive control signal for controlling the torch 4 4 to the reference cutting speed V l by calculating a deviation signal from the torch 4.
- the dowels are supplied, the high current density brass bound by the shield gas Can the material to be cut 47 be melted and cut by MAARC? If the cutting operation is performed normally without generating double muffs, the signal of the voltage detector 43 input to the double arc detector 52 is normal, and the signal from the voltage detector 42 is not normal. The actual stand-off signal is output to the deviation calculator 5 ⁇ together with the signal by the front-off detector 50.
- the reference voltage calculation unit 53 calculates the reference voltage ⁇ calculated based on the sheet thickness, material, nozzle diameter, target sand-off, cutting speed, and the like.
- a deviation signal between the signal and the actual stand-off signal is input to the correction amount calculator 58, a stand-off correction signal such that the deviation signal becomes 01 is output to the control signal generator 57. is the c simultaneously, cutting speed is controlled to power sale by a reference cutting speed V [rho -:
- the torch 60 of the plasma cutting machine squeezes the plasma arc PA generated between the electrode 61 and the material to be cut 63 with a nozzle 62 and sends it around it.
- Working gas blows out from nozzle 62 to melt, scatter and cut material
- the relative positions of the electrode 61 and the nozzle 62, which obtain the density of the plasma arc PA, are fixed, and as the electrode 61 is worn, the tip of the electrode 61 and the nozzle 62, As the distance between the electrode 61 and the workpiece 63 increases, the arc voltage increases accordingly.
- the voltage e between the electrode 61 and the workpiece 63, and the nozzle 6 and the workpiece 63 are increased. Measure the voltage e 2 with 6 3.
- target standoff H. Is indicated before the start of cutting, or measured by a known position sensor 67 and fed back to the arithmetic unit 65.
- the cutting speed V is also the force indicated before the start of cutting. Or i known speed
- Cutting condition-2 (Change the stand-off at point C during cutting in condition 1. Stand-off: 2.5 mm
- the stand-off is controlled to be constant based on the stand-off component E s , the G mark pressure ez is measured at this time, and each of the frames shown in FIG. 5 in the first invention is measured.
- e. K s! -K s, (: Ho-Kt): x K>, according to the standard cutting speed V.
- V the cutting speed
- Calculates the arc voltage e ⁇ ⁇ ⁇ ⁇ with respect to ( ⁇ ⁇ . ⁇ minutes),,: C Compares the calculated value with the measured value, and determines the electrode usage limit based on whether it is within the specified value c or ..
- the cutting speed and arc voltage are different as shown in Fig.
- Reference voltage E. And ei is the reference voltage E.
- the c For this to be displayed on the display device 6 6 that you electrode 61 has a predetermined amount consumed when exceeded, eliminating the need for inspection or the like visually perform decomposition of Roh nozzle, thereby facilitating the work ..
- the work progress status and the electrode consumption status can be compared, so that it is possible to detect the electrode replacement time even when the work conditions change. '' Industrial use ⁇
- good cutting can be performed while maintaining a constant distance between the torch and the material to be cut.
- C Both the working efficiency is reduced even when leakage occurs and the target is reduced even if cutting conditions change. It is useful as a plasma cutting machine or a welding machine that can detect the limit of use of the electrode at the same time.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Arc Welding In General (AREA)
Description
明 細 書 ブラ ズマ切断機のスタ ン ドォフ制御方法及びその装置
技 術 分 野
本発明は、 電極と被切断材との間にプラズマァ一クを発生させて被切断材を切 断するプラ ズマ切断機の トーチと被切断材との距離を制御するスタ ン ドオフ制御 方法及びその装置に関する。 背 景 技 術
ブラ スマ切断機は.、 電極の周囲にノ ズルを設け、 作動ガス o流路を形成すろ 1 ともに、 電極の先端前方において電極と被切断材との間に発生させたブラス.マを 絞り、 プラズマを高温にするとともに、 プラ ズマアークの大き さを一定に して良 好な切断面形状が得られるようにしている。 と こ ろが、 電極と .' スルと力 ' ' なる トーチと被切断材との間隔が変動する 、 ブ スマアークが持^てき かつ 、 或いはプラズママーク の大き さが変化 て良好な切断形状を得る :: とがてき いぐ こ のため .. ブラ ス:マ切断換において 、 ト ーチと被切断材との間隔 ( 下 r. タ ン ドオフという :> を一定に保持して良好な切断を行う こ とが き るよ に して いる
スタ ン ドオフを制御する場合、 電極またはノ ズルと被切断材との間のマ一り 圧がスタ ン ドオフと比例関係にあるこ とが知ら ており、 この関係を利用 してマ ーク電圧を検出し、 こ の電圧を一定の値に保持するこ とが行われている f例え
、 特開昭 5 7 - 1 9 5 5 8 2号公報参照) c
しかし、 かかる従来の方法は、 検出 'したマーク電圧の基準電圧に対する僞差 c' 大き さに対応して トーチの変位量を変化させるだけなのて .. 偏差が大きい場合に 予め定めたスタ ン ドオフにするのに時間かかかり、 応答遅れか '生じて充分 ¾切 精度を得る こ とができない。 また、 偏差が異常に大き く つた場合に . ス -
ドオフ制御を行う回路とは別の異常電圧検出面跎により検知し、 ァーク電圧をォ フするようにしており、 切断作業の能率を低下させる。 しかも、 偏差が負側にの 大き く振れた場合には、 トーチが下降し始めるとともに、 異常電圧検出回路によ つてアークがオフされて偏差が正に変わるため、 トーチの下降が継続して トーチ が被切断材と衝突し、 ト一チゃ被切断材を損傷させる危険がある
また、 電極の消耗に基づく アーク電圧の上昇や切断速度の変化に対するァーク 電圧の変動を考慮していない為、 スタ ン ドオフ量が電極の消耗度や切断速度によ つて変化し、 良好な切断をするこ とができない。
また、 トーチが被切断材に接近して溶融金属の跳ね返 等か / ズルの近辺に r 着した場合や、 ノ ズルが変形してガス気流が乱れた場合には、 被切断材とノ ズル 間等にダブルアークが発生するため、 ノ ズルが損傷し、 ついには切断作業が不¾ 能となる。 そこで ト一チが被切断材に対し一定距離に近づいた場合ィ ンビーダン スが減少してブラズマアーク用電源の出力電圧が低下するこ とに着目 し . この ¾ 圧が基準電圧より低く なった時に電源の出力を遮断して トーチを保護する装置が 提案されている。 (例えば特公昭 6 0 - 4 3 δ ?, 1 号参照 ' - しか ^ . ゲイル -' - 一ク発生時にプラズママーク用電篛の出力が 0に る指令信号を出力するた - 切断作業か一時的に停止して作業能率が低下する,.
