WO1991015348A1 - Schneckenextruder - Google Patents

Schneckenextruder Download PDF

Info

Publication number
WO1991015348A1
WO1991015348A1 PCT/EP1991/000601 EP9100601W WO9115348A1 WO 1991015348 A1 WO1991015348 A1 WO 1991015348A1 EP 9100601 W EP9100601 W EP 9100601W WO 9115348 A1 WO9115348 A1 WO 9115348A1
Authority
WO
WIPO (PCT)
Prior art keywords
pins
cylinder
screw extruder
extruder according
net
Prior art date
Application number
PCT/EP1991/000601
Other languages
English (en)
French (fr)
Inventor
Wilfried Baumgarten
Original Assignee
Kraftanlagen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftanlagen Ag filed Critical Kraftanlagen Ag
Publication of WO1991015348A1 publication Critical patent/WO1991015348A1/de
Priority to US08/049,969 priority Critical patent/US5324108A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/834Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/422Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw sections co-operating, e.g. intermeshing, with elements on the wall of the surrounding casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/685Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
    • B29C48/687Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads having projections with a short length in the barrel direction, e.g. pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients

Definitions

  • the invention relates to a screw extruder, in the at least one screw receiving cylinder of which holes are provided for receiving pins which project into the conveying region and are arranged in radial planes.
  • Such extruders have become known as pin barrel extruders in various embodiments, the pins projecting radially into the barrel and engaging in circumferential grooves of the screw thread.
  • the main area of application for such pin cylinder extruders is for single-screw extruders.
  • the pins have gained particular importance in the plasticization and mixing of the material to be extruded, which, for example according to DE-A-01 37 813 for dough kneading and meat cutting machines.
  • Stick extruders are also used for sausage production, e.g. according to US-A-18 48 236, was used. With other diverse materials, e.g. those that need to be dewatered, special pin extruders according to patent DE-PS 14 54 801 have become known.
  • Pen extruders have achieved great economic importance through the patent DE-PS 22 35 784 in the rubber processing industry, since it was possible with these machines to process even large throughputs by means of cold-fed extruders. (More than about 6000 kg / h).
  • the cold feed saves large preheating machines for the conventional heat feed extrusion and has already been used worldwide by the pin extruder in applications in the rubber processing industry, which has to cope with large throughputs during extrusion, namely, for example, the tire and conveyor belt industries .
  • Pins with a shorter penetration depth have also been used, or those whose depth adjustment can be changed, for example according to DE-A-35 03 911 or DE-A-35 06 424.
  • shorter effective lengths or adjustment depths are also one the result is less effectiveness in plasticizing, which is of course undesirable.
  • the depth adjustment is also associated with the possibility of error, in the critical case setting too low for the hardness of the mass to be plasticized and thus causing damage to the pen.
  • Pen breakage indicators have also become known, e.g. according to DE-A-32 21 472, which, however, do not eliminate the risk of breakages, but rather increase because of the weakening of the pen, and which at most reduce the consequential damage but can hardly prevent it. Better are with optimal design and pen material e.g. the pin bend displays according to DE-A-35 02 437, which enable the extruder to be switched off in good time before any significant damage has occurred. These fuses are suitable for each endangered pen
  • DE-A-38 05 849 provides bevelled pins which are intended to reduce the problem of compound adhesion and "dead corners", but this is only possible to an inadequate extent if the pins are not to be weakened too much.
  • E RS tion are only suitable for masses that are difficult to process.
  • Cylinder design cannot be implemented with an exchangeable wear sleeve and the available cooling surface is reduced in comparison to conventional extruders, which is why the throughput rate is reduced and the economy is impaired. This type of construction has therefore not been introduced.
  • the invention avoids the disadvantages of the prior art. It is the object of the invention to create a pin barrel extruder, the pins of which cannot bend or break, whose pins can be easily heated and whose pins can be varied in their effect and adapted to the various requirements.
  • the invention consists in that the axes of the pins are arranged tangentially or parallel to the tangents of the screws.
  • their plasticizing and mixing effects are achieved in a different way, namely by narrowing aisle parts, which makes the disintegration and plasticization of material much cheaper.
  • the pins can be mounted in a bore and for their ends to protrude freely into the cylinder.
  • the pins can stand like a thorn against the material flow, but can also stand in the direction of the material flow. In both cases it is achieved that the forces acting on the pin cannot act fully radially on the pin, but always only with a radial component. Should metal parts undesirably have entered the material flow, these metal parts do not attack at the end but in the central areas of the pin and thus exert a smaller moment on the pin than is the case with the conventional radially arranged pins.
  • pin projecting freely into the cylinder, in which the pin end tangentially in the groove which interrupts the thread of the screw while leaving a small gap
  • Groove base stands.
  • metal parts which have undesirably entered the material flow can bend the pin slightly so that its end lies against the base of the groove, but these metal parts cannot break the pin.
  • the pins in their area located in the cylinder are conical or elliptical in longitudinal section or non-circular in cross section.
  • REPLACEMENT LEAF Adjust the material accordingly to particularly favorable values.
  • pins are mounted at both ends in two holes in the cylinder. Pins arranged in this way can also be tempered particularly easily, since it is possible to use one end of the pin as an input for the temperature control means and the other end of the pin as an output for the temperature control means.
  • the pins are provided with at least one channel for receiving or flowing a temperature control agent.
  • a temperature control agent Especially in the area of the pencils, the plasticizing, digesting and mixing work performed on the pencils results in a special temperature increase.
  • the temperature rise in the material can be counteracted by tempering the pins.
  • the temperature control means can be cooling devices or flowing coolants. In special cases, in which a further increase in temperature is desired, the
  • REPLACEMENT LEAF Pins heaters are installed or you can pass heating means such as warm water or steam through the pins.
  • the pins can also be safely provided with bores for receiving sensors or sensors.
  • the tangentially lying pins in one, preferably the first plane, and to provide radially arranged pins in further planes.
  • the different mixing effects of the different pin arrangements can be used together in one and the same extruder. Special effects can result from the fact that parts of the peripheral surfaces of the pins are provided with preferably obliquely arranged recesses, in particular in the form of grooves. The disintegration of the material is thereby considerably accelerated because material which has already been disintegrated can more easily escape in the conveying direction through the grooves, while the grooves themselves have the effect of sharing on material which has not yet been disintegrated.
  • FIG. 1 shows a section through an extruder with two pins in a radial plane.
  • . 3 shows an extruder with four cylindrical pins which only partially protrude into the interior of the extruder
  • Figure 5 shows a part of a longitudinal section through an extruder.
  • FIG. 6 shows a section of an extruder similar to the extruder shown in FIG. 3 with four pins, but for the purpose of degassing via an external one
  • Vacuum or for gassing are pierced in the longitudinal direction.
  • FIG. 1 shows a section through a single-screw extruder cylinder 1, which has no cooling chamber in the section plane, since this is usually located between the pin planes.
  • the cylinder can be provided in a known manner with a resin ejection in order to reduce wear.
  • the bores for receiving the pins 2 are arranged here continuously and cut the inside wall of the cylinder.
  • the pins inserted into the bores have at one end a head which is provided with a thread which can be screwed into an internal thread of the bore. A hexagon on the head is used for this screwing.
  • the pin extends so far in this bore that it is fixedly supported at both ends in the bore. For this reason, the pin is longer than the longest length of the bore in the interior of the cylinder. Since the pin only protrudes into the interior of the cylinder with a small part of its circumferential surface, breaking off this pin is completely impossible.
  • the pen is arranged so that it is the bottom of the in the
  • REPLACEMENT Snail 5 located groove as little as that. touches screw recesses provided with a recess (the groove) at this point.
  • liquid temperature control can take place in the pin. Due to the fact that a gap with a reduced cross-section is formed between the pin peripheral surface and the screw core peripheral surface, the material is treated in a special way.
  • three non-continuous bores are provided for receiving cylindrical pins 6.
  • holes can be provided in the cylinder wall, which can be used to remove gas located under the extruder flow.
  • the radial plane in which the end faces of two pins 7 lie is provided with the reference symbol 8 and runs through the axis of the screw.
  • pins 9 are arranged in a radial plane, which are cylindrical over a substantial part of their pin length, but are conical at the end.
  • This cone 10 lies with its circumferential surface in the cone-shaped bore here, too, so that there are no dead corners.
  • Figure 5 shows part of a longitudinal section through the screw extruder with pins 2 in two radial planes.
  • REPLACEMENT LEAF Cooling channels 11 are provided in the cylinder wall between these radial planes.

