WO1990011603A1 - Insulated electric wire - Google Patents

Insulated electric wire Download PDF

Info

Publication number
WO1990011603A1
WO1990011603A1 PCT/JP1990/000401 JP9000401W WO9011603A1 WO 1990011603 A1 WO1990011603 A1 WO 1990011603A1 JP 9000401 W JP9000401 W JP 9000401W WO 9011603 A1 WO9011603 A1 WO 9011603A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
layer
chromium oxide
wire
containing layer
Prior art date
Application number
PCT/JP1990/000401
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Inazawa
Kouichi Yamada
Kazuo Sawada
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to DE69013448T priority Critical patent/DE69013448T2/en
Priority to KR1019900702515A priority patent/KR940000845B1/en
Priority to EP90904938A priority patent/EP0416131B1/en
Publication of WO1990011603A1 publication Critical patent/WO1990011603A1/en
Priority to US08/023,077 priority patent/US5372886A/en
Priority to HK96795A priority patent/HK96795A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • H01B3/105Wires with oxides

Definitions

  • the present invention relates to an insulated wire, and more particularly to an insulated wire such as a wiring wire and a winding wire used in a high vacuum environment such as a high vacuum device or a device used at a high temperature, or in a high temperature environment. Things.
  • Insulated wires may be used for equipment that requires safety at high temperatures, such as heating equipment and fire alarms. Insulated wires are also used in environments where automobiles are heated to high temperatures. Conventionally, as such an insulated wire, an insulated wire in which a conductor is covered with a heat-resistant organic resin such as polyimide-fluorinated resin is used.
  • a heat-resistant organic resin such as polyimide-fluorinated resin
  • the conductor is inserted into an insulated wire in the form of a conductor passed through a ceramic tube, or a tube made of a heat-resistant alloy such as a stainless steel alloy filled with metal oxide fine particles such as magnesium oxide. Ml Cape Inlet (Mineral Insulated Cab 1e) etc. in the form of passing through have been used for such purposes.
  • a glass braided insulated wire that uses a fiber woven fabric as an insulating member is exemplified.
  • the highest temperature at which insulation can be maintained is at most
  • insulated wires with improved heat resistance using ceramic tube made of glass have drawbacks such as poor flexibility.
  • the MI cable is composed of a heat-resistant alloy tube and a conductor, the outer diameter of the cable increases. As a result, the Ml cable has a relatively large cross section for the amount of power allowed by the conductor passed through the heat-resistant alloy tube.
  • the outer layer of the MI cable is made of a heat-resistant alloy tube, it has good flexibility.
  • it in order to use it as a wire for winding wound on a bobbin or the like in a coil shape, it is necessary to bend a pipe made of a heat-resistant alloy at a predetermined curvature. At this time, the bending work performed on the heat-resistant alloy pipe involves difficulty.
  • the MI cable is wound in a coil shape, it is difficult to improve the winding density because the outer layer pipe is thicker than the conductor.
  • alumite wire which is an anodized aluminum or aluminum alloy wire, as an insulated wire with good heat resistance, insulation and heat dissipation.
  • the base material is limited to aluminum.
  • the inorganic insulating layer formed on the base material is also limited to aluminum oxide. Therefore, there was a problem that a combination of a base material and an inorganic insulating layer suitable for various uses could not be selected.
  • this invention was made in order to solve the said problem, and it aims at providing the insulated wire provided with the following matters.
  • a combination of a base material and an inorganic insulating layer suitable for various uses can be selected.
  • the insulated wire according to the present invention comprises a base material and chromium oxide. And an oxide insulating layer.
  • the substrate has an outer surface and includes a conductor.
  • the chromium oxide-containing layer is formed on the outer surface of the substrate.
  • the oxide insulating layer is formed by applying a precursor solution of a metal oxide on the chromium oxide-containing layer by a sol-gel method or an organic acid salt pyrolysis method.
  • the chromium oxide-containing layer is preferably formed by an electrochemical method.
  • the electrochemical method means an electrolytic plating method or an electroless plating method.
  • Underlayer performing oxide insulating layer in order to function lay favored as a contact ⁇ is, C r 0 3 - X ( .. 1 5 ⁇ X ⁇ 2 5) may be any layer. That is, the layer formed by the electrochemical method has a chromium oxide layer as the outermost layer.
  • the oxide insulating layer preferably contains silicon oxide, aluminum oxide, and zirconium oxide. From the viewpoint of high conductivity and cost, it is preferable that the base material be a copper or copper alloy. In consideration of applications at higher temperatures, the surface layer of the base material preferably contains nickel, chromium, silver, iron or iron alloy, stainless alloy, titanium or titanium alloy.
  • a chromium plating layer is formed as a good adhesion layer on a conductor such as a ⁇ or ⁇ alloy.
  • insulating oxide ceramics such as silicon oxide obtained by heat treatment of the precursor solution of the metal oxide show little adhesion to the chromium plating layer. This is a book This is based on the knowledge of the inventor.
  • a layer having a chromium oxide layer as the outermost layer is formed on the outer surface of the substrate. On this chromium oxide layer, an insulating oxide ceramic adheres as a layer having good adhesion.
  • the chromium oxide layer is formed by an electrochemical method.
  • an electrolytic solution obtained by adding a small amount of an organic acid to an aqueous solution of chromic acid is used.
  • a surge bath mainly composed of chromic acid and sulfuric acid is known as an electrolytic bath used for performing chromium plating, but differs from this bath in the following points.
  • the mineral acid mixed in the electrolytic bath has the function of dissolving the chromium oxide generated on the surface of the plating layer during electroplating. Therefore, when a surge bath is used, a glossy metallic chromium layer is plated. In the present invention, it is necessary to preferentially plate chromium oxide.
  • the electrolytic bath used in the present invention a small amount of organic acid is added to the electrolytic bath used in the present invention.
  • a mineral acid such as sulfuric acid
  • a particularly dilute electrolytic bath must be used. That is, the chromic acid concentration is less than 50 g Z £ and the sulfuric acid concentration is less than 1 g Z IL.
  • the processing of the precursor solution forms a thin film of insulating ceramic, but in order to increase the adhesion of this thin film, the surface of the layer mainly composed of chromium oxide must be rough. I like it.
  • a chromium oxide-containing layer may be formed by an electrolytic plating method using an electrolytic solution obtained by adding, for example, sodium citrate, sodium carbonate, or the like to an aqueous solution of sodium chromate.
  • the formed layer is mainly composed of chromium oxide generated by reducing hexavalent chromium in the electrolytic solution to trivalent.
  • the electrolytic plating treatment when ⁇ is used as the base material, the base material surface is oxidized, and a chromium oxide-containing layer is formed outside.
  • the oxidation of the chromium oxide-containing layer does not decrease the adhesion of the chromium oxide-containing layer to the substrate due to the oxidation of the substrate surface.
  • the conditions for the electrolytic plating when forming the chromium oxide-containing layer of the present invention are different from the generally used plating in terms of processing current density and the like.
  • the current density is set to 1 0 ⁇ 6 O AZdm 2
  • the current density is set to 1 0 0 ⁇ 2 0 0 AZdm 2 .
  • a roughened chromium oxide-containing layer can be formed.
  • An insulating oxide layer is formed on the chromium oxide-containing layer by applying a precursor solution of a metal oxide.
  • a precursor solution of a metal oxide refers to a solution prepared from a metal organic compound, and is prepared by a sol-gel method or It is roughly classified according to the organic acid salt pyrolysis method, and includes the following two types of evenings.
  • the first type of precursor solution is a solution formed by subjecting a compound containing a hydrolyzable metal-oxygen-organic group bond such as a metal alkoxide and metal acetate to a hydrolysis reaction and a dehydration condensation reaction. is there.
  • This solution may contain an organic solvent such as alcohol, a starting compound such as a metal alkoxide, water and a catalyst necessary for the hydrolysis reaction.
  • a hydrolyzable metal-oxygen-organic group bond such as a metal alkoxide and metal acetate
  • This solution may contain an organic solvent such as alcohol, a starting compound such as a metal alkoxide, water and a catalyst necessary for the hydrolysis reaction.
  • hydroxide sols generated from inorganic salts they often contain organic residues such as alkoxides.
  • the second type of precursor solution is a solution in which a metal organic compound such as an organic acid salt of a metal is dissolved in a suitable organic solvent.
  • a metal oxide is generated by heating and thermally decomposing after coating. For this reason, the decomposition temperature of the metal organic compound used needs to be lower than its boiling point or sublimation point.
  • the metal-organic compound referred to in this specification is, for example, "metal — organicco mpounds" described in journal of Materials Science 12 (1977) pp. 1203 to 128. It is the same concept as.
  • the coating must be left above room temperature to volatilize organic solvents and remove residual organic matter.
  • the temperature of this neglected atmosphere constitutes the substrate The temperature must not be higher than the melting point of the metal used.
  • metal oxide precursor solution By applying a metal oxide precursor solution, almost all metal oxide-based ceramic coatings can be formed.
  • a metal oxide formed by this method include S i 0 2 AI 2 ⁇ 3, Z r 0 T i 0 2, M g O , and the like.
  • the metal alkoxide used in the first type of precursor solution include ethoxide, propoxide, butoxide and the like.
  • the organic acid salt used in the second type of precursor solution a metal salt such as naphthenic acid, caprylic acid, stearic acid, and octylic acid is preferable.
  • An oxide insulating layer formed from a precursor solution of a metal oxide by a sol-gel method or an organic acid salt pyrolysis method is a completely metal oxide oxide.
  • This oxide is preferably formed by a heat treatment in an atmosphere of an oxygen stream.
  • the decomposition of the compound contained in the solution applied on the chromium oxide-containing layer is usually completed completely at a temperature of about 500 ° C.
  • the heat treatment is performed at a higher temperature, the reaction between the elements constituting the chromium oxide-containing layer and the metal or metalloid contained in the applied solution is accelerated, so that the chromium oxide-containing layer is accelerated.
  • the adhesion between the metal and the oxide layer is improved.
  • the ceramic oxide insulating layer exhibits excellent heat resistance even at a high temperature of 500 ° C. or more.
