JPH0388215A - Inorganic insulator - Google Patents

Inorganic insulator

Info

Publication number
JPH0388215A
JPH0388215A JP22380989A JP22380989A JPH0388215A JP H0388215 A JPH0388215 A JP H0388215A JP 22380989 A JP22380989 A JP 22380989A JP 22380989 A JP22380989 A JP 22380989A JP H0388215 A JPH0388215 A JP H0388215A
Authority
JP
Japan
Prior art keywords
inorganic
conductor
composite plating
plating layer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22380989A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
浩一 山田
Kazuo Sawada
澤田 和夫
Shinji Inasawa
信二 稲沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22380989A priority Critical patent/JPH0388215A/en
Publication of JPH0388215A publication Critical patent/JPH0388215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To get an inorganic insulator whose heat resistance and insulating property are good by providing a conductor, a composite plated layer where eutectoid is caused with dispersion of inorganic compound fine grain provided on the surface of the conductor and an inorganic insulating layer installed on the surface of the composite plated layer. CONSTITUTION:A composite plated layer 2 is laid around a conductor 1, and inorganic compound fine grain 2a is dispersed in the composite plated layer 2, and an inorganic insulating layer 3 is installed around the composite plated layer 2. When the conductor 1 is used as wire for wiring or winding, it is preferable that the conductor 1 is Cu or Cu alloy which can provide high conductivity. When SiO2 or Al2O3 is used as the inorganic insulating layer 3 installed on the composite plated layer 2, it is preferable that SiC, AlN, Si3N4, Al2O3 and SiO2, etc., are used as the inorganic compound fine grain 2a of the composite plated layer 2. It is thereby possible to obtain an inorganic insulator which is good in insulating property, flexibility and heat resistance.

Description

【発明の詳細な説明】 cSS上上利用分野〕 この発明は、たとえば配線用や巻線用電線等に用いるこ
とのできる無機絶縁電線などのような無機絶縁体に関す
るものである。
[Detailed Description of the Invention] Field of Application of cSS] The present invention relates to an inorganic insulator such as an inorganic insulated wire that can be used, for example, for wiring or winding wire.

〔従来の技術〕[Conventional technology]

高真空機器や高温使用機器などに従来から一般的に用い
られている配線用電線や巻線用電線としては、金属導体
のまわりを有機被覆材料で覆った電線が知られている。
BACKGROUND ART Wires in which a metal conductor is covered with an organic coating material are known as wiring wires and winding wires that have been commonly used in high vacuum equipment, high temperature equipment, and the like.

特に耐熱性を要求される用途では、照射架橋した樹脂、
四フッ化エチレンなどのようなフッ素含有樹脂、または
ポリイミド等で被覆した電線が使用されている。しかし
ながら、このような樹脂被覆の電線の耐熱性は高々30
0℃である。
In particular, for applications that require heat resistance, irradiation-crosslinked resins,
Electric wires coated with a fluorine-containing resin such as tetrafluoroethylene or polyimide are used. However, the heat resistance of such resin-coated wires is at most 30
It is 0°C.

高真空機器内で用いられる電線の場合には、ベーキング
処理等の加熱に耐え得る耐熱性が要求され、さらに高真
空度を達威し維持するために、吸着、吸収したガスや水
分等の放出が少なく、熱分解によるガス放出の少ない電
線が要求される。従来の有機材料を?lt覆した電線で
は、このような耐熱性や非ガス放出性の要求を満足する
ことができない。
In the case of electric wires used in high vacuum equipment, heat resistance that can withstand heating such as baking treatment is required, and in order to achieve and maintain a high degree of vacuum, it is necessary to release adsorbed and absorbed gases and moisture. There is a need for electric wires that emit less gas due to thermal decomposition. Conventional organic materials? An overturned electric wire cannot satisfy such requirements for heat resistance and non-gassing properties.