Abstract

Die Erfindung betrifft einen Schneckenextruder, in dessen mindestens eine Schnecke (5) aufnehmenden Zylinder (1) Bohrungen für die Aufnahme von in den Förderbereich hineinragenden, in Radialebenen angeordneten Stiften (2) vorgesehen sind. Es ist die Aufgabe der Erfindung, einen Stiftzylinder-Extruder zu schaffen, dessen Stifte sich grundsätzlich weder verbiegen noch brechen können, dessen Stifte (2) gut temperierbar sind und dessen Stifte in ihrer Wirkung vielseitig einstellbar und den verschiedenen Anforderungen anpaßbar sind. Die Erfindung besteht darin, daß die Achsen der Stifte (2) tangential oder parallel zu den Tangenten der Schnecken (5) angeordnet sind.

Description

Schneckenextruder
Die Erfindung betrifft einen Schneckenextruder, in dessen mindestens eine Schnecke aufnehmenden Zylinder Bohrungen für die Aufnahme von in den Förderbereich hineinragenden, in Radialebenen angeordneten Stiften vorgesehen sind.
Derartige Extruder sind als Stiftzylinderextruder in ver¬ schiedenen Ausführungsformen bekanntgeworden, wobei die Stifte radial in den Zylinder hineinragen und in Umfangs- nuten des Schneckengewindes eingreifen. Der Hauptanwen¬ dungsbereich derartiger Stiftzylinderextruder ist bei Ein- schnecken-Extrudern. Gerade bei diesen Maschinen haben die Stifte eine besondere Bedeutung bei der Plastifizierung und Mischung des zu extrudierenden Gutes gewonnen, die z.B. nach DE-A- 01 37 813 für Teigknet- und Fleischschneide- maschinen abgewendet wurden. Auch für die Wurstherstellung sind Stiftextruder, z.B. nach US-A- 18 48 236, eingesetzt worden. Bei anderen vielfältigen Materialien, z.B. solchen, die entwässert werden müssen, sind spezielle Stiftextruder nach Patent DE-PS 14 54 801 bekanntgeworden.
Eine sehr große wirtschaftliche Bedeutung haben Stiftextru¬ der durch das Patent DE-PS 22 35 784 in der kautschukverarbeitenden Industrie erlangt, da es mit diesen Maschinen möglich wurde, auch große Durchsatzmengen mittels kalt beschickten Extrudern zu verarbeiten. (Mehr als ca. 6000 kg/h) . Die Kaltbeschickung erspart große Vorwärm¬ maschinen für die bis daher übliche Wärmebeschickungs- Extrusion und wurde mittels der Stiftextruder weltweit bereits auch in Anwendungen der kautschukverarbeitenden Industrie eingesetzt, die große Durchsatzmengen bei der Extrusion zu bewältigen hat, nämlich z.B. der Reifen- und der Transportband-Industrie. Dabei zeigte sich das Problem, daß manche der kalt beschickten Kautschukmischungen, die zumeist als "endloses" Fell beschickt werden, so hart oder zähe waren und für die Plastifizierung so große Kräfte benötigen, daß solche radial angeordneten Stifte einem starken Verschleiß unterlagen oder ungünstigstenfalls sogar verbogen oder abbrachen. Dadurch sind gelegentlich schwere maschinelle Schäden entstanden. Es ist natürlich versucht worden, durch entsprechende Gestaltung der Stifte, durch verbesserte Materialauswahl und -behandlung dem Verschleiß . und der Biege- und Bruchgefahr zu begegnen. Diese Bemühun¬ gen sind jedoch grundsätzlich nur unbefriedigend, da zumin¬ dest nach einigem unvermeidlichem Verschleiß der Stifte die Bruchgefahr erneut auftritt, selbst wenn diese im Neuzu- stand nicht bestand. Man hat auch Stifte mit kürzerer Ein¬ dringtiefe angewendet oder solche, deren Tiefeneinstellung veränderbar ist, z.B. nach DE-A- 35 03 911 oder DE-A- 35 06 424. Dabei ist aber der Nachteil vorhanden, daß kürzere Wirklänge oder Einstelltiefe auch eine geringere Wirksam- keit bei der Plastifizierung zur folge hat, was natürlich unerwünscht ist.
Auch ist die Tiefeneinsteilbarkeit mit der Fehlermöglich¬ keit behaftet, im kritischen Falle zu tief für die Härte der zu plastizierenden Masse einzustellen und damit eine Stiftbeschädigung herbeizuführen.
Weiterhin ist der technische Aufwand für die Verstellung der recht zahlreichen Stifte so hoch, daß praktisch davon nur sehr wenig Gebrauch gemacht worden ist.
Es sind auch Stiftbruch-Anzeigevorrichtungen bekanntgewor¬ den, z.B. nach DE-A- 32 21 472, die aber die Gefahr von Stiftbrüchen auch nicht beseitigen, sondern wegen der Stiftschwächung eher noch erhöhen, und die auch die Folge¬ schäden höchstens vermindern, aber kaum verhindern können. Besser sind bei optimaler Gestaltung und Stiftmaterial z.B. die Stiftbiegeanzeigen nach DE-A- 35 02 437, die ein rechtzeitiges Abschalten des Extruders ermöglichen, ehe ein nennenswerter Schaden entstanden ist. Diese Sicherungen sind, da für jeden gefährdeten Stift ein entsprechender
ERSATZBLATT
Figure imgf000005_0001
Sensor nötig ist, relativ teuer. Sie werden deshalb auch .nur selten verwendet.
Wegen der an sich erstrebten Plastifizierwirkung der Stifte entsteht beim Arbeitsprozeß an den Stiften selbst eine erhebliche Reibungswärme, die sich durch entsprechende Erwärmung der Mischungspartikel und der Stifte bemerkbar macht. Diese Erwärmung ist aber letztlich doch nachteilig und begrenzt die maximale Schneckendrehzahl des Extruders, damit auch die Extruder-Ausstoßleistung und die Wirtschaft¬ lichkeit.
Eine bereits in der DE-A- 22 35 784 vorgeschlagene Kühlung der Stifte ließ sich aus den geschilderten Gründen der be- grenzten Stiftfestigkeit bisher nicht realisieren.
Ein Problem der Stiftextruder bei der Verarbeitung von klebrigen Massen, z.B. manchen besonders wandhaftenden Kautschukmischungen, besteht in der Haftung von Mischungs- resten auf der Lee-Seite der Stifte, den sogenannten "toten Ecken". Mindestens eine teilweise Verschmutzung im Arbeits¬ raum Arbeitsraum der Maschine muß in diesen Fällen bei Stillsetzung in Kauf genommen werden. Man hilft sich oft¬ mals durch Anwendung einer nachträglich durchzusetzenden Reinigungsmischung oder man nimmt bei Wiederinbetrieb¬ setzung des Extruders eine gewisse Anfangs-Mischungsver- schmutzung in Kauf, was aber beides als nachteilig anzuse¬ hen ist.