  • the chromium oxide-containing layer has excellent adhesion to the conductor constituting the base material. Therefore, compared with the case where the oxide insulating layer is formed directly on the outer surface of the conductor by heat treatment of the precursor solution of the metal oxide, the adhesive force between the oxide insulating layer and the outer surface of the base material is higher. Is improved. Therefore, the insulated electric wire provided by the present invention has heat resistance and good flexibility.
  • the oxide insulating layer formed on the chromium oxide-containing layer has a smooth outer surface. Therefore, it is possible to obtain a high breakdown voltage in proportion to the film thickness and to reduce the number of gas adsorption sources.
  • a chromium oxide-containing layer is formed between the substrate and the oxide insulating layer. Therefore, a combination with an inorganic insulating layer suitable for various uses can be selected via the chromium oxide-containing layer.
  • FIG. 1 is a cross-sectional view showing a cross section of an insulated wire according to the present invention, corresponding to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a cross section of an insulated wire according to the present invention corresponding to the second embodiment.
  • FIG. 3 is a cross-sectional view showing a cross section of an insulated wire according to the present invention in accordance with a third embodiment.
  • FIG. 4 is a cross-sectional view showing a cross section of an insulated wire according to the present invention corresponding to the fourth embodiment.
  • FIG. 5 is a graph showing the measurement results of the surface roughness of the chromium oxide-containing layer formed according to Examples 3 and 4.
  • FIG. 6 is a graph showing the measurement results of the surface roughness of the chromium plating layer formed according to the comparative example.
  • Electrolytic plating was applied to the outer surface of a copper wire with a wire diameter of 2 mm ⁇ .
  • a solution having a concentration of 40 gZ £ of chromic anhydride and 0.45 gZ £ of sulfuric acid was used as the electrolyte.
  • the bathing condition was 50 bath temperature. C, the current density was 140 AZ dm 2 , and the processing time was 2 minutes.
  • a chromium oxide-containing layer was formed on the outer surface of the copper wire with a thickness of about 1 m.
  • a nitric acid was added to a solution mixed at a molar ratio of 3/100 with respect to tetrabutyl orthosilicate. They were added in molar proportions. Thereafter, the solution was heated and stirred at a temperature of 80 ° C. for 2 hours. As a result, a coating solution used for the sol-gel method was synthesized.
  • the wire coated with the coating solution on the outer surface in this manner was immersed in the solution 9 and subjected to heating for 10 minutes at a temperature of 400 ° C. 10 times. Finally, the wire was heated in a stream of oxygen at a temperature of 500 ° C. for 10 minutes.
  • FIG. 1 shows the insulated wire obtained as described above.
  • FIG. 1 is a cross-sectional view showing a cross section of the insulating wire obtained in Example 1.
  • a chromium oxide-containing layer 2 is formed on the outer surface of copper wire 1.
  • a silicon oxide layer 3 is formed as an oxide insulating layer by a sol-gel method. The thickness of the insulating layer formed by the oxide containing layer 2 and the silicon oxide layer 3 was about 4.0 m.
  • the breakdown voltage was measured to evaluate the insulation properties of the insulated wires obtained. At room temperature, the breakdown voltage was 800 V, and at 800, it was 600 V. Even when this insulated wire was wound on the outer peripheral surface of a cylinder having a diameter of 10 cm, no crack was generated in the insulating layer.
  • Electrolytic plating was performed by passing a DC current of 0.5 A / dm 2 . At this time, about 1 solution of 30 g each of sodium chromate, sodium citrate and sodium carbonate dissolved in water was used as the electrolyte.
  • a copper oxide layer having a thickness of about 1 m is formed on the outer surface of the copper wire, and a chromium oxide-containing layer is formed to a thickness of about 0.1 zm outside the copper oxide layer.
  • the wire obtained in (a) was immersed in the coating solution in (b).
  • the wire coated with the coating solution on the outer surface in this manner was heated 10 times at a temperature of 400 ° C. for 10 minutes.
  • FIG. 2 is a cross-sectional view showing a cross section of the insulated wire obtained in Example 2.
  • a copper oxide layer 12 is formed on the outer surface of copper wire 11.
  • a chromium oxide containing layer 13 is formed outside the copper oxide layer 12.
  • a zirconium oxide layer 14 is formed on the chromium oxide-containing layer 13 as an oxide insulating layer by a sol-gel method. The thickness of the insulating layer formed by the copper oxide layer 12, the chromium oxide-containing layer 13 and the zirconium oxide layer 14 was about 3. O Azm.
  • the insulation breakdown voltage was measured. At room temperature, the breakdown voltage was 700 V, and at 700 ° C, it was 500 V. Further, even when this insulated wire was wound on the outer peripheral surface of a cylinder having a diameter of 10 cm, no crack was generated in the insulating layer.
  • Electrolytic treatment was applied to the outer surface of a nickel-plated copper wire with a wire diameter of 1.8 mm0.
  • the electrolytic solution those having a concentration of chromic anhydride of 200 £, ammonium metavanadate of 20 gZ £, and acetic acid of 6.5 g ZL were used.
  • the plating conditions were such that the base material was used as a cathode, the bath temperature was 50 ° C., the current density was 150 A / dm 2 , and the treatment time was 2 minutes.
  • a chromium oxide-containing layer having a thickness of about 1 m was formed on the outer surface of the nickel-plated copper wire.
  • the surface condition of the chromium oxide-containing layer is determined by the surface roughness of IS0468-19882, medium and line average roughness Ra is 0.15 m and maximum height Ry is 0.87. m.
  • Surface roughness measurements are made by S loan company of America The measurement was carried out using a DEKTAK 3030 surface profiler under the conditions of a stylus diameter of 0,5 ⁇ ⁇ , a stylus pressure of 10 mg, a standard length of 50 m, and no cutoff filter. The measurement results are shown in FIG.
  • a coating solution was prepared by dissolving 20 g of 2-ethylhexanoic silicate in 10 OmJL of dibutyl ether.
  • the wire obtained in (a) was immersed in the coating solution in (b).
  • the wire coated with the coating solution on the outer surface in this manner was subjected to 10 heating steps of 500 ° C. for 10 minutes.
  • FIG. 3 shows the insulated wire obtained as described above.
  • FIG. 3 is a cross-sectional view showing a cross section of the insulated wire obtained in Example 3.
  • a Nigger-plated copper wire having a Nigel plating layer 22 formed on the outer surface of copper wire 21 is used as a base material.
  • a chromium oxide-containing layer 23 is formed on the outer surface of the nickel-plated copper wire.
  • a silicon oxide layer 24 is formed as an oxide insulating layer by an organic acid salt pyrolysis method. The thickness of the insulating layer composed of the chromium oxide containing layer 23 and the silicon oxide layer 24 was about 5 m.
  • the insulation breakdown voltage was measured. At room temperature, the dielectric breakdown voltage was 500 V, at 800 ° C, it was 300 V, and on the outer peripheral surface of a 5 cm diameter cylinder, No cracks were generated in the insulating layer even when it was wound.
  • the plating conditions were as follows: the base material was used as the cathode, and the bath temperature was 50. C, current density was 150 AZ dm 2 , and processing time was 2 minutes. In this way, a chromium oxide-containing layer having a thickness of about 1 m was formed on the outer surface of the stainless steel clad copper wire.
  • the surface condition is determined by the Sur R ace Roughness of IS 0 4 6 8-1 9 8 2, the center line average roughness Ra is 0.15 ⁇ m and the maximum height Ry is 0.87 m Met.
  • the measurement was performed using a surface shape measuring instrument DEKTAK 300 manufactured by Sloan of America, with a stylus diameter of 0.5 m, a stylus pressure of 10 mg, a reference length of 50 ⁇ , and a cut-off filter. Conditions not used Made below. As a result of this measurement, the one shown in FIG. 5 was obtained as in Example 3.
  • the wire obtained in (a) was immersed in the coating solution in (b).
  • the wire coated with the coating solution on the outer surface in this manner was subjected to 10 heating steps of 500 ° C. for 10 minutes.
  • FIG. 4 is a cross-sectional view showing a cross section of the insulated wire obtained in Example 4.
  • a stainless steel clad copper wire having a stainless alloy layer 32 on the outer surface of copper wire 31 is used as a base material.
  • a chromium oxide-containing layer 33 is formed on the outer surface of the stainless steel copper wire.
  • an aluminum oxide layer 34 is formed as an oxide insulating layer by an organic acid salt pyrolysis method.
  • This aluminum oxide layer 34 is made of aluminum that is originally mixed in the coating solution. It is composed of an aluminum oxide mixed layer containing fine particles.
  • the film thickness of the insulating layer composed of the chromium oxide containing layer 33 and the aluminum oxide layer 34 was about 12 m.
  • the breakdown voltage was measured to evaluate the insulation properties of the insulated wires obtained. At room temperature, the breakdown voltage was 900 V, and at 800 ° C, it was 700 V. In addition, no cracks occurred in the insulating layer even when this insulated wire was wrapped around the outer circumference of a 15 cm diameter cylinder.
  • Electrolytic plating was applied to the outer surface of a nickel-plated copper wire with a wire diameter of 1.8 mm.
  • the electrolyte used had a concentration of 250 g / p of chromic anhydride and 2.5 gZJl of sulfuric acid.
  • the plating conditions were such that the substrate was used as a cathode, the bath temperature was 50 ° C., the current density was 40 A / dm 2 , and the treatment time was 2 minutes.
  • a chromium-containing layer having a thickness of about 1 m was formed on the outer surface of the nickel-plated copper wire.
  • the average surface roughness Ra was 0.06; / m, and the maximum height Ry was 0.51 m.
  • the measurement was performed using a surface profiler DE KT AK300, manufactured by Sloan of America, with a stylus diameter of 0.5 ⁇ m, a stylus pressure of 10 mg, a reference length of 50 ⁇ m, and a Conditions without using a filter Made below. The results of this measurement are shown in FIG. Glossy chrome metal layer formed on the outer surface of nickel-plated copper wire o
  • a coating solution was prepared by dissolving 20 g of 2-ethylhexane silicate silicate in 10 O mA of dimethyl ether.
  • the wire obtained in (a) was immersed in the coating solution in (b).
  • the wire coated with the coating solution on the outer surface in this way was subjected to a heating step at a temperature of 500 ° C. for 10 minutes.After the heating, the formed insulating layer was peeled into a film. And showed no adhesion.
  • the insulated wire according to the present invention can be used as a wiring wire, a winding wire, or the like used in a high vacuum environment such as a high vacuum device or a high-temperature device, or in a high temperature environment.
  • a high vacuum environment such as a high vacuum device or a high-temperature device, or in a high temperature environment.