このため、無機材料により被覆された電線が検討されて
おり、たとえば、アルミニウム導体の表面をアルマイト
加工して、表面にAFL20s膜を形成したアルマイト
電線や、電析法による電線、さらには絶縁性セラミック
スをコーティングした電線が検討されている。
For this reason, electric wires coated with inorganic materials are being considered, such as alumite electric wires in which the surface of an aluminum conductor is anodized and an AFL20s film is formed on the surface, electric wires made by electrodeposition, and even insulating ceramic wires. Electric wires coated with

[発明が解決しようとする課題] しかしながら、このように従来検討されてきた電線には
以下のような問題がある。すなわち、アルマイト電線i
線や電析法による電線は、導体部として使用することの
できる金属がアルミニウムに限定されるため、たとえ瞬
間的であっても660℃以上の温度に耐えることができ
ない。また、銅のような高い導電性を得ることができな
い。
[Problems to be Solved by the Invention] However, the electric wires that have been studied in the past have the following problems. That is, anodized electric wire i
Wires and electric wires made by electrodeposition cannot withstand temperatures of 660° C. or higher, even momentarily, because the metal that can be used as the conductor is limited to aluminum. Also, it cannot achieve high conductivity like copper.

また銅のまわりを絶縁性セラミックスでコーティングし
たとしても、銅はセラミックスとの密着性に劣るため、
表面のセラミックス層の剥離等が生じ、実用に供し得る
ものではなかった。
Furthermore, even if copper is coated with insulating ceramics, copper has poor adhesion to ceramics.
Peeling of the ceramic layer on the surface, etc. occurred, and it could not be put to practical use.

この発明の目的は、このような従来の問題点を解消し、
耐熱性および絶縁性に優れた無機絶縁体を提供すること
にある。
The purpose of this invention is to solve such conventional problems,
The purpose of the present invention is to provide an inorganic insulator with excellent heat resistance and insulation properties.

[課題を解決するための手段] この発明の無機絶縁体は、導体と、導体の表面上に設け
られ、無機化合物微粒子を分散して共析させた複合めっ
き層と、複合めっき層の表面上に設けられる無機絶縁層
とを備えている。
[Means for Solving the Problems] The inorganic insulator of the present invention comprises a conductor, a composite plating layer provided on the surface of the conductor in which inorganic compound fine particles are dispersed and eutectoid, and a composite plating layer provided on the surface of the composite plating layer. and an inorganic insulating layer provided thereon.

第1図は、この発明を説明するための断面図である。第
1図は、この発明が無機絶縁電線に適用された場合の電
線の断面を示している。第1図を参照して、導体1のま
わりには、複合めっき層2が設けられている。複合めっ
き層2中には、無機化合物微粒子2aが分散されている
。この複合めっき層2のまわりには無機絶縁層3が設け
られている。
FIG. 1 is a sectional view for explaining the present invention. FIG. 1 shows a cross section of an electric wire when the present invention is applied to an inorganic insulated electric wire. Referring to FIG. 1, a composite plating layer 2 is provided around a conductor 1. In the composite plating layer 2, inorganic compound fine particles 2a are dispersed. An inorganic insulating layer 3 is provided around this composite plating layer 2.

配線用や巻線用電線として用いる場合には、高い導電性
が得られることから導体としてはCuもしくはCu合金
であることが好ましい。さらに、導体としてのCuもし
くはCu合金の表面にはNiもしくはC「めっきが施さ
れていてもよい。導体であるCuもしくはCu合金のま
わりにNiもしくはC「をめっきすることにより導体の
酸化防止を図ることができる。
When used as an electric wire for wiring or winding, it is preferable that the conductor is Cu or a Cu alloy because high conductivity can be obtained. Furthermore, the surface of Cu or Cu alloy as a conductor may be plated with Ni or C. Oxidation of the conductor can be prevented by plating Ni or C around the Cu or Cu alloy as a conductor. can be achieved.

また導体はワイヤのみならず、テープ状の長尺体であっ
てもよい。
Further, the conductor may be not only a wire but also a tape-like elongated body.

この発明において、複合めっき層のめっき方法は特に限
定されるものではない。たとえば、従来より行なわれて
いる電解めっきや、無電解めっき等種々のめっき方法を
適用することができる。
In this invention, the method of plating the composite plating layer is not particularly limited. For example, various conventional plating methods such as electrolytic plating and electroless plating can be applied.

複合めっき層の金属としては、特に限定されるものでは
ないが、たとえばCuSNiまたはC「などが挙げられ
る。
The metal of the composite plating layer is not particularly limited, and examples thereof include CuSNi and C''.

複合めっき層の上に設ける無機絶縁層として、SiO2
またはAuzOsを用いる場合には、複合めっき層の無
機化合物微粒子としては、SiC。
SiO2 is used as an inorganic insulating layer provided on the composite plating layer.
Alternatively, when AuzOs is used, the inorganic compound fine particles of the composite plating layer are SiC.