Die DE-A- 38 05 849 sieht abgeschrägte Stifte vor, welche das Problem der Mischungsanhaftung und "toten Ecken" ver¬ mindern sollen, jedoch ist dieses nur absolut unzureichend möglich, wenn die Stifte nicht zu stark geschwächt werden sollen. Dasselbe gilt für ähnliche Gesichtspunkte bei den stromlinienförmig ausgebildeten Stiften nach DE-A- 36 13 584 und DE-A- 36 13 612, welche aufgrund ihrer Konfigura-
ERS tion nur für wenig zähe zu verarbeitenden Massen geeignet sind.
Ein Erfindungsgedanke nach Patent IT-PS 11 84 555 versucht, die festigkeitsmäßigen Nachteile und Probleme der Stifte durch ein e nicht-radiale Anordnung, also durch schrägen Einbau in den Wirkungsbereich der Extruderschnecke, zu vermindern. Der Nachteil dieser Bauweise besteht darin, daß die Stifte mit schräger oder bogenförmig ausgearbeiteter Bodenfläche hergestellt und absolut winkelrichtig montiert und gesichert werden müssen, was nicht nur kostenaufwendig, sondern auf Dauer auch schwer garantierbar ist. Die Bruch¬ gefahr ist nur vermindert, aber nicht beseitigt. Außerdem verschlimmert sich das geschilderte Problem der "toten Ecken" gegenüber der radialen Stiftanordnung noch. Die
Zylinderbauart ist nicht mit auswechselbarer Verschlei߬ büchse realisierbar und die verfügbare Kühlfläche wird im Vergleich zu herkömmlichen Extrudern vermindert, weshalb die Durchsatzleistung verringert und die Wirtschaftlichkeit verschlechtert wird. Diese Bauart hat sich daher nicht ein¬ geführt.
Die Erfindung vermeidet die Nachteile des Standes der Tech¬ nik. Es ist die Aufgabe der Erfindung, einen Stiftzylinder- Extruder zu schaffen, dessen Stifte sich grundsätzlich weder verbiegen noch brechen können, dessen Stifte gut temperierbar sind und dessen Stifte in ihrer Wirkung viel¬ seitig einstellbar und den verschiedenen Anforderungen anpaßbar sind.
Die Erfindung besteht darin, daß die Achsen der Stifte tan¬ gential oder parallel zu den Tangenten der Schnecken angeordnet sind.
Während im Stande der Technik die Stifte radial angeordnet sind und daher die Belastungen radial am Stift angreifen und daher den Stift brechen können, ist diese Gefahr bei
ERSATZBLATT der erfindungsgemäßen Anordnung der Stifte gebannt. Bei der erfindungsgemäßen Anordnung der Stifte wird deren Plastifi- zierwirkung und Mischwirkung in anderer Weise erzielt, näm¬ lich durch sich verengende Gangteile, was die AufSchließung und Plastifizierung von Material wesentlich günstiger gestaltet.
Eine Ausführungsmöglichkeit besteht darin, daß die Stifte in einer Bohrung gelagert sind und mit ihrem Ende frei in den Zylinder hineinragen. Dabei können die Stifte wie ein Dorn gegen den Materialstrom stehen, aber auch in Richtung des Materialflusses stehen. In beiden Fällen ist erreicht, daß die auf den Stift wirkenden Kräfte nicht voll radial auf den Stift wirken können, sondern immer nur mit einer radialen Komponente. Sollten unerwünschterweise Metallteile in den Materialstrom eingetreten sein, so greifen diese Metallteile nicht am Ende, sondern in mittleren Bereichen des Stiftes an und üben damit ein kleineres Moment auf den Stift aus als dieses bei den herkömmlichen radial angeord- neten Stiften der Fall ist.
Interessant ist auch eine Ausführungsform des frei in desn Zylinder hineinragenden Stiftes, bei dem das Stiftende tan¬ gential in der die Gewindegänge der Schnecke unterbrechen- den Rille unter Belassung eines geringen Spaltes zum
Rillengrund steht. Hier können unerwünscht in den Material¬ strom eingetretene Metallteile den Stift zwar geringfügig biegen, so daß er mit seinem Ende an dem Rillengrund anliegt, brechen können diese Metallteile den Stift jedoch nicht.
Bei dieser Ausführungsform der Stiftanordnung ist es vorteilhaft, wenn die Stifte in ihrem im Zylinder befindli¬ chen Bereich konisch oder im Längsschnitt elliptisch oder im Querschnitt unrund gestaltet sind. Durch diese Gestal¬ tung läßt sich die Plastifizierwirkung dem zu plastifizie-
ERSATZBLATT renden Material entsprechend auf besonders günstige Werte einstellen.
Eine andere Möglichkeit der Anordnung der Stifte, die zu einer völligen Bruchsicherheit führt, besteht darin, daß die Stifte an beiden Enden in zwei Bohrungen des Zylinders gelagert sind. Derartig angeordneteStifte lassen sich auch besonders leicht temperieren, ist es doch möglich, das eine Stiftende als Eingang für das Temperiermittel, das andere Stiftende als Ausgang für das Temperiermittel zu benutzen.
Bei diesen Stiften läßt sich ihre Wirkung auch während des Betriebes ohne Auswechseln der Stifte verändern, wenn die Stifte zumindest über einen Teil ihrer im Zylinder liegen- den Länge im Querschnitt unrund sind und während des Betriebs verdrehbar sind.
Eine andere Möglichkeit der Lagerung der Stifte im Zylinder besteht darin, daß die Bohrung so in der ZylinderInnenwand liegt, aß der eingelegte Stift nur mit einem Teil seiner Umfangsflache in den Innenraum des Zylinders hineinragt. Vom Innenraum des Zylinders her betrachtet, treten solche Umfangsflachen von Stiften in den Zylinderinnenraum wie Wülste hinein. Dadurch ergibt sich eine ganz besondere, vom herkömmlichen abweichende Plastifizier-. Aufschließ- und Mischwirkung.
Vorteilhaft ist es, wenn die Stifte mit mindestens einem Kanal für die Aufnahme oder den Durchfluß eines Temperier- mittels versehen sind. Gerade im Bereich der Stifte treten ja durch die an den Stiften geleistete Plastifizier-, Auf- schließ- und Mischarbeit eine besondere Temperaturerhöhung auf. Der hier auftretenden Materialerwärmung kann durch die Temperierung der Stifte entgegengewirkt werden. Dabei können die Temperiermittel Kühlvorrichtungen oder fließende Kühlmittel sein. In besonderen Fällen, in denen hier eine weitere Temperaturerhöhung gewünscht wird, können in die
ERSATZBLATT Stifte Heizvorrichtungen eingebaut werden oder man kann durch die Stifte Heizmittel, wie warmes Wasser oder Dampf, hindurchleiten.