Abstract

An insulated electric wire of this invention is adapted to be used as a wire for wiring or as a wire for winding in a highly vacuum or high-temperature environment such as high-vacuum equipment or high-temperature equipment. This wire comprises a base member (1), a chromium oxide layer (2) and an oxide insulating layer (3). The base member (1) includes a conductor. The chromium oxide layer (2) is formed on the outer surface of the base member (1). The oxide insulating layer (3) is formed on the chromium oxide layer (2) by applying a precursor solution of a metal oxide based on the sol-gel method or an organic acid salt pyrolysis method. The insulated electric wire exhibits excellent flexibility as well as heat resistance and does not provide a source of gas adsorption.

Description

明 細 書  Specification
発明の名称 Title of invention
絶縁電線  Insulated wire
技術分野 Technical field
こ の発明は、 絶縁電線に関し、 特に高真空機器や高温使 用機器等の高真空の環境下、 または高温度の環境下におい て用いられる配線用電線や巻線用電線等の絶縁電線に関す るものである。  The present invention relates to an insulated wire, and more particularly to an insulated wire such as a wiring wire and a winding wire used in a high vacuum environment such as a high vacuum device or a device used at a high temperature, or in a high temperature environment. Things.
背景技術 Background art
絶縁電線は、 加熱設備や火災報知器などの高温下におけ る安全性が要求される設備に使用されることがある。 また、 絶縁電線は、 自動車内の高温度に加熱される環境下におい ても用いられる。 このような絶縁電線と しては、 従来から、 導体にポリイ ミ ドゃフッ素系樹脂等の耐熱性有機樹脂が被 覆された絶縁電線が使用されている。  Insulated wires may be used for equipment that requires safety at high temperatures, such as heating equipment and fire alarms. Insulated wires are also used in environments where automobiles are heated to high temperatures. Conventionally, as such an insulated wire, an insulated wire in which a conductor is covered with a heat-resistant organic resin such as polyimide-fluorinated resin is used.
高い耐熱性が要求される用途や、 高い真空度が要求され る環境下で使用される場合には、 有機物被覆では、 耐熱性 やガス非放出性等の点で不十分である。 そこで、 セラ ミ ツ クス製のガイ シ管に導体が通された形式の絶縁電線や、 酸 化マグネシウムなどの金属酸化物微粒子が詰められた、 ス テンレス合金等からなる耐熱合金製の管に導体が通された 形式の M lケープノレ (M i n e r a l I n s u l a t e d C a b 1 e ) などが、 そのような用途に使用されてき また、 耐熱性とともに可撓性が要求される絶縁電線とし ては、 ガラス繊維が紡織されたものを絶縁部材と して使用 するガラス編組絶縁電線などが挙げられる。 When used in applications that require high heat resistance or in environments that require a high degree of vacuum, organic coatings are insufficient in terms of heat resistance and non-gas release. Therefore, the conductor is inserted into an insulated wire in the form of a conductor passed through a ceramic tube, or a tube made of a heat-resistant alloy such as a stainless steel alloy filled with metal oxide fine particles such as magnesium oxide. Ml Cape Inlet (Mineral Insulated Cab 1e) etc. in the form of passing through have been used for such purposes. Further, as an insulated wire that requires flexibility as well as heat resistance, a glass braided insulated wire that uses a fiber woven fabric as an insulating member is exemplified.
上記のような耐熱性を有する有機樹脂が被覆された絶縁 電線においては、 絶縁性が保たれ得る最高の温度は、 高々 For insulated wires coated with organic resins with heat resistance as described above, the highest temperature at which insulation can be maintained is at most
2 0 0 °C程度である。 そのため、 2 0 0 °C以上の高い温度 下において絶縁性の保証が要求される用途には、 このよう な有機物絶縁被覆電線を使用することはできなかった。 It is about 200 ° C. Therefore, such an organic insulated wire could not be used for applications requiring insulation assurance at temperatures as high as 200 ° C or higher.
また、 セラ ミ ッ クス製のガイ シ管を用いて耐熱性が高め られた絶縁電線は、 可撓性に乏しい等の欠点を有する。 M I ケーブルは耐熱性の合金管と導体とによつて構成される ため、 ケーブルの外径が大き く なる。 そのため、 M l ケー ブルは、 耐熱性の合金管内に通される導体が許容する電力 量に対して、 相対的に大きな断面を有するケーブルとなる。 また、 M I ケーブルの外層は耐熱性合金管によって構成さ れるため、 良好な可撓性を有する。 しかしながら、 ボビン 等にコイル状に巻かれる卷線用電線と して用いるためには、 耐熱合金製の管を所定の曲率で曲げる必要がある。 このと き、 耐熱合金製の管に施される曲げ加工は困難さを伴う。 また、 M I ケーブルをコイル状に巻く場合、 導体に比べて、 その外層の管が太いので、 巻線密度を向上させることが困 難である。  Also, insulated wires with improved heat resistance using ceramic tube made of glass have drawbacks such as poor flexibility. Since the MI cable is composed of a heat-resistant alloy tube and a conductor, the outer diameter of the cable increases. As a result, the Ml cable has a relatively large cross section for the amount of power allowed by the conductor passed through the heat-resistant alloy tube. Also, since the outer layer of the MI cable is made of a heat-resistant alloy tube, it has good flexibility. However, in order to use it as a wire for winding wound on a bobbin or the like in a coil shape, it is necessary to bend a pipe made of a heat-resistant alloy at a predetermined curvature. At this time, the bending work performed on the heat-resistant alloy pipe involves difficulty. Also, when the MI cable is wound in a coil shape, it is difficult to improve the winding density because the outer layer pipe is thicker than the conductor.
さ らに、 可撓性とともに耐熱性が備えられたガラス編組 絶縁電線を用いる場合、 用途に応じて所定の形状に配置す るとき、 ガラス繊維からガラスの粉塵が発生するという問 題がある。 このガラス粉塵は、 ガスの吸着源となり得る。 そのため、 高い真空度が要求される環境下でガラス編組絶 縁電線を用いると、 ガラス粉塵によって提供されるガス吸 着源のために、 高い真空度を保つことは不可能であった。 —方、 従来から、 耐熱性、 絶縁性、 熱放散性の良好な絶 縁電線と して、 アルミニウムあるいはアルミニウム合金の 線材に陽極酸化処理を施した、 いわゆるアルマイ ト電線が 存在する。 このアルマイ ト電線においては、 その基材がァ ルミ二ゥムに限定される。 また、 その基材上に形成される 無機絶縁層も酸化アルミニウムに限定される。 そのため、 種々の用途に適した基材と無機絶縁層との組合わせを選定 することができないという問題点があった。 In addition, when using a glass braided insulated wire that has both heat resistance and flexibility, arrange it in a predetermined shape according to the application. The problem is that glass dust is generated from the glass fiber when the glass fiber is used. This glass dust can be a gas adsorption source. Therefore, if glass-braided insulated wires were used in an environment where a high degree of vacuum was required, it was impossible to maintain a high degree of vacuum due to the gas adsorption source provided by the glass dust. On the other hand, there has been a so-called alumite wire, which is an anodized aluminum or aluminum alloy wire, as an insulated wire with good heat resistance, insulation and heat dissipation. In this alumite electric wire, the base material is limited to aluminum. Further, the inorganic insulating layer formed on the base material is also limited to aluminum oxide. Therefore, there was a problem that a combination of a base material and an inorganic insulating layer suitable for various uses could not be selected.
発明の開示 Disclosure of the invention
そこで、 この発明は上記の問題点を解消するためになさ れたもので、 以下の事項を備えた絶縁電線を提供すること を目的とする。  Then, this invention was made in order to solve the said problem, and it aims at providing the insulated wire provided with the following matters.
( a ) 高温度の環境下において高い絶縁性を有するこ (a) Have high insulation properties in a high temperature environment.
O O
( b ) 可撓性に優れていること。  (b) Excellent flexibility.
( C ) ガス吸着源を備えていないこと。  (C) No gas adsorption source.
( d ) 種々の用途に適した基材と無機絶縁層との組合 わせを選ぶことができること。  (d) A combination of a base material and an inorganic insulating layer suitable for various uses can be selected.
この発明に従った絶縁電線は、 基材と、 酸化ク ロム含有 層と、 酸化物絶縁層とを備えている。 基材は、 外表面を有 し、 導体を含む。 酸化ク ロム含有層は、 基材の外表面上に 形成されている。 酸化物絶縁層は、 酸化クロム含有層の上 にゾルーゲル法、 または有機酸塩熱分解法によって、 金属 酸化物の前駆体溶液を塗布することによって形成されてい 0 The insulated wire according to the present invention comprises a base material and chromium oxide. And an oxide insulating layer. The substrate has an outer surface and includes a conductor. The chromium oxide-containing layer is formed on the outer surface of the substrate. The oxide insulating layer is formed by applying a precursor solution of a metal oxide on the chromium oxide-containing layer by a sol-gel method or an organic acid salt pyrolysis method.