さ らに、 電極と被切断材の間等に発生するアーク菴流と電圧の変化によ::'、 ί 極の使用限界を検知する方法及び装置が知られている (例えば特開昭 6 2 -· 2 4 8 6 4号参照) 。 しかし、 電極の使用限界時の電流と電圧の波形変化により検知 しているため、 電極が損傷してから検知するこ とになり、 切断材が無駄になり '· ズルも損傷する。 また、 電圧で検知する方法も切断条件を変更すると電圧値も わるため実用化は難しい c
本発明は、 かかる従来技術の欠点を解消するためになされたものて . 設定値に 対するスタ ン ドオフのずれを迅速に修正てきると共に、 切断速度の変化に対して スタ ン ドオフを一定に保持するこ とができ、 且つダフ ルア ーク発生時に -、作業能 率が低下せず、 切断条件が変化しても的確に電極の使用限界を検知できるブラ ズ
マ切断機のスタ ン ドオフ制御方法及びその装置を提供するこ とを目的と している 発 明 の 開 示
本発明に係る第 1 の発明は、 電極またはノ ズルと被切断材との間の電圧を検出 して基準電圧に対する偏差を求め、 この偏差の大き さに応じて トーチの昇降速度 を大き くするブラズマ切断機のスタ ン ドオフ制御方法である。 トーチの昇降速度 は、 電極または電極周囲のノ ズルと被切断材との間の電圧の基準電圧に対する傷 差が、 予め定めた第 1 の値の範囲内のときには零 Ί 0 ) と し、 また偏差が第 ] 値を超えたとき は トーチの昇降速度を直線的に増大させる上 と もに . 偏^が; め定めた第 2の値以上のときに; i トーチの昇降速度をよ り大きな割合をもつて 線的に増大させる,. さ らに、 偏差が予め定めた第 3の値を超えたときに トー を高速上昇させるようにするブラズマ切断機 ©スタ ン ドォフ制御方法である かかる構成により トーチを所定のスタ ン ドオフの位置に迅速に戻すこ とがてき
、 被切断材の切断を良好に精度よ く行う こ とができる。 偏差が予め定めた第 値の範囲内にある場合に 、 ト ーチを昇降させないよう に して、 より切断精度 ^ 良好にする こ とができる すな ち、 スタ ン ドオフの 小な変動に対 -ても調 . を行うよつにすると、 ;'一チが常に上下動し、 かえ って切断面かギザ サと . て良好な切断を行う こ とができない。 そこで、. スタ ン ドオフの変動か一定の範 IS 内にある場合、 すなわち偏差が予め定めた範囲內 (不感帯) にある場合には、 ス タ ン ドオフの調整を行わず、 良好な切断面形状が得られるようにする。 偏差が不 感帯を超えた場合には、 トーチ昇降速度を偏差の大きさに比例させて大き く し、 トーチを迅速に所定のスタ ン ドオフ位置に戻せるように している。 また、 偏差が 予め定めた第 2 の値を超えた場合には、 ト一チの昇降速度の偏差に対する比例さ せる割合をより大き く し.、 でき るだけ早く トーチを所定のスタ ン ドオ フになるよ うにし、 良好な切断を行なえるよ うにしている。 しかも、 偏差が小さ く なるにつ れて トーチの昇降速度が小さ く なるため, トーチのォーパシュ ー トを避ける :: と ができる . な 、 偏差が予め定めた第 3 の値を超えた場合には、 プラ ズマ切断^
に異常が生じたものと して トーチを高速上昇させ、 ト一チが被切断材に接触する のを防止している。
第 2 の発明は、 スタ ン ドオフ補正演算器が、 予め定めたスタ ン ドオフに対する 電極またはノ ズルと被切断材との間の基準電圧を出力する基準電圧演算設定器と 、 この基準電圧に対する検出電圧の偏差を求める偏差演算器と、 この偏差の大き さ応じて トーチの昇降速度信号を出力する補正量演算器とからなるプラズマ切断 機のスタ ン ドオフ制御装置である。 また、 スタ ン ドオフ補正演算器は、 前記検出 電圧を受けて、 電極の消耗に基づく電圧上昇分を補正したスタ ン ドオフ信号を前 記偏差演算器出力する電極消耗 · スタ ン ドオフ検出器を備えている„ さ らに、 基 準電圧演算設定器は、 予め定めたスタ ン ドオフに対するたアーク電圧に、 切断速 度の基準切断速度からのずれに応 'て生ずるマ一ク電圧の変動分を加えた電圧 * 基準電圧と して出力している。 この基準電圧演算設定器は、 前記検出電圧を受け ると共に、 トーチが予め定められたスタ ン ドオフ位置に配置されて切断を開始 L たとき、 入力してきた検岀電圧を基準電圧と して出力してもよい c
かかる構成によ り、 電極消耗 · スタ ン ドオフ検出器 . 検出電圧から電極の消 耗にによる電圧上昇分を除去するため、 電極の消耗に基づく ス トォフの変 :' を防止している。 また、 基準電圧演算設定器 、 切断速度の変化:ニ応し:て-生 アーク電圧の変動を加味した基準電圧を出力するため、. 切断速度が変化しても ト —チのスタ ン ドオフを一定にし、 切断精度を向上している。 この基準電圧演算設 定器による基準電圧の設定を、 トーチを所定のスタ ン ドオフにセ ソ ト して切断を 開始したときのアーク電圧とする こ とにより、 電極の消耗による影響を餘まする と共に基準電圧の設定を容易にしている c
第 3の発明は、 被切断材と トーチ間のアーク電圧低下を検出するこ とによりタ ブルア一クの発生を検知したときは、 ダブルア一クが消滅するまで 一キを被切 断材から所定量引き離した安全制御によ り作業を継続し、 グブルマーク消滅後 速やかにこの安全制御を解除して通常の トーチ制御に復帰するブラ ズマ切断機 ' スタ ン ドオフ制御方法である。 また、. トーチを被切断材から引き離すと共に、
ーチの切断速度を低下させた安全制御により作業を継続してもよい
かかる構成により、 ダブルアークが発生しても作業能率は低下せず、 安全制御 により作業を継続するこ とができる。 また、 トーチを被切断材から引き離すとブ ラズマアーク の電流密度が低下して加工能力が低下するため、 トーチの加工速度 を低下させて加工能力の低下を防止するこ とができる。