Gefahrlos können die Stifte auch mit Bohrungen für die Auf¬ nahme von Sensoren oder Meßgebern versehen werden.
In manchen Fällen wird es zweckmäßig sein, die tangential liegenden Stifte in einer, vorzugsweise der ersten Ebene, anzuordnen und in weiteren Ebenen radial angeordnete Stifte vorzusehen. So können die unterschiedlichen Mischwirkungen der verschiedenen Stiftanordnungen in ein- und demselben Extruder gemeinsam angewandt werden. Besondere Wirkungen können sich dadurch ergeben, daß Teile der Umfangsflachen der Stifte mit vorzugsweise schräg angeordneten Vertiefun¬ gen insbesondere in Form von Rillen versehen sind. Der Auf¬ schluß des Materials wird hierdurch wesentlich beschleu¬ nigt, weil durch die Rillen bereits aufgeschlossenes Mate¬ rial leichter in Förderrichtung entweichen kann, während die Rillen selbst auf noch nicht aufgeschlossenes Material die Wirkung eines Teilens ausüben.
Es kann von Vorteil sein, wenn - in Förderrichtung gesehen - hinter den Stiften Entgasungsanordnungen vorgesehen sind, die hier im Schatten der Stifte eine besonders günstige Anordnung für die Abführung von im Material vorhandenen oder gebildeten Gas aufweisen.
Das Wesen der Erfindung ist nachstehend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1 einen Schnitt durch einen Extruder mit zwei Stiften in einer Radialebene;
Fig. 2 einen Schnitt durch einen Extruder mit drei Stiften in einer Radialebene; Q
. Fig. 3 einen Extruder mit vier zylindrischen nur teilweise in den Innenraum des Extruders hereinragenden Stiften;
Fig. 4 einen Extruder mit vier am Ende kegelförmig gestalteten Stiften;
Fig. 5 einen Teil eines Längsschnittes durch einen Extruder; und
Fig. 6 einen Schnitt eines dem in Figur 3 darge¬ stellten Extruder ähnlichen Extruders mit vier Stiften, die jedoch zum Zweck der Ent- gasung über ein von außen anzulegendes
Vakuum oder zur Begasung in Längsrichtung durchbohrt sind.
In Figur 1 ist ein Schnitt durch einen Einschnecken-Extru- derzylinder 1, der in der Schnittebene keine Kühlkammer aufweist, da diese zumeist zwischen den Stiftebenen liegt, dargestellt. Der Zylinder kann in bekannter Weise mit einer Harzstoffausschleuderung zwecks Verschleißminderung verse¬ hen sein. Die Bohrungen für die Aufnahme der Stifte 2 sind hier durchgehend angeordnet und schneiden die Zylinder¬ innenwand. Die in die Bohrungen eingesetzten Stifte weisen an ihrem einen Ende einen Kopf auf, der mit Gewinde verse¬ hen ist, welches in ein Innengewinde der Bohrung ein¬ schraubbar ist. Für dieses Einschrauben dient ein am Kopf angeordneter Sechskant. Der Stift erstreckt sich in dieser Bohrung so weit, daß er an beiden Enden in der Bohrung fest gelagert ist. Der Stift ist aus diesem Grunde länger gestaltet als die längste Länge der Bohrung im Zylinder¬ innenraum. Da der Stift nur mit einem kleinen Teil seiner Umfangsflache in den Innenraum des Zylinders hineinragt, ist ein Abbrechen dieses Stiftes völlig unmöglich. Der Stift ist so angeordnet, daß er den Grund der in der
ERSAT Schnecke 5 befindlichen Rille ebenso wenig wie die an . dieser Stelle mit einer Ausnehmung (der Rille) versehenen Schneckenstege berührt.
Mit Hilfe eines Zufuhrrohres 3 und eines Abfuhrrohres 4 kann im Stift eine Flüssigkeitstemperierung erfolgen. Dadurch, daß zwischen der Stiftumfangεflache und der Schneckenkernumfangsflache ein sich im Querschnitt vermin¬ dernder Spalt gebildet ist, findet hier eine in besonderer Weise erfolgende Behandlung des Materials statt.
Im Ausführungsbeispiel der Figur 2 sind drei nicht durchge¬ hende Bohrungen für die Aufnahme von zylindrischen Stiften 6 vorgesehen.
Im Ausführungsbeispiel der Figur 3 sind vier Bohrungen vor¬ gesehen, deren Ende jeweils in einer Radialebene liegt. Die hier eingesetzten zylindrischen Stifte 7 bilden im Schneckengang radiale Stirnflächen aus, hinter denen eine Dekomprccsion des Materials und dabei eine besonders gute
Vermischung des Materials auftritt. An dieser Stelle können Bohrungen in der Zylinderwand vorgesehen sein, die der Abführung von unter dem Extruderstrom befindlichen Gas dienen können. Die Radialebene, in der die Stirnseiten von zwei Stiften 7 liegt, ist mit dem Bezugszeichen 8 versehen und verläuft durch die Achse der Schnecke.
Im Ausführungsbeispiel der Figur 4 sind vier Stifte 9 in einer Radialebene angeordnet, die über einen wesentlichen Teil ihrer Stiftlänge zylindrisch, am Ende jedoch kegel¬ förmig gestaltet sind. Dieser Kegel 10 legt sich mit seiner Umfangsflache in die hier ebenfalls kegelförmig gestaltete Bohrung, so daß keine toten Ecken entstehen.
Figur 5 zeigt einen Teil eines Längsschnittes durch den Schneckenextruder mit Stiften 2 in zwei Radialebenen.
ERSATZBLATT Zwischen diesen Radialebenen sind in der Zylinderwandung Kühlkanäle 11 vorgesehen.
Um eine Entgasung in einer Zone des Extruders zu ermögli- chen, wurde bei bekannten Extrudern die Schnecke in der Entgasungszone mit dem Nachteil tiefer geschnitten, daß dann ein geringeres Drehmoment übertragbar war. Ein anderer Weg bestand darin, in dieser Entgasungszone eine Ausnehmung im Zylinder vorzusehen, was einen größeren Fertigungsauf- wand erfordert. Im Unterschied hierzu wird nunmehr bei dem in Figur 6 gezeigten Ausführungsbeispiel die Länge der Stifte - ähnlich dem Ausführungsbeispiel gemäß Figur 3 - in der Entgasungszone verkleinert, und diese Stifte 12 werden mit jeweils einer in der im Zylinder 1 liegenden Stirn- fläche des Stifts offen mündenden Durchgangsbohrung 13 ver¬ sehen, an die von außen das Vakuum für die Entgasung ange¬ legt wird. Über die Durchgangsbohrung 13. kann andererseits - in Sonderfällen - auch ein Druckgas,eine Flüssigkeit oder ein - z.B. durch Aufschmelzen plastifizierter - Zuschlag- Stoff unter Druck eingespeist werden.
ERSATZBLATT