AIN、Si3N4、A見、0.および5L02などを
用いることが好ましい。
AIN, Si3N4, A view, 0. It is preferable to use 5L02 and 5L02.

複合めっき層の厚みとしては0.5〜20μmが好まし
い。厚みが0.5μm以上が好ましいとしている理由は
、複合めっきの場合、めっき開始直後は金属のみが析出
し、続いて粒子が共析し始めるため、厚みが0. 5μ
mより少ないと無機化合物微粒子を分散して共析するこ
とが困難になるからである。また、複合めっき層の厚み
が20μm以下が好ましいとしている理由は、この発明
の無機絶縁体を電線等に使用した場合可撓性が必要であ
り、20μmを越える厚みとなると十分な可撓性が得ら
れなくなる場合があるからである。
The thickness of the composite plating layer is preferably 0.5 to 20 μm. The reason why the thickness is preferably 0.5 μm or more is because in the case of composite plating, only the metal precipitates immediately after the start of plating, and then particles begin to eutectoid. 5μ
This is because if it is less than m, it becomes difficult to disperse and eutectoid the inorganic compound fine particles. The reason why the thickness of the composite plating layer is preferably 20 μm or less is that flexibility is required when the inorganic insulator of the present invention is used for electric wires, etc., and if the thickness exceeds 20 μm, sufficient flexibility is required. This is because it may not be possible to obtain it.

この発明において、無機絶縁層の厚みは1〜20μmが
好ましい。無機絶縁層の厚みとして1μm以上が好まし
いとしている理由は、これ以上の厚みでないと絶縁破壊
電圧として100vを得ることが困難になるからである
。また、無機絶縁層の厚みとして20μm以下が好まし
いとしている理由は、厚みがこの値を越えると、十分な
可撓性を得られなくなる場合があるからである。
In this invention, the thickness of the inorganic insulating layer is preferably 1 to 20 μm. The reason why the thickness of the inorganic insulating layer is preferably 1 μm or more is that if the thickness is not greater than this, it will be difficult to obtain a dielectric breakdown voltage of 100 V. Further, the reason why the thickness of the inorganic insulating layer is preferably 20 μm or less is that if the thickness exceeds this value, sufficient flexibility may not be obtained.

[作用] この発明の無機絶縁体では、導体と無機絶縁層との間に
無機化合物微粒子を分散して共析させた複合めっき層が
設けられている。この複合めっき層は、無機化合物微粒
子を分散させたものであるため、無機絶縁層との付着性
に優れるとともに、めっき層であることから導体との付
着性にも優れる。−このため、導体と無機絶縁層との間
の密着性が改善され、剥離しにくくなる。このため、可
撓性に優れた無機絶縁体とすることができる。
[Function] In the inorganic insulator of the present invention, a composite plating layer in which inorganic compound fine particles are dispersed and eutectoid is provided between the conductor and the inorganic insulating layer. Since this composite plating layer has inorganic compound fine particles dispersed therein, it has excellent adhesion to the inorganic insulating layer, and since it is a plating layer, it also has excellent adhesion to the conductor. - Therefore, the adhesion between the conductor and the inorganic insulating layer is improved and peeling becomes difficult. Therefore, an inorganic insulator with excellent flexibility can be obtained.

複合めっき層の金属はCuでもよいが、工業的にめっき
を行なうことが容易なNiまたはCrでもよい。これら
の金属は、Cuに比べると無機化合物に対しての付着性
が優れている。また、NiまたはC「を用いると、導体
としてCuもしくはCu合金を用いた場合、高温使用時
におけるCuもしくはCu合金の酸化防止の役割も果た
す。
The metal of the composite plating layer may be Cu, but may also be Ni or Cr, which can be easily plated industrially. These metals have better adhesion to inorganic compounds than Cu. Furthermore, when Ni or C is used as a conductor, it also serves to prevent oxidation of the Cu or Cu alloy during high-temperature use.

複合めっき層の表面に無機化合物微粒子が現われ、複合
めっき層の表面に凹凸が形成される場合があるが、この
ような場合、複合めっき層の表面上に設けられる無機絶
縁層に対してくさび効果を示し、無機絶縁層のコーティ
ングが容易となり、かつ複合めっき層に対する無機絶縁
層の付着力も向上する。
Fine particles of inorganic compounds may appear on the surface of the composite plating layer, forming irregularities on the surface of the composite plating layer. In such cases, a wedge effect may occur on the inorganic insulating layer provided on the surface of the composite plating layer. This makes it easier to coat the inorganic insulating layer and improves the adhesion of the inorganic insulating layer to the composite plating layer.