第 4 の発明は、 電極と被切断材とのアーク電圧、 およびノ ズルと被切断材と ァ一ク電圧を測定し、 この電圧から電極消耗成分電圧および電極消耗の影響を^ いたスタ ン ドオフ電圧成分電圧を求めて、 スタ ン ドオフ電圧成分電圧がほほ一定 になるようにスタ ン ドォフを制御したときの電極消耗成分電圧から電極の使用 P 界を検出する方法である。 また、 前記スタ ン ドオ フ電圧成分電圧がほほ一定にな るよぅ スタ ン ドォフを制御し . このときのマ一ク電圧を測定すると共に ·、 板厚-. ノ ズル径、 切断速度、 等の切断条件に合わせたフ ァ ク タァを使用して基準切断速 度に対するアーク電圧を演算し-、 この演算値と前記測定値とを比較して所定の差 が生じたこ とを検出して電極の使用限舁と してもよい。
かかる構成によれば、 電極の消耗度合いが常時連続的の計測てき . 且つ作業進 行状況と€極消耗状況とが対比でき るため 作業条件が変 ても電極 交換時 期を検知する こ とかでき る.: 図面の簡蛍な説明
第 1 図は第 1 の発明に係る偏差と ト ーチの昇降速度の関係を示す図表、 第 2 は第 2 の発明に係るブラ ズマ切断機のブ π ッ ク図、 第 3図は第 2図のスタ ン ドォ フ補正演 3ί器の詳細説明図、 第 4図はスタ ン ドオフ とアーク電圧との関係を示す 図表、 第 5図は第 3図の基準電圧演算設定器が電圧を演算するためのテーフル c 一例を示す図、 第 6図は電極の使用面数とアーク電圧との関係を示す図表、 第 図は切断速度とアーク電圧との関係を示す図表、 第 8図は第 1 の発明に係る応 : 例を説明するフローチャー ト、 第 9図は第 3 の発明に係るブラズマ切断機のブ ッ 々図、 第 1 0図は電圧検出器が出力するマーク電圧の変化を示す図ま- . 第 I
図は第 4の発明に係るプラズマ切断機の説明図、 第 1 2図は電極使用回数とァー ク電圧との閤係を示す図表、 第 1 3図はスタ ン ドオフ とスタ ン ドオフ成分電圧あ るいは電極消耗成分電圧との関係を示す図表、 第 1 4図は切断速度とアーク電圧 との関係を示す図表である。 究明を実施するための最良の形態
第 1 の発明と第 2の発明に係るブラズマ切断機のスタ ンドオフ制御方法及びそ の装置について、 好ましい実施例を添付図面に従って以下に詳説する
第 2図は、 プラ ズマ切断機のプロ ソ ク図であって, ト ラ ンスフ マ アーク ^つ' ズマ切断機の トーチ 1 0は、 電極 1 1 の周囲に図示しない作動ガスの流路を形成 するノ ズル 1 4が配置してある。 電極 1 2は、 直流電源 1 6を介してノ ズル Ί 4 と被切断材 1 δ とに電気的に接続され、 ノ ズル 1 4 との間にパイ ロ ':' ト アークを 発生するとともに、 被切断材 1 8 との間にメ ィ ンつ' マ:マァーク 2 ϋを発生する ようになっている c 一方、 ノ ズル 1 4は . 下銷分が狭 ': :られており、 フ -: スマ アーク 2 0を絞つて高温プラズマが得ら rtるよ う : てある ,
また、 電極 1 2及びノ ズル 1 4 と被切断材 1 8 と . それそれ電圧検出 ¾ Ί - 、 2 6に接続してある c. この電圧検出器 2 4 、 電極 1 2 と被切断材 1 8 との の電圧を検出し、 検出電圧 e , を後述するスタ ンドオフ補正演算器 2 8 に入力 る。 他の電圧検出器 2 6は、 ノズル 1 4 と被切断材 1 S との間の電圧を検出 、 検出電圧 e z をスタ ンドオフ補正演算器 2 8 に入力する。
スタ ンドオフ補正演算器 2 δは、 入力してきた検出電圧 e , 、 e 2 から トー の昇降方向、 昇降速度、 昇降量等の補正量を求め、 出力側に接続してある制御 ¾ 置 3 0 に入力する。 制御装置 3 0 は、 スタ ン ドオフ褚正演算器 2 8 からの制御 に基づき、 昇降装置 3 2を駆動して トーチ 1 0を昇降させ . トーチ 1 0 と被切 if 材 1 8 との間隔が目標スタ ン ドオフ H (, となるよ う にする- スタ ンドオフ補正演算器 2 8は、 第 3図に示すように電極消耗 ' ス - ン 卜ォ一' 検出器 3 4 と基準電圧演算設定器 3 6 と .. これらの信号が入力する偏差演算器 S
7 と、 この偏差演算器 3 7が出力した偏差に基づいて、 トーチ 1 0 を昇降させる 補正量を求める補正量演算器 3 8 とからなっている。
電極消耗 ' スタ ン ドオフ検出器 3 は、 電圧検出器 2 4、 2 6が出力する検出 電圧 e , 、 e 2 を受けて後述するように電極 1 2 の消耗量を求め、 消耗量に応し た電極消耗信号を図示しない表示装置に出力するとともに、 実際のスタ ン ドォ ' -' Hを求めてそれに応じたスタ ン ドオフ信号 E H を偏差演算器 3 7 に出力する。 ま た、 基準電圧演算設定器 3 6 は、 被切断材 1 8 の板厚、 材質、 ノ ズル径.、 目標 タ ン ドオフ H。 、 切断速度テータに基づいた基準電圧信号 E。 を偏差演箄器 3 ― に出力する
補正量演算器 3 8 は、 第 1 図に示すような図表を格納しており 、 偏差演算器::' 7 が出力するスタ ン ドオ フ信号 E H の基準電圧 E。 に対する偏差 Δ Eに基ついて 、 トーチ 1 0を目標スタ ン ドオフ H 0 に戻すための、 偏差△ Eに応じた大き さ 補正電圧信号厶 E H を制御装置 3 0 に出力する すなわち、 補正量演算器 3 8 か 格納する図表は、 予め定めた第 1 の偏差の範囲二 Δ E , においては補正信号を出 力 しない c 偏差△ Eか—厶 E , と一 Δ E:; との間にある と , 馄差か大き ' ろ 従い トーチ 〗 0 の上昇速度を大き く するような補正電圧信号△ E H を出力 — . 差 Δ Εか と一 Δ Ε 2 との間にある こ、 儡差が六き く るに し 卜 一 - 0の下降速度を大き くするような補正電圧信号—△ E H を出力するように -て いる。 さ ら :こ、 偏差△ Eが第 2 の値 ^ Δ E 2 を超えると、 偏差の大き さに応 た トーチ 1 0の上昇または下降速度の変化の割合をより大き く した補正電圧信号 A E H を出力する c そ して、 偏差厶 Eが予め定めた第 3 の値土厶 E 3 を超えると .. 装置に異常が生じたものと して、 トーチ 1 0を急速に上昇させるよ うに てい る。