Claims

//A n s p r ü c h e
1. Schneckenextruder, in dessen mindestens eine Schnecke aufnehmenden Zylinder Bohrungen für die Aufnahme von in den Förderbereich hineinragenden, in Radialebenen angeordneten Stiften vorgesehen sind, d a d u r c h g e k e n n z e i c h n e t , daß die Achsen der Stifte (2, 6, 7, 9, 12) tangential oder parallel zu Tangenten der Schnecke (5) bzw. der Innenwand des Zylinders (1) angeordnet sind.
2. Schneckenextruder nach Anspruch 1, dadurch gekennzeich- net, daß die Stifte (7) in einer Bohrung gelagert sind und mit ihrem Ende frei in den Zylinder (1) hineinragen.
3. Schneckenextruder nach Anspruch 1 und 2, dadurch gekenn¬ zeichnet, daß die Stifte (9) in ihrem im Zylinder (1) befindlichen Bereich konisch oder im Längsschnitt ellip¬ tisch oder im Querschnitt unrund gestaltet sind.
4. Schneckenextruder nach Anspruch 1, dadurch gekennzeich¬ net, daß die Stifte (2) an beiden Enden in einer oder in zwei Bohrungen des Zylinders (12) gelagert sind.
5. Schneckenextruder nach Anspruch 4, dadurch gekennzeich¬ net, daß die Stifte zumindest über einen Teil ihrer im Zylinder liegenden Länge im Querschnitt unrund sind.
6. Schneckenextruder nach Anspruch 1, dadurch gekennzeich¬ net, daß die Bohrung so in der Zylinderinnenwand liegt, daß der eingelegte Stift nur mit einem Teil seiner Umfangs- flache in den Zylinderinnenraum hineinragt.
7. Schneckenextruder nach Anspruch 1, dadurch gekennzeich¬ net, daß die Stifte (2, 9) mit mindestens einem Kanal (3,
ERSATZBLATT 4) für die Aufnahme oder den Durchfluß eines Temperier¬ mittels versehen sind.
8. Schneckenextruder nach Anspruch 1, dadurch gekennzeich- net, daß die Stifte mit Bohrungen für die Aufnahme von Sen¬ soren versehen sind.
9. Schneckenextruder nach Anspruch 1, dadurch gekennzeich¬ net, daß die tangential liegenden Stifte in einer, vorzugs- weise der ersten Ebene, angeordnet sind und daß in weiteren Ebenen radial angeordnete Stifte vorgesehen sind.
10. Schneckenextruder nach Anspruch 1, dadurch gekennzeich¬ net, daß Teile der Umfangsflachen der Stifte mit vorzugs- weise schräg angeordneten Vertiefungen, insbesondere in Form von Rillen, versehen sind.
11. Schneckenextruder nach Anspruch 1, gekennzeichnet durch die Anordnung von Bohrungen (13) für die Evakuierung hinter den Stiften (2, 6, 7, 9, 12).
ERSAT
PCT/EP1991/000601 1990-04-02 1991-03-27 Schneckenextruder WO1991015348A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/049,969 US5324108A (en) 1990-04-02 1993-04-20 Arrangement for pin cylinder extruders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4010540A DE4010540C1 (de) 1990-04-02 1990-04-02
DEP4010540.7 1990-04-02

Publications (1)

Publication Number Publication Date
WO1991015348A1 true WO1991015348A1 (de) 1991-10-17

Family

ID=6403566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/000601 WO1991015348A1 (de) 1990-04-02 1991-03-27 Schneckenextruder

Country Status (4)

Country Link
US (1) US5324108A (de)
EP (1) EP0474825A1 (de)
DE (1) DE4010540C1 (de)
WO (1) WO1991015348A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561234A1 (de) * 1992-03-13 1993-09-22 Paul Troester Maschinenfabrik Verfahren und Vorrichtung zur Temperaturkonstanthaltung des Extrudates eines Schneckenextruders
WO1994014597A1 (de) * 1992-12-28 1994-07-07 Krupp Maschinentechnik Gesellschaft mit beschränkter Haftung Schneckenextruder