酸化クロム含有層は、 電気化学的手法によって形成され ることが好ま しい。 こ こで、 電気化学的手法とは、 電解め つき法、 無電解めつ き法をいう。 酸化物絶縁層を施す下地 層は、 密着脣と して好ま しく機能するためには、 C r 0 3- X ( 1 . 5≤ X≤ 2 . 5 ) 層であればよい。 すなわち、 電 気化学的手法により形成される層は、 その最外層に酸化ク ロム層を有する。 酸化物絶縁層は、 酸化珪素、 酸化アルミ 二ゥム、 酸化ジルコニウムを含むことが好ま しい。 基材は、 高い導電性とコス トの観点から、 鋦または銅合金が用いら れることが好ま しい。 また、 より高温での用途等を考慮し た場合、 基材の表面層には、 ニッケル、 クロム、 銀、 鉄ま たは鉄合金、 ステンレス合金、 チタンまたはチタン合金が 含まれるのが好ま しい。 The chromium oxide-containing layer is preferably formed by an electrochemical method. Here, the electrochemical method means an electrolytic plating method or an electroless plating method. Underlayer performing oxide insulating layer in order to function lay favored as a contact脣is, C r 0 3 - X ( .. 1 5≤ X≤ 2 5) may be any layer. That is, the layer formed by the electrochemical method has a chromium oxide layer as the outermost layer. The oxide insulating layer preferably contains silicon oxide, aluminum oxide, and zirconium oxide. From the viewpoint of high conductivity and cost, it is preferable that the base material be a copper or copper alloy. In consideration of applications at higher temperatures, the surface layer of the base material preferably contains nickel, chromium, silver, iron or iron alloy, stainless alloy, titanium or titanium alloy.
鋦または鋦合金等の導体の上には、 クロムめつき層が良 好な密着層と して形成されることは知られている。 しかし ながら、 金属酸化物の前駆体溶液の加熱処理によって得ら れる酸化珪素等の絶縁性酸化物セラ ミ ックスは、 クロムめ つき層に対して、 ほとんど付着性を示さない。 これは、 本 願発明者等の知見に基づく ものである。 It is known that a chromium plating layer is formed as a good adhesion layer on a conductor such as a 鋦 or 鋦 alloy. However, insulating oxide ceramics such as silicon oxide obtained by heat treatment of the precursor solution of the metal oxide show little adhesion to the chromium plating layer. This is a book This is based on the knowledge of the inventor.
また、 銅からなる導体の表面上にセラ ミ ックスの薄膜を 直接、 形成した絶縁電線においては、 絶縁層と して機能す るセラ ミ ツ クス薄膜の基材に対する付着力が不十分である。 そこで、 この発明においては、 基材の外表面上に、 最外 層に酸化クロム層を有する層が形成される。 この酸化ク ロ ム層の上には、 絶縁性の酸化物セラ ミ ックスが、 良好な密 着性を有する層と して付着する。  In addition, in the case of an insulated wire in which a ceramic thin film is formed directly on the surface of a conductor made of copper, the adhesion of the ceramic thin film that functions as an insulating layer to the base material is insufficient. Therefore, in the present invention, a layer having a chromium oxide layer as the outermost layer is formed on the outer surface of the substrate. On this chromium oxide layer, an insulating oxide ceramic adheres as a layer having good adhesion.
上記酸化クロム層は、 電気化学的手法により形成される。 酸化クロム層を電解めつき法を用いて形成する場合、 電解 液と してク ロム酸の水溶液に少量の有機酸を添加したもの が用いられる。 一般的に、 クロムめつきを行なう際に使用 する電解浴と しては、 クロム酸、 硫酸を主体とするサージ ヱン ト浴が知られているが、 この浴とは以下の点で異なる。 つまり、 電解浴中に混合する鉱酸は、 電解めつ きの際にめ つき層の表面上に生成する酸化クロムを溶解する働きがあ る。 このため、 サージヱン ト浴を使用すると、 光沢状の金 属クロム層がめっ きされる。 本願発明においては、 酸化ク ロムを優先的にめっきすることが必要である。 したがって、 本願発明で用いられる電解浴には少量の有機酸が添加され る。 また、 硫酸等の鉱酸を使用する場合では、 特に希薄な 電解浴を用いる必要がある。 つま り、 ク ロム酸濃度は 5 0 g Z £以下でかつ硫酸濃度は 1 g Z IL以下である。 また、 酸化クロムを主体とする層の外表面上に、 金属酸化物の前 駆体溶液の加 処理によつて絶縁性セラ ミ ックスの薄膜が 形成されるが、 この薄膜の付着性をより大きくするために、 酸化クロムを主体とする層の表面が粗面であることが好ま しい。 The chromium oxide layer is formed by an electrochemical method. When the chromium oxide layer is formed by the electrolytic plating method, an electrolytic solution obtained by adding a small amount of an organic acid to an aqueous solution of chromic acid is used. In general, a surge bath mainly composed of chromic acid and sulfuric acid is known as an electrolytic bath used for performing chromium plating, but differs from this bath in the following points. In other words, the mineral acid mixed in the electrolytic bath has the function of dissolving the chromium oxide generated on the surface of the plating layer during electroplating. Therefore, when a surge bath is used, a glossy metallic chromium layer is plated. In the present invention, it is necessary to preferentially plate chromium oxide. Therefore, a small amount of organic acid is added to the electrolytic bath used in the present invention. When a mineral acid such as sulfuric acid is used, a particularly dilute electrolytic bath must be used. That is, the chromic acid concentration is less than 50 g Z £ and the sulfuric acid concentration is less than 1 g Z IL. In addition, on the outer surface of the layer mainly composed of chromium oxide, The processing of the precursor solution forms a thin film of insulating ceramic, but in order to increase the adhesion of this thin film, the surface of the layer mainly composed of chromium oxide must be rough. I like it.
クロム酸ソーダ水溶液に、 たとえば、 クェン酸ソーダ、 炭酸ソーダ等を添加した電解液を用いて、 電解めつき法に より酸化クロム含有層を形成してもよい。 この際、 形成さ れる層は、 電解液中の六価のクロムが三価に還元されて生 成する酸化クロムを主成分とするものである。 なお、 この 電解めつき処理の際、 基材と して鋦を使用した場合には、 基材表面が酸化され、 その外方に酸化クロム含有層が形成 される。 しかしながら、 この基材表面の酸化により、 酸化 クロム含有層の基材に対する密着性が低下することはない。 本発明の酸化クロム含有層を形成するときの電解めつき の条件は、 一般に行なわれる光沢めつきとは処理電流密度 等が異なる。 光沢めつきにおいては、 処理温度にもよるが、 電流密度が 1 0〜 6 O AZdm2 に設定されるが、 本発明 においては、 電流密度が 1 0 0〜2 0 0 AZdm2 に設定 される。 この電流密度の条件により、 粗面化された酸化ク ロム含有層が形成され得る。 A chromium oxide-containing layer may be formed by an electrolytic plating method using an electrolytic solution obtained by adding, for example, sodium citrate, sodium carbonate, or the like to an aqueous solution of sodium chromate. At this time, the formed layer is mainly composed of chromium oxide generated by reducing hexavalent chromium in the electrolytic solution to trivalent. In addition, in the case of the electrolytic plating treatment, when 鋦 is used as the base material, the base material surface is oxidized, and a chromium oxide-containing layer is formed outside. However, the oxidation of the chromium oxide-containing layer does not decrease the adhesion of the chromium oxide-containing layer to the substrate due to the oxidation of the substrate surface. The conditions for the electrolytic plating when forming the chromium oxide-containing layer of the present invention are different from the generally used plating in terms of processing current density and the like. In glossy plated, depending on the treatment temperature, the current density is set to 1 0~ 6 O AZdm 2, in the present invention, the current density is set to 1 0 0~2 0 0 AZdm 2 . Under the conditions of the current density, a roughened chromium oxide-containing layer can be formed.
酸化クロム含有層の上には、 金属酸化物の前駆体溶液を 塗布することにより、 絶縁性酸化物層が形成されている。 この明細書でいう、 金属酸化物の前駆体溶液とは、 金属有 機化合物から調製される溶液であり、 ゾルーゲル法または 有機酸塩熱分解法に対応して大別され、 以下の 2種類の夕 イブのものが含まれる。 An insulating oxide layer is formed on the chromium oxide-containing layer by applying a precursor solution of a metal oxide. As used herein, the term “metal oxide precursor solution” refers to a solution prepared from a metal organic compound, and is prepared by a sol-gel method or It is roughly classified according to the organic acid salt pyrolysis method, and includes the following two types of evenings.
第 1のタイプの前駆体溶液は、 金属アルコキシ ドおよび 金属のアセテー トなどの加水分解可能な金属一酸素一有機 基結合を含む化合物を加水分解反応および脱水縮合反応さ せることにより生成した溶液である。 この溶液には、 アル コール等の有機溶媒、 金属アルコキシ ド等の原料化合物、 加水分解反応に必要な水および触媒が含まれていてもよい。 また、 無機塩より生成する水酸化物ゾルと異なり、 アルコ キシ ド等の有機残基を含んでいる場合が多い。  The first type of precursor solution is a solution formed by subjecting a compound containing a hydrolyzable metal-oxygen-organic group bond such as a metal alkoxide and metal acetate to a hydrolysis reaction and a dehydration condensation reaction. is there. This solution may contain an organic solvent such as alcohol, a starting compound such as a metal alkoxide, water and a catalyst necessary for the hydrolysis reaction. Also, unlike hydroxide sols generated from inorganic salts, they often contain organic residues such as alkoxides.
第 2のタイプの前駆体溶液は、 金属の有機酸塩などの金 属有機化合物を適当な有機溶媒に溶解した溶液である。 こ のタイプの前駆体溶液を用いる方法では、 塗布後に加熱し て熱分解することにより金属酸化物を生成させる。 このた め、 用いる金属有機化合物の分解温度はその沸点やあるい は昇華点より も低いことが必要である。  The second type of precursor solution is a solution in which a metal organic compound such as an organic acid salt of a metal is dissolved in a suitable organic solvent. In the method using a precursor solution of this type, a metal oxide is generated by heating and thermally decomposing after coating. For this reason, the decomposition temperature of the metal organic compound used needs to be lower than its boiling point or sublimation point.