かかる構成によるブラズマ切断機のスタ ン ドオフ制御ば次の如く して行 3 れる 。 アーク電圧はスタ ン ドオフの値に比例して変化し、 こ のスタ ン ドオ フは.、 被 断材 1 8 の板厚、 材質、 ノ ズル 1 4の径、 切断速度によ つて定まる そ こて . フ タ ン ドオフ補正演算器 2 8 の基準電圧演算設定器 3 6 は、 被切断材 】 8 の板
材質.、 ノ ズル 1 4の搔、 目標スタ ン ドオフ H。 等が図示しない ーホー ドや操作 パネル等から入力される と、 基準切断速度 V。 ( l m/ s とする) に対するァー ク電圧 e。 を次の ( 1 ) 式により演算する。
. e 0 = {KS1 - KS2 (Ho - Kt ) } x Κκ · ' · · ( 1 )
ただし、 Ksい KS2、 Kt と KK は、 被切断材 1 8の板厚、 材質等によ って予 め実験により求められるファ ク タであって、 第 5図に示すようなテーブルと して 補正量演算器 3 8内に格納してある。
なお、 基準電圧演算設定器 3 6は、 その内都に被切断材 1 Sの板厚、 材質、 ノ ズル柽 -、 切断速度の各値によ つて定ま るスタ ン ト-ォ フに対 J;したマ ーク電王を % 4図に示すような図表と して格納しておき . 被切断材 i 8の板厚、 材 K等の切 条件が操作パネル等から与えられたとき 、 これらの値に対応した図表を選 P、し、 入力された目標スタ ン ドオフ H。 によって定ま る基準電圧 E。 を出力するように して よい
制御装置 3 0には、 被切断材 】 8を切断する形状、 切断速度等 o切断 πグ -' ムが与えられており、 電極 1 2と被切断材 i 8藺がマーク電圧 e となる^置ま で昇降装置 2を介して トー手 1 0を下! ¾さセ - 切断を開始する -- 他方、 電圧検出器 2 · 2 6は、 切断が開始されると所定時藺每に電極 '― L 被切断材 1 8間の検出電圧 e , . 及び ー 1 Π と被切断材 1 8間の検出 HEP. 2 をそれぞれ検出し . スタ ン ドオフ補正演算器 2 8の電極消耗 ' スタ ン ト オ フ^ 出器 3 4に入力する。
と こ ろで、 これらのア ーク電圧 f;! - e z は目標スタ ン ドオフ H u を一定に保 持したと しても、 電極が消耗するこ とにより、 第 6図のように変化する f そこて 、 電極消耗 · スタ ン ドオフ検出器 3 4は、 次の ( 2 ) 式から電極消耗成分 E p 、 ( 3〗 式により ス タ ン ドォフ成分 E を演算し これらの式から求めた電極 1 2 O消耗量を求め、 消耗量に応じた電極消耗信号を図示しない表示装置等に出力 して表示させる:.
t = a e — b e ; ! 2
E s = a i e i — b i e £ · ' ' · ( 3 )
そして、 電極消耗 · スタ ン ドォフ検出器 3 4 は、 検出した電圧 e , に、. 第 6図 に示した電極 1 2 の消耗による電圧の上昇分を除ま-したスタ ン ドオフ信号 E H を 偏差演算器 3 7 に出力する。
基準電圧演算設定器 3 6 には、 ト ーチ 〗 0が切断を開始すると、 図示しない切 断速度セ ンサが検出した切断速度 V、 または制御装置 3 0から切断速度データ ': 切断速度 V ) が入力して く る。 基準電圧演算設定器 3 6 は、 この切断速度 V — JI じてアーク電圧 e。 を補正し、 基準電圧 E。 と して出力する c.
すなわち、 アーク電圧 e は切断速度 V との間に第 7 図のよ う な関 ^があ . 切 断速度 Vが大き く なると低下し、 切断速度 Vが小さ く なると上昇する; こ ©た 、 ト ーチ 1 0が目標スお ン ドオフ H P に保持されていると して ¾ . 切断速度 Vか 変化する と、 偏差演算器 3 7 が出力する偏差も変化し、 トーチ 〗 0が目標スタ ン ドオフ H。 からずれ、 切断形状を悪化させる: そ こで、 基準電圧演算設定器 3 κ は、 被切断材 1 8 の板厚.、 材質、 ノ ズル ] -Ί の径、 目標スタ ン ドォ つ II f の各 に対応して格納してある第 7図の図表から、 目橡スタ :. トォ -7 H , に 広 て;— められたマーク電圧 e P O切断速度 V。 の変化に対する褚正電圧厶 eを求め、 ¾r 準亀圧 E ft を
t r =■ e ,3 二 Δ e 4 )
f のよ う に演算し、 偏差演算器 3 7 に出力する c すなわち .. 切断速度 Vが基準よ 遅く なつた場合は、 e。 から電圧の上昇分△ eを減算した値を基準電圧 E。 と し て出力る。 切断速度 Vが基準より速く なつた場合は、. e。 に電圧の低下分 加えた値を基準電圧 Ε。 と して出力する。 ただし、 切断速度 Vが 2 m ' s を超え ると補正量 Δ e は一定となる- な 、 こ の切断速度 Vによ る基準電圧 E f, の補正は . 次の演笪に て行って よい 0 < V ≤ K V 2のとき、 -
E 0 - e 0 - K V! ' ; V - 1 ) ( 5 '
\" > Κ V? Οとき、.
Eo = e 0 _ KV1 x (Kvz- 1 ) ( 6 )
こ こに、 Κν·い KV2は、 第 5図に示す速度ファ クタである c
偏差演算器 3 7 は、 電極消耗 · スタ ン ドオフ検出器 3 4が出力したスタ ン ドォ フ信号 EH の基準電圧 E。 に対する偏差 Δ Εを求め、 補正量演算器 3 8に出力す る。 すなわち、 偏差演算器 3 7 は、 .ト ーチ 1 0のスタ ン ドオフが目標スタ ン ドォ フ Η。 より大き くなつて、 スタ ン ドオフ信号 EH が基準電圧 E。 より大きな場も には、 スタ ン ド 'オフ信号 EH ·の大きさに応じた正の偏差- Δ Eを出力し-. 逆の場 合には、 負の偏差一 Δ Eを出力する c
補正量演算器 3 8 は . 第 1 図に示した図表に基づいて . 入力してきた偏差厶 に対応して トーチ 1 0を目標スタ ン ドオフ H。 に急速に戻すための補正電圧信^ Δ EH を制御装置 3 0 に出力する e そ して . 制御装置: 5 0 、 補正電圧信号 Δ Ε7 H を受けると、 トーチ 1 0の昇降速度と トーチ 1 0 G昇降量とを求め .. 昇降装舊: 3 2を駆動して Δ ΕΗ に応じた速度で トーチ 1 ϋ昇降さセ . 目標スタ ン !··ォ フ ]\ 0 に戻す t.