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6648501B2 (en) * 2000-12-19 2003-11-18 Wenger Manufacturing, Inc. System for homogeneously mixing plural incoming product streams of different composition
US20040136261A1 (en) * 2001-02-12 2004-07-15 Huber Gordon R. System for homogeneously mixing plural incoming product streams of different composition
EP1232847A1 (de) * 2001-02-14 2002-08-21 COLMEC S.p.A. Stiftzylinderextruder
EP1258335B1 (de) * 2001-05-15 2005-10-26 Italcoppie S.r.l. Extrudiervorrichtung für temperaturkontrollierte Extrusion
US7857500B2 (en) * 2003-08-20 2010-12-28 Kraft Foods Global Brands Llc Apparatus for vacuum-less meat processing
US20050255222A1 (en) * 2003-08-20 2005-11-17 Kraft Foods Holdings, Inc. Method and apparatus for acceleration ingredient diffusion in meat
US20050255224A1 (en) * 2003-08-20 2005-11-17 Kraft Foods Holdings, Inc. Integrated continuous meat processing system
US8172545B2 (en) * 2003-08-20 2012-05-08 Kraft Foods Global Brands Llc Method for controlling ground meat flow rates
US20050249862A1 (en) * 2003-08-20 2005-11-10 Kraft Foods Holdings, Inc. Method and apparatus for controlling texture of meat products
US20050276903A1 (en) * 2003-08-20 2005-12-15 Kraft Foods Holdings, Inc. Method and apparatus for meat product manufacturing
US7488502B2 (en) * 2003-08-20 2009-02-10 Kraft Foods Global Brands Llc Method of making processed meat products
US7169421B2 (en) * 2003-08-20 2007-01-30 Kraft Foods Holdings, Inc. Method of making processed meat products
US7731998B2 (en) * 2003-08-20 2010-06-08 Kraft Foods Global Brands Llc Method for reducing protein exudate on meat product
US7871655B2 (en) * 2003-08-20 2011-01-18 Kraft Foods Global Brands Llc Method and apparatus for accelerating formation of functional meat mixtures
JP4204580B2 (ja) * 2005-09-13 2009-01-07 株式会社日本製鋼所 押出機シリンダの熱交換機構および熱交換方法
TW200821125A (en) * 2006-08-23 2008-05-16 Sulzer Chemtech Ag A metering device
US8641263B2 (en) 2008-11-24 2014-02-04 Kraft Foods Group Brands Llc Method and apparatus for continuous processing of whole muscle meat products
US8187651B2 (en) * 2008-11-24 2012-05-29 Kraft Foods Global Brands Llc Method and apparatus for continuous processing of whole muscle meat products
US8308342B2 (en) 2008-11-24 2012-11-13 Kraft Foods Global Brands Llc Processing elements for mixing meat products
EP3473396B1 (de) * 2017-10-17 2021-06-16 Buss AG Asymmetrische zweiflüglige schneckenwelle für eine misch- und knetmaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1849291A (en) * 1929-04-23 1932-03-15 Farrel Birmingham Co Inc Machine for plasticating materials
US4657499A (en) * 1985-05-30 1987-04-14 Shell Oil Company Screw extruder apparatus adapted for mixing additive fluids

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE137813C (de) *
US1184016A (en) * 1915-11-12 1916-05-23 Rubber Regenerating Co Apparatus for treating plastic materials.
US1848236A (en) * 1930-11-14 1932-03-08 Anderson Co V D Sausage stuffing machine
DE1454801B2 (de) * 1961-02-17 1972-09-07 Verfahren zum entfernen von fluessigkeit aus elastomeren
US3193877A (en) * 1962-04-02 1965-07-13 Eastman Kodak Co Multistage extrusion screw and alternate filters
AU411192B2 (en) * 1966-08-24 1971-03-02 Mcneer Research & Development Pty. Ltd Tube mixer for granular material
JPS49307B1 (de) * 1966-12-12 1974-01-07
US3482822A (en) * 1968-01-30 1969-12-09 Eugene J Krizak Mixing device
US3938783A (en) * 1970-10-30 1976-02-17 The Upjohn Company Method for continuous mixing of foam materials
US3981658A (en) * 1972-01-14 1976-09-21 International Basic Economy Corporation Screw type apparatus for drying moist polymeric materials
US4178104A (en) * 1972-07-21 1979-12-11 Uniroyal, Ag Method and apparatus for mixing viscous materials
DE2235784C3 (de) * 1972-07-21 1986-01-09 Uniroyal Englebert Reifen GmbH, 5100 Aachen Einschnecken-Extruder zum Mischen und Homogenisieren von hochviskosen Kautschukmischungen und hochviskosen Thermoplasten
IT1012681B (it) * 1973-05-30 1977-03-10 Berna Ag Cilindro multiplo bimetallico par ticolarmente per teste d estrusio ne di macchine per la lavorazione di materie sintetiche