C実施例〕 実施例1 厚み2μmでニッケルめっきした線径1mmの銅線に対
して、前処理として、パークロルエチレンで蒸気脱脂し
、リン酸:硝酸:水−15:2:3混合液中で30秒エ
ツチングした。
Example C] Example 1 A nickel-plated copper wire with a thickness of 2 μm and a wire diameter of 1 mm was pretreated with vapor degreasing using perchlorethylene, and then placed in a 15:2:3 mixture of phosphoric acid: nitric acid: water. I etched it for 30 seconds.

この前処理した線径1mmのタフピッチ銅線を、硫酸鋼
7g/Lロッシェル塩75g/L  )リエタノールア
ミン10m(1/Lホルマリン25m(1/L水酸化ナ
トリウム20 g/ (1,炭酸ナトリウム10 g/
 i、およびシアン化ナトリウム0.125g/11の
銅めっき浴中に粒径8μm以下のAm20.粒子を5g
/(L加えて、空気ポンプにより攪拌しながら、めっき
浴中に浸漬し、無電解で複合めっきを行なった。浴温的
50℃で、析出速度は5μm/時であり、複合めっき層
の膜厚が15μmとなるまで複合めっきを行なった。
This pretreated tough pitch copper wire with a wire diameter of 1 mm was mixed with sulfuric acid steel 7 g/L Rochelle salt 75 g/L) reethanolamine 10 m (1/L formalin 25 m (1/L sodium hydroxide 20 g/(1, sodium carbonate 10 g/L) g/
i, and Am20.i with a particle size of 8 μm or less in a copper plating bath containing 0.125 g/11 sodium cyanide. 5g of particles
/(L), and electroless composite plating was performed by immersing it in a plating bath while stirring with an air pump. At a bath temperature of 50°C, the deposition rate was 5 μm/hour, and the film of the composite plating layer Composite plating was performed until the thickness reached 15 μm.

この複合めっきを行なった線材の上に、アークプラズマ
溶射により、A11203を10μmの厚みとなるまで
コーティングして無機絶縁層を形成させた。
The composite-plated wire was coated with A11203 to a thickness of 10 μm by arc plasma spraying to form an inorganic insulating layer.

実施例2 線径1mmの無酸素銅線に、上記の実施例1と同様の前
処理を行なった。硫酸ニッケル2罐0のニッケルめっき
浴に、粒径2μm以下のSLCとSiO2粒子をそれぞ
れ2.5g/lずつ加えて、空気ポンプにより攪拌しな
がら、上記前処理した無酸素銅線をめっき浴中に浸漬し
複合めっきを行なった。浴温を60℃とし、線材を陰極
とし、ニッケル板を陽極として、電流密度8A/dm2
で複合めっきを行なった。析出速度は6μm/分であり
、複合めっき層の厚みが6μmとなるまで複合めっきを
行なった。
Example 2 An oxygen-free copper wire with a wire diameter of 1 mm was subjected to the same pretreatment as in Example 1 above. Add 2.5 g/l each of SLC and SiO2 particles with a particle size of 2 μm or less to a nickel plating bath containing 2 cans of nickel sulfate, and while stirring with an air pump, the pretreated oxygen-free copper wire was placed in the plating bath. Composite plating was performed by immersing it in The bath temperature was 60°C, the wire was used as the cathode, the nickel plate was used as the anode, and the current density was 8A/dm2.
Composite plating was performed. The deposition rate was 6 μm/min, and composite plating was performed until the thickness of the composite plating layer was 6 μm.