このように、 電極 1 2 と被切断材 1 S間の検出電圧 t , の基準電 E_Lf, に^ る偏差 Δ Eの大きさに応じて トーチ 1 0 の昇降速度を大き する め.. ト ー手 : 0が目標ス夕 ン ドォフ H。 からずれた場台にも速やかに目標ス ン オフ 0 戻され、 良好な切断を行う :: とができる f しかも、 偏差 Δ Eの小さい部分に補 信号を出力しない不感帯を設けているため、 目標スタ ン ドオフト I。 近辺におけ トーチ 1 0の不安定な変動を防止でき、 切断面を良好にするこ とができる。 さ ら に、 電極 1 2の消耗によるアーク電圧の変化と、 切断速度の変化にたいするマ ー ク電圧の変化とを補正しているため、 より良好な切断を行う こ とができる-. また , トーチ 1 0の昇降速度の変化の割合を偏差 Δ Eの小さな部分で小さ く してい . ため.、 トーチ 1 0のォ一ハーシユー トを防ぐ 二 とができる: な?八 電極 i 2 と : 切断材 8間の検出電圧 の代わりに . ノ スル i 4 と被切断材 1 8間の検出 圧 e 2 を利用して目標スタ ン ドオフ H。 の制御を行つてもよい t
次に、 本実施例の応用例を第 8図に示すフローチ 一 で説明する 応用
は、 スタ ン ドオフ補正演算器 2 8 の基準電圧演算設定器 3 6 にも、 第 3図の破線 で示すように、 検出電圧 e , 、 e 2 を入力している。 基準電圧演算設定器 3 6 は 、 この入力してきた検出電圧 e , または e 2 に基づいて基準電圧 E。 を求めてい 先ず、 制御装置 3 0 は、 切断開始の命令が与え られると、 トーチ 1 0を被切靳 材 1 8から所定の高さまで下降させる (ステップ 1 5 0 ) 。 トーチ 】 0が下降し て所定の高さに達すると図示しない リ ミ ッ トスイ ツチを作動し (ステ ッ プ 1 5 2 ) , トーチ ] 0が所定の高さに達したこ とが検知される。 その後、 制御装置 3 0 は、 ト一 - 1 0の下降速度を落と して ーチ 1 0をピア ス高さに し ( ス . - ; 5 4 ) 、 次いでピア シングをする (ステ ノ マ。 1 6 :) そ して、 制御装置 3 0 、 ピァ シングが終了すると、 ト ーチ 1 0をさ らに下降させて目標ス タ ン ォ にし (ステップ 1 5 8 ) 切断を開始する ( 1 6 0 ) 。 目標スタ ン ドオフ H。 、 被切断材 1 8の板厚、 材質、 ノ ズル 1 4 の径等によつて異なり、 予め実験なと によ って求めた値が操作パネル等から制御装置 3 0 に与えてある。 ト ーチ 1 0が 目標スタ ドオマ H。 に保たれて切断が開始さ Hる I , 電圧検出 2 . 1. 、 所定の時間 (例えは、 0 . 1 秒毎.) に電圧を検出し . 検出電圧 、 e . を 準電圧演冀設定器 8 6及び電極消耗 ' ス ン ト ォマ検出器 3 4 に人 I .
基準電圧演算設定器 3 6 、 電圧検出器 2 4 、 2 6から入力して ·': る検岀電「ΐ e , または e: を読み込み (ス ップ 1 6 2 ) 、 基準電圧 E。 を設定寸る: '-. -··. テツプ 1 6 4 ) 。 そ して、 基準電圧演算設定器 3 6 は、 切断が進行するに従い . 切断速度 Vの変化に対する補正をした基準電圧 E。 を偏差演算器 3 7 に出力する (ステップ 1 6 6 ) 。 他方、 電極消耗 ' スタ ン ドオフ検出器 3 4 も、 電極 ] 2 消耗による補正をしたスタ ン ドオフ信号 E を偏差演算器 3 7 に出力し、 下筅 1 実施例と同様にして切断を行う。 切断が終了すると (ステッ プ 1 6 8 ) トー チ ] 0を上昇させ (ステップ 1 7 0 ) 作業を終了する。 このよ うに、 切断開始 のアーク電圧を基準電圧 E。 とすると、 電極の消耗による影響を除去でき ると 上 もに、 基準電圧 E。 の設定が容易となる。
なお、 前記実施例においては、 ト ンスフ ァアーク型のプ -' フ.マ切断 ¾につ ' て説明したが、 ノ ン ト ラ ンスフ ァ アーク型のであってもよい。 また、 プラズマ ¾ 接機についても適用するこ とができる。 そ して、 補正量演算器 3 8の有する図表 が、 原点を中心と した点対称である場合について説明したが、 点対称にする必要 はな く、 特に一△ E 3 の絶対値は— Δ E? の絶対値より小さ く して、 卜一早 1 0 が被切断材 1 8に接触するのを確実に防止するこ とが望ま しい c そして、 第 1図 に示した図表の , Δ E 2 -、 厶 E 3 及び各線分の傾斜は、 実験等により適 J?" 決定するこ とができ る c
第 3 の発明に係る マ マ切断機 7. " ン ト-ォフ制御方法について、 好ま し · 実施例を添付図面に従い詳述する。
第 9 0において、 4 1 は駆動装置 . 4 2 は被切断お一電極間電圧を検出する ¾ 圧検出器、 4 3 は被切断村—ノ ズル間電圧を検出する電圧検出器、 4 5 は電極、 4 6 はノ ズル、 4 4 は前記電極 4 5 , ノ ス'ル 4 6等より構成さ ήる ーチであ 。 5 1 は トーチ 4 4 のスタ ン ドォフを制御すろためのス ン ドォフ補正演算器で 、 前記電圧検出器 4 3の信号によ -, ル マ'一々 I : A 発生を判 ¾す ■ため。 ·,'' ブルマーク検出器 5 2 と . ルマーク検出器 5 2か 出力さ たク 一 - 発生信号を入力する基準亀 E濱箄設定器 5 :: 二 . 前記電圧検出器 4 ' . 4 3 C) ff■ 号により実際のスタ ン ドオフを検出するためのフ. - ン ォフ検出器 5 4 、 およ ' 基準電圧信号と実際のスタ ン ドォフ信号の偏差を演算する偏差演算 S 5 5から成 る。 δ 6 は制御装置で、 前記偏差信号を入力してスタ ン ドオフ補正信号を出力す る補正量演算器 5 S と、 このスタ ン ドォフ補正信号を入力して トーチ 4 4か目 ¾ スタ ン ドォマ Η。 となるよう制御すると共に-.. トーチ 4 4 の切断速度データを入 力して基準切断速度 V。 との偏差信号を演算して トーチ 4 4を基準切断速度 V l: に制御するための駆動制御信号を発生する制御信号究生器 5 7から成る.,
かかる構成により、 被切断材 4 7 と電極 4 δ閽にアーク電圧を印加して -一 =' v. ママーク ρ Αを発生させる共に、 電極 4 5 とノ ズル 4 6間から作動ガスおよび:' ー ル ド スを供袷すると、 シ ー ル ドガスによ り拘束される高い電流密度のブラス
マアーク によつて被切断材 4 7を溶融切断する こ とができ ? , ダブルマ - が ¾ 生せずに切断作業が正常に行われていれば、 ダブルアーク検出器 5 2 に入力さ た電圧検出器 4 3 の信号は正常であるため、 電圧検出器 4 2からの信号と共にフ- タ ン ドオフ検出器 5 0 によ り実際のスタ ン ドオフ信号を偏差演算器 5 δ に出力す る。 一方、 基準電圧演算設定器 5 3 において、 板厚、 材¾、 ノ ズル径、 目標ス々 ン ドオフ、 切断速度等によって演算された基準電圧 Ε。 信号と前記実際のスタ ン ドオフ信号との偏差信号が補正量演算器 5 8 に入力されると、 該偏差信号が 0 1· なるよ うなスタ ン ドォフ補正信号が制御信号発生器 5 7 に出力される c 同時に , 切断速度は基準切断速度 V ρ となるよ う に制御される -:
他方、 切断作業中にノ ズル 4 6 の一部が低イ ンピーダン ス化し、 ブラ スママ一 ク Ρ Αの他に被切断材 4 7 と ノ ズル 4 6等間にダブルマ一力 D Aか¾生すると . 第 1 0図に示すようにアーク電圧は大き く低下する。 基準電圧 E。 より低く な .?. とダブルアーク検出器 5 2からダブルアーク信号が基準電圧設定演算器 5 3 およ び制御信号発生器 5 7 に入力され、 目標スク ン ドオ フ H (, をタフ ルマ一クが消 ¾ する値まで修正すると共に -、 制御信号発生器 5 7 では Θ標スタ ン ト -寸つ H ,., の修 正によつてプ スマァ一ク の電流密度が低下した分だけ切断速度を低下させるよ うに制御される : よ. う 安全制御の状態で所定時間切断作業を糖' し . ■■■ - ルアークが消滅すると々'ブルアーク発生前の通常の トーチ制御に復帰する ' 、 通常の ト ーチ制御に復帰後もなおダブルアークが発生していれば、 再び安全^ 御に復帰するように制御される。 このようにダブルアークが発生すると作業を一 旦停止し、 トーチを再び始動させる工数が不要となるため、 作業能率が向上寸 . 第 4の発明に係るプラズマ切断機のスタ ン ドオフ制御方法について . 好ま し . ' 実施例につき図面を参照して詳細に説明する c
第 1· 1図において、 プラズマ切断機の トーチ 6 0 は、 電極 6 1 と被切断材 6 3 間に発生したプ ズマアーク P Aをノ ズルル 6 2で絞り .、 これを囲むよ うに送 ' 込んだ動作ガスて ノ ズル 6 2から噴出させ、 材料を溶融、 飛散させて切断する高
密度のブラズマアーク P Aを得ている c 電極 6 1 とノ ズル 6 2の相対的位置は固 定されていて、 電極 6 1が消耗するに従い、 電極 6 1 の先端部とノ ズル 6 2、 お よび電極 6 1 と被切断材 6 3 との距離が広がり 、 その分アーク電圧は大き く なる このため、 電極 6 1 と被切断材 6 3 との電圧 e , および、 ノ ズル 6 と被切断 材 6 3 との電圧 e 2 を測定する。 この電圧、 e , 、 e z をコ ンビータ等からなる 演算装置 6 5に取り入れ、 電極使用面数を演算し、 電極の消耗量を表示装置 6 6 に表示する。 また、 目標スタ ン ドオフ H。 は切断開始前に指示するか、 あるいは 公知の位置セ ンサ 6 7により測定し演算装置 6 5 にフ ィ ー ドバッ クする: さ . に、 切断速度 Vは同様に切断開始前に指示する力 、 あるい; i公知の速度
8により測定し演算装置 6 5にフ ィ ー ドバ -■ クする
かかる構成において .、 以下の条件で切断材を切断し、 第 1 2図に示す結杲が^ られた。 切断条伴ー 1
ノ ズル 6 4の絞り径 () . m m
電極と切断材の電流 】 4マ ンぺァ
切断速度 I い ί' Π1 Π; II"; 5 I":
板厚. 一 3 mm
ス夕 ン ドォマ ] . U Π ί IT;
電極使用面数 1 n o o m
当初の切断時の電圧 A点) e ls- 1 0 3ボル ト
e 2a= 5 2ボル ト
千面切断後の電圧 (B点) e , !, - 1 1 2ボル ト
: e zb = 6 8ボノレ ト
切断条件 - 2 (条件 1 で切断途中の C点でスタ ン ドオフを変更 スタ ン ドオフ : 2. 5 mm
当初の切断時の電圧 (C点) : e I C= i i 3ホル ト
: e 2 c 6 6ホ ''レ !- 切断条件 - 3— (条件 2で千 E切断後の電圧 D点を測定.)
- 1 δ - スタ ン ドオフ : 2. 5 m rr!
千回切断後の電圧 (D点; : e I d = 1 1 8 ホル ト
e 2d = 7 5 ボゾレ ト
この結果から、 当初の切断時の電極 6 1 と被切断材間の電圧 e , と、 z ズル〔; 2 と被切断材間の電圧 e 2 の差 M (M = e l a- e 23 ' は、 千面切断後の電圧の ¾: N ( = e l t, - e 2b) より大きい。 また、 スタ ン ドオフの距離を大き く するとァ ーク電圧も大き く なる。 さ らに、 千面切断後のアーク電圧も大き く なる;
これより 、 アーク電圧を電極消耗成分 EP とス—タ ン トオフ成分 E :; とに分けて 考えると、 前記第 1 の究明で示した ( 2 ) 式 : E F - a , ― b e: - ( ;-; ) T, : E s ¾ ! e ] κ J b . e z!, 力 成立する c
例え 、 上式において、 実験から求めた定数 1 . C、 b - - 1 .2. a I .0-. b , - - 0.563 で各点 ( A、 B、 C、 D ) の E f, および E s を求めると . 第 1 3図に示すよ うに、 スタ ン ドオフ成分 E s はほ 一定となり 、 電極消耗成分 E P は当初より小さ く なる 従 .て、 電極消耗成分 E P の所定値はスタ ン ドオ フ に対応する 7 一 々電圧より も大き く設定してある 電極の消耗を検出するには、 ス々 ン ドォフ成分 E を調整確 ¾してから、 ァ一 々電圧 p , i e 2 を^定 . 2 ) 式よ 電極消耗成分 Er を演算すれぱ良い c
次に . 本実施例の応用例について説明する。
f スタ ン ドオフ成分 E s を基にスタ ン ドオ フを一定に制御し、 この時 Gマーク ¾ 圧 e z を測定するとと もに、 前記第 1 の発明で示した第 5図の各フ マ 々 々を使用 し、 前記 ( 1 ) 式 : e。 = K s ! - K s , (: Ho - Kt ) : x K >, によ 基準切断速度 V。 ( Ι τη.Ζ分とする) に対するアーク電圧 e„ を演算する.、, : C, 演算値と測定値を比較し、 所定値以内にあるか否かで電極使用限度を求める c また.. 切断速度とアーク電圧については、 第 1 4図に示すよ うな相蘭かあるた め、 切断速度フ ァ ク タ K V によ り、 その時の切断速度 Vに合わせた基準電圧 Lc. を ϋ く V Κ V 2 の時は前記第 1 の発明で示した ( Γ 式 : £。 = e , ― K V , X ( V - 1 ) で求める K V く Vの時は同じ ( 6 ; 式 : £。 = e c - K V ,
( K v z - 1 ) で求める
基準電圧 E。 とアーク電圧 の実測値と比較し、 この e i が基準電圧 E。 を 越えた時に電極 6 1 が所定量消耗したこ とを表示装置 6 6に表示する c このため に、 ノ ズルの分解等を行い目視による点検等が不要になり、 作業が容易になる.. また、 表示装置により常時連続的の計測できるため、 作業進行状況と電極消耗^ 況とが対比できるので、 作業条件が変わっても、 電極の交換時期を検知するこ と ができる。 ' 産 ¾上の利用可能^
本発明 、 ト -チと被切断材との間隔を一定に保持して良好な切断ができる c 共に ·、 ル— ーク発生時にも作業能率か低 せ寸 . 切断条件が変化しても的 に電極の使用限界を検知でき るブラズマ切断機あるいは溶接 ス :- トォフ制 御方法及びその装置と して有用である
Claims
請 求 の 範 照
1 . トーチの電極または電極周囲のノ ズルと被切断材との間のアーク電圧を検出 し、 この電圧に基づいて トーチと被切断材との距離を予め定めた値に制御する ラズマ切断機のスタ ン ドオフ制御方法において、 前記電極またはノ ズルと被切断 材との間の電圧を検出して基準電圧に対する偏差を求め、 この偏差の大き さに It. じて前記 トーチの昇降速度を大き く する こ とを特徵とするブラズマ切断機のスタ ン ドオフ制御方法。
2 . 前記 トーチの昇降速度 、 前記偏差が予め定めた第 〗 の値の範囲内 C' と き に は ϋ と し、 且つ前記偏差が第 1 の値のを超えたときには、 前記 ト ーチの昇降速 を直線的に増大させるとともに、 前記偏差が予め定めた第:' の値以ェのと きに 、 前記 トーチの昇降速度をより大きな割合をもつて直線的に増大させる :: とを特 徵とする請求の範囲 1 記載のプラ ズマ切断機のスタ ン ドォマ制御方法
: . 前記偏差が予め定 た第 3 の値を超え Lき に 、 前記 - ーチを高速上 ? -ー せるこ とを特 とする請求の範囲 2記載 一ラ スマ切浙櫸 スタ kォフ制 ίϊΓ:: .·-»·