US4155690A (en) * 1978-05-30 1979-05-22 Northern Telecom Limited Continuous production of cross-linked polyethylene
DE2924317C2 (de) * 1979-06-15 1984-07-19 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Zweistufige Strangpreßvorrichtung für thermoplastische Formmassen, insbesondere für pulverförmige Kunststoffe
SU889477A1 (ru) * 1979-08-17 1981-12-15 Предприятие П/Я В-8415 Черв чна машина дл сушки полимерных материалов
DE3042427C2 (de) * 1980-11-11 1983-04-07 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Doppelschneckenstrangpresse zum Verarbeiten von thermoplastischen Formmassen, insbesondere Kunststoffen
DE3043194A1 (de) * 1980-11-15 1982-07-01 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Einrichtung zum mechanischen trennen von fluessigkeiten aus fluessigkeitsfeststoffgemischen in einer schneckenpresse
DE3108823A1 (de) * 1981-03-09 1982-09-16 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover "einrichtung zur kontinuierlichen herstellung von glucose enthaltenden produkten"
US4393017A (en) * 1981-06-18 1983-07-12 The B. F. Goodrich Company Apparatus and method for making foamed resin products
DE3150719A1 (de) * 1981-12-22 1983-06-30 Uniroyal Englebert Reifen GmbH, 5100 Aachen Schneckenextruder
DE3221472C2 (de) * 1982-06-07 1984-06-20 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Extruder
DE3225512A1 (de) * 1982-07-08 1984-01-12 Continental Gummi-Werke Ag, 3000 Hannover Strangpresse
GB2150037B (en) * 1983-11-26 1986-11-12 Farrel Bridge Ltd Extruder barrel construction
DE3502437A1 (de) * 1985-01-25 1986-07-31 Paul Troester Maschinenfabrik, 3000 Hannover Stiftzylinder-schneckenextruder
US4629327A (en) * 1985-01-29 1986-12-16 Hermann Berstorff Maschinenbau Gmbh Pin-barrel extruder having adjustable pins
DE3503911C1 (de) * 1985-02-06 1986-09-04 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Stiftverstelleinrichtung an einem Stiftextruder fuer die Verarbeitung von Kautschuk oder thermoplastischen Kunststoffen
DE3506424C1 (de) * 1985-02-23 1986-08-21 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Stiftverstelleinrichtung an einem Stiftextruder fuer die Verarbeitung von Kautschuk oder thermoplastischen Kunststoffen
ES8607809A1 (es) * 1985-04-30 1986-06-01 Gumix Sa Maquina extrusora-turbomezcladora
ES8607810A1 (es) * 1985-04-30 1986-06-01 Gumix Sa Una maquina extrusora-turbomezcladora
DE3534097A1 (de) * 1985-09-25 1987-04-02 Krupp Gmbh Schneckenextruder
DE3541499C1 (de) * 1985-11-23 1993-06-03 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Stiftzylinderextruder mit einer Zylindertemperiereinrichtung
JPS62231719A (ja) * 1986-04-01 1987-10-12 Kobe Kikai Kk ゴム材料の押出装置
EP0303728B1 (de) * 1987-08-21 1991-09-11 Schumacher, Walter Dr. Ing. Vorrichtung zum Extrudieren, Expandieren und/oder thermischen Behandeln von Stoffen und Stoffgemischen
DE3805748A1 (de) * 1988-02-24 1989-09-07 Berstorff Gmbh Masch Hermann Verfahren und einrichtung zur aufrechterhaltung eines rueckwaertsentgasungsvorganges an einem einschneckenextruder
DE3805849A1 (de) * 1988-02-25 1989-09-07 Krupp Gmbh Stiftextruder
DE3811186C2 (de) * 1988-04-01 1996-10-02 Erhard Thoma Gleitschalungsfertiger
US4901635A (en) * 1988-04-08 1990-02-20 Anderson International Corp. Apparatus and method for the continuous extrusion and partial deliquefaction of oleaginous materials
JPH0643048B2 (ja) * 1989-03-27 1994-06-08 日本碍子株式会社 セラミック押出法およびそれに用いる装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1849291A (en) * 1929-04-23 1932-03-15 Farrel Birmingham Co Inc Machine for plasticating materials
US4657499A (en) * 1985-05-30 1987-04-14 Shell Oil Company Screw extruder apparatus adapted for mixing additive fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0561234A1 (de) * 1992-03-13 1993-09-22 Paul Troester Maschinenfabrik Verfahren und Vorrichtung zur Temperaturkonstanthaltung des Extrudates eines Schneckenextruders
WO1994014597A1 (de) * 1992-12-28 1994-07-07 Krupp Maschinentechnik Gesellschaft mit beschränkter Haftung Schneckenextruder
US5480227A (en) * 1992-12-28 1996-01-02 Krupp Maschinentechnik Gmbh Screw extruder with shear-controlling diagonally extending pins