なお、 この明細書でいう金属有機化合物は、 たとえば、 j o u r n a l o f M a t e r i a l s S c i e n c e 1 2 (1 9 7 7) p p. 1 2 0 3〜 1 2 0 8に記載 された "m e t a l — o r g a n i c c o mp o u n d s " と同様の概念である。  The metal-organic compound referred to in this specification is, for example, "metal — organicco mpounds" described in journal of Materials Science 12 (1977) pp. 1203 to 128. It is the same concept as.
さ らに、 有機溶媒の揮発と残留有機物質の除去のために、 塗布層は、 室温より高い温度で放置される必要がある。 し かしながら、 この放置される雰囲気の温度は、 基材を構成 する金属の融点以上の高温度であってはならない。 In addition, the coating must be left above room temperature to volatilize organic solvents and remove residual organic matter. However, the temperature of this neglected atmosphere constitutes the substrate The temperature must not be higher than the melting point of the metal used.
金属酸化物の前駆体溶液の塗布によって、 ほとんどすべ ての金属酸化物系セラ ミ ックス被覆を形成することができ る。 この方法によって形成される金属酸化物の例と して、 S i 0 2 A I 2 〇 3 、 Z r 0 T i 0 2 、 M g O等を 挙げることができる。 また、 第 1のタイプの前駆体溶液に 用いられる金属アルコキシ ドと してはェ トキシ ド、 プロボ キシ ド、 ブトキシ ド等を挙げることができる。 第 2のタイ プの前駆体溶液に用いられる有機酸塩と してはナフテン酸、 カプリル酸、 ステアリ ン酸、 ォクチル酸等の金属塩が好ま しい。 By applying a metal oxide precursor solution, almost all metal oxide-based ceramic coatings can be formed. As an example of a metal oxide formed by this method include S i 0 2 AI 2 〇 3, Z r 0 T i 0 2, M g O , and the like. Examples of the metal alkoxide used in the first type of precursor solution include ethoxide, propoxide, butoxide and the like. As the organic acid salt used in the second type of precursor solution, a metal salt such as naphthenic acid, caprylic acid, stearic acid, and octylic acid is preferable.
金属酸化物の前駆体溶液からゾルーゲル法または有機酸 塩熱分解法によって形成される酸化物絶縁層は、 完全に金 属酸化物化された酸化物である。 この酸化物は、 酸素気流 中の雰囲気下で加熱処理されることによって形成されるの が好ま しい。 酸化ク ロム含有層の上に塗布された溶液中に 含まれる化合物の分解は、 通常、 5 0 0 °C程度の温度で完 全に終了する。 しかしながら、 それ以上の温度で加熱処理 された場合、 酸化クロム含有層を構成する元素と、 塗布さ れた溶液中に含まれる金属または半金属との反応が促進さ れることによって、 酸化クロム含有層と酸化物層との間の 付着力が向上する。  An oxide insulating layer formed from a precursor solution of a metal oxide by a sol-gel method or an organic acid salt pyrolysis method is a completely metal oxide oxide. This oxide is preferably formed by a heat treatment in an atmosphere of an oxygen stream. The decomposition of the compound contained in the solution applied on the chromium oxide-containing layer is usually completed completely at a temperature of about 500 ° C. However, if the heat treatment is performed at a higher temperature, the reaction between the elements constituting the chromium oxide-containing layer and the metal or metalloid contained in the applied solution is accelerated, so that the chromium oxide-containing layer is accelerated. The adhesion between the metal and the oxide layer is improved.
このようにして、 セラ ミ ッ クス化された酸化物絶縁層は、 5 0 0 °C以上の高温下においても優れた耐熱絶縁性を示す。 また、 酸化クロム含有層は、 基材を構成する導体との密着 性に優れている。 そのため、 導体の外表面に直接、 金属酸 化物の前駆体溶液の加熱処理によつて酸化物絶縁層を形成 する場合に比べて、 酸化物絶縁層と基材の外表面との間の 付着力が向上する。 したがって、 この発明によって提供さ れる絶縁電線は、 耐熱絶縁性を備えると と もに、 良好な可 fe teを有する。 Thus, the ceramic oxide insulating layer exhibits excellent heat resistance even at a high temperature of 500 ° C. or more. Further, the chromium oxide-containing layer has excellent adhesion to the conductor constituting the base material. Therefore, compared with the case where the oxide insulating layer is formed directly on the outer surface of the conductor by heat treatment of the precursor solution of the metal oxide, the adhesive force between the oxide insulating layer and the outer surface of the base material is higher. Is improved. Therefore, the insulated electric wire provided by the present invention has heat resistance and good flexibility.
さ らに、 酸化ク ロム含有層上に形成される酸化物絶縁層 は、 平滑な外表面を有する。 そのため、 膜厚に比例した高 い絶縁破壌電圧を得るこ とができるとともに、 ガスの吸着 源を減少させることが可能である。  Further, the oxide insulating layer formed on the chromium oxide-containing layer has a smooth outer surface. Therefore, it is possible to obtain a high breakdown voltage in proportion to the film thickness and to reduce the number of gas adsorption sources.
また、 この発明においては、 基材と酸化物絶縁層との間 には酸化クロム含有層が形成されている。 そのため、 酸化 クロム含有層を介して、 種々の用途に適した無機絶縁層と の組合わせを選定することができる。  In the present invention, a chromium oxide-containing layer is formed between the substrate and the oxide insulating layer. Therefore, a combination with an inorganic insulating layer suitable for various uses can be selected via the chromium oxide-containing layer.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明に従った絶縁電線の横断面を実施例 1に対応して示す断面図である。  FIG. 1 is a cross-sectional view showing a cross section of an insulated wire according to the present invention, corresponding to the first embodiment.
第 2図は、 この発明に従った絶縁電線の横断面を実施例 2に対応して示す断面図である。  FIG. 2 is a cross-sectional view showing a cross section of an insulated wire according to the present invention corresponding to the second embodiment.
第 3図は、 この発明に従った絶縁電線の横断面を実施例 3に対応して示す断面図である。  FIG. 3 is a cross-sectional view showing a cross section of an insulated wire according to the present invention in accordance with a third embodiment.
第 4図は、 この発明に従った絶縁電線の横断面を実施例 4に対応して示す断面図である。 第 5図は、 実施例 3、 実施例 4に従って形成された酸化 クロム含有層の表面粗さの測定結果を示すグラフである。 第 6図は、 比較例に従って形成されたクロムめつき層の 表面粗さの測定結果を示すグラフである。 FIG. 4 is a cross-sectional view showing a cross section of an insulated wire according to the present invention corresponding to the fourth embodiment. FIG. 5 is a graph showing the measurement results of the surface roughness of the chromium oxide-containing layer formed according to Examples 3 and 4. FIG. 6 is a graph showing the measurement results of the surface roughness of the chromium plating layer formed according to the comparative example.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1  Example 1
(a) 酸化ク ロム含有層の形成  (a) Formation of chromium oxide-containing layer
線径 2 mm øの銅線の外表面上に電解めつき処理が施さ れた。 このとき、 電解液と しては、 その濃度が無水クロム 酸 4 0 gZ £、 硫酸 0. 4 5 gZ £のものが用いられた。 めつき条件は、 浴温が 5 0。C、 電流密度が 14 0 AZ d m 2 、 処理時間が 2分間であった。 このようにして、 銅線の 外表面に酸化クロム含有層が 1 m程度の膜厚で形成され た。 Electrolytic plating was applied to the outer surface of a copper wire with a wire diameter of 2 mm ø. At this time, as the electrolyte, a solution having a concentration of 40 gZ £ of chromic anhydride and 0.45 gZ £ of sulfuric acid was used. The bathing condition was 50 bath temperature. C, the current density was 140 AZ dm 2 , and the processing time was 2 minutes. Thus, a chromium oxide-containing layer was formed on the outer surface of the copper wire with a thickness of about 1 m.
( b ) ゾルーゲル法に用いられるコーティ ング溶液の 作製  (b) Preparation of coating solution used for sol-gel method
テ トラプチルオルトシリケィ ト : 水 : イソプロピルアル コール = 8 : 3 2 : 6 0のモル比で混合された溶液に、 硝 酸をテ トラブチルオルトシリケイ トに対し、 1 0 0分の 3 モルの割合で添加した。 その後、 温度 8 0 °Cで 2時間、 こ の溶液を加熱攪拌した。 これにより、 ゾルーゲル法に用い られるコーティ ング溶液が合成された。  Tetrabutyl orthosilicate: water: isopropyl alcohol = 8: 32: 60 A nitric acid was added to a solution mixed at a molar ratio of 3/100 with respect to tetrabutyl orthosilicate. They were added in molar proportions. Thereafter, the solution was heated and stirred at a temperature of 80 ° C. for 2 hours. As a result, a coating solution used for the sol-gel method was synthesized.
( c ) コーティ ング  (c) Coating
(a) によって得られた線材を (b) のコーティ ング溶 (ID The wire rod obtained by (a) is coated with the coating solution of (b). (ID
液に浸漬した 9 このようにしてコーティ ング溶液が外表面 に塗布された線材に、 温度 4 0 0 °Cで 1 0分間加熱するェ 程を 1 0回施した。 最後に、 この線材を温度 5 0 0 °Cの酸 素気流中で 1 0分間加熱した。 The wire coated with the coating solution on the outer surface in this manner was immersed in the solution 9 and subjected to heating for 10 minutes at a temperature of 400 ° C. 10 times. Finally, the wire was heated in a stream of oxygen at a temperature of 500 ° C. for 10 minutes.
以上のようにして得られた絶縁被覆電線は、 第 1図に示 されている。 第 1図は、 実施例 1によって得られた絶緣電 線の横断面を示す断面図である。 第 1図を参照して、 銅線 1の外表面上に酸化ク ロム含有層 2が形成されている。 こ の酸化クロム含有層 2の上には、 ゾルーゲル法によって酸 化物絶縁層と して酸化珪素層 3が形成されている。 酸化ク 口ム含有層 2と酸化珪素層 3とによつて形成される絶縁層 の膜厚は 4. 0 m程度であつた。  FIG. 1 shows the insulated wire obtained as described above. FIG. 1 is a cross-sectional view showing a cross section of the insulating wire obtained in Example 1. Referring to FIG. 1, a chromium oxide-containing layer 2 is formed on the outer surface of copper wire 1. On this chromium oxide-containing layer 2, a silicon oxide layer 3 is formed as an oxide insulating layer by a sol-gel method. The thickness of the insulating layer formed by the oxide containing layer 2 and the silicon oxide layer 3 was about 4.0 m.