4 . トーチの電極または電極周囲のノ ズルと被切断村との間のアーク ¾圧を検 する電圧検出器と、 電圧検出器が出力する検出電圧を基準電圧と比較してスタ : ドォマの補正信号を出力するスタ ン ドォフ補正演算器を有するプ ヌ マ切断機 —' スタ ン ドォフ制御装置において-、 前記スタ ン ドオフ補正演算器は、 予め定め 'た ' タ ン ドオフに対する前記電極またはノ ズルと钹切断材との間の基準電 r王を出力 る基準電圧演算設定器と、 こ の基準電圧に対する前記検出電圧の偏差を求める 差演算器と、 この偏差の大きさに応じて前記 ト ーチの昇降速度信号を出力 る ¾ 正量演算器とを具備した:: とを特徵とするブラズマ切断機 eス ね ン k ォフ制御装
δ . 前記スタ ン ドオフ補正演算器は、 前記検出電圧を受けて、 電極の消耗 基づ く電圧上昇分を補正したスタ ン ドォフ信号を前記偏差演算器に出力する電極消まも * スタ ン ドオフ検出器を具備したこ とを特揿とする請求の範囲 4記載のブラヌ. 切断機のスタ ン ドオフ制御装置。
6 . 前記基準電圧演算設定器は、 トーチの基準と る切断速度に基づいて定めた アーク電圧に、 切断速度の基準切断速度からのずれに広じて生ずるアーク電圧の 変動分を加えた電圧を基準電圧と して出力するこ とを特敏とする請求の範
¾のブラ ズマ切断機 G ス , ン ド フ制御装置:
7 . 前記基準電圧演算設定器は、 前記検出 ¾圧を受^ると^に、 ーチが予め定 められたスタ ン ドオフ位置に配置されて切断を開始し た とき , 人力してきた検出 電圧を基準電圧と して出力するこ とを特 とする請求の範墮 ί 4 S2 ¾ -° ^ ズマ 断機のスタ ン ドオフ制御装置 t
8 . トーチの電極または電極周囲 & .' -. ルと被切断 と G藺 c>ァー ·''鼋圧を検 ϋ: し-、 この電圧に基づいて トーチと被切断材と ο距銥を ,め定めた値に制御 ラズマ切断機のス - ン ドオフ制御方法において . ノ ス 几 と被切断村との間の電 Γ± 低下を検出してダマルァ―クの発生を検知したとき は、 このタブルァ一クが消 するまで ト一チを被切断材から所定量引き離した安全制御により作業を链続 : · . もとの電圧に復帰後に安全制御を解除し、 通常の ーチ制御に復'帰するこ とを^ 徴とするブラズマ切断機のスタ ン ドォフ制御方法 . 前記タ フ ル了 -ク の発生を検知したとき はタ ブルアークが消滅するまて ^一 チを被切断材から引き離すと共に、 卜ーチの切断速度を低下させた安全制御によ 作業を継続する こ とを特 ¾とする請求の範囲 8記載のブラ ズマ切断機のス タ ドォフ制御方法。
-
1 G . トーチの電極または電極周囲のノ ズルと被切断材との間 Gマー ¾圧を检 出し、 この電圧に基づいて ト ーチと被切断材との距離を予め定めた値に制御す?, ブラ ズマ切断機のスタ ン ドオフ制御方法において、 電極と被切断材との間の電圧 、 およびノ ズルと被切断材との間の電圧を測定し、 この電圧から電極消耗成分 ¾ 圧およひスタ ン ドオフ成分電圧とを求めて、 スタ ン ドオフ成分電圧がほほ一定 なるようにスタ ン ドォフを制御したときの電極消耗成分電圧から、 電極の使用限 界を検出する こ とを特徵とするブラズマ切断機のス タ ン ドォ フ制御方法
1 i . 前記電極と被切断材との間 O電圧、 およ ノ ズルと被切断村 O間 D I E を測定し , この電圧から電極消耗成分電圧およびスね > ォ フ成分 ^ i∑ .そ求 ', て.、 スタ ン ドォフ成分電圧がほほ一定になるよ う にス ン ト ォフを制 ffi L : i. -. 板厚、 材¾、 ノ ズル径、 切断速度等の切断条件に合わせたフ ァ ク タ二 . 目標フ- タ ン ドオフのときのアーク電圧とから切断時のマーク電圧値を演算し . こ( マ― ク電圧演算値と測定値とを比較して所定 σ差が生じた こ とから電極の使用 界 検出する こ とを特 mとする^求の範 E I 0記載 Φマ' ズマ切断機 ス -'·· !·'す " 制御方法、
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91907711A EP0562111B1 (en) | 1990-04-17 | 1991-04-17 | Standoff control method and apparatus for plasma cutting machine |
US07/941,087 US5326955A (en) | 1990-04-17 | 1991-04-17 | Standoff control method and apparatus for plasma cutting machine |
DE69127825T DE69127825T2 (de) | 1990-04-17 | 1991-04-17 | Abstandsteuerverfahren und -vorrichtung einer plasmaschneidmaschine |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10265790A JP2920657B2 (ja) | 1990-04-17 | 1990-04-17 | プラズマ加工機の電極寿命検出装置 |
JP2102330A JPH0818138B2 (ja) | 1990-04-17 | 1990-04-17 | プラズマ加工機のスタンドオフ制御方法 |
JP2/102656 | 1990-04-17 | ||
JP2/102330 | 1990-04-17 | ||
JP2102329A JPH0818137B2 (ja) | 1990-04-17 | 1990-04-17 | プラズマトーチのスタンドオフ制御装置 |
JP2/102657 | 1990-04-17 | ||
JP2/102329 | 1990-04-17 | ||
JP10265690A JP2884182B2 (ja) | 1990-04-17 | 1990-04-17 | プラズマアーク用トーチの制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991016170A1 true WO1991016170A1 (en) | 1991-10-31 |
Family
ID=27469001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1991/000514 WO1991016170A1 (en) | 1990-04-17 | 1991-04-17 | Standoff control method and apparatus for plasma cutting machine |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0562111B1 (ja) |
DE (1) | DE69127825T2 (ja) |
WO (1) | WO1991016170A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117600628A (zh) * | 2023-12-18 | 2024-02-27 | 江西瑞升科技股份有限公司 | 一种多功能内置等离子焊接切割机的运行监测系统及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6028287A (en) * | 1997-07-25 | 2000-02-22 | Hyperthem, Inc. | Plasma arc torch position control |
US5844196A (en) * | 1997-09-15 | 1998-12-01 | The Esab Group, Inc. | System and method for detecting nozzle and electrode wear |