この複合めっきを行なった線材の表面上に、テトラブチ
ルオルトシリケートニ水:イソプロビルアルコール−2
:8:15のモル比で混合した液に、硝酸をテトラブチ
ルオルトシリケートに対して3/100モルの割合で加
え、これを80℃で2時間加熱攪拌した溶液を塗布した
。塗布後400℃で10分間加熱する工程を5回繰返し
た。これによって、複合めっき層の表面に無機絶縁層と
してのSiO2層が厚み8μmで形成された。
Tetrabutyl orthosilicate diwater:isopropyl alcohol-2
Nitric acid was added at a ratio of 3/100 mole to tetrabutyl orthosilicate to a mixed solution at a molar ratio of 8:15, and a solution obtained by heating and stirring at 80° C. for 2 hours was applied. After application, the process of heating at 400°C for 10 minutes was repeated 5 times. As a result, a SiO2 layer with a thickness of 8 μm was formed as an inorganic insulating layer on the surface of the composite plating layer.

実施例3 線径1mmのCu−0.01%Zr線を上記の実施例1
と同様にして前処理した。無水クロム酸250g/庭、
硫酸2.5g/庭のクロムめっき浴に、粒径1μm以下
のA Q Ns S t 3 N4 、および2μm以
下の5in2を、それぞれIg/見、Ig/i、および
2g/fLずつ加えて、空気ポンプで攪拌しながら、上
記前処理した線材を浸漬して表面に複合めっきを行なっ
た。浴温55℃で、線材を陰極とし、ステンレス板を陽
極として、電流密度10A/dm2でめっきした。析出
速度は5μm/分であり、厚み9μmとなるまで複合め
っきを行なった。この複合めっき層の上に、3号珪酸ナ
トリウムの70%水溶液(水ガラス)を塗布し、150
℃で加熱した後、10%の硝酸水溶液で洗浄し乾燥する
という工程を10回繰返した。
Example 3 A Cu-0.01% Zr wire with a wire diameter of 1 mm was used in Example 1 above.
Pretreatment was carried out in the same manner. Chromic anhydride 250g/garden,
A Q Ns S t 3 N4 with a particle size of 1 μm or less, and 5in2 with a particle size of 2 μm or less were added to 2.5 g of sulfuric acid/garden chromium plating bath, respectively, and 2 g/fL of Ig/I, Ig/i, and 2 g/fL were added. While stirring with a pump, the pretreated wire was immersed to perform composite plating on its surface. Plating was carried out at a bath temperature of 55° C. and a current density of 10 A/dm 2 using the wire as a cathode and the stainless steel plate as an anode. The deposition rate was 5 μm/min, and composite plating was performed until the thickness was 9 μm. On this composite plating layer, a 70% aqueous solution of No. 3 sodium silicate (water glass) was applied,
The process of heating at °C, washing with a 10% nitric acid aqueous solution, and drying was repeated 10 times.

これにより、複合めっき層の上に無機絶縁層としてのS
iO2層が厚み10μmで形成された。
As a result, S as an inorganic insulating layer is formed on the composite plating layer.
An iO2 layer was formed with a thickness of 10 μm.

比較例1 線径1mmの111070線を30℃の10111量%
水酸化ナトリウム水溶液中に30秒間浸漬した。その後
、38℃の23重量%硫酸水溶液中に浸漬し陽極酸化し
た。陰極にはステンレス板を用い、電流密度2.5A/
dm2で20分間酸化させた。形成された酸化皮膜の厚
みは、20μmであった。このようにして得られた線材
を、200℃で20分間乾燥させた。
Comparative example 1 111070 wire with a wire diameter of 1 mm at 30°C 10111% by weight
It was immersed in an aqueous sodium hydroxide solution for 30 seconds. Thereafter, it was immersed in a 23% by weight aqueous sulfuric acid solution at 38°C for anodization. A stainless steel plate is used as the cathode, and the current density is 2.5A/
Oxidized for 20 minutes at dm2. The thickness of the formed oxide film was 20 μm. The wire thus obtained was dried at 200° C. for 20 minutes.

比較例2 線径1mmの無酸素銅線に、上記実施例1と同様の前処
理を行なった。この前処理した無酸素銅線に、複合めっ
きせずに、直接にアークプラズマ溶射して、厚み10μ
mのAfL203の無機絶縁層を形成させた。
Comparative Example 2 An oxygen-free copper wire with a wire diameter of 1 mm was subjected to the same pretreatment as in Example 1 above. This pretreated oxygen-free copper wire was directly arc plasma sprayed without composite plating to a thickness of 10 μm.
An inorganic insulating layer of AfL203 of m was formed.