得られた絶縁電線の絶縁性を評価するために絶縁破壊電 圧を測定した。 室温下においては、 その絶縁破壊電圧は 8 0 0 Vであり、 8 0 0 の温度下においては 6 0 0 Vであ つた。 また、 直径 1 0 c mの円筒の外周面上に、 この絶縁 電線を巻付けても、 絶縁層に亀裂が発生しなかった。  The breakdown voltage was measured to evaluate the insulation properties of the insulated wires obtained. At room temperature, the breakdown voltage was 800 V, and at 800, it was 600 V. Even when this insulated wire was wound on the outer peripheral surface of a cylinder having a diameter of 10 cm, no crack was generated in the insulating layer.
実施例 2  Example 2
(a) 酸化クロム含有層の形成  (a) Formation of chromium oxide containing layer
線径 2 mm 0の銅線をパーク ロロエチレンを用いて蒸気 脱脂した。 その後、 8 5 %リ ン酸 : 7 0 %硝酸 : 水 = 1 5 : 2 : 3の体積比で混合された溶液に、 銅線を浸漬すること により、 その表面を粗面化した。  A copper wire having a wire diameter of 2 mm0 was degreased with steam using perchlorethylene. Then, the copper wire was immersed in a solution mixed at a volume ratio of 85% phosphoric acid: 70% nitric acid: water = 15: 2: 3 to roughen the surface.
次に、 銅線を陰極と し、 ステン レス板を陽極と して、 0. 0 5 A/ d m2 の直流電流を流して電解めつき処理を行な つた。 このとき、 電解液と しては、 ク ロム酸ソーダ、 クェ ン酸ソーダおよび炭酸ソーダ、 それぞれ 3 0 gを水に溶解 した約 1 の溶液が用いられた。 Next, the copper wire was used as the cathode and the stainless steel plate was used as the anode. Electrolytic plating was performed by passing a DC current of 0.5 A / dm 2 . At this time, about 1 solution of 30 g each of sodium chromate, sodium citrate and sodium carbonate dissolved in water was used as the electrolyte.
このようにして、 銅線の外表面上に、 約 1 m程度の膜 厚を有する酸化銅層が形成され、 その外方に酸化ク ロム含 有層が約 0. 1 zmの膜厚で形成された。  Thus, a copper oxide layer having a thickness of about 1 m is formed on the outer surface of the copper wire, and a chromium oxide-containing layer is formed to a thickness of about 0.1 zm outside the copper oxide layer. Was done.
( b ) ゾルーゲル法に用いられるコーティ ング溶液の 作製  (b) Preparation of coating solution used for sol-gel method
テ トラプチルオル ト ジルコネー ト [ (C4 H9 0) 4 Z r ] : 水 : η—ブチルアルコール = 5 : 1 5 : 8 0のモノレ 比で混合された溶液を 1 2 0 °Cの温度で 2時間加熱攪拌し た。 これにより、 ゾルーゲル法に用いられるコーティ ング 溶液が合成された。 Te Torapuchiruoru DOO Jirukone preparative [(C 4 H 9 0) 4 Z r]: Water: .eta.-butyl alcohol = 5: 1 5: 8 2 0 mixed solution Monore ratio at a temperature of 1 2 0 ° C The mixture was heated and stirred for an hour. As a result, a coating solution used for the sol-gel method was synthesized.
( C ) コーティ ング  (C) Coating
(a) によって得られた線材を (b) のコーティ ング溶 液に浸漬した。 このようにしてコーティ ング溶液が外表面 に塗布された線材に、 温度 4 0 0 °Cで 1 0分間加熱するェ 程を 1 0回施した。  The wire obtained in (a) was immersed in the coating solution in (b). The wire coated with the coating solution on the outer surface in this manner was heated 10 times at a temperature of 400 ° C. for 10 minutes.
以上のようにして得られた絶縁被覆電線は、 第 2図に示 されている。 第 2図は、 実施例 2によって得られた絶縁電 線の横断面を示す断面図である。 第 2図を参照して、 銅線 1 1の外表面上に酸化銅層 1 2が形成されている。 また、 この酸化銅層 1 2の外方には、 酸化クロム含有層 1 3が形 成されている。 この酸化ク ロム含有層 1 3の上には、 ゾル 一ゲル法によつて酸化物絶縁層と して酸化ジルコニウム層 1 4が形成されている。 酸化銅層 1 2、 酸化クロム含有層 1 3と酸化ジルコニウム層 1 4とによって形成される絶縁 層の膜厚は 3. O Azm程度であった。 The insulated wire obtained as described above is shown in FIG. FIG. 2 is a cross-sectional view showing a cross section of the insulated wire obtained in Example 2. Referring to FIG. 2, a copper oxide layer 12 is formed on the outer surface of copper wire 11. A chromium oxide containing layer 13 is formed outside the copper oxide layer 12. Has been established. A zirconium oxide layer 14 is formed on the chromium oxide-containing layer 13 as an oxide insulating layer by a sol-gel method. The thickness of the insulating layer formed by the copper oxide layer 12, the chromium oxide-containing layer 13 and the zirconium oxide layer 14 was about 3. O Azm.
得られた絶縁電線の絶縁性を評価するために絶縁破壌電 圧を測定した。 室温下においては、 その絶縁破壌電圧は 7 0 0 Vであり、 7 0 0 °Cの温度下においては 5 0 0 Vであ つた。 また、 直径 1 0 c mの円筒の外周面上に、 この絶縁 電線を巻付けても、 絶縁層に亀裂が生じなかった。  In order to evaluate the insulation properties of the obtained insulated wires, the insulation breakdown voltage was measured. At room temperature, the breakdown voltage was 700 V, and at 700 ° C, it was 500 V. Further, even when this insulated wire was wound on the outer peripheral surface of a cylinder having a diameter of 10 cm, no crack was generated in the insulating layer.
実施例 3  Example 3
(a) 酸化ク ロム含有層の形成  (a) Formation of chromium oxide-containing layer
線径 1. 8mm0のニッケルめつき銅線の外表面上に電 解めつ き処理が施された。 このとき、 電解液と しては、 そ の濃度が無水ク ロム酸 2 0 0 £、 メ タバナジン酸アン モニゥム 20 gZ£、 酢酸 6. 5 g Z JLのものが用いられ た。 めっき条件は、 基材を陰極と して用い、 浴温が 5 0°C、 電流密度が 1 5 0 A/dm2 、 処理時間が 2分間であった。 このようにして、 ニッケルめっき鋦線の外表面に酸化クロ ム含有層が約 1 mの膜厚で形成された。 Electrolytic treatment was applied to the outer surface of a nickel-plated copper wire with a wire diameter of 1.8 mm0. At this time, as the electrolytic solution, those having a concentration of chromic anhydride of 200 £, ammonium metavanadate of 20 gZ £, and acetic acid of 6.5 g ZL were used. The plating conditions were such that the base material was used as a cathode, the bath temperature was 50 ° C., the current density was 150 A / dm 2 , and the treatment time was 2 minutes. Thus, a chromium oxide-containing layer having a thickness of about 1 m was formed on the outer surface of the nickel-plated copper wire.
酸化クロム含有層の表面状態は、 I S 04 6 8— 1 9 8 2の S u r f a c e R o u g h n e s s による、 中 、線 平均粗さ R aが 0. 1 5 m、 最大高さ R yが 0. 8 7 mであった。 表面粗さの測定は、 アメ リ カの S l o a n社 製表面形状測定器 D E K T A K 3 0 3 0を用い、 触針径 0 , 5 τη^ 針圧 1 0 m g、 基準長さ 5 0 m、 カツ トォフ フ ィ ルタを使用しない条件下で行なわれた。 その測定結果は 第 5図に示されている。 The surface condition of the chromium oxide-containing layer is determined by the surface roughness of IS0468-19882, medium and line average roughness Ra is 0.15 m and maximum height Ry is 0.87. m. Surface roughness measurements are made by S loan company of America The measurement was carried out using a DEKTAK 3030 surface profiler under the conditions of a stylus diameter of 0,5 τη ^, a stylus pressure of 10 mg, a standard length of 50 m, and no cutoff filter. The measurement results are shown in FIG.
(b ) 有機酸塩熱分解法に用いられるコーティ ング溶 液の作製  (b) Preparation of coating solution used for organic acid salt pyrolysis method
2 —ェチルーへキサノイ ツ ク シリケィ ト 2 0 gをジブチ ルエーテル 1 0 O m JLに溶解することによりコーティ ング 溶液を作製した。  A coating solution was prepared by dissolving 20 g of 2-ethylhexanoic silicate in 10 OmJL of dibutyl ether.
( c ) コーティ ング  (c) Coating
( a ) によって得られた線材を (b ) のコーティ ング溶 液に浸漬した。 このようにしてコーティ ング溶液が外表面 に塗布された線材に、 温度 5 0 0 °Cで 1 0分間加熱するェ 程を 1 0回施した。  The wire obtained in (a) was immersed in the coating solution in (b). The wire coated with the coating solution on the outer surface in this manner was subjected to 10 heating steps of 500 ° C. for 10 minutes.
以上のようにして得られた絶縁被覆電線は、 第 3図に示 されている。 第 3図は、 実施例 3によって得られた絶縁電 線の横断面を示す断面図である。 第 3図を参照して、 銅線 2 1の外表面上にニッゲルめつ き層 2 2が形成された二ッ ゲルめつき銅線が基材と して使用されている。 このニッケ ルめつき銅線の外表面上に酸化ク ロム含有層 2 3が形成さ れている。 酸化クロム含有層 2 3の上には、 有機酸塩熱分 解法によって酸化物絶縁層と して酸化珪素層 2 4が形成さ れている。 酸化ク ロム含有層 2 3 と酸化珪素層 2 4 とによ つて構成される絶縁層の膜厚は 5 m程度であつた。 得られた絶縁電線の絶縁性を評価するために絶縁破壌電 圧を測定した。 室温下においては、 絶縁破壊電圧は 5 0 0 Vであり、 8 0 0 °Cの温度下においては 3 0 0 Vであった, また、 直径 5 c mの円筒の外周面上に、 この絶縁電線を卷 付けても絶縁層に亀裂が発生しなかった。 FIG. 3 shows the insulated wire obtained as described above. FIG. 3 is a cross-sectional view showing a cross section of the insulated wire obtained in Example 3. Referring to FIG. 3, a Nigger-plated copper wire having a Nigel plating layer 22 formed on the outer surface of copper wire 21 is used as a base material. A chromium oxide-containing layer 23 is formed on the outer surface of the nickel-plated copper wire. On the chromium oxide containing layer 23, a silicon oxide layer 24 is formed as an oxide insulating layer by an organic acid salt pyrolysis method. The thickness of the insulating layer composed of the chromium oxide containing layer 23 and the silicon oxide layer 24 was about 5 m. In order to evaluate the insulation properties of the obtained insulated wires, the insulation breakdown voltage was measured. At room temperature, the dielectric breakdown voltage was 500 V, at 800 ° C, it was 300 V, and on the outer peripheral surface of a 5 cm diameter cylinder, No cracks were generated in the insulating layer even when it was wound.