FR2830476B1 (fr) | 2001-10-09 | 2003-12-12 | Soudure Autogene Francaise | Procede et installation de coupage par jet de plasma module au niveau des changements brutaux de trajectoire, notamment des angles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5744469A (en) * | 1980-08-30 | 1982-03-12 | Sansha Electric Mfg Co Ltd | Device for preventing damage of torch for plasma arc |
JPS57195582A (en) * | 1981-05-29 | 1982-12-01 | Hitachi Seiko Ltd | Controlling method for arc length in plasma welding |
JPS62127173A (ja) * | 1985-11-29 | 1987-06-09 | Tanaka Seisakusho:Kk | プラズマトーチの電極等の異常検出装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6117365A (ja) * | 1984-07-04 | 1986-01-25 | Nippon Kokan Kk <Nkk> | 自動ならい制御方法 |
JPH1048674A (ja) * | 1996-08-02 | 1998-02-20 | Polymertech Kk | 自動調光板 |
-
1991
- 1991-04-17 WO PCT/JP1991/000514 patent/WO1991016170A1/ja active IP Right Grant
- 1991-04-17 EP EP91907711A patent/EP0562111B1/en not_active Expired - Lifetime
- 1991-04-17 DE DE69127825T patent/DE69127825T2/de not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5744469A (en) * | 1980-08-30 | 1982-03-12 | Sansha Electric Mfg Co Ltd | Device for preventing damage of torch for plasma arc |
JPS57195582A (en) * | 1981-05-29 | 1982-12-01 | Hitachi Seiko Ltd | Controlling method for arc length in plasma welding |
JPS62127173A (ja) * | 1985-11-29 | 1987-06-09 | Tanaka Seisakusho:Kk | プラズマトーチの電極等の異常検出装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0562111A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117600628A (zh) * | 2023-12-18 | 2024-02-27 | 江西瑞升科技股份有限公司 | 一种多功能内置等离子焊接切割机的运行监测系统及方法 |
CN117600628B (zh) * | 2023-12-18 | 2024-06-07 | 江西瑞升科技股份有限公司 | 一种多功能内置等离子焊接切割机的运行监测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
DE69127825T2 (de) | 1998-03-05 |
EP0562111A4 (en) | 1993-05-14 |
EP0562111B1 (en) | 1997-10-01 |
EP0562111A1 (en) | 1993-09-29 |
DE69127825D1 (de) | 1997-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5326955A (en) | Standoff control method and apparatus for plasma cutting machine | |
KR101162840B1 (ko) | 소모 전극식 펄스 아크 용접의 용접 제어 장치 및 그 아크 길이 제어 방법, 및 그 용접 제어 장치를 구비한 용접 시스템 | |
US5866872A (en) | Plasma arc torch position control | |
US8642915B2 (en) | Wire electric discharge machining apparatus | |
US6028287A (en) | Plasma arc torch position control | |
US10058956B2 (en) | Metalworking wire feeder system with force control operation | |
JP5031555B2 (ja) | ワイヤ放電加工機 | |
JP4215296B2 (ja) | レーザ切断機及びレーザ切断のための方法 | |
WO1991016170A1 (en) | Standoff control method and apparatus for plasma cutting machine | |
JP2007508940A (ja) | 溶接プロセスを制御する方法 | |
JP2004237342A (ja) | パルス出力制御方法及び消耗電極式パルスアーク溶接装置 | |
EP0139137A1 (en) | Weld line system and method for control | |
JPH03297576A (ja) | プラズマトーチのスタンドオフ制御装置 | |
JP2641091B2 (ja) | プラズマトーチのスタンドオフ制御装置 | |
JPH03297577A (ja) | プラズマ加工機のスタンドオフ制御方法 | |
JP2011067845A (ja) | プラズマキーホール溶接装置およびプラズマキーホール溶接方法 | |
JPH0847778A (ja) | プラズマトーチのスタンドオフ制御方法及びその装置 | |
JPH09174339A (ja) | ワイヤ電食方法および装置 | |
JPS61144281A (ja) | 電子ビ−ム溶接方法 | |
KR101085841B1 (ko) | 플라즈마 절단기의 토치 높이 제어 장치 및 방법 | |
JPS60130469A (ja) | 溶接用電源の出力制御方法 | |
JPH04200874A (ja) | プラズマトーチの高さ制御方法及びその装置 | |
JP2002340320A (ja) | プラズマ式溶融炉における電極昇降制御方法および電極昇降制御装置 | |
JP4296648B2 (ja) | 抵抗溶接の電極変位量制御方法及びその装置 | |
JPH09271945A (ja) | 消耗電極アーク溶接のアーク長復帰制御方法及び溶接装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991907711 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1991907711 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991907711 Country of ref document: EP |