以上のようにして得られた実施例1〜3ならびに比較例
1および2の線材について、絶縁破壊電圧、曲げ径、耐
熱温度、高温強度、および導電率を測定し、得られた結
果を表1に併せて示した。
For the wire rods of Examples 1 to 3 and Comparative Examples 1 and 2 obtained as above, the dielectric breakdown voltage, bending diameter, allowable temperature limit, high temperature strength, and electrical conductivity were measured, and the obtained results are shown in Table 1. It is also shown in .

(以下余白) 表 表1から明らかなように、この発明に従う実施例1〜3
と従来の方法である陽極酸化法による比較例1の絶縁電
線とを比較すると、実施例1〜3の絶縁電線は、絶縁破
壊電圧において優れており、さらに曲げ径が小さく、可
撓性の面においても優れていることがわかる。さらに導
体として銅線を用いているため、導電率においても優れ
ている。
(Hereinafter, blank spaces) As is clear from Table 1, Examples 1 to 3 according to the present invention
Comparing the insulated wires of Comparative Example 1 using the conventional method of anodic oxidation, the insulated wires of Examples 1 to 3 were superior in breakdown voltage, had smaller bending diameters, and had better flexibility. It can be seen that it is also excellent. Furthermore, since copper wire is used as the conductor, it has excellent electrical conductivity.

また高温における強度も優れている。It also has excellent strength at high temperatures.

この発明に従う実施例1〜3と複合めっき層を設けてい
ない比較例2とを比較すると、絶縁破壊電圧ではそれほ
ど大きな差は見とめられないが、曲げ径において著しく
異なっており、この発明に従う実施例1〜3の絶縁電線
は優れた可撓性を示すことがわかる。また耐熱温度およ
び高温強度にも優れており、この発明に従う実施例1〜
3が優れた耐熱性を有することがわかる。
Comparing Examples 1 to 3 according to the present invention and Comparative Example 2 in which no composite plating layer was provided, there is no significant difference in dielectric breakdown voltage, but there is a significant difference in bending diameter. It can be seen that the insulated wires of Examples 1 to 3 exhibit excellent flexibility. It also has excellent heat resistance and high temperature strength, and Examples 1 to 1 according to the present invention
It can be seen that No. 3 has excellent heat resistance.

以上の実施例においては、この発明の無機絶縁体を絶縁
電線に適用した場合について説明したが、この発明は電
線以外の用途にも適用され得るものである。
In the above embodiments, a case has been described in which the inorganic insulator of the present invention is applied to an insulated wire, but the present invention can also be applied to uses other than wires.

[発明の効果] 以上説明したように、この発明に従う無機絶縁体は、絶
縁性、可撓性、および耐熱性において従来の絶a電線よ
りも著しく優れている。このため、自動車のエンジンま
わりなどの耐熱用途、巻線、真空機内配線、耐放射線用
途などに用いることができる。
[Effects of the Invention] As explained above, the inorganic insulator according to the present invention is significantly superior in insulation, flexibility, and heat resistance to conventional electrical wires. Therefore, it can be used for heat-resistant applications such as around automobile engines, windings, wiring inside vacuum machines, radiation-resistant applications, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を説明するための断面図である。 図において、1は導体、2は複合めっき層、2aは無機
化合物微粒子、3は無機絶縁層を示す。
FIG. 1 is a sectional view for explaining the present invention. In the figure, 1 is a conductor, 2 is a composite plating layer, 2a is an inorganic compound fine particle, and 3 is an inorganic insulating layer.

Claims (9)