実施例 4  Example 4
( a ) 酸化ク ロム含有層の形成  (a) Formation of chromium oxide-containing layer
ステンレス合金 ( S U S 3 0 4 ) が銅線の外表面上に嵌 合された線径 1. 8 mm 0の、 いわゆるステン レスクラ ッ ド鋦線を基材と して使用した。 このステンレスクラ ッ ド銅 線の外表面上に電解めつ き処理が施された。 このとき、 電 解液と しては、 その濃度が無水クロム酸 2 0 0 8 £、 メ タバナジン酸アンモニゥム 2 0 g Z J 酢酸 6. 5 g / i のものが用いられた。 めつき条件は、 基材を陰極と して用 い、 浴温が 5 0。C、 電流密度が 1 5 0 AZ d m2 、 処理時 間が 2分間であった。 このようにして、 ステンレスク ラ ッ ド銅線の外表面に酸化クロム含有層が約 1 mの膜厚で形 成された。 A so-called stainless clad II wire with a wire diameter of 1.8 mm0, in which a stainless alloy (SUS304) was fitted on the outer surface of the copper wire, was used as the base material. Electrolytic plating was applied to the outer surface of the stainless steel clad copper wire. At this time, the electrolyte used had a concentration of chromic anhydride of 208 g and ammonium metavanadate of 20 g ZJ acetic acid of 6.5 g / i. The plating conditions were as follows: the base material was used as the cathode, and the bath temperature was 50. C, current density was 150 AZ dm 2 , and processing time was 2 minutes. In this way, a chromium oxide-containing layer having a thickness of about 1 m was formed on the outer surface of the stainless steel clad copper wire.
この表面状態は、 I S 0 4 6 8 — 1 9 8 2の S u r ί a c e R o u g h n e s s による、 中心線平均粗さ R aが 0. 1 5 ^ m、 最大高さ R yが 0. 8 7 mであった。 測 定は、 アメ リ カの S l o a n社製表面形状測定器 D E K T A K 3 0 3 0を用い、 触針径 0. 5 m、 針圧 1 0 m g、 基準長さ 5 0 πι、 カ ッ トオフフィ ルタを使用しない条件 下で行なわれた。 この測定結果と しては、 実施例 3 と同様 に第 5図に示されるようなものが得られた。 The surface condition is determined by the Sur R ace Roughness of IS 0 4 6 8-1 9 8 2, the center line average roughness Ra is 0.15 ^ m and the maximum height Ry is 0.87 m Met. The measurement was performed using a surface shape measuring instrument DEKTAK 300 manufactured by Sloan of America, with a stylus diameter of 0.5 m, a stylus pressure of 10 mg, a reference length of 50 πι, and a cut-off filter. Conditions not used Made below. As a result of this measurement, the one shown in FIG. 5 was obtained as in Example 3.
( b ) 有機酸塩熱分解法に用いられるコーティ ング溶 液の作製  (b) Preparation of coating solution used for organic acid salt pyrolysis method
アルミニウムテ トラー i一ブトキシ ド 2 5 gをジェチレ ングリ コールモノメチルエーテル 1 O O m Jlに溶解し、 そ の後、 1 5 0 °Cで 1時間加熱攪拌した。 この溶液を室温ま で放冷した後に、 公称粒径 0 . 0 3 ja mのアルミ ナ粒子を 3 g混合することにより コーティ ング溶液が作製された。  25 g of aluminum butler i-butoxide was dissolved in 1-ethylene glycol monomethyl ether 1 O Om Jl, and then heated and stirred at 150 ° C for 1 hour. After allowing this solution to cool to room temperature, 3 g of alumina particles having a nominal particle size of 0.03 jam were mixed to prepare a coating solution.
( c ) コーティ ング  (c) Coating
( a ) によって得られた線材を (b ) のコーティ ング溶 液に浸漬した。 このようにしてコーティ ング溶液が外表面 に塗布された線材に、 温度 5 0 0 °Cで 1 0分間加熱するェ 程を 1 0回施した。  The wire obtained in (a) was immersed in the coating solution in (b). The wire coated with the coating solution on the outer surface in this manner was subjected to 10 heating steps of 500 ° C. for 10 minutes.
以上のようにして得られた絶縁被覆電線は、 第 4図に示 されている。 第 4図は、 実施例 4によって得られた絶縁電 線の横断面を示す断面図である。 第 4図を参照して、 銅線 3 1の外表面上にステンレス合金層 3 2を有するステンレ スクラッ ド銅線が基材と して使用されている。 このステン レスクラッ ド銅線の外表面上に酸化クロム含有層 3 3が形 成されている。 この酸化クロム含有層 3 3の上には、 有機 酸塩熱分解法によつて酸化物絶縁層と して酸化アルミニゥ ム層 3 4が形成されている。 この酸化アルミニウム層 3 4 は、 コーティ ング溶液に当初から混合されているアルミ ナ 微粒子を含む酸化アルミニゥム混合層からなる。 酸化クロ ム含有層 3 3 と酸化アルミニゥム層 3 4とによつて構成さ れる絶縁層の膜厚は 1 2 m程度であつた。 The insulated wire obtained as described above is shown in FIG. FIG. 4 is a cross-sectional view showing a cross section of the insulated wire obtained in Example 4. Referring to FIG. 4, a stainless steel clad copper wire having a stainless alloy layer 32 on the outer surface of copper wire 31 is used as a base material. A chromium oxide-containing layer 33 is formed on the outer surface of the stainless steel copper wire. On this chromium oxide-containing layer 33, an aluminum oxide layer 34 is formed as an oxide insulating layer by an organic acid salt pyrolysis method. This aluminum oxide layer 34 is made of aluminum that is originally mixed in the coating solution. It is composed of an aluminum oxide mixed layer containing fine particles. The film thickness of the insulating layer composed of the chromium oxide containing layer 33 and the aluminum oxide layer 34 was about 12 m.
得られた絶縁電線の絶縁性を評価するために絶縁破壊電 圧を測定した。 室温下においては、 その絶縁破壌電圧は、 9 0 0 Vであり、 8 0 0 °Cの温度下においては 7 0 0 Vで あった。 また、 直径 1 5 c mの円筒の外周面上に、 この絶 縁電線を巻付けても絶縁層に亀裂が発生しなかった。  The breakdown voltage was measured to evaluate the insulation properties of the insulated wires obtained. At room temperature, the breakdown voltage was 900 V, and at 800 ° C, it was 700 V. In addition, no cracks occurred in the insulating layer even when this insulated wire was wrapped around the outer circumference of a 15 cm diameter cylinder.
比較例  Comparative example
(a) 金属ク ロムめつ き層の形成  (a) Formation of metal chrome plating layer
線径 1. 8 mm のニッケルめつき銅線の外表面上に電 解めつき処理が施された。 このとき、 用いられる電解液と しては、 その濃度が無水クロム酸 2 5 0 g/ £、 硫酸 2. 5 gZ Jlのものが用いられた。 めつき条件は、 基材を陰極 と して用い、 浴温が 5 0°C、 電流密度が 4 0 A/ d m2 、 処理時間が 2分間であった。 このようにして、 ニッケルめ つ き銅線の外表面にクロム含有層が約 1 mの膜厚で形成 された。 Electrolytic plating was applied to the outer surface of a nickel-plated copper wire with a wire diameter of 1.8 mm. At this time, the electrolyte used had a concentration of 250 g / p of chromic anhydride and 2.5 gZJl of sulfuric acid. The plating conditions were such that the substrate was used as a cathode, the bath temperature was 50 ° C., the current density was 40 A / dm 2 , and the treatment time was 2 minutes. Thus, a chromium-containing layer having a thickness of about 1 m was formed on the outer surface of the nickel-plated copper wire.
この表面状態は、 I S 04 6 8— 1 9 8 2の S u r f a c e R o u g h n e s sによる、 中心線平均粗さ R aが 0. 0 6 ;/ m、 最大高さ R yが 0. 5 1 mであった。 測 定は、 アメ リ カの S l o a n社製表面形状測定器 D E KT A K 3 0 3 0を用い、 触針径 0. 5 ^ m、 針圧 1 0 m g、 基準長さ 5 0 ;um、 カッ トオフフィ ルタを使用しない条件 下で行なわれた。 この測定結果は第 6図に示されている。 光沢状の金属クロム層がニッケルめつ き銅線の外表面に形 成 れた o According to the surface roughness of IS04668-19982, the average surface roughness Ra was 0.06; / m, and the maximum height Ry was 0.51 m. Was. The measurement was performed using a surface profiler DE KT AK300, manufactured by Sloan of America, with a stylus diameter of 0.5 ^ m, a stylus pressure of 10 mg, a reference length of 50 μm, and a Conditions without using a filter Made below. The results of this measurement are shown in FIG. Glossy chrome metal layer formed on the outer surface of nickel-plated copper wire o
( b ) 有機酸塩熱分解法に用いられるコーティ ング溶 液の作製  (b) Preparation of coating solution used for organic acid salt pyrolysis method
2—ェチルーへキサノイ ツク シリケィ ト 2 0 gをジプチ ルエーテル 1 0 O m Aに溶解することにより コーティ ング 溶液が作製された。  A coating solution was prepared by dissolving 20 g of 2-ethylhexane silicate silicate in 10 O mA of dimethyl ether.
( c ) コーティ ング  (c) Coating
( a ) によって得られた線材を (b ) のコーティ ング溶 液に浸漬した。 このようにしてコーティ ング溶液が外表面 に塗布された線材に、 温度 5 0 0 °Cで 1 0分間加熱するェ 程を施したところ、 加熱後、 形成された絶縁層はフィ ルム 状に剥離し、 付着性を示さなかった。  The wire obtained in (a) was immersed in the coating solution in (b). The wire coated with the coating solution on the outer surface in this way was subjected to a heating step at a temperature of 500 ° C. for 10 minutes.After the heating, the formed insulating layer was peeled into a film. And showed no adhesion.
産業上の利用可能性 Industrial applicability
以上のように、 この発明に従った絶縁電線は、 高真空機 器や高温使用機器等の高真空の環境下、 または高温度の環 境下において用いられる配線用電線や巻線用電線等に適し ている。  As described above, the insulated wire according to the present invention can be used as a wiring wire, a winding wire, or the like used in a high vacuum environment such as a high vacuum device or a high-temperature device, or in a high temperature environment. Are suitable.