Also Published As

Publication number Publication date
EP0474825A1 (de) 1992-03-18
DE4010540C1 (de) 1991-11-07
US5324108A (en) 1994-06-28

Similar Documents

Publication Publication Date Title
WO1991015348A1 (de) Schneckenextruder
DE102016007290A1 (de) Starter für das Devulkanisieren von Altgummi
DE1101745B (de) Mahl- und Knetvorrichtung an Schneckenpressen fuer thermoplastische Massen
WO1993014921A1 (de) Mehrwellige kontinuierlich arbeitende misch- und knetmaschine für plastifizierbare massen
DE2235784B2 (de) Einschnecken-Extruder zum Mischen und Homogenisieren von hochviskosen Kautschukmischungen und sich ähnlich verhaltenden Thermoplasten
DE1502335B2 (de) Schneckenstrangprese fuer die verarbeitung von kunststoff
EP0820375A1 (de) Vorrichtung zum aufbereiten thermoplastischen kunststoffgutes
EP0148966B2 (de) Kontinuierliches Misch- und Scherwalzwerk
EP2212090B1 (de) Extruderschnecke für einen schneckenextruder
DE1554756B2 (de) Schneckenstrangpresse zur verarbeitung thermoplastischer werkstoffe
WO2006042491A2 (de) Einwellige, kontinuerlich arbeitende misch- und kraftmaschine mit konischem schaft
EP0012795B1 (de) Schneckenstrangpresse für die Verarbeitung von Kunststoff, Kautschuk oder dergleichen
DE2905665C2 (de) Schneckenförderer
EP0428978B1 (de) Vorrichtung zum Auspressen von Bearbeitungsgut
EP0490361B1 (de) Extruder für schwer mischbare Extrudate
DE2026834C3 (de) Schneckenpresse mit einer in einem Schneckengehäuse drehbar angeordneten Einzel schnecke zum Plastizieren von Kunststoff
EP0548861B1 (de) Zusammengesetzte Schnecke für einen Extruder für die keramische Industrie
DE1145787B (de) Schneckenstrangpresse mit einem Stauabschnitt, dessen Querschnitt veraenderlich ist
EP0324800B1 (de) Misch- und scherwalzwerk für plastifizierbares material
WO2018072935A1 (de) Zylinder für eine kunststoff verarbeitende maschine und verfahren zum betreiben eines extruders
DE935634C (de) Kontinuierlich arbeitende Schneckenpresse fuer plastische Massen
DE1805868A1 (de) Strangpresse
DE19614039C2 (de) Schneckenextruder für keramische Massen
DE19704866A1 (de) Compounder für plastifizierbare Massen
DE102021112007A1 (de) Mischteil einer Schneckenmaschine mit verbesserter radialer Homogenisierungswirkung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1991906859

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1991906859

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1991906859

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991906859

Country of ref document: EP