【特許請求の範囲】[Claims] (1)導体と、 導体の表面上に設けられ、無機化合物微粒子を分散して
共析させた複合めっき層と、 複合めっき層の表面上に設けられる無機絶縁層とを備え
る、無機絶縁体。
(1) An inorganic insulator comprising: a conductor; a composite plating layer provided on the surface of the conductor in which inorganic compound fine particles are dispersed and eutectoid; and an inorganic insulating layer provided on the surface of the composite plating layer.
(2)前記導体が、CuもしくはCu合金またはこれら
にNiもしくはCrをめっきしたものである、請求項1
に記載の無機絶縁体。
(2) Claim 1, wherein the conductor is Cu, a Cu alloy, or a Cu alloy plated with Ni or Cr.
Inorganic insulators described in .
(3)前記導体が、長尺体である、請求項1に記載の無
機絶縁体。
(3) The inorganic insulator according to claim 1, wherein the conductor is a long body.
(4)前記長尺体がワイヤまたはテープである、請求項
3に記載の無機絶縁体。
(4) The inorganic insulator according to claim 3, wherein the elongated body is a wire or a tape.
(5)前記複合めっき層の金属が、Cu、NiおよびC
rからなる群より選ばれる少なくとも1種の金属である
、請求項1に記載の無機絶縁体。
(5) The metals of the composite plating layer are Cu, Ni and C.
The inorganic insulator according to claim 1, which is at least one metal selected from the group consisting of r.
(6)前記複合めっき層の無機化合物微粒子が、SiC
、AlN、Si_3N_4、Al_2O_3およびSi
O_2からなる群より選ばれる少なくとも1種である、
請求項1に記載の無機絶縁体。
(6) The inorganic compound fine particles of the composite plating layer are SiC
, AlN, Si_3N_4, Al_2O_3 and Si
At least one species selected from the group consisting of O_2,
The inorganic insulator according to claim 1.
(7)前記複合めっき層の厚みが0.5〜20μmであ
る、請求項1に記載の無機絶縁体。
(7) The inorganic insulator according to claim 1, wherein the composite plating layer has a thickness of 0.5 to 20 μm.
(8)前記無機絶縁層がSiO_2および/またはAl
_2O_3を含む、請求項1に記載の無機絶縁体。
(8) The inorganic insulating layer is made of SiO_2 and/or Al.
The inorganic insulator according to claim 1, comprising _2O_3.
(9)前記無機絶縁層の厚みが1〜20μmである、請
求項1に記載の無機絶縁体。
(9) The inorganic insulator according to claim 1, wherein the inorganic insulating layer has a thickness of 1 to 20 μm.
JP22380989A 1989-08-30 1989-08-30 Inorganic insulator Pending JPH0388215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22380989A JPH0388215A (en) 1989-08-30 1989-08-30 Inorganic insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22380989A JPH0388215A (en) 1989-08-30 1989-08-30 Inorganic insulator

Publications (1)

Publication Number Publication Date
JPH0388215A true JPH0388215A (en) 1991-04-12

Family

ID=16804062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22380989A Pending JPH0388215A (en) 1989-08-30 1989-08-30 Inorganic insulator

Country Status (1)

Country Link
JP (1) JPH0388215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510258A1 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Limited Method of making an insulating member
US6481872B1 (en) 1998-10-22 2002-11-19 Koito Industries, Ltd. Astral lamp
CN104778996A (en) * 2015-04-01 2015-07-15 苏州欢颜电气有限公司 Aluminum conductor provided with insulation layers and preparation method of aluminum conductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510258A1 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Limited Method of making an insulating member
US5350638A (en) * 1991-04-26 1994-09-27 Sumitomo Electric Industries, Ltd. Electrical insulated wire
US6481872B1 (en) 1998-10-22 2002-11-19 Koito Industries, Ltd. Astral lamp
CN104778996A (en) * 2015-04-01 2015-07-15 苏州欢颜电气有限公司 Aluminum conductor provided with insulation layers and preparation method of aluminum conductor

Similar Documents

Publication Publication Date Title
CA2027553C (en) Insulated wire for high-temperature environment
CA2058147C (en) Electrical insulated wire
WO1991010239A1 (en) Method of manufacturing inorganic insulator
JPH0388215A (en) Inorganic insulator
JPH04334823A (en) Insulating member
KR940000845B1 (en) Insulated electric wire
JPH0475207A (en) Inorganic insulated wire
JP3336735B2 (en) Insulated wire
JPH0475208A (en) Inorganic insulated wire
JPH02270217A (en) Insulated wire
JPH04286807A (en) Insulating member
JPH05314821A (en) Inorganic insulation coated conductor
JP3089428B2 (en) Method for producing insulating high magnetic permeability alloy
KR940001884B1 (en) Insulated electric wire
JPH06251635A (en) Insulated cable
JPH06309946A (en) Heat resistant electric wire
JPH03202475A (en) Production of inorganic insulating material
JPH0475206A (en) Inorganic insulated wire
JPH0485805A (en) Manufacture of insulated coil
JPH02215010A (en) Insulated electric wire
JPH07282645A (en) Heat resistant insulated wire and its manufacture
JPH0963359A (en) Heat resisting electric wire
JPH0541115A (en) Heat resistant electric cable and manufacture thereof
JPH0636622A (en) Insulated wire
JPH04230908A (en) Insulating member