Claims

請求の範囲 The scope of the claims
1. 外表面を有し、 導体を含む基材 (1) と、  1. a substrate (1) having an outer surface and including a conductor;
前記基材の外表面上に形成された酸化ク ロム含有層 (2) と、  A chromium oxide-containing layer (2) formed on the outer surface of the substrate,
前記酸化クロム含有層の上に金属酸化物の前駆体溶液を 塗布するこ とによって形成された酸化物絶縁層 (3) とを 備えた、 絶縁電線。  An oxide insulating layer (3) formed by applying a precursor solution of a metal oxide on the chromium oxide-containing layer.
2. 前記酸化ク ロム含有層 (2) は電解めつ き法によ つて形成される、 請求の範囲第 1項に記載の絶縁電線。  2. The insulated wire according to claim 1, wherein the chromium oxide-containing layer (2) is formed by an electrolytic plating method.
3. 前記酸化物絶縁層 (3) は酸化珪素、 酸化アルミ ニゥムおよび酸化ジルコニウムのいずれかを含む、 請求の 範囲第 1項に記載の絶縁電線。  3. The insulated wire according to claim 1, wherein the oxide insulating layer (3) includes any of silicon oxide, aluminum oxide, and zirconium oxide.
4. 前記基材 (1) は銅および銅合金のいずれかを含 む、 請求の範囲第 1項に記載の絶縁電線。  4. The insulated wire according to claim 1, wherein the base material (1) contains any of copper and a copper alloy.
5. 前記基材はニッケル、 ク ロムおよびステン レス合 金のいずれかをその表面層 (22) に含む、 請求の範囲第 5. The substrate according to claim 1, wherein the base material includes any one of nickel, chromium, and stainless steel in its surface layer (22).
4項に記載の絶縁電線。 Insulated wire according to item 4.
6. 前記酸化物絶縁層 (3) は、 その中に分散された セラ ミ ックス微粒子を含む、 請求の範囲第 1項に記載の絶 縁電線。  6. The insulated wire according to claim 1, wherein said oxide insulating layer (3) includes ceramic fine particles dispersed therein.
7. 外表面を有し、 導体を含む基材 (1) と、  7. a substrate (1) having an outer surface and including a conductor;
前記基材の外表面上に形成された酸化ク ロム含有層 (2) 前記酸化クロム含有層の上にゾルーゲル法によつて形成 された酸化物絶縁層 (3) とを備えた、 絶縁電線。 Chromium oxide-containing layer formed on outer surface of base material (2) Formed on chromium oxide-containing layer by sol-gel method An insulated wire, comprising: a coated oxide insulating layer (3).
8. 外表面を有し、 導体を含む基材 (2 1) と、 前記基材の外表面上に形成された酸化クロム含有層 (2 8. A substrate (21) having an outer surface and including a conductor, and a chromium oxide-containing layer (2) formed on the outer surface of the substrate.
3) と、 3) and
前記酸化クロム含有層の上に有機酸塩熱分解法によつて 形成された酸化物絶縁層 (24) とを備えた、 絶縁電線。  An insulated wire comprising: an oxide insulating layer (24) formed on the chromium oxide-containing layer by an organic acid salt pyrolysis method.
PCT/JP1990/000401 1989-03-28 1990-03-26 Insulated electric wire WO1990011603A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69013448T DE69013448T2 (en) 1989-03-28 1990-03-26 INSULATED ELECTRIC LAMP.
KR1019900702515A KR940000845B1 (en) 1989-03-28 1990-03-26 Insulated electric wire
EP90904938A EP0416131B1 (en) 1989-03-28 1990-03-26 Insulated electric wire
US08/023,077 US5372886A (en) 1989-03-28 1993-02-26 Insulated wire with an intermediate adhesion layer and an insulating layer
HK96795A HK96795A (en) 1989-03-28 1995-06-15 Insulated electric wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1/77028 1989-03-28
JP7702889 1989-03-28
JP2/70843 1990-03-20
JP2070843A JP2890631B2 (en) 1989-03-28 1990-03-20 Insulated wire

Publications (1)

Publication Number Publication Date
WO1990011603A1 true WO1990011603A1 (en) 1990-10-04

Family

ID=26411968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000401 WO1990011603A1 (en) 1989-03-28 1990-03-26 Insulated electric wire

Country Status (9)

Country Link
EP (1) EP0416131B1 (en)
JP (1) JP2890631B2 (en)
KR (1) KR940000845B1 (en)
AU (1) AU627859B2 (en)
CA (1) CA2029868C (en)
DE (1) DE69013448T2 (en)
DK (1) DK0416131T3 (en)
HK (1) HK96795A (en)
WO (1) WO1990011603A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2827333B2 (en) * 1989-10-13 1998-11-25 住友電気工業株式会社 Manufacturing method of heat-resistant insulating coil
EP0510258B1 (en) * 1991-04-26 1995-06-14 Sumitomo Electric Industries, Limited Method of making an insulating member
DE69502270T2 (en) * 1995-02-24 1999-01-07 Sumitomo Electric Industries Electrical conductor element such as a wire with an inorganic insulating coating
JPH1066288A (en) * 1996-08-21 1998-03-06 Ebara Corp Highly-heat-resistant motor
CN113445088B (en) * 2021-06-28 2021-12-14 沈伟 Vapor chamber with high heat absorption and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149775A (en) * 1980-04-18 1981-11-19 Agency Of Ind Science & Technol Manufacture of oxide film for solid electrolyte of fuel cell
EP0188369A2 (en) * 1985-01-14 1986-07-23 Raychem Limited Refractory coated article
EP0188370A2 (en) * 1985-01-14 1986-07-23 Raychem Limited Electrical wire with refractory coating
JPS63239150A (en) * 1987-03-27 1988-10-05 Sumitomo Electric Ind Ltd Production of superconductive ceramic thin film
JPS63247374A (en) * 1987-04-02 1988-10-14 Permelec Electrode Ltd Manufacture of colored titanium material
JPS63279524A (en) * 1987-05-08 1988-11-16 Sumitomo Electric Ind Ltd Formation of superconductive thin film
JPS6481116A (en) * 1987-09-21 1989-03-27 Fujikura Ltd Superconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208494A (en) * 1984-03-31 1985-10-21 Kawasaki Steel Corp Surface-treated steel sheet for seam welding can having excellent weldability
JPS63281313A (en) * 1987-05-12 1988-11-17 Sumitomo Electric Ind Ltd Heat-resistant electric wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149775A (en) * 1980-04-18 1981-11-19 Agency Of Ind Science & Technol Manufacture of oxide film for solid electrolyte of fuel cell
EP0188369A2 (en) * 1985-01-14 1986-07-23 Raychem Limited Refractory coated article
EP0188370A2 (en) * 1985-01-14 1986-07-23 Raychem Limited Electrical wire with refractory coating
JPS63239150A (en) * 1987-03-27 1988-10-05 Sumitomo Electric Ind Ltd Production of superconductive ceramic thin film
JPS63247374A (en) * 1987-04-02 1988-10-14 Permelec Electrode Ltd Manufacture of colored titanium material
JPS63279524A (en) * 1987-05-08 1988-11-16 Sumitomo Electric Ind Ltd Formation of superconductive thin film
JPS6481116A (en) * 1987-09-21 1989-03-27 Fujikura Ltd Superconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0416131A4 *

Also Published As

Publication number Publication date
EP0416131A1 (en) 1991-03-13
HK96795A (en) 1995-06-23
JP2890631B2 (en) 1999-05-17
AU627859B2 (en) 1992-09-03
EP0416131B1 (en) 1994-10-19
KR940000845B1 (en) 1994-02-02
DE69013448T2 (en) 1995-02-23
CA2029868A1 (en) 1990-09-29
CA2029868C (en) 1996-09-24
DK0416131T3 (en) 1995-02-27
KR920700456A (en) 1992-02-19
JPH0315113A (en) 1991-01-23
DE69013448D1 (en) 1994-11-24
EP0416131A4 (en) 1992-11-25
AU5273690A (en) 1990-10-22

Similar Documents

Publication Publication Date Title
US5372886A (en) Insulated wire with an intermediate adhesion layer and an insulating layer
CA2027553C (en) Insulated wire for high-temperature environment
CA2058147C (en) Electrical insulated wire
WO1990011603A1 (en) Insulated electric wire
WO1991010239A1 (en) Method of manufacturing inorganic insulator
JPH04334823A (en) Insulating member
JP3336735B2 (en) Insulated wire
JPH0475207A (en) Inorganic insulated wire
JPH07282645A (en) Heat resistant insulated wire and its manufacture
JPH0388215A (en) Inorganic insulator
JP3074741B2 (en) Insulated wire
JPH05314821A (en) Inorganic insulation coated conductor
JPH06251635A (en) Insulated cable
JPH0636622A (en) Insulated wire
JPH02270217A (en) Insulated wire
JPH04301317A (en) Insulated electric wire
JPH04242011A (en) Inorganic insulative member
JPH04230908A (en) Insulating member
JPH03245409A (en) Insulated wire
JPH0485805A (en) Manufacture of insulated coil
JPH06309946A (en) Heat resistant electric wire
JP2939343B2 (en) Method of forming ceramic film
JPH0475206A (en) Inorganic insulated wire
JPH02215010A (en) Insulated electric wire
JPH04104405A (en) Insulation member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE DK FR GB IT SE

WWE Wipo information: entry into national phase

Ref document number: 2029868

Country of ref document: CA

Ref document number: 1990904938

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990904938

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990904938

Country of ref document